ksz9477.c 30.1 KB
Newer Older
1 2 3 4
// SPDX-License-Identifier: GPL-2.0
/*
 * Microchip KSZ9477 switch driver main logic
 *
5
 * Copyright (C) 2017-2019 Microchip Technology Inc.
6 7 8 9
 */

#include <linux/kernel.h>
#include <linux/module.h>
10
#include <linux/iopoll.h>
11 12 13
#include <linux/platform_data/microchip-ksz.h>
#include <linux/phy.h>
#include <linux/if_bridge.h>
14
#include <linux/if_vlan.h>
15 16 17
#include <net/dsa.h>
#include <net/switchdev.h>

18
#include "ksz9477_reg.h"
19
#include "ksz_common.h"
20
#include "ksz9477.h"
21

22 23
static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
{
24
	regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
25 26 27 28 29
}

static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
			 bool set)
{
30 31
	regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
			   bits, set ? bits : 0);
32 33
}

34 35
static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
{
36
	regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
37 38 39 40 41
}

static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
			       u32 bits, bool set)
{
42 43
	regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
			   bits, set ? bits : 0);
44 45
}

46
int ksz9477_change_mtu(struct ksz_device *dev, int port, int mtu)
47 48 49 50 51 52 53 54 55
{
	u16 frame_size, max_frame = 0;
	int i;

	frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;

	/* Cache the per-port MTU setting */
	dev->ports[port].max_frame = frame_size;

56
	for (i = 0; i < dev->info->port_cnt; i++)
57 58 59 60 61 62
		max_frame = max(max_frame, dev->ports[i].max_frame);

	return regmap_update_bits(dev->regmap[1], REG_SW_MTU__2,
				  REG_SW_MTU_MASK, max_frame);
}

63
int ksz9477_max_mtu(struct ksz_device *dev, int port)
64 65 66 67
{
	return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
}

68
static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
69
{
70
	unsigned int val;
71

72 73
	return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
					val, !(val & VLAN_START), 10, 1000);
74 75 76 77 78 79 80 81 82 83 84 85 86
}

static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
				  u32 *vlan_table)
{
	int ret;

	mutex_lock(&dev->vlan_mutex);

	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);

	/* wait to be cleared */
87 88
	ret = ksz9477_wait_vlan_ctrl_ready(dev);
	if (ret) {
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
		dev_dbg(dev->dev, "Failed to read vlan table\n");
		goto exit;
	}

	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);

	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);

exit:
	mutex_unlock(&dev->vlan_mutex);

	return ret;
}

static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
				  u32 *vlan_table)
{
	int ret;

	mutex_lock(&dev->vlan_mutex);

	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);

	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);

	/* wait to be cleared */
120 121
	ret = ksz9477_wait_vlan_ctrl_ready(dev);
	if (ret) {
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
		dev_dbg(dev->dev, "Failed to write vlan table\n");
		goto exit;
	}

	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);

	/* update vlan cache table */
	dev->vlan_cache[vid].table[0] = vlan_table[0];
	dev->vlan_cache[vid].table[1] = vlan_table[1];
	dev->vlan_cache[vid].table[2] = vlan_table[2];

exit:
	mutex_unlock(&dev->vlan_mutex);

	return ret;
}

static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
{
	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
}

static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
{
	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
}

155
static int ksz9477_wait_alu_ready(struct ksz_device *dev)
156
{
157
	unsigned int val;
158

159 160
	return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
					val, !(val & ALU_START), 10, 1000);
161 162
}

163
static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
164
{
165
	unsigned int val;
166

167 168 169 170
	return regmap_read_poll_timeout(dev->regmap[2],
					REG_SW_ALU_STAT_CTRL__4,
					val, !(val & ALU_STAT_START),
					10, 1000);
171 172
}

173
int ksz9477_reset_switch(struct ksz_device *dev)
174 175 176 177 178 179 180 181
{
	u8 data8;
	u32 data32;

	/* reset switch */
	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);

	/* turn off SPI DO Edge select */
182 183
	regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
			   SPI_AUTO_EDGE_DETECTION, 0);
184 185 186 187 188 189 190 191 192 193 194 195

	/* default configuration */
	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);

	/* disable interrupts */
	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);

196 197 198 199 200 201
	data8 = SW_ENABLE_REFCLKO;
	if (dev->synclko_disable)
		data8 = 0;
	else if (dev->synclko_125)
		data8 = SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ;
	ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1, data8);
202

203 204 205
	return 0;
}

206
void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
207 208
{
	struct ksz_port *p = &dev->ports[port];
209
	unsigned int val;
210 211 212 213 214 215 216 217 218
	u32 data;
	int ret;

	/* retain the flush/freeze bit */
	data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
	data |= MIB_COUNTER_READ;
	data |= (addr << MIB_COUNTER_INDEX_S);
	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);

219 220 221
	ret = regmap_read_poll_timeout(dev->regmap[2],
			PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
			val, !(val & MIB_COUNTER_READ), 10, 1000);
222
	/* failed to read MIB. get out of loop */
223
	if (ret) {
224 225 226 227 228 229 230 231 232
		dev_dbg(dev->dev, "Failed to get MIB\n");
		return;
	}

	/* count resets upon read */
	ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
	*cnt += data;
}

233 234
void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
		       u64 *dropped, u64 *cnt)
235
{
236
	addr = dev->info->mib_names[addr].index;
237 238 239
	ksz9477_r_mib_cnt(dev, port, addr, cnt);
}

240
void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
241 242 243 244 245 246 247 248 249 250 251 252 253
{
	u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
	struct ksz_port *p = &dev->ports[port];

	/* enable/disable the port for flush/freeze function */
	mutex_lock(&p->mib.cnt_mutex);
	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);

	/* used by MIB counter reading code to know freeze is enabled */
	p->freeze = freeze;
	mutex_unlock(&p->mib.cnt_mutex);
}

254
void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
255 256 257 258 259 260 261 262 263 264 265 266
{
	struct ksz_port_mib *mib = &dev->ports[port].mib;

	/* flush all enabled port MIB counters */
	mutex_lock(&mib->cnt_mutex);
	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
		     MIB_COUNTER_FLUSH_FREEZE);
	ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
	mutex_unlock(&mib->cnt_mutex);
}

267
void ksz9477_r_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 *data)
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
{
	u16 val = 0xffff;

	/* No real PHY after this. Simulate the PHY.
	 * A fixed PHY can be setup in the device tree, but this function is
	 * still called for that port during initialization.
	 * For RGMII PHY there is no way to access it so the fixed PHY should
	 * be used.  For SGMII PHY the supporting code will be added later.
	 */
	if (addr >= dev->phy_port_cnt) {
		struct ksz_port *p = &dev->ports[addr];

		switch (reg) {
		case MII_BMCR:
			val = 0x1140;
			break;
		case MII_BMSR:
			val = 0x796d;
			break;
		case MII_PHYSID1:
			val = 0x0022;
			break;
		case MII_PHYSID2:
			val = 0x1631;
			break;
		case MII_ADVERTISE:
			val = 0x05e1;
			break;
		case MII_LPA:
			val = 0xc5e1;
			break;
		case MII_CTRL1000:
			val = 0x0700;
			break;
		case MII_STAT1000:
			if (p->phydev.speed == SPEED_1000)
				val = 0x3800;
			else
				val = 0;
			break;
		}
	} else {
		ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
	}

313
	*data = val;
314 315
}

316
void ksz9477_w_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 val)
317 318 319
{
	/* No real PHY after this. */
	if (addr >= dev->phy_port_cnt)
320
		return;
321 322 323

	/* No gigabit support.  Do not write to this register. */
	if (!(dev->features & GBIT_SUPPORT) && reg == MII_CTRL1000)
324
		return;
325

326
	ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
327 328
}

329
void ksz9477_cfg_port_member(struct ksz_device *dev, int port, u8 member)
330 331 332 333
{
	ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
}

334
void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
335
{
336
	const u16 *regs = dev->info->regs;
337 338
	u8 data;

339 340 341 342
	regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
			   SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
			   SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);

343
	if (port < dev->info->port_cnt) {
344
		/* flush individual port */
345
		ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
346
		if (!(data & PORT_LEARN_DISABLE))
347
			ksz_pwrite8(dev, port, regs[P_STP_CTRL],
348 349
				    data | PORT_LEARN_DISABLE);
		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
350
		ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
351 352 353 354 355 356
	} else {
		/* flush all */
		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
	}
}

357 358
int ksz9477_port_vlan_filtering(struct ksz_device *dev, int port,
				bool flag, struct netlink_ext_ack *extack)
359 360 361 362 363 364 365 366 367 368 369 370 371 372
{
	if (flag) {
		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
			     PORT_VLAN_LOOKUP_VID_0, true);
		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
	} else {
		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
			     PORT_VLAN_LOOKUP_VID_0, false);
	}

	return 0;
}

373 374 375
int ksz9477_port_vlan_add(struct ksz_device *dev, int port,
			  const struct switchdev_obj_port_vlan *vlan,
			  struct netlink_ext_ack *extack)
376 377 378
{
	u32 vlan_table[3];
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
379
	int err;
380

381 382
	err = ksz9477_get_vlan_table(dev, vlan->vid, vlan_table);
	if (err) {
383
		NL_SET_ERR_MSG_MOD(extack, "Failed to get vlan table");
384
		return err;
385
	}
386

387 388 389 390 391 392
	vlan_table[0] = VLAN_VALID | (vlan->vid & VLAN_FID_M);
	if (untagged)
		vlan_table[1] |= BIT(port);
	else
		vlan_table[1] &= ~BIT(port);
	vlan_table[1] &= ~(BIT(dev->cpu_port));
393

394
	vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
395

396 397
	err = ksz9477_set_vlan_table(dev, vlan->vid, vlan_table);
	if (err) {
398
		NL_SET_ERR_MSG_MOD(extack, "Failed to set vlan table");
399
		return err;
400
	}
401 402 403 404

	/* change PVID */
	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
		ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vlan->vid);
405 406

	return 0;
407 408
}

409 410
int ksz9477_port_vlan_del(struct ksz_device *dev, int port,
			  const struct switchdev_obj_port_vlan *vlan)
411 412 413 414 415 416 417 418
{
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
	u32 vlan_table[3];
	u16 pvid;

	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
	pvid = pvid & 0xFFF;

419 420 421 422
	if (ksz9477_get_vlan_table(dev, vlan->vid, vlan_table)) {
		dev_dbg(dev->dev, "Failed to get vlan table\n");
		return -ETIMEDOUT;
	}
423

424
	vlan_table[2] &= ~BIT(port);
425

426 427
	if (pvid == vlan->vid)
		pvid = 1;
428

429 430
	if (untagged)
		vlan_table[1] &= ~BIT(port);
431

432 433 434
	if (ksz9477_set_vlan_table(dev, vlan->vid, vlan_table)) {
		dev_dbg(dev->dev, "Failed to set vlan table\n");
		return -ETIMEDOUT;
435 436 437 438 439 440 441
	}

	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);

	return 0;
}

442 443
int ksz9477_fdb_add(struct ksz_device *dev, int port,
		    const unsigned char *addr, u16 vid, struct dsa_db db)
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
{
	u32 alu_table[4];
	u32 data;
	int ret = 0;

	mutex_lock(&dev->alu_mutex);

	/* find any entry with mac & vid */
	data = vid << ALU_FID_INDEX_S;
	data |= ((addr[0] << 8) | addr[1]);
	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);

	data = ((addr[2] << 24) | (addr[3] << 16));
	data |= ((addr[4] << 8) | addr[5]);
	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);

	/* start read operation */
	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);

	/* wait to be finished */
464 465
	ret = ksz9477_wait_alu_ready(dev);
	if (ret) {
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
		dev_dbg(dev->dev, "Failed to read ALU\n");
		goto exit;
	}

	/* read ALU entry */
	ksz9477_read_table(dev, alu_table);

	/* update ALU entry */
	alu_table[0] = ALU_V_STATIC_VALID;
	alu_table[1] |= BIT(port);
	if (vid)
		alu_table[1] |= ALU_V_USE_FID;
	alu_table[2] = (vid << ALU_V_FID_S);
	alu_table[2] |= ((addr[0] << 8) | addr[1]);
	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
	alu_table[3] |= ((addr[4] << 8) | addr[5]);

	ksz9477_write_table(dev, alu_table);

	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);

	/* wait to be finished */
488 489
	ret = ksz9477_wait_alu_ready(dev);
	if (ret)
490 491 492 493 494 495 496 497
		dev_dbg(dev->dev, "Failed to write ALU\n");

exit:
	mutex_unlock(&dev->alu_mutex);

	return ret;
}

498 499
int ksz9477_fdb_del(struct ksz_device *dev, int port,
		    const unsigned char *addr, u16 vid, struct dsa_db db)
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
{
	u32 alu_table[4];
	u32 data;
	int ret = 0;

	mutex_lock(&dev->alu_mutex);

	/* read any entry with mac & vid */
	data = vid << ALU_FID_INDEX_S;
	data |= ((addr[0] << 8) | addr[1]);
	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);

	data = ((addr[2] << 24) | (addr[3] << 16));
	data |= ((addr[4] << 8) | addr[5]);
	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);

	/* start read operation */
	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);

	/* wait to be finished */
520 521
	ret = ksz9477_wait_alu_ready(dev);
	if (ret) {
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
		dev_dbg(dev->dev, "Failed to read ALU\n");
		goto exit;
	}

	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
	if (alu_table[0] & ALU_V_STATIC_VALID) {
		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);

		/* clear forwarding port */
		alu_table[2] &= ~BIT(port);

		/* if there is no port to forward, clear table */
		if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
			alu_table[0] = 0;
			alu_table[1] = 0;
			alu_table[2] = 0;
			alu_table[3] = 0;
		}
	} else {
		alu_table[0] = 0;
		alu_table[1] = 0;
		alu_table[2] = 0;
		alu_table[3] = 0;
	}

	ksz9477_write_table(dev, alu_table);

	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);

	/* wait to be finished */
554 555
	ret = ksz9477_wait_alu_ready(dev);
	if (ret)
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
		dev_dbg(dev->dev, "Failed to write ALU\n");

exit:
	mutex_unlock(&dev->alu_mutex);

	return ret;
}

static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
{
	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
			ALU_V_PRIO_AGE_CNT_M;
	alu->mstp = alu_table[0] & ALU_V_MSTP_M;

	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;

	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;

	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
	alu->mac[1] = alu_table[2] & 0xFF;
	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
	alu->mac[5] = alu_table[3] & 0xFF;
}

587 588
int ksz9477_fdb_dump(struct ksz_device *dev, int port,
		     dsa_fdb_dump_cb_t *cb, void *data)
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
{
	int ret = 0;
	u32 ksz_data;
	u32 alu_table[4];
	struct alu_struct alu;
	int timeout;

	mutex_lock(&dev->alu_mutex);

	/* start ALU search */
	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);

	do {
		timeout = 1000;
		do {
			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
				break;
			usleep_range(1, 10);
		} while (timeout-- > 0);

		if (!timeout) {
			dev_dbg(dev->dev, "Failed to search ALU\n");
			ret = -ETIMEDOUT;
			goto exit;
		}

616 617 618
		if (!(ksz_data & ALU_VALID))
			continue;

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
		/* read ALU table */
		ksz9477_read_table(dev, alu_table);

		ksz9477_convert_alu(&alu, alu_table);

		if (alu.port_forward & BIT(port)) {
			ret = cb(alu.mac, alu.fid, alu.is_static, data);
			if (ret)
				goto exit;
		}
	} while (ksz_data & ALU_START);

exit:

	/* stop ALU search */
	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);

	mutex_unlock(&dev->alu_mutex);

	return ret;
}

641 642
int ksz9477_mdb_add(struct ksz_device *dev, int port,
		    const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
643 644
{
	u32 static_table[4];
645 646
	const u8 *shifts;
	const u32 *masks;
647 648 649
	u32 data;
	int index;
	u32 mac_hi, mac_lo;
650
	int err = 0;
651

652 653 654
	shifts = dev->info->shifts;
	masks = dev->info->masks;

655 656 657 658 659 660
	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);

	mutex_lock(&dev->alu_mutex);

661
	for (index = 0; index < dev->info->num_statics; index++) {
662
		/* find empty slot first */
663 664
		data = (index << shifts[ALU_STAT_INDEX]) |
			masks[ALU_STAT_READ] | ALU_STAT_START;
665 666 667
		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);

		/* wait to be finished */
668 669
		err = ksz9477_wait_alu_sta_ready(dev);
		if (err) {
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
			goto exit;
		}

		/* read ALU static table */
		ksz9477_read_table(dev, static_table);

		if (static_table[0] & ALU_V_STATIC_VALID) {
			/* check this has same vid & mac address */
			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
			    static_table[3] == mac_lo) {
				/* found matching one */
				break;
			}
		} else {
			/* found empty one */
			break;
		}
	}

	/* no available entry */
692
	if (index == dev->info->num_statics) {
693
		err = -ENOSPC;
694
		goto exit;
695
	}
696 697 698 699 700 701 702 703 704 705 706 707

	/* add entry */
	static_table[0] = ALU_V_STATIC_VALID;
	static_table[1] |= BIT(port);
	if (mdb->vid)
		static_table[1] |= ALU_V_USE_FID;
	static_table[2] = (mdb->vid << ALU_V_FID_S);
	static_table[2] |= mac_hi;
	static_table[3] = mac_lo;

	ksz9477_write_table(dev, static_table);

708
	data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
709 710 711
	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);

	/* wait to be finished */
712
	if (ksz9477_wait_alu_sta_ready(dev))
713 714 715 716
		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");

exit:
	mutex_unlock(&dev->alu_mutex);
717
	return err;
718 719
}

720 721
int ksz9477_mdb_del(struct ksz_device *dev, int port,
		    const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
722 723
{
	u32 static_table[4];
724 725
	const u8 *shifts;
	const u32 *masks;
726 727 728 729 730
	u32 data;
	int index;
	int ret = 0;
	u32 mac_hi, mac_lo;

731 732 733
	shifts = dev->info->shifts;
	masks = dev->info->masks;

734 735 736 737 738 739
	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);

	mutex_lock(&dev->alu_mutex);

740
	for (index = 0; index < dev->info->num_statics; index++) {
741
		/* find empty slot first */
742 743
		data = (index << shifts[ALU_STAT_INDEX]) |
			masks[ALU_STAT_READ] | ALU_STAT_START;
744 745 746
		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);

		/* wait to be finished */
747 748
		ret = ksz9477_wait_alu_sta_ready(dev);
		if (ret) {
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
			goto exit;
		}

		/* read ALU static table */
		ksz9477_read_table(dev, static_table);

		if (static_table[0] & ALU_V_STATIC_VALID) {
			/* check this has same vid & mac address */

			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
			    static_table[3] == mac_lo) {
				/* found matching one */
				break;
			}
		}
	}

	/* no available entry */
769
	if (index == dev->info->num_statics)
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
		goto exit;

	/* clear port */
	static_table[1] &= ~BIT(port);

	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
		/* delete entry */
		static_table[0] = 0;
		static_table[1] = 0;
		static_table[2] = 0;
		static_table[3] = 0;
	}

	ksz9477_write_table(dev, static_table);

785
	data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
786 787 788
	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);

	/* wait to be finished */
789 790
	ret = ksz9477_wait_alu_sta_ready(dev);
	if (ret)
791 792 793 794 795 796 797 798
		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");

exit:
	mutex_unlock(&dev->alu_mutex);

	return ret;
}

799 800 801
int ksz9477_port_mirror_add(struct ksz_device *dev, int port,
			    struct dsa_mall_mirror_tc_entry *mirror,
			    bool ingress, struct netlink_ext_ack *extack)
802
{
803 804 805 806 807 808 809
	u8 data;
	int p;

	/* Limit to one sniffer port
	 * Check if any of the port is already set for sniffing
	 * If yes, instruct the user to remove the previous entry & exit
	 */
810
	for (p = 0; p < dev->info->port_cnt; p++) {
811 812 813 814 815 816 817 818 819 820 821 822
		/* Skip the current sniffing port */
		if (p == mirror->to_local_port)
			continue;

		ksz_pread8(dev, p, P_MIRROR_CTRL, &data);

		if (data & PORT_MIRROR_SNIFFER) {
			NL_SET_ERR_MSG_MOD(extack,
					   "Sniffer port is already configured, delete existing rules & retry");
			return -EBUSY;
		}
	}
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837

	if (ingress)
		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
	else
		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);

	/* configure mirror port */
	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
		     PORT_MIRROR_SNIFFER, true);

	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);

	return 0;
}

838 839
void ksz9477_port_mirror_del(struct ksz_device *dev, int port,
			     struct dsa_mall_mirror_tc_entry *mirror)
840
{
841
	bool in_use = false;
842
	u8 data;
843
	int p;
844 845 846 847 848 849 850

	if (mirror->ingress)
		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
	else
		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);


851
	/* Check if any of the port is still referring to sniffer port */
852
	for (p = 0; p < dev->info->port_cnt; p++) {
853 854 855 856 857 858 859 860 861 862
		ksz_pread8(dev, p, P_MIRROR_CTRL, &data);

		if ((data & (PORT_MIRROR_RX | PORT_MIRROR_TX))) {
			in_use = true;
			break;
		}
	}

	/* delete sniffing if there are no other mirroring rules */
	if (!in_use)
863 864 865 866
		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
			     PORT_MIRROR_SNIFFER, false);
}

867 868 869 870 871 872 873
static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
{
	phy_interface_t interface;
	bool gbit;

	if (port < dev->phy_port_cnt)
		return PHY_INTERFACE_MODE_NA;
874

875
	gbit = ksz_get_gbit(dev, port);
876 877 878

	interface = ksz_get_xmii(dev, port, gbit);

879
	return interface;
880 881
}

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
				   u8 dev_addr, u16 reg_addr, u16 val)
{
	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
		     MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
		     MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
}

static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
{
	/* Apply PHY settings to address errata listed in
	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
	 * Silicon Errata and Data Sheet Clarification documents:
	 *
	 * Register settings are needed to improve PHY receive performance
	 */
	ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
	ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
	ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
	ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
	ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);

	/* Transmit waveform amplitude can be improved
	 * (1000BASE-T, 100BASE-TX, 10BASE-Te)
	 */
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);

	/* Energy Efficient Ethernet (EEE) feature select must
	 * be manually disabled (except on KSZ8565 which is 100Mbit)
	 */
	if (dev->features & GBIT_SUPPORT)
		ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);

	/* Register settings are required to meet data sheet
	 * supply current specifications
	 */
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
	ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
}

938 939
void ksz9477_get_caps(struct ksz_device *dev, int port,
		      struct phylink_config *config)
940
{
941 942 943 944 945
	config->mac_capabilities = MAC_10 | MAC_100 | MAC_ASYM_PAUSE |
				   MAC_SYM_PAUSE;

	if (dev->features & GBIT_SUPPORT)
		config->mac_capabilities |= MAC_1000FD;
946 947
}

948
void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
949
{
950 951
	struct dsa_switch *ds = dev->ds;
	u16 data16;
952
	u8 member;
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984

	/* enable tag tail for host port */
	if (cpu_port)
		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
			     true);

	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);

	/* set back pressure */
	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);

	/* enable broadcast storm limit */
	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);

	/* disable DiffServ priority */
	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);

	/* replace priority */
	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
		     false);
	ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
			   MTI_PVID_REPLACE, false);

	/* enable 802.1p priority */
	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);

	if (port < dev->phy_port_cnt) {
		/* do not force flow control */
		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
			     false);

985
		if (dev->info->phy_errata_9477)
986
			ksz9477_phy_errata_setup(dev, port);
987 988 989 990 991 992
	} else {
		/* force flow control */
		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
			     true);
	}
993

994
	if (cpu_port)
995
		member = dsa_user_ports(ds);
996
	else
997 998
		member = BIT(dsa_upstream_port(ds, port));

999 1000 1001 1002 1003 1004 1005
	ksz9477_cfg_port_member(dev, port, member);

	/* clear pending interrupts */
	if (port < dev->phy_port_cnt)
		ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
}

1006
void ksz9477_config_cpu_port(struct dsa_switch *ds)
1007 1008 1009 1010 1011
{
	struct ksz_device *dev = ds->priv;
	struct ksz_port *p;
	int i;

1012 1013 1014
	for (i = 0; i < dev->info->port_cnt; i++) {
		if (dsa_is_cpu_port(ds, i) &&
		    (dev->info->cpu_ports & (1 << i))) {
1015
			phy_interface_t interface;
1016 1017
			const char *prev_msg;
			const char *prev_mode;
1018

1019
			dev->cpu_port = i;
1020
			p = &dev->ports[i];
1021

1022 1023 1024 1025 1026
			/* Read from XMII register to determine host port
			 * interface.  If set specifically in device tree
			 * note the difference to help debugging.
			 */
			interface = ksz9477_get_interface(dev, i);
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
			if (!p->interface) {
				if (dev->compat_interface) {
					dev_warn(dev->dev,
						 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
						 "Please update your device tree.\n",
						 i);
					p->interface = dev->compat_interface;
				} else {
					p->interface = interface;
				}
			}
1038
			if (interface && interface != p->interface) {
1039 1040 1041 1042 1043 1044 1045 1046 1047
				prev_msg = " instead of ";
				prev_mode = phy_modes(interface);
			} else {
				prev_msg = "";
				prev_mode = "";
			}
			dev_info(dev->dev,
				 "Port%d: using phy mode %s%s%s\n",
				 i,
1048
				 phy_modes(p->interface),
1049 1050
				 prev_msg,
				 prev_mode);
1051

1052 1053 1054 1055 1056 1057
			/* enable cpu port */
			ksz9477_port_setup(dev, i, true);
			p->on = 1;
		}
	}

1058
	for (i = 0; i < dev->info->port_cnt; i++) {
1059 1060 1061 1062
		if (i == dev->cpu_port)
			continue;
		p = &dev->ports[i];

1063
		ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
		p->on = 1;
		if (i < dev->phy_port_cnt)
			p->phy = 1;
		if (dev->chip_id == 0x00947700 && i == 6) {
			p->sgmii = 1;

			/* SGMII PHY detection code is not implemented yet. */
			p->phy = 0;
		}
	}
}

1076
int ksz9477_enable_stp_addr(struct ksz_device *dev)
1077
{
1078
	const u32 *masks;
1079 1080 1081
	u32 data;
	int ret;

1082 1083
	masks = dev->info->masks;

1084 1085 1086 1087 1088 1089 1090 1091 1092
	/* Enable Reserved multicast table */
	ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_RESV_MCAST_ENABLE, true);

	/* Set the Override bit for forwarding BPDU packet to CPU */
	ret = ksz_write32(dev, REG_SW_ALU_VAL_B,
			  ALU_V_OVERRIDE | BIT(dev->cpu_port));
	if (ret < 0)
		return ret;

1093
	data = ALU_STAT_START | ALU_RESV_MCAST_ADDR | masks[ALU_STAT_WRITE];
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108

	ret = ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
	if (ret < 0)
		return ret;

	/* wait to be finished */
	ret = ksz9477_wait_alu_sta_ready(dev);
	if (ret < 0) {
		dev_err(dev->dev, "Failed to update Reserved Multicast table\n");
		return ret;
	}

	return 0;
}

1109
int ksz9477_setup(struct dsa_switch *ds)
1110 1111 1112 1113
{
	struct ksz_device *dev = ds->priv;
	int ret = 0;

1114 1115 1116 1117
	/* Required for port partitioning. */
	ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
		      true);

1118 1119 1120
	/* Do not work correctly with tail tagging. */
	ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);

1121 1122 1123 1124 1125 1126 1127 1128
	/* Enable REG_SW_MTU__2 reg by setting SW_JUMBO_PACKET */
	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_JUMBO_PACKET, true);

	/* Now we can configure default MTU value */
	ret = regmap_update_bits(dev->regmap[1], REG_SW_MTU__2, REG_SW_MTU_MASK,
				 VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
	if (ret)
		return ret;
1129 1130 1131 1132

	/* queue based egress rate limit */
	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);

1133 1134 1135
	/* enable global MIB counter freeze function */
	ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);

1136 1137 1138
	return 0;
}

1139
u32 ksz9477_get_port_addr(int port, int offset)
1140 1141 1142 1143
{
	return PORT_CTRL_ADDR(port, offset);
}

1144
int ksz9477_switch_init(struct ksz_device *dev)
1145 1146 1147 1148 1149 1150
{
	u8 data8;
	int ret;

	dev->port_mask = (1 << dev->info->port_cnt) - 1;

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
	/* turn off SPI DO Edge select */
	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
	if (ret)
		return ret;

	data8 &= ~SPI_AUTO_EDGE_DETECTION;
	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
	if (ret)
		return ret;

1161
	ret = ksz_read8(dev, REG_GLOBAL_OPTIONS, &data8);
1162 1163 1164 1165 1166 1167
	if (ret)
		return ret;

	/* Number of ports can be reduced depending on chip. */
	dev->phy_port_cnt = 5;

1168 1169 1170
	/* Default capability is gigabit capable. */
	dev->features = GBIT_SUPPORT;

1171
	if (dev->chip_id == KSZ9893_CHIP_ID) {
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
		dev->features |= IS_9893;

		/* Chip does not support gigabit. */
		if (data8 & SW_QW_ABLE)
			dev->features &= ~GBIT_SUPPORT;
		dev->phy_port_cnt = 2;
	} else {
		/* Chip does not support gigabit. */
		if (!(data8 & SW_GIGABIT_ABLE))
			dev->features &= ~GBIT_SUPPORT;
	}
1183

1184 1185 1186
	return 0;
}

1187
void ksz9477_switch_exit(struct ksz_device *dev)
1188 1189 1190 1191 1192 1193 1194
{
	ksz9477_reset_switch(dev);
}

MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
MODULE_LICENSE("GPL");