i915_gem_gtt.c 105.1 KB
Newer Older
1 2
/*
 * Copyright © 2010 Daniel Vetter
3
 * Copyright © 2011-2014 Intel Corporation
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

26 27 28
#include <linux/slab.h> /* fault-inject.h is not standalone! */

#include <linux/fault-inject.h>
29
#include <linux/log2.h>
30
#include <linux/random.h>
31
#include <linux/seq_file.h>
32
#include <linux/stop_machine.h>
33

L
Laura Abbott 已提交
34 35
#include <asm/set_memory.h>

36 37
#include <drm/drmP.h>
#include <drm/i915_drm.h>
38

39
#include "i915_drv.h"
40
#include "i915_vgpu.h"
41 42
#include "i915_trace.h"
#include "intel_drv.h"
43
#include "intel_frontbuffer.h"
44

45
#define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
/**
 * DOC: Global GTT views
 *
 * Background and previous state
 *
 * Historically objects could exists (be bound) in global GTT space only as
 * singular instances with a view representing all of the object's backing pages
 * in a linear fashion. This view will be called a normal view.
 *
 * To support multiple views of the same object, where the number of mapped
 * pages is not equal to the backing store, or where the layout of the pages
 * is not linear, concept of a GGTT view was added.
 *
 * One example of an alternative view is a stereo display driven by a single
 * image. In this case we would have a framebuffer looking like this
 * (2x2 pages):
 *
 *    12
 *    34
 *
 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
 * rendering. In contrast, fed to the display engine would be an alternative
 * view which could look something like this:
 *
 *   1212
 *   3434
 *
 * In this example both the size and layout of pages in the alternative view is
 * different from the normal view.
 *
 * Implementation and usage
 *
 * GGTT views are implemented using VMAs and are distinguished via enum
 * i915_ggtt_view_type and struct i915_ggtt_view.
 *
 * A new flavour of core GEM functions which work with GGTT bound objects were
83 84 85
 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
 * renaming  in large amounts of code. They take the struct i915_ggtt_view
 * parameter encapsulating all metadata required to implement a view.
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
 *
 * As a helper for callers which are only interested in the normal view,
 * globally const i915_ggtt_view_normal singleton instance exists. All old core
 * GEM API functions, the ones not taking the view parameter, are operating on,
 * or with the normal GGTT view.
 *
 * Code wanting to add or use a new GGTT view needs to:
 *
 * 1. Add a new enum with a suitable name.
 * 2. Extend the metadata in the i915_ggtt_view structure if required.
 * 3. Add support to i915_get_vma_pages().
 *
 * New views are required to build a scatter-gather table from within the
 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
 * exists for the lifetime of an VMA.
 *
 * Core API is designed to have copy semantics which means that passed in
 * struct i915_ggtt_view does not need to be persistent (left around after
 * calling the core API functions).
 *
 */

108 109 110
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma);

111 112
static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
113 114
	/*
	 * Note that as an uncached mmio write, this will flush the
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
	 * WCB of the writes into the GGTT before it triggers the invalidate.
	 */
	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
}

static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
	gen6_ggtt_invalidate(dev_priv);
	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
}

static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
	intel_gtt_chipset_flush();
}

static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
{
	i915->ggtt.invalidate(i915);
}

136 137 138
static int ppgtt_bind_vma(struct i915_vma *vma,
			  enum i915_cache_level cache_level,
			  u32 unused)
139
{
140
	u32 pte_flags;
141 142 143 144 145 146 147 148
	int err;

	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
		err = vma->vm->allocate_va_range(vma->vm,
						 vma->node.start, vma->size);
		if (err)
			return err;
	}
149

150
	/* Applicable to VLV, and gen8+ */
151
	pte_flags = 0;
152
	if (i915_gem_object_is_readonly(vma->obj))
153 154
		pte_flags |= PTE_READ_ONLY;

155
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
156 157

	return 0;
158 159 160 161
}

static void ppgtt_unbind_vma(struct i915_vma *vma)
{
162
	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
163
}
164

165 166 167 168 169 170
static int ppgtt_set_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pages);

	vma->pages = vma->obj->mm.pages;

171 172
	vma->page_sizes = vma->obj->mm.page_sizes;

173 174 175 176 177 178 179 180 181 182 183 184
	return 0;
}

static void clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);

	if (vma->pages != vma->obj->mm.pages) {
		sg_free_table(vma->pages);
		kfree(vma->pages);
	}
	vma->pages = NULL;
185 186

	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
187 188
}

189 190 191
static u64 gen8_pte_encode(dma_addr_t addr,
			   enum i915_cache_level level,
			   u32 flags)
B
Ben Widawsky 已提交
192
{
193 194 195 196
	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;

	if (unlikely(flags & PTE_READ_ONLY))
		pte &= ~_PAGE_RW;
197 198 199

	switch (level) {
	case I915_CACHE_NONE:
200
		pte |= PPAT_UNCACHED;
201 202
		break;
	case I915_CACHE_WT:
203
		pte |= PPAT_DISPLAY_ELLC;
204 205
		break;
	default:
206
		pte |= PPAT_CACHED;
207 208 209
		break;
	}

B
Ben Widawsky 已提交
210 211 212
	return pte;
}

213 214
static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
				  const enum i915_cache_level level)
B
Ben Widawsky 已提交
215
{
216
	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
B
Ben Widawsky 已提交
217 218
	pde |= addr;
	if (level != I915_CACHE_NONE)
219
		pde |= PPAT_CACHED_PDE;
B
Ben Widawsky 已提交
220
	else
221
		pde |= PPAT_UNCACHED;
B
Ben Widawsky 已提交
222 223 224
	return pde;
}

225 226 227
#define gen8_pdpe_encode gen8_pde_encode
#define gen8_pml4e_encode gen8_pde_encode

228 229 230
static u64 snb_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
231
{
232
	gen6_pte_t pte = GEN6_PTE_VALID;
233
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
234 235

	switch (level) {
236 237 238 239 240 241 242 243
	case I915_CACHE_L3_LLC:
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
		pte |= GEN6_PTE_UNCACHED;
		break;
	default:
244
		MISSING_CASE(level);
245 246 247 248 249
	}

	return pte;
}

250 251 252
static u64 ivb_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
253
{
254
	gen6_pte_t pte = GEN6_PTE_VALID;
255 256 257 258 259
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

	switch (level) {
	case I915_CACHE_L3_LLC:
		pte |= GEN7_PTE_CACHE_L3_LLC;
260 261 262 263 264
		break;
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
265
		pte |= GEN6_PTE_UNCACHED;
266 267
		break;
	default:
268
		MISSING_CASE(level);
269 270
	}

271 272 273
	return pte;
}

274 275 276
static u64 byt_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
277
{
278
	gen6_pte_t pte = GEN6_PTE_VALID;
279 280
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

281 282
	if (!(flags & PTE_READ_ONLY))
		pte |= BYT_PTE_WRITEABLE;
283 284 285 286 287 288 289

	if (level != I915_CACHE_NONE)
		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;

	return pte;
}

290 291 292
static u64 hsw_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
293
{
294
	gen6_pte_t pte = GEN6_PTE_VALID;
295
	pte |= HSW_PTE_ADDR_ENCODE(addr);
296 297

	if (level != I915_CACHE_NONE)
298
		pte |= HSW_WB_LLC_AGE3;
299 300 301 302

	return pte;
}

303 304 305
static u64 iris_pte_encode(dma_addr_t addr,
			   enum i915_cache_level level,
			   u32 flags)
306
{
307
	gen6_pte_t pte = GEN6_PTE_VALID;
308 309
	pte |= HSW_PTE_ADDR_ENCODE(addr);

310 311 312 313
	switch (level) {
	case I915_CACHE_NONE:
		break;
	case I915_CACHE_WT:
314
		pte |= HSW_WT_ELLC_LLC_AGE3;
315 316
		break;
	default:
317
		pte |= HSW_WB_ELLC_LLC_AGE3;
318 319
		break;
	}
320 321 322 323

	return pte;
}

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
static void stash_init(struct pagestash *stash)
{
	pagevec_init(&stash->pvec);
	spin_lock_init(&stash->lock);
}

static struct page *stash_pop_page(struct pagestash *stash)
{
	struct page *page = NULL;

	spin_lock(&stash->lock);
	if (likely(stash->pvec.nr))
		page = stash->pvec.pages[--stash->pvec.nr];
	spin_unlock(&stash->lock);

	return page;
}

static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
{
	int nr;

	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);

	nr = min_t(int, pvec->nr, pagevec_space(&stash->pvec));
	memcpy(stash->pvec.pages + stash->pvec.nr,
	       pvec->pages + pvec->nr - nr,
	       sizeof(pvec->pages[0]) * nr);
	stash->pvec.nr += nr;

	spin_unlock(&stash->lock);

	pvec->nr -= nr;
}

359
static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
360
{
361 362
	struct pagevec stack;
	struct page *page;
363

364 365
	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
		i915_gem_shrink_all(vm->i915);
366

367 368 369
	page = stash_pop_page(&vm->free_pages);
	if (page)
		return page;
370 371 372 373 374

	if (!vm->pt_kmap_wc)
		return alloc_page(gfp);

	/* Look in our global stash of WC pages... */
375 376 377
	page = stash_pop_page(&vm->i915->mm.wc_stash);
	if (page)
		return page;
378

379
	/*
380
	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
381 382 383 384 385 386
	 *
	 * We have to be careful as page allocation may trigger the shrinker
	 * (via direct reclaim) which will fill up the WC stash underneath us.
	 * So we add our WB pages into a temporary pvec on the stack and merge
	 * them into the WC stash after all the allocations are complete.
	 */
387
	pagevec_init(&stack);
388 389
	do {
		struct page *page;
390

391 392 393 394
		page = alloc_page(gfp);
		if (unlikely(!page))
			break;

395 396
		stack.pages[stack.nr++] = page;
	} while (pagevec_space(&stack));
397

398 399
	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
		page = stack.pages[--stack.nr];
400

401 402
		/* Merge spare WC pages to the global stash */
		stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
403

404 405 406
		/* Push any surplus WC pages onto the local VM stash */
		if (stack.nr)
			stash_push_pagevec(&vm->free_pages, &stack);
407
	}
408

409 410 411 412 413 414 415
	/* Return unwanted leftovers */
	if (unlikely(stack.nr)) {
		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
		__pagevec_release(&stack);
	}

	return page;
416 417
}

418 419
static void vm_free_pages_release(struct i915_address_space *vm,
				  bool immediate)
420
{
421 422
	struct pagevec *pvec = &vm->free_pages.pvec;
	struct pagevec stack;
423

424
	lockdep_assert_held(&vm->free_pages.lock);
425
	GEM_BUG_ON(!pagevec_count(pvec));
426

427
	if (vm->pt_kmap_wc) {
428 429
		/*
		 * When we use WC, first fill up the global stash and then
430 431
		 * only if full immediately free the overflow.
		 */
432
		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
433

434 435 436 437 438 439 440 441
		/*
		 * As we have made some room in the VM's free_pages,
		 * we can wait for it to fill again. Unless we are
		 * inside i915_address_space_fini() and must
		 * immediately release the pages!
		 */
		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
			return;
442

443 444 445 446 447 448 449 450 451 452
		/*
		 * We have to drop the lock to allow ourselves to sleep,
		 * so take a copy of the pvec and clear the stash for
		 * others to use it as we sleep.
		 */
		stack = *pvec;
		pagevec_reinit(pvec);
		spin_unlock(&vm->free_pages.lock);

		pvec = &stack;
453
		set_pages_array_wb(pvec->pages, pvec->nr);
454 455

		spin_lock(&vm->free_pages.lock);
456 457 458
	}

	__pagevec_release(pvec);
459 460 461 462
}

static void vm_free_page(struct i915_address_space *vm, struct page *page)
{
463 464 465 466 467 468 469 470
	/*
	 * On !llc, we need to change the pages back to WB. We only do so
	 * in bulk, so we rarely need to change the page attributes here,
	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
	 * To make detection of the possible sleep more likely, use an
	 * unconditional might_sleep() for everybody.
	 */
	might_sleep();
471 472
	spin_lock(&vm->free_pages.lock);
	if (!pagevec_add(&vm->free_pages.pvec, page))
473
		vm_free_pages_release(vm, false);
474 475 476 477 478 479
	spin_unlock(&vm->free_pages.lock);
}

static void i915_address_space_init(struct i915_address_space *vm,
				    struct drm_i915_private *dev_priv)
{
480 481 482 483 484 485 486 487
	/*
	 * The vm->mutex must be reclaim safe (for use in the shrinker).
	 * Do a dummy acquire now under fs_reclaim so that any allocation
	 * attempt holding the lock is immediately reported by lockdep.
	 */
	mutex_init(&vm->mutex);
	i915_gem_shrinker_taints_mutex(&vm->mutex);

488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
	GEM_BUG_ON(!vm->total);
	drm_mm_init(&vm->mm, 0, vm->total);
	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;

	stash_init(&vm->free_pages);

	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->unbound_list);
}

static void i915_address_space_fini(struct i915_address_space *vm)
{
	spin_lock(&vm->free_pages.lock);
	if (pagevec_count(&vm->free_pages.pvec))
		vm_free_pages_release(vm, true);
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
	spin_unlock(&vm->free_pages.lock);

	drm_mm_takedown(&vm->mm);
508 509

	mutex_destroy(&vm->mutex);
510
}
511

512 513 514 515
static int __setup_page_dma(struct i915_address_space *vm,
			    struct i915_page_dma *p,
			    gfp_t gfp)
{
516
	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
517 518
	if (unlikely(!p->page))
		return -ENOMEM;
519

520 521 522
	p->daddr = dma_map_page_attrs(vm->dma,
				      p->page, 0, PAGE_SIZE,
				      PCI_DMA_BIDIRECTIONAL,
523
				      DMA_ATTR_SKIP_CPU_SYNC |
524
				      DMA_ATTR_NO_WARN);
525 526 527
	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
		vm_free_page(vm, p->page);
		return -ENOMEM;
528
	}
529 530

	return 0;
531 532
}

533
static int setup_page_dma(struct i915_address_space *vm,
534
			  struct i915_page_dma *p)
535
{
536
	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
537 538
}

539
static void cleanup_page_dma(struct i915_address_space *vm,
540
			     struct i915_page_dma *p)
541
{
542 543
	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
	vm_free_page(vm, p->page);
544 545
}

546
#define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
547

548 549
#define setup_px(vm, px) setup_page_dma((vm), px_base(px))
#define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
550 551
#define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
#define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
552

553 554 555
static void fill_page_dma(struct i915_address_space *vm,
			  struct i915_page_dma *p,
			  const u64 val)
556
{
557
	u64 * const vaddr = kmap_atomic(p->page);
558

559
	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
560

561
	kunmap_atomic(vaddr);
562 563
}

564 565 566
static void fill_page_dma_32(struct i915_address_space *vm,
			     struct i915_page_dma *p,
			     const u32 v)
567
{
568
	fill_page_dma(vm, p, (u64)v << 32 | v);
569 570
}

571
static int
572
setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
573
{
574
	unsigned long size;
575

576 577 578 579 580 581 582
	/*
	 * In order to utilize 64K pages for an object with a size < 2M, we will
	 * need to support a 64K scratch page, given that every 16th entry for a
	 * page-table operating in 64K mode must point to a properly aligned 64K
	 * region, including any PTEs which happen to point to scratch.
	 *
	 * This is only relevant for the 48b PPGTT where we support
583 584 585
	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
	 * scratch (read-only) between all vm, we create one 64k scratch page
	 * for all.
586
	 */
587
	size = I915_GTT_PAGE_SIZE_4K;
588 589
	if (i915_vm_is_48bit(vm) &&
	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
590 591
		size = I915_GTT_PAGE_SIZE_64K;
		gfp |= __GFP_NOWARN;
592
	}
593 594 595 596 597 598
	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;

	do {
		int order = get_order(size);
		struct page *page;
		dma_addr_t addr;
599

600
		page = alloc_pages(gfp, order);
601
		if (unlikely(!page))
602
			goto skip;
603

604 605 606
		addr = dma_map_page_attrs(vm->dma,
					  page, 0, size,
					  PCI_DMA_BIDIRECTIONAL,
607
					  DMA_ATTR_SKIP_CPU_SYNC |
608
					  DMA_ATTR_NO_WARN);
609 610
		if (unlikely(dma_mapping_error(vm->dma, addr)))
			goto free_page;
611

612 613
		if (unlikely(!IS_ALIGNED(addr, size)))
			goto unmap_page;
614

615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
		vm->scratch_page.page = page;
		vm->scratch_page.daddr = addr;
		vm->scratch_page.order = order;
		return 0;

unmap_page:
		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
free_page:
		__free_pages(page, order);
skip:
		if (size == I915_GTT_PAGE_SIZE_4K)
			return -ENOMEM;

		size = I915_GTT_PAGE_SIZE_4K;
		gfp &= ~__GFP_NOWARN;
	} while (1);
631 632
}

633
static void cleanup_scratch_page(struct i915_address_space *vm)
634
{
635 636
	struct i915_page_dma *p = &vm->scratch_page;

637 638 639
	dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT,
		       PCI_DMA_BIDIRECTIONAL);
	__free_pages(p->page, p->order);
640 641
}

642
static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
643
{
644
	struct i915_page_table *pt;
645

646
	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
647
	if (unlikely(!pt))
648 649
		return ERR_PTR(-ENOMEM);

650 651 652 653
	if (unlikely(setup_px(vm, pt))) {
		kfree(pt);
		return ERR_PTR(-ENOMEM);
	}
654

655
	pt->used_ptes = 0;
656 657 658
	return pt;
}

659
static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
660
{
661
	cleanup_px(vm, pt);
662 663 664 665 666 667
	kfree(pt);
}

static void gen8_initialize_pt(struct i915_address_space *vm,
			       struct i915_page_table *pt)
{
668
	fill_px(vm, pt, vm->scratch_pte);
669 670
}

671
static void gen6_initialize_pt(struct i915_address_space *vm,
672 673
			       struct i915_page_table *pt)
{
674
	fill32_px(vm, pt, vm->scratch_pte);
675 676
}

677
static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
678
{
679
	struct i915_page_directory *pd;
680

681
	pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
682
	if (unlikely(!pd))
683 684
		return ERR_PTR(-ENOMEM);

685 686 687 688
	if (unlikely(setup_px(vm, pd))) {
		kfree(pd);
		return ERR_PTR(-ENOMEM);
	}
689

690
	pd->used_pdes = 0;
691 692 693
	return pd;
}

694
static void free_pd(struct i915_address_space *vm,
695
		    struct i915_page_directory *pd)
696
{
697 698
	cleanup_px(vm, pd);
	kfree(pd);
699 700 701 702 703
}

static void gen8_initialize_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd)
{
704 705
	fill_px(vm, pd,
		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
706
	memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
707 708
}

709
static int __pdp_init(struct i915_address_space *vm,
710 711
		      struct i915_page_directory_pointer *pdp)
{
712
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
713

714
	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
715
					    I915_GFP_ALLOW_FAIL);
716
	if (unlikely(!pdp->page_directory))
717 718
		return -ENOMEM;

719
	memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
720

721 722 723 724 725 726 727 728 729
	return 0;
}

static void __pdp_fini(struct i915_page_directory_pointer *pdp)
{
	kfree(pdp->page_directory);
	pdp->page_directory = NULL;
}

730 731 732 733 734
static inline bool use_4lvl(const struct i915_address_space *vm)
{
	return i915_vm_is_48bit(vm);
}

735 736
static struct i915_page_directory_pointer *
alloc_pdp(struct i915_address_space *vm)
737 738 739 740
{
	struct i915_page_directory_pointer *pdp;
	int ret = -ENOMEM;

741
	GEM_BUG_ON(!use_4lvl(vm));
742 743 744 745 746

	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
	if (!pdp)
		return ERR_PTR(-ENOMEM);

747
	ret = __pdp_init(vm, pdp);
748 749 750
	if (ret)
		goto fail_bitmap;

751
	ret = setup_px(vm, pdp);
752 753 754 755 756 757 758 759 760 761 762 763 764
	if (ret)
		goto fail_page_m;

	return pdp;

fail_page_m:
	__pdp_fini(pdp);
fail_bitmap:
	kfree(pdp);

	return ERR_PTR(ret);
}

765
static void free_pdp(struct i915_address_space *vm,
766 767 768
		     struct i915_page_directory_pointer *pdp)
{
	__pdp_fini(pdp);
769 770 771 772 773 774

	if (!use_4lvl(vm))
		return;

	cleanup_px(vm, pdp);
	kfree(pdp);
775 776
}

777 778 779 780 781 782 783
static void gen8_initialize_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp)
{
	gen8_ppgtt_pdpe_t scratch_pdpe;

	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);

784
	fill_px(vm, pdp, scratch_pdpe);
785 786 787 788 789
}

static void gen8_initialize_pml4(struct i915_address_space *vm,
				 struct i915_pml4 *pml4)
{
790 791
	fill_px(vm, pml4,
		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
792
	memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
793 794
}

795 796 797 798 799 800 801
/* PDE TLBs are a pain to invalidate on GEN8+. When we modify
 * the page table structures, we mark them dirty so that
 * context switching/execlist queuing code takes extra steps
 * to ensure that tlbs are flushed.
 */
static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
{
802
	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->vm.i915)->ring_mask;
803 804
}

805 806 807
/* Removes entries from a single page table, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries.
 */
808
static bool gen8_ppgtt_clear_pt(const struct i915_address_space *vm,
809
				struct i915_page_table *pt,
810
				u64 start, u64 length)
811
{
812
	unsigned int num_entries = gen8_pte_count(start, length);
M
Mika Kuoppala 已提交
813 814
	unsigned int pte = gen8_pte_index(start);
	unsigned int pte_end = pte + num_entries;
815
	gen8_pte_t *vaddr;
816

817
	GEM_BUG_ON(num_entries > pt->used_ptes);
M
Mika Kuoppala 已提交
818

819 820 821
	pt->used_ptes -= num_entries;
	if (!pt->used_ptes)
		return true;
822

823
	vaddr = kmap_atomic_px(pt);
M
Mika Kuoppala 已提交
824
	while (pte < pte_end)
825
		vaddr[pte++] = vm->scratch_pte;
826
	kunmap_atomic(vaddr);
827 828

	return false;
829
}
830

831 832 833 834 835 836 837 838 839 840 841 842 843 844
static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       struct i915_page_table *pt,
			       unsigned int pde)
{
	gen8_pde_t *vaddr;

	pd->page_table[pde] = pt;

	vaddr = kmap_atomic_px(pd);
	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

845
static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
846
				struct i915_page_directory *pd,
847
				u64 start, u64 length)
848 849
{
	struct i915_page_table *pt;
850
	u32 pde;
851 852

	gen8_for_each_pde(pt, pd, start, length, pde) {
853 854
		GEM_BUG_ON(pt == vm->scratch_pt);

855 856
		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
			continue;
857

858
		gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
859
		GEM_BUG_ON(!pd->used_pdes);
860
		pd->used_pdes--;
861 862

		free_pt(vm, pt);
863 864
	}

865 866
	return !pd->used_pdes;
}
867

868 869 870 871 872 873 874 875
static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				struct i915_page_directory *pd,
				unsigned int pdpe)
{
	gen8_ppgtt_pdpe_t *vaddr;

	pdp->page_directory[pdpe] = pd;
876
	if (!use_4lvl(vm))
877 878 879 880 881
		return;

	vaddr = kmap_atomic_px(pdp);
	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
882
}
883

884 885 886 887
/* Removes entries from a single page dir pointer, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries
 */
static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
888
				 struct i915_page_directory_pointer *pdp,
889
				 u64 start, u64 length)
890 891
{
	struct i915_page_directory *pd;
892
	unsigned int pdpe;
893

894
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
895 896
		GEM_BUG_ON(pd == vm->scratch_pd);

897 898
		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
			continue;
899

900
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
901
		GEM_BUG_ON(!pdp->used_pdpes);
902
		pdp->used_pdpes--;
903

904 905
		free_pd(vm, pd);
	}
906

907
	return !pdp->used_pdpes;
908
}
909

910 911 912 913 914 915
static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
{
	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
}

916 917 918 919 920 921 922 923 924 925 926 927 928
static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
				 struct i915_page_directory_pointer *pdp,
				 unsigned int pml4e)
{
	gen8_ppgtt_pml4e_t *vaddr;

	pml4->pdps[pml4e] = pdp;

	vaddr = kmap_atomic_px(pml4);
	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

929 930 931 932
/* Removes entries from a single pml4.
 * This is the top-level structure in 4-level page tables used on gen8+.
 * Empty entries are always scratch pml4e.
 */
933 934
static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
935
{
936 937
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
938
	struct i915_page_directory_pointer *pdp;
939
	unsigned int pml4e;
940

941
	GEM_BUG_ON(!use_4lvl(vm));
942

943
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
944 945
		GEM_BUG_ON(pdp == vm->scratch_pdp);

946 947
		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
			continue;
948

949 950 951
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);

		free_pdp(vm, pdp);
952 953 954
	}
}

955
static inline struct sgt_dma {
956 957
	struct scatterlist *sg;
	dma_addr_t dma, max;
958 959 960 961 962
} sgt_dma(struct i915_vma *vma) {
	struct scatterlist *sg = vma->pages->sgl;
	dma_addr_t addr = sg_dma_address(sg);
	return (struct sgt_dma) { sg, addr, addr + sg->length };
}
963

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
struct gen8_insert_pte {
	u16 pml4e;
	u16 pdpe;
	u16 pde;
	u16 pte;
};

static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
{
	return (struct gen8_insert_pte) {
		 gen8_pml4e_index(start),
		 gen8_pdpe_index(start),
		 gen8_pde_index(start),
		 gen8_pte_index(start),
	};
}

981 982
static __always_inline bool
gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
983
			      struct i915_page_directory_pointer *pdp,
984
			      struct sgt_dma *iter,
985
			      struct gen8_insert_pte *idx,
986 987
			      enum i915_cache_level cache_level,
			      u32 flags)
988
{
989
	struct i915_page_directory *pd;
990
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
991 992
	gen8_pte_t *vaddr;
	bool ret;
993

994
	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
995 996
	pd = pdp->page_directory[idx->pdpe];
	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
997
	do {
998 999
		vaddr[idx->pte] = pte_encode | iter->dma;

1000
		iter->dma += I915_GTT_PAGE_SIZE;
1001 1002 1003 1004 1005 1006
		if (iter->dma >= iter->max) {
			iter->sg = __sg_next(iter->sg);
			if (!iter->sg) {
				ret = false;
				break;
			}
1007

1008 1009
			iter->dma = sg_dma_address(iter->sg);
			iter->max = iter->dma + iter->sg->length;
B
Ben Widawsky 已提交
1010
		}
1011

1012 1013 1014 1015 1016 1017
		if (++idx->pte == GEN8_PTES) {
			idx->pte = 0;

			if (++idx->pde == I915_PDES) {
				idx->pde = 0;

1018
				/* Limited by sg length for 3lvl */
1019 1020
				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
					idx->pdpe = 0;
1021
					ret = true;
1022
					break;
1023 1024
				}

1025
				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1026
				pd = pdp->page_directory[idx->pdpe];
1027
			}
1028

1029
			kunmap_atomic(vaddr);
1030
			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1031
		}
1032
	} while (1);
1033
	kunmap_atomic(vaddr);
1034

1035
	return ret;
1036 1037
}

1038
static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1039
				   struct i915_vma *vma,
1040
				   enum i915_cache_level cache_level,
1041
				   u32 flags)
1042
{
1043
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1044
	struct sgt_dma iter = sgt_dma(vma);
1045
	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1046

1047
	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1048
				      cache_level, flags);
1049 1050

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1051
}
1052

1053 1054 1055
static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
					   struct i915_page_directory_pointer **pdps,
					   struct sgt_dma *iter,
1056 1057
					   enum i915_cache_level cache_level,
					   u32 flags)
1058
{
1059
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1060 1061 1062 1063 1064 1065 1066 1067
	u64 start = vma->node.start;
	dma_addr_t rem = iter->sg->length;

	do {
		struct gen8_insert_pte idx = gen8_insert_pte(start);
		struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
		struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
		unsigned int page_size;
1068
		bool maybe_64K = false;
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
		gen8_pte_t encode = pte_encode;
		gen8_pte_t *vaddr;
		u16 index, max;

		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
			index = idx.pde;
			max = I915_PDES;
			page_size = I915_GTT_PAGE_SIZE_2M;

			encode |= GEN8_PDE_PS_2M;

			vaddr = kmap_atomic_px(pd);
		} else {
			struct i915_page_table *pt = pd->page_table[idx.pde];

			index = idx.pte;
			max = GEN8_PTES;
			page_size = I915_GTT_PAGE_SIZE;

1090 1091 1092 1093
			if (!index &&
			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1094
			     rem >= (max - index) * I915_GTT_PAGE_SIZE))
1095 1096
				maybe_64K = true;

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
			vaddr = kmap_atomic_px(pt);
		}

		do {
			GEM_BUG_ON(iter->sg->length < page_size);
			vaddr[index++] = encode | iter->dma;

			start += page_size;
			iter->dma += page_size;
			rem -= page_size;
			if (iter->dma >= iter->max) {
				iter->sg = __sg_next(iter->sg);
				if (!iter->sg)
					break;

				rem = iter->sg->length;
				iter->dma = sg_dma_address(iter->sg);
				iter->max = iter->dma + rem;

1116 1117 1118
				if (maybe_64K && index < max &&
				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1119
				       rem >= (max - index) * I915_GTT_PAGE_SIZE)))
1120 1121
					maybe_64K = false;

1122 1123 1124 1125 1126 1127
				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
					break;
			}
		} while (rem >= page_size && index < max);

		kunmap_atomic(vaddr);
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143

		/*
		 * Is it safe to mark the 2M block as 64K? -- Either we have
		 * filled whole page-table with 64K entries, or filled part of
		 * it and have reached the end of the sg table and we have
		 * enough padding.
		 */
		if (maybe_64K &&
		    (index == max ||
		     (i915_vm_has_scratch_64K(vma->vm) &&
		      !iter->sg && IS_ALIGNED(vma->node.start +
					      vma->node.size,
					      I915_GTT_PAGE_SIZE_2M)))) {
			vaddr = kmap_atomic_px(pd);
			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
			kunmap_atomic(vaddr);
1144
			page_size = I915_GTT_PAGE_SIZE_64K;
M
Matthew Auld 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157

			/*
			 * We write all 4K page entries, even when using 64K
			 * pages. In order to verify that the HW isn't cheating
			 * by using the 4K PTE instead of the 64K PTE, we want
			 * to remove all the surplus entries. If the HW skipped
			 * the 64K PTE, it will read/write into the scratch page
			 * instead - which we detect as missing results during
			 * selftests.
			 */
			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
				u16 i;

1158
				encode = vma->vm->scratch_pte;
M
Matthew Auld 已提交
1159 1160 1161 1162 1163 1164 1165
				vaddr = kmap_atomic_px(pd->page_table[idx.pde]);

				for (i = 1; i < index; i += 16)
					memset64(vaddr + i, encode, 15);

				kunmap_atomic(vaddr);
			}
1166
		}
1167 1168

		vma->page_sizes.gtt |= page_size;
1169 1170 1171
	} while (iter->sg);
}

1172
static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1173
				   struct i915_vma *vma,
1174
				   enum i915_cache_level cache_level,
1175
				   u32 flags)
1176 1177
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1178
	struct sgt_dma iter = sgt_dma(vma);
1179
	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1180

1181
	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1182 1183
		gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level,
					       flags);
1184 1185 1186 1187
	} else {
		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);

		while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1188 1189
						     &iter, &idx, cache_level,
						     flags))
1190
			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1191 1192

		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1193
	}
1194 1195
}

1196
static void gen8_free_page_tables(struct i915_address_space *vm,
1197
				  struct i915_page_directory *pd)
1198 1199 1200
{
	int i;

1201 1202 1203
	for (i = 0; i < I915_PDES; i++) {
		if (pd->page_table[i] != vm->scratch_pt)
			free_pt(vm, pd->page_table[i]);
1204
	}
B
Ben Widawsky 已提交
1205 1206
}

1207 1208
static int gen8_init_scratch(struct i915_address_space *vm)
{
1209
	int ret;
1210

1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
	/*
	 * If everybody agrees to not to write into the scratch page,
	 * we can reuse it for all vm, keeping contexts and processes separate.
	 */
	if (vm->has_read_only &&
	    vm->i915->kernel_context &&
	    vm->i915->kernel_context->ppgtt) {
		struct i915_address_space *clone =
			&vm->i915->kernel_context->ppgtt->vm;

		GEM_BUG_ON(!clone->has_read_only);

		vm->scratch_page.order = clone->scratch_page.order;
		vm->scratch_pte = clone->scratch_pte;
		vm->scratch_pt  = clone->scratch_pt;
		vm->scratch_pd  = clone->scratch_pd;
		vm->scratch_pdp = clone->scratch_pdp;
		return 0;
	}

1231
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1232 1233
	if (ret)
		return ret;
1234

1235 1236 1237 1238 1239
	vm->scratch_pte =
		gen8_pte_encode(vm->scratch_page.daddr,
				I915_CACHE_LLC,
				PTE_READ_ONLY);

1240
	vm->scratch_pt = alloc_pt(vm);
1241
	if (IS_ERR(vm->scratch_pt)) {
1242 1243
		ret = PTR_ERR(vm->scratch_pt);
		goto free_scratch_page;
1244 1245
	}

1246
	vm->scratch_pd = alloc_pd(vm);
1247
	if (IS_ERR(vm->scratch_pd)) {
1248 1249
		ret = PTR_ERR(vm->scratch_pd);
		goto free_pt;
1250 1251
	}

1252
	if (use_4lvl(vm)) {
1253
		vm->scratch_pdp = alloc_pdp(vm);
1254
		if (IS_ERR(vm->scratch_pdp)) {
1255 1256
			ret = PTR_ERR(vm->scratch_pdp);
			goto free_pd;
1257 1258 1259
		}
	}

1260 1261
	gen8_initialize_pt(vm, vm->scratch_pt);
	gen8_initialize_pd(vm, vm->scratch_pd);
1262
	if (use_4lvl(vm))
1263
		gen8_initialize_pdp(vm, vm->scratch_pdp);
1264 1265

	return 0;
1266 1267

free_pd:
1268
	free_pd(vm, vm->scratch_pd);
1269
free_pt:
1270
	free_pt(vm, vm->scratch_pt);
1271
free_scratch_page:
1272
	cleanup_scratch_page(vm);
1273 1274

	return ret;
1275 1276
}

1277 1278
static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
{
1279
	struct i915_address_space *vm = &ppgtt->vm;
1280
	struct drm_i915_private *dev_priv = vm->i915;
1281 1282 1283
	enum vgt_g2v_type msg;
	int i;

1284 1285
	if (use_4lvl(vm)) {
		const u64 daddr = px_dma(&ppgtt->pml4);
1286

1287 1288
		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1289 1290 1291 1292

		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
	} else {
1293
		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1294
			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1295

1296 1297
			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
		}

		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
	}

	I915_WRITE(vgtif_reg(g2v_notify), msg);

	return 0;
}

1309 1310
static void gen8_free_scratch(struct i915_address_space *vm)
{
1311 1312 1313
	if (!vm->scratch_page.daddr)
		return;

1314
	if (use_4lvl(vm))
1315 1316 1317 1318
		free_pdp(vm, vm->scratch_pdp);
	free_pd(vm, vm->scratch_pd);
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1319 1320
}

1321
static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1322
				    struct i915_page_directory_pointer *pdp)
1323
{
1324
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1325 1326
	int i;

1327
	for (i = 0; i < pdpes; i++) {
1328
		if (pdp->page_directory[i] == vm->scratch_pd)
1329 1330
			continue;

1331 1332
		gen8_free_page_tables(vm, pdp->page_directory[i]);
		free_pd(vm, pdp->page_directory[i]);
1333
	}
1334

1335
	free_pdp(vm, pdp);
1336 1337 1338 1339 1340 1341
}

static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
{
	int i;

1342
	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1343
		if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp)
1344 1345
			continue;

1346
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]);
1347 1348
	}

1349
	cleanup_px(&ppgtt->vm, &ppgtt->pml4);
1350 1351 1352 1353
}

static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
{
1354
	struct drm_i915_private *dev_priv = vm->i915;
1355
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1356

1357
	if (intel_vgpu_active(dev_priv))
1358 1359
		gen8_ppgtt_notify_vgt(ppgtt, false);

1360
	if (use_4lvl(vm))
1361
		gen8_ppgtt_cleanup_4lvl(ppgtt);
1362
	else
1363
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp);
1364

1365
	gen8_free_scratch(vm);
1366 1367
}

1368 1369 1370
static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       u64 start, u64 length)
1371
{
1372
	struct i915_page_table *pt;
1373
	u64 from = start;
1374
	unsigned int pde;
1375

1376
	gen8_for_each_pde(pt, pd, start, length, pde) {
1377 1378
		int count = gen8_pte_count(start, length);

1379
		if (pt == vm->scratch_pt) {
1380 1381
			pd->used_pdes++;

1382
			pt = alloc_pt(vm);
1383 1384
			if (IS_ERR(pt)) {
				pd->used_pdes--;
1385
				goto unwind;
1386
			}
1387

1388
			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1389
				gen8_initialize_pt(vm, pt);
1390 1391

			gen8_ppgtt_set_pde(vm, pd, pt, pde);
1392
			GEM_BUG_ON(pd->used_pdes > I915_PDES);
1393
		}
1394

1395
		pt->used_ptes += count;
1396
	}
1397
	return 0;
1398

1399 1400
unwind:
	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
B
Ben Widawsky 已提交
1401
	return -ENOMEM;
1402 1403
}

1404 1405 1406
static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				u64 start, u64 length)
1407
{
1408
	struct i915_page_directory *pd;
1409 1410
	u64 from = start;
	unsigned int pdpe;
1411 1412
	int ret;

1413
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1414
		if (pd == vm->scratch_pd) {
1415 1416
			pdp->used_pdpes++;

1417
			pd = alloc_pd(vm);
1418 1419
			if (IS_ERR(pd)) {
				pdp->used_pdpes--;
1420
				goto unwind;
1421
			}
1422

1423
			gen8_initialize_pd(vm, pd);
1424
			gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1425
			GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1426 1427 1428
		}

		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1429 1430
		if (unlikely(ret))
			goto unwind_pd;
1431
	}
1432

B
Ben Widawsky 已提交
1433
	return 0;
1434

1435 1436 1437 1438 1439 1440 1441
unwind_pd:
	if (!pd->used_pdes) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		GEM_BUG_ON(!pdp->used_pdpes);
		pdp->used_pdpes--;
		free_pd(vm, pd);
	}
1442 1443 1444
unwind:
	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
	return -ENOMEM;
1445 1446
}

1447 1448
static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
1449
{
1450 1451 1452
	return gen8_ppgtt_alloc_pdp(vm,
				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
}
1453

1454 1455 1456 1457 1458 1459 1460 1461 1462
static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
	struct i915_page_directory_pointer *pdp;
	u64 from = start;
	u32 pml4e;
	int ret;
1463

1464
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1465 1466 1467 1468
		if (pml4->pdps[pml4e] == vm->scratch_pdp) {
			pdp = alloc_pdp(vm);
			if (IS_ERR(pdp))
				goto unwind;
1469

1470 1471 1472
			gen8_initialize_pdp(vm, pdp);
			gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
		}
1473

1474
		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1475 1476
		if (unlikely(ret))
			goto unwind_pdp;
1477 1478 1479 1480
	}

	return 0;

1481 1482 1483 1484 1485
unwind_pdp:
	if (!pdp->used_pdpes) {
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
		free_pdp(vm, pdp);
	}
1486 1487 1488
unwind:
	gen8_ppgtt_clear_4lvl(vm, from, start - from);
	return -ENOMEM;
1489 1490
}

1491 1492
static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
			  struct i915_page_directory_pointer *pdp,
1493
			  u64 start, u64 length,
1494 1495 1496
			  gen8_pte_t scratch_pte,
			  struct seq_file *m)
{
1497
	struct i915_address_space *vm = &ppgtt->vm;
1498
	struct i915_page_directory *pd;
1499
	u32 pdpe;
1500

1501
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1502
		struct i915_page_table *pt;
1503 1504 1505
		u64 pd_len = length;
		u64 pd_start = start;
		u32 pde;
1506

1507
		if (pdp->page_directory[pdpe] == ppgtt->vm.scratch_pd)
1508 1509 1510
			continue;

		seq_printf(m, "\tPDPE #%d\n", pdpe);
1511
		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1512
			u32 pte;
1513 1514
			gen8_pte_t *pt_vaddr;

1515
			if (pd->page_table[pde] == ppgtt->vm.scratch_pt)
1516 1517
				continue;

1518
			pt_vaddr = kmap_atomic_px(pt);
1519
			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1520 1521 1522
				u64 va = (pdpe << GEN8_PDPE_SHIFT |
					  pde << GEN8_PDE_SHIFT |
					  pte << GEN8_PTE_SHIFT);
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
				int i;
				bool found = false;

				for (i = 0; i < 4; i++)
					if (pt_vaddr[pte + i] != scratch_pte)
						found = true;
				if (!found)
					continue;

				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
				for (i = 0; i < 4; i++) {
					if (pt_vaddr[pte + i] != scratch_pte)
						seq_printf(m, " %llx", pt_vaddr[pte + i]);
					else
						seq_puts(m, "  SCRATCH ");
				}
				seq_puts(m, "\n");
			}
			kunmap_atomic(pt_vaddr);
		}
	}
}

static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
{
1548
	struct i915_address_space *vm = &ppgtt->vm;
1549
	const gen8_pte_t scratch_pte = vm->scratch_pte;
1550
	u64 start = 0, length = ppgtt->vm.total;
1551

1552
	if (use_4lvl(vm)) {
1553
		u64 pml4e;
1554 1555 1556
		struct i915_pml4 *pml4 = &ppgtt->pml4;
		struct i915_page_directory_pointer *pdp;

1557
		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1558
			if (pml4->pdps[pml4e] == ppgtt->vm.scratch_pdp)
1559 1560 1561
				continue;

			seq_printf(m, "    PML4E #%llu\n", pml4e);
1562
			gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1563
		}
1564 1565
	} else {
		gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1566 1567 1568
	}
}

1569
static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1570
{
1571
	struct i915_address_space *vm = &ppgtt->vm;
1572 1573
	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
	struct i915_page_directory *pd;
1574
	u64 start = 0, length = ppgtt->vm.total;
1575 1576
	u64 from = start;
	unsigned int pdpe;
1577

1578 1579 1580 1581
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
		pd = alloc_pd(vm);
		if (IS_ERR(pd))
			goto unwind;
1582

1583 1584 1585 1586
		gen8_initialize_pd(vm, pd);
		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
		pdp->used_pdpes++;
	}
1587

1588 1589
	pdp->used_pdpes++; /* never remove */
	return 0;
1590

1591 1592 1593 1594 1595 1596 1597 1598
unwind:
	start -= from;
	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		free_pd(vm, pd);
	}
	pdp->used_pdpes = 0;
	return -ENOMEM;
1599 1600
}

1601
/*
1602 1603 1604 1605
 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
 * with a net effect resembling a 2-level page table in normal x86 terms. Each
 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
 * space.
B
Ben Widawsky 已提交
1606
 *
1607
 */
1608
static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
B
Ben Widawsky 已提交
1609
{
1610 1611 1612 1613 1614 1615 1616
	struct i915_hw_ppgtt *ppgtt;
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

1617 1618
	kref_init(&ppgtt->ref);

1619 1620
	ppgtt->vm.i915 = i915;
	ppgtt->vm.dma = &i915->drm.pdev->dev;
1621

1622
	ppgtt->vm.total = HAS_FULL_48BIT_PPGTT(i915) ?
1623 1624 1625
		1ULL << 48 :
		1ULL << 32;

1626 1627
	/* From bdw, there is support for read-only pages in the PPGTT. */
	ppgtt->vm.has_read_only = true;
1628

1629 1630
	i915_address_space_init(&ppgtt->vm, i915);

1631 1632 1633
	/* There are only few exceptions for gen >=6. chv and bxt.
	 * And we are not sure about the latter so play safe for now.
	 */
1634
	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1635
		ppgtt->vm.pt_kmap_wc = true;
1636

1637 1638 1639
	err = gen8_init_scratch(&ppgtt->vm);
	if (err)
		goto err_free;
1640

1641 1642 1643 1644
	if (use_4lvl(&ppgtt->vm)) {
		err = setup_px(&ppgtt->vm, &ppgtt->pml4);
		if (err)
			goto err_scratch;
1645

1646
		gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4);
1647

1648 1649 1650
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1651
	} else {
1652 1653 1654
		err = __pdp_init(&ppgtt->vm, &ppgtt->pdp);
		if (err)
			goto err_scratch;
1655

1656 1657 1658
		if (intel_vgpu_active(i915)) {
			err = gen8_preallocate_top_level_pdp(ppgtt);
			if (err) {
1659
				__pdp_fini(&ppgtt->pdp);
1660
				goto err_scratch;
1661
			}
1662
		}
1663

1664 1665 1666
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1667
	}
1668

1669
	if (intel_vgpu_active(i915))
1670 1671
		gen8_ppgtt_notify_vgt(ppgtt, true);

1672
	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1673 1674
	ppgtt->debug_dump = gen8_dump_ppgtt;

1675
	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
1676 1677 1678 1679
	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->vm.vma_ops.clear_pages = clear_pages;

1680
	return ppgtt;
1681

1682
err_scratch:
1683
	gen8_free_scratch(&ppgtt->vm);
1684 1685 1686
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
1687 1688
}

1689
static void gen6_dump_ppgtt(struct i915_hw_ppgtt *base, struct seq_file *m)
B
Ben Widawsky 已提交
1690
{
1691
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
1692
	const gen6_pte_t scratch_pte = base->vm.scratch_pte;
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
	struct i915_page_table *pt;
	u32 pte, pde;

	gen6_for_all_pdes(pt, &base->pd, pde) {
		gen6_pte_t *vaddr;

		if (pt == base->vm.scratch_pt)
			continue;

		if (i915_vma_is_bound(ppgtt->vma, I915_VMA_GLOBAL_BIND)) {
			u32 expected =
				GEN6_PDE_ADDR_ENCODE(px_dma(pt)) |
				GEN6_PDE_VALID;
			u32 pd_entry = readl(ppgtt->pd_addr + pde);

			if (pd_entry != expected)
				seq_printf(m,
					   "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
					   pde,
					   pd_entry,
					   expected);

			seq_printf(m, "\tPDE: %x\n", pd_entry);
		}

		vaddr = kmap_atomic_px(base->pd.page_table[pde]);
		for (pte = 0; pte < GEN6_PTES; pte += 4) {
B
Ben Widawsky 已提交
1720
			int i;
1721

B
Ben Widawsky 已提交
1722
			for (i = 0; i < 4; i++)
1723 1724 1725
				if (vaddr[pte + i] != scratch_pte)
					break;
			if (i == 4)
B
Ben Widawsky 已提交
1726 1727
				continue;

C
Chris Wilson 已提交
1728
			seq_printf(m, "\t\t(%03d, %04d) %08llx: ",
1729
				   pde, pte,
1730
				   (pde * GEN6_PTES + pte) * I915_GTT_PAGE_SIZE);
B
Ben Widawsky 已提交
1731
			for (i = 0; i < 4; i++) {
1732 1733
				if (vaddr[pte + i] != scratch_pte)
					seq_printf(m, " %08x", vaddr[pte + i]);
B
Ben Widawsky 已提交
1734
				else
1735
					seq_puts(m, "  SCRATCH");
B
Ben Widawsky 已提交
1736 1737 1738
			}
			seq_puts(m, "\n");
		}
1739
		kunmap_atomic(vaddr);
B
Ben Widawsky 已提交
1740 1741 1742
	}
}

1743
/* Write pde (index) from the page directory @pd to the page table @pt */
1744
static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt,
C
Chris Wilson 已提交
1745 1746
				  const unsigned int pde,
				  const struct i915_page_table *pt)
B
Ben Widawsky 已提交
1747
{
1748
	/* Caller needs to make sure the write completes if necessary */
1749 1750
	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
		  ppgtt->pd_addr + pde);
1751
}
B
Ben Widawsky 已提交
1752

1753
static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
1754
{
1755
	struct intel_engine_cs *engine;
1756
	u32 ecochk, ecobits;
1757
	enum intel_engine_id id;
B
Ben Widawsky 已提交
1758

1759 1760
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1761

1762
	ecochk = I915_READ(GAM_ECOCHK);
1763
	if (IS_HASWELL(dev_priv)) {
1764 1765 1766 1767 1768 1769
		ecochk |= ECOCHK_PPGTT_WB_HSW;
	} else {
		ecochk |= ECOCHK_PPGTT_LLC_IVB;
		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
	}
	I915_WRITE(GAM_ECOCHK, ecochk);
1770

1771
	for_each_engine(engine, dev_priv, id) {
B
Ben Widawsky 已提交
1772
		/* GFX_MODE is per-ring on gen7+ */
1773
		I915_WRITE(RING_MODE_GEN7(engine),
1774
			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1775
	}
1776
}
B
Ben Widawsky 已提交
1777

1778
static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1779
{
1780
	u32 ecochk, gab_ctl, ecobits;
1781

1782 1783 1784
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
		   ECOBITS_PPGTT_CACHE64B);
B
Ben Widawsky 已提交
1785

1786 1787 1788 1789 1790 1791
	gab_ctl = I915_READ(GAB_CTL);
	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

	ecochk = I915_READ(GAM_ECOCHK);
	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);

1792 1793
	if (HAS_PPGTT(dev_priv)) /* may be disabled for VT-d */
		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1794 1795
}

1796
/* PPGTT support for Sandybdrige/Gen6 and later */
1797
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1798
				   u64 start, u64 length)
1799
{
1800
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1801
	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
1802 1803
	unsigned int pde = first_entry / GEN6_PTES;
	unsigned int pte = first_entry % GEN6_PTES;
1804
	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
1805
	const gen6_pte_t scratch_pte = vm->scratch_pte;
1806

1807
	while (num_entries) {
1808 1809 1810
		struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++];
		const unsigned int end = min(pte + num_entries, GEN6_PTES);
		const unsigned int count = end - pte;
1811
		gen6_pte_t *vaddr;
1812

1813 1814 1815 1816 1817 1818 1819 1820
		GEM_BUG_ON(pt == vm->scratch_pt);

		num_entries -= count;

		GEM_BUG_ON(count > pt->used_ptes);
		pt->used_ptes -= count;
		if (!pt->used_ptes)
			ppgtt->scan_for_unused_pt = true;
1821

1822 1823
		/*
		 * Note that the hw doesn't support removing PDE on the fly
1824 1825 1826 1827
		 * (they are cached inside the context with no means to
		 * invalidate the cache), so we can only reset the PTE
		 * entries back to scratch.
		 */
1828

1829 1830 1831 1832 1833
		vaddr = kmap_atomic_px(pt);
		do {
			vaddr[pte++] = scratch_pte;
		} while (pte < end);
		kunmap_atomic(vaddr);
1834

1835
		pte = 0;
1836
	}
1837 1838
}

1839
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1840
				      struct i915_vma *vma,
1841 1842
				      enum i915_cache_level cache_level,
				      u32 flags)
D
Daniel Vetter 已提交
1843
{
1844
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1845
	unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
1846 1847
	unsigned act_pt = first_entry / GEN6_PTES;
	unsigned act_pte = first_entry % GEN6_PTES;
1848
	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1849
	struct sgt_dma iter = sgt_dma(vma);
1850 1851
	gen6_pte_t *vaddr;

1852 1853
	GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt);

1854
	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1855 1856
	do {
		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1857

1858
		iter.dma += I915_GTT_PAGE_SIZE;
1859 1860 1861 1862
		if (iter.dma == iter.max) {
			iter.sg = __sg_next(iter.sg);
			if (!iter.sg)
				break;
1863

1864 1865 1866
			iter.dma = sg_dma_address(iter.sg);
			iter.max = iter.dma + iter.sg->length;
		}
1867

1868
		if (++act_pte == GEN6_PTES) {
1869 1870
			kunmap_atomic(vaddr);
			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1871
			act_pte = 0;
D
Daniel Vetter 已提交
1872
		}
1873
	} while (1);
1874
	kunmap_atomic(vaddr);
1875 1876

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
D
Daniel Vetter 已提交
1877 1878
}

1879
static int gen6_alloc_va_range(struct i915_address_space *vm,
1880
			       u64 start, u64 length)
1881
{
1882
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1883
	struct i915_page_table *pt;
1884 1885 1886
	u64 from = start;
	unsigned int pde;
	bool flush = false;
1887

1888
	gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) {
1889 1890
		const unsigned int count = gen6_pte_count(start, length);

1891 1892 1893 1894
		if (pt == vm->scratch_pt) {
			pt = alloc_pt(vm);
			if (IS_ERR(pt))
				goto unwind_out;
1895

1896
			gen6_initialize_pt(vm, pt);
1897
			ppgtt->base.pd.page_table[pde] = pt;
1898 1899 1900 1901 1902 1903

			if (i915_vma_is_bound(ppgtt->vma,
					      I915_VMA_GLOBAL_BIND)) {
				gen6_write_pde(ppgtt, pde, pt);
				flush = true;
			}
1904 1905

			GEM_BUG_ON(pt->used_ptes);
1906
		}
1907 1908

		pt->used_ptes += count;
1909 1910
	}

1911
	if (flush) {
1912 1913
		mark_tlbs_dirty(&ppgtt->base);
		gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1914 1915 1916
	}

	return 0;
1917 1918

unwind_out:
1919
	gen6_ppgtt_clear_range(vm, from, start - from);
1920
	return -ENOMEM;
1921 1922
}

1923
static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt)
1924
{
1925 1926 1927
	struct i915_address_space * const vm = &ppgtt->base.vm;
	struct i915_page_table *unused;
	u32 pde;
1928
	int ret;
1929

1930
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1931 1932
	if (ret)
		return ret;
1933

1934 1935 1936
	vm->scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
					 I915_CACHE_NONE,
					 PTE_READ_ONLY);
1937

1938
	vm->scratch_pt = alloc_pt(vm);
1939
	if (IS_ERR(vm->scratch_pt)) {
1940
		cleanup_scratch_page(vm);
1941 1942 1943
		return PTR_ERR(vm->scratch_pt);
	}

1944
	gen6_initialize_pt(vm, vm->scratch_pt);
1945 1946
	gen6_for_all_pdes(unused, &ppgtt->base.pd, pde)
		ppgtt->base.pd.page_table[pde] = vm->scratch_pt;
1947 1948 1949 1950

	return 0;
}

1951
static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
1952
{
1953 1954
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1955 1956
}

1957
static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt)
1958
{
1959
	struct i915_page_table *pt;
1960
	u32 pde;
1961

1962
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
1963 1964 1965 1966 1967 1968 1969
		if (pt != ppgtt->base.vm.scratch_pt)
			free_pt(&ppgtt->base.vm, pt);
}

static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1970

1971
	i915_vma_destroy(ppgtt->vma);
1972 1973 1974

	gen6_ppgtt_free_pd(ppgtt);
	gen6_ppgtt_free_scratch(vm);
1975 1976
}

1977
static int pd_vma_set_pages(struct i915_vma *vma)
1978
{
1979 1980 1981
	vma->pages = ERR_PTR(-ENODEV);
	return 0;
}
1982

1983 1984 1985
static void pd_vma_clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);
1986

1987 1988 1989 1990 1991 1992 1993 1994 1995
	vma->pages = NULL;
}

static int pd_vma_bind(struct i915_vma *vma,
		       enum i915_cache_level cache_level,
		       u32 unused)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
	struct gen6_hw_ppgtt *ppgtt = vma->private;
1996
	u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
1997 1998
	struct i915_page_table *pt;
	unsigned int pde;
1999

2000 2001
	ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
2002

2003 2004
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
		gen6_write_pde(ppgtt, pde, pt);
2005

2006 2007
	mark_tlbs_dirty(&ppgtt->base);
	gen6_ggtt_invalidate(ppgtt->base.vm.i915);
2008

2009
	return 0;
2010
}
2011

2012
static void pd_vma_unbind(struct i915_vma *vma)
2013
{
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
	struct gen6_hw_ppgtt *ppgtt = vma->private;
	struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
	struct i915_page_table *pt;
	unsigned int pde;

	if (!ppgtt->scan_for_unused_pt)
		return;

	/* Free all no longer used page tables */
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) {
		if (pt->used_ptes || pt == scratch_pt)
			continue;

		free_pt(&ppgtt->base.vm, pt);
		ppgtt->base.pd.page_table[pde] = scratch_pt;
	}

	ppgtt->scan_for_unused_pt = false;
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
}

static const struct i915_vma_ops pd_vma_ops = {
	.set_pages = pd_vma_set_pages,
	.clear_pages = pd_vma_clear_pages,
	.bind_vma = pd_vma_bind,
	.unbind_vma = pd_vma_unbind,
};

static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size)
{
	struct drm_i915_private *i915 = ppgtt->base.vm.i915;
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_vma *vma;

	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(size > ggtt->vm.total);

	vma = kmem_cache_zalloc(i915->vmas, GFP_KERNEL);
	if (!vma)
		return ERR_PTR(-ENOMEM);

	init_request_active(&vma->last_fence, NULL);

	vma->vm = &ggtt->vm;
	vma->ops = &pd_vma_ops;
	vma->private = ppgtt;

2060 2061
	vma->active = RB_ROOT;

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
	vma->size = size;
	vma->fence_size = size;
	vma->flags = I915_VMA_GGTT;
	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */

	INIT_LIST_HEAD(&vma->obj_link);
	list_add(&vma->vm_link, &vma->vm->unbound_list);

	return vma;
}
2072

2073
int gen6_ppgtt_pin(struct i915_hw_ppgtt *base)
2074 2075 2076
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);

2077 2078 2079 2080 2081 2082 2083 2084 2085
	/*
	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
	 * which will be pinned into every active context.
	 * (When vma->pin_count becomes atomic, I expect we will naturally
	 * need a larger, unpacked, type and kill this redundancy.)
	 */
	if (ppgtt->pin_count++)
		return 0;

2086 2087 2088 2089 2090 2091 2092 2093
	/*
	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
	 * allocator works in address space sizes, so it's multiplied by page
	 * size. We allocate at the top of the GTT to avoid fragmentation.
	 */
	return i915_vma_pin(ppgtt->vma,
			    0, GEN6_PD_ALIGN,
			    PIN_GLOBAL | PIN_HIGH);
2094 2095
}

2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);

	GEM_BUG_ON(!ppgtt->pin_count);
	if (--ppgtt->pin_count)
		return;

	i915_vma_unpin(ppgtt->vma);
}

2107
static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
2108
{
2109
	struct i915_ggtt * const ggtt = &i915->ggtt;
2110
	struct gen6_hw_ppgtt *ppgtt;
2111 2112 2113 2114 2115 2116
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

2117 2118
	kref_init(&ppgtt->base.ref);

2119 2120
	ppgtt->base.vm.i915 = i915;
	ppgtt->base.vm.dma = &i915->drm.pdev->dev;
2121

2122
	ppgtt->base.vm.total = I915_PDES * GEN6_PTES * I915_GTT_PAGE_SIZE;
2123

2124 2125
	i915_address_space_init(&ppgtt->base.vm, i915);

2126
	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
2127 2128 2129 2130
	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
	ppgtt->base.debug_dump = gen6_dump_ppgtt;
2131

2132
	ppgtt->base.vm.vma_ops.bind_vma    = ppgtt_bind_vma;
2133 2134 2135
	ppgtt->base.vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->base.vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->base.vm.vma_ops.clear_pages = clear_pages;
2136

2137 2138
	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;

2139
	err = gen6_ppgtt_init_scratch(ppgtt);
2140 2141 2142
	if (err)
		goto err_free;

2143 2144 2145
	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
	if (IS_ERR(ppgtt->vma)) {
		err = PTR_ERR(ppgtt->vma);
2146
		goto err_scratch;
2147
	}
2148

2149
	return &ppgtt->base;
2150

2151 2152
err_scratch:
	gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2153 2154 2155
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
2156
}
2157

2158
static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2159 2160 2161 2162 2163
{
	/* This function is for gtt related workarounds. This function is
	 * called on driver load and after a GPU reset, so you can place
	 * workarounds here even if they get overwritten by GPU reset.
	 */
2164
	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2165
	if (IS_BROADWELL(dev_priv))
2166
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2167
	else if (IS_CHERRYVIEW(dev_priv))
2168
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2169
	else if (IS_GEN9_LP(dev_priv))
2170
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2171 2172
	else if (INTEL_GEN(dev_priv) >= 9)
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189

	/*
	 * To support 64K PTEs we need to first enable the use of the
	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
	 * shouldn't be needed after GEN10.
	 *
	 * 64K pages were first introduced from BDW+, although technically they
	 * only *work* from gen9+. For pre-BDW we instead have the option for
	 * 32K pages, but we don't currently have any support for it in our
	 * driver.
	 */
	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
	    INTEL_GEN(dev_priv) <= 10)
		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
			   GAMW_ECO_ENABLE_64K_IPS_FIELD);
2190 2191
}

2192
int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2193
{
2194
	gtt_write_workarounds(dev_priv);
2195

2196
	if (IS_GEN(dev_priv, 6))
2197
		gen6_ppgtt_enable(dev_priv);
2198
	else if (IS_GEN(dev_priv, 7))
2199
		gen7_ppgtt_enable(dev_priv);
2200

2201 2202
	return 0;
}
2203

2204 2205 2206 2207 2208 2209 2210 2211 2212
static struct i915_hw_ppgtt *
__hw_ppgtt_create(struct drm_i915_private *i915)
{
	if (INTEL_GEN(i915) < 8)
		return gen6_ppgtt_create(i915);
	else
		return gen8_ppgtt_create(i915);
}

2213
struct i915_hw_ppgtt *
2214
i915_ppgtt_create(struct drm_i915_private *i915,
2215
		  struct drm_i915_file_private *fpriv)
2216 2217 2218
{
	struct i915_hw_ppgtt *ppgtt;

2219 2220 2221
	ppgtt = __hw_ppgtt_create(i915);
	if (IS_ERR(ppgtt))
		return ppgtt;
2222

2223
	ppgtt->vm.file = fpriv;
2224

2225
	trace_i915_ppgtt_create(&ppgtt->vm);
2226

2227 2228 2229
	return ppgtt;
}

2230
void i915_ppgtt_close(struct i915_address_space *vm)
2231 2232 2233 2234 2235 2236
{
	GEM_BUG_ON(vm->closed);
	vm->closed = true;
}

static void ppgtt_destroy_vma(struct i915_address_space *vm)
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
{
	struct list_head *phases[] = {
		&vm->active_list,
		&vm->inactive_list,
		&vm->unbound_list,
		NULL,
	}, **phase;

	vm->closed = true;
	for (phase = phases; *phase; phase++) {
		struct i915_vma *vma, *vn;

		list_for_each_entry_safe(vma, vn, *phase, vm_link)
2250
			i915_vma_destroy(vma);
2251 2252 2253
	}
}

2254
void i915_ppgtt_release(struct kref *kref)
2255 2256 2257 2258
{
	struct i915_hw_ppgtt *ppgtt =
		container_of(kref, struct i915_hw_ppgtt, ref);

2259
	trace_i915_ppgtt_release(&ppgtt->vm);
2260

2261
	ppgtt_destroy_vma(&ppgtt->vm);
2262

2263 2264 2265
	GEM_BUG_ON(!list_empty(&ppgtt->vm.active_list));
	GEM_BUG_ON(!list_empty(&ppgtt->vm.inactive_list));
	GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list));
2266

2267 2268
	ppgtt->vm.cleanup(&ppgtt->vm);
	i915_address_space_fini(&ppgtt->vm);
2269 2270
	kfree(ppgtt);
}
2271

2272 2273 2274
/* Certain Gen5 chipsets require require idling the GPU before
 * unmapping anything from the GTT when VT-d is enabled.
 */
2275
static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2276 2277 2278 2279
{
	/* Query intel_iommu to see if we need the workaround. Presumably that
	 * was loaded first.
	 */
2280
	return IS_GEN(dev_priv, 5) && IS_MOBILE(dev_priv) && intel_vtd_active();
2281 2282
}

2283
static void gen6_check_faults(struct drm_i915_private *dev_priv)
2284
{
2285
	struct intel_engine_cs *engine;
2286
	enum intel_engine_id id;
2287
	u32 fault;
2288

2289
	for_each_engine(engine, dev_priv, id) {
2290 2291
		fault = I915_READ(RING_FAULT_REG(engine));
		if (fault & RING_FAULT_VALID) {
2292
			DRM_DEBUG_DRIVER("Unexpected fault\n"
2293
					 "\tAddr: 0x%08lx\n"
2294 2295 2296
					 "\tAddress space: %s\n"
					 "\tSource ID: %d\n"
					 "\tType: %d\n",
2297 2298 2299 2300
					 fault & PAGE_MASK,
					 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
					 RING_FAULT_SRCID(fault),
					 RING_FAULT_FAULT_TYPE(fault));
2301 2302
		}
	}
2303 2304
}

2305
static void gen8_check_faults(struct drm_i915_private *dev_priv)
2306 2307 2308 2309
{
	u32 fault = I915_READ(GEN8_RING_FAULT_REG);

	if (fault & RING_FAULT_VALID) {
2310 2311 2312 2313 2314 2315 2316 2317
		u32 fault_data0, fault_data1;
		u64 fault_addr;

		fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
		fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
			     ((u64)fault_data0 << 12);

2318
		DRM_DEBUG_DRIVER("Unexpected fault\n"
2319 2320
				 "\tAddr: 0x%08x_%08x\n"
				 "\tAddress space: %s\n"
2321 2322 2323
				 "\tEngine ID: %d\n"
				 "\tSource ID: %d\n"
				 "\tType: %d\n",
2324 2325 2326
				 upper_32_bits(fault_addr),
				 lower_32_bits(fault_addr),
				 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
				 GEN8_RING_FAULT_ENGINE_ID(fault),
				 RING_FAULT_SRCID(fault),
				 RING_FAULT_FAULT_TYPE(fault));
	}
}

void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
{
	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
	if (INTEL_GEN(dev_priv) >= 8)
2337
		gen8_check_faults(dev_priv);
2338
	else if (INTEL_GEN(dev_priv) >= 6)
2339
		gen6_check_faults(dev_priv);
2340 2341
	else
		return;
2342 2343

	i915_clear_error_registers(dev_priv);
2344 2345
}

2346
void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2347
{
2348
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2349 2350 2351 2352

	/* Don't bother messing with faults pre GEN6 as we have little
	 * documentation supporting that it's a good idea.
	 */
2353
	if (INTEL_GEN(dev_priv) < 6)
2354 2355
		return;

2356
	i915_check_and_clear_faults(dev_priv);
2357

2358
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2359

2360
	i915_ggtt_invalidate(dev_priv);
2361 2362
}

2363 2364
int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2365
{
2366
	do {
2367 2368 2369 2370
		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
				     pages->sgl, pages->nents,
				     PCI_DMA_BIDIRECTIONAL,
				     DMA_ATTR_NO_WARN))
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
			return 0;

		/* If the DMA remap fails, one cause can be that we have
		 * too many objects pinned in a small remapping table,
		 * such as swiotlb. Incrementally purge all other objects and
		 * try again - if there are no more pages to remove from
		 * the DMA remapper, i915_gem_shrink will return 0.
		 */
		GEM_BUG_ON(obj->mm.pages == pages);
	} while (i915_gem_shrink(to_i915(obj->base.dev),
2381
				 obj->base.size >> PAGE_SHIFT, NULL,
2382 2383 2384
				 I915_SHRINK_BOUND |
				 I915_SHRINK_UNBOUND |
				 I915_SHRINK_ACTIVE));
2385

2386
	return -ENOSPC;
2387 2388
}

2389
static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
B
Ben Widawsky 已提交
2390 2391 2392 2393
{
	writeq(pte, addr);
}

2394 2395
static void gen8_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2396
				  u64 offset,
2397 2398 2399
				  enum i915_cache_level level,
				  u32 unused)
{
2400
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2401
	gen8_pte_t __iomem *pte =
2402
		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2403

2404
	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2405

2406
	ggtt->invalidate(vm->i915);
2407 2408
}

B
Ben Widawsky 已提交
2409
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2410
				     struct i915_vma *vma,
2411
				     enum i915_cache_level level,
2412
				     u32 flags)
B
Ben Widawsky 已提交
2413
{
2414
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2415 2416
	struct sgt_iter sgt_iter;
	gen8_pte_t __iomem *gtt_entries;
2417
	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2418
	dma_addr_t addr;
2419

2420 2421 2422 2423
	/*
	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
	 * not to allow the user to override access to a read only page.
	 */
2424

2425
	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2426
	gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
2427
	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2428
		gen8_set_pte(gtt_entries++, pte_encode | addr);
2429

2430 2431 2432
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
B
Ben Widawsky 已提交
2433
	 */
2434
	ggtt->invalidate(vm->i915);
B
Ben Widawsky 已提交
2435 2436
}

2437 2438
static void gen6_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2439
				  u64 offset,
2440 2441 2442
				  enum i915_cache_level level,
				  u32 flags)
{
2443
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2444
	gen6_pte_t __iomem *pte =
2445
		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2446

2447
	iowrite32(vm->pte_encode(addr, level, flags), pte);
2448

2449
	ggtt->invalidate(vm->i915);
2450 2451
}

2452 2453 2454 2455 2456 2457
/*
 * Binds an object into the global gtt with the specified cache level. The object
 * will be accessible to the GPU via commands whose operands reference offsets
 * within the global GTT as well as accessible by the GPU through the GMADR
 * mapped BAR (dev_priv->mm.gtt->gtt).
 */
2458
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2459
				     struct i915_vma *vma,
2460 2461
				     enum i915_cache_level level,
				     u32 flags)
2462
{
2463
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2464
	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2465
	unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
2466
	struct sgt_iter iter;
2467
	dma_addr_t addr;
2468
	for_each_sgt_dma(addr, iter, vma->pages)
2469
		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2470

2471 2472 2473
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
2474
	 */
2475
	ggtt->invalidate(vm->i915);
2476 2477
}

2478
static void nop_clear_range(struct i915_address_space *vm,
2479
			    u64 start, u64 length)
2480 2481 2482
{
}

B
Ben Widawsky 已提交
2483
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2484
				  u64 start, u64 length)
B
Ben Widawsky 已提交
2485
{
2486
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2487 2488
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2489
	const gen8_pte_t scratch_pte = vm->scratch_pte;
2490
	gen8_pte_t __iomem *gtt_base =
2491 2492
		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
B
Ben Widawsky 已提交
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

	for (i = 0; i < num_entries; i++)
		gen8_set_pte(&gtt_base[i], scratch_pte);
}

2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = vm->i915;

	/*
	 * Make sure the internal GAM fifo has been cleared of all GTT
	 * writes before exiting stop_machine(). This guarantees that
	 * any aperture accesses waiting to start in another process
	 * cannot back up behind the GTT writes causing a hang.
	 * The register can be any arbitrary GAM register.
	 */
	POSTING_READ(GFX_FLSH_CNTL_GEN6);
}

struct insert_page {
	struct i915_address_space *vm;
	dma_addr_t addr;
	u64 offset;
	enum i915_cache_level level;
};

static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
{
	struct insert_page *arg = _arg;

	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
					  dma_addr_t addr,
					  u64 offset,
					  enum i915_cache_level level,
					  u32 unused)
{
	struct insert_page arg = { vm, addr, offset, level };

	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
}

struct insert_entries {
	struct i915_address_space *vm;
2548
	struct i915_vma *vma;
2549
	enum i915_cache_level level;
2550
	u32 flags;
2551 2552 2553 2554 2555 2556
};

static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
{
	struct insert_entries *arg = _arg;

2557
	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2558 2559 2560 2561 2562 2563
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2564
					     struct i915_vma *vma,
2565
					     enum i915_cache_level level,
2566
					     u32 flags)
2567
{
2568
	struct insert_entries arg = { vm, vma, level, flags };
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597

	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
}

struct clear_range {
	struct i915_address_space *vm;
	u64 start;
	u64 length;
};

static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
{
	struct clear_range *arg = _arg;

	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
					  u64 start,
					  u64 length)
{
	struct clear_range arg = { vm, start, length };

	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
}

2598
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2599
				  u64 start, u64 length)
2600
{
2601
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2602 2603
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2604
	gen6_pte_t scratch_pte, __iomem *gtt_base =
2605 2606
		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2607 2608 2609 2610 2611 2612 2613
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

2614
	scratch_pte = vm->scratch_pte;
2615

2616 2617 2618 2619
	for (i = 0; i < num_entries; i++)
		iowrite32(scratch_pte, &gtt_base[i]);
}

2620 2621
static void i915_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2622
				  u64 offset,
2623 2624 2625 2626 2627 2628 2629 2630 2631
				  enum i915_cache_level cache_level,
				  u32 unused)
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
}

2632
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2633
				     struct i915_vma *vma,
2634 2635
				     enum i915_cache_level cache_level,
				     u32 unused)
2636 2637 2638 2639
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

2640 2641
	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
				    flags);
2642 2643
}

2644
static void i915_ggtt_clear_range(struct i915_address_space *vm,
2645
				  u64 start, u64 length)
2646
{
2647
	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2648 2649
}

2650 2651 2652
static int ggtt_bind_vma(struct i915_vma *vma,
			 enum i915_cache_level cache_level,
			 u32 flags)
2653
{
2654
	struct drm_i915_private *i915 = vma->vm->i915;
2655
	struct drm_i915_gem_object *obj = vma->obj;
2656
	u32 pte_flags;
2657

2658
	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2659
	pte_flags = 0;
2660
	if (i915_gem_object_is_readonly(obj))
2661 2662
		pte_flags |= PTE_READ_ONLY;

2663
	intel_runtime_pm_get(i915);
2664
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2665
	intel_runtime_pm_put(i915);
2666

2667 2668
	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;

2669 2670 2671 2672 2673
	/*
	 * Without aliasing PPGTT there's no difference between
	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
	 * upgrade to both bound if we bind either to avoid double-binding.
	 */
2674
	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2675 2676 2677 2678

	return 0;
}

2679 2680 2681 2682 2683 2684 2685 2686 2687
static void ggtt_unbind_vma(struct i915_vma *vma)
{
	struct drm_i915_private *i915 = vma->vm->i915;

	intel_runtime_pm_get(i915);
	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
	intel_runtime_pm_put(i915);
}

2688 2689 2690
static int aliasing_gtt_bind_vma(struct i915_vma *vma,
				 enum i915_cache_level cache_level,
				 u32 flags)
2691
{
2692
	struct drm_i915_private *i915 = vma->vm->i915;
2693
	u32 pte_flags;
2694
	int ret;
2695

2696
	/* Currently applicable only to VLV */
2697
	pte_flags = 0;
2698
	if (i915_gem_object_is_readonly(vma->obj))
2699
		pte_flags |= PTE_READ_ONLY;
2700

2701 2702 2703
	if (flags & I915_VMA_LOCAL_BIND) {
		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;

2704
		if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2705 2706 2707
			ret = appgtt->vm.allocate_va_range(&appgtt->vm,
							   vma->node.start,
							   vma->size);
2708
			if (ret)
2709
				return ret;
2710 2711
		}

2712 2713
		appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
					  pte_flags);
2714 2715
	}

2716
	if (flags & I915_VMA_GLOBAL_BIND) {
2717
		intel_runtime_pm_get(i915);
2718
		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2719
		intel_runtime_pm_put(i915);
2720
	}
2721

2722
	return 0;
2723 2724
}

2725
static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2726
{
2727
	struct drm_i915_private *i915 = vma->vm->i915;
2728

2729 2730
	if (vma->flags & I915_VMA_GLOBAL_BIND) {
		intel_runtime_pm_get(i915);
2731
		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2732 2733
		intel_runtime_pm_put(i915);
	}
2734

2735
	if (vma->flags & I915_VMA_LOCAL_BIND) {
2736
		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2737 2738 2739

		vm->clear_range(vm, vma->node.start, vma->size);
	}
2740 2741
}

2742 2743
void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2744
{
D
David Weinehall 已提交
2745 2746
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct device *kdev = &dev_priv->drm.pdev->dev;
2747
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
B
Ben Widawsky 已提交
2748

2749
	if (unlikely(ggtt->do_idle_maps)) {
2750
		if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2751 2752 2753 2754 2755
			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
			/* Wait a bit, in hopes it avoids the hang */
			udelay(10);
		}
	}
B
Ben Widawsky 已提交
2756

2757
	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2758
}
2759

2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
static int ggtt_set_pages(struct i915_vma *vma)
{
	int ret;

	GEM_BUG_ON(vma->pages);

	ret = i915_get_ggtt_vma_pages(vma);
	if (ret)
		return ret;

2770 2771
	vma->page_sizes = vma->obj->mm.page_sizes;

2772 2773 2774
	return 0;
}

C
Chris Wilson 已提交
2775
static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2776
				  unsigned long color,
2777 2778
				  u64 *start,
				  u64 *end)
2779
{
2780
	if (node->allocated && node->color != color)
2781
		*start += I915_GTT_PAGE_SIZE;
2782

2783 2784 2785 2786 2787
	/* Also leave a space between the unallocated reserved node after the
	 * GTT and any objects within the GTT, i.e. we use the color adjustment
	 * to insert a guard page to prevent prefetches crossing over the
	 * GTT boundary.
	 */
2788
	node = list_next_entry(node, node_list);
2789
	if (node->color != color)
2790
		*end -= I915_GTT_PAGE_SIZE;
2791
}
B
Ben Widawsky 已提交
2792

2793 2794 2795 2796 2797 2798
int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;
	int err;

2799
	ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM));
2800 2801
	if (IS_ERR(ppgtt))
		return PTR_ERR(ppgtt);
2802

2803
	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2804 2805 2806 2807
		err = -ENODEV;
		goto err_ppgtt;
	}

2808 2809 2810 2811 2812 2813 2814 2815 2816
	/*
	 * Note we only pre-allocate as far as the end of the global
	 * GTT. On 48b / 4-level page-tables, the difference is very,
	 * very significant! We have to preallocate as GVT/vgpu does
	 * not like the page directory disappearing.
	 */
	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
	if (err)
		goto err_ppgtt;
2817 2818

	i915->mm.aliasing_ppgtt = ppgtt;
2819

2820 2821
	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2822

2823 2824
	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2825

2826 2827 2828
	return 0;

err_ppgtt:
2829
	i915_ppgtt_put(ppgtt);
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
	return err;
}

void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;

	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
	if (!ppgtt)
		return;

2842
	i915_ppgtt_put(ppgtt);
2843

2844 2845
	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2846 2847
}

2848
int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2849
{
2850 2851 2852 2853 2854 2855 2856 2857 2858
	/* Let GEM Manage all of the aperture.
	 *
	 * However, leave one page at the end still bound to the scratch page.
	 * There are a number of places where the hardware apparently prefetches
	 * past the end of the object, and we've seen multiple hangs with the
	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
	 * aperture.  One page should be enough to keep any prefetching inside
	 * of the aperture.
	 */
2859
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2860
	unsigned long hole_start, hole_end;
2861
	struct drm_mm_node *entry;
2862
	int ret;
2863

2864 2865 2866 2867 2868 2869 2870 2871 2872
	/*
	 * GuC requires all resources that we're sharing with it to be placed in
	 * non-WOPCM memory. If GuC is not present or not in use we still need a
	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
	 * why.
	 */
	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
			       intel_guc_reserved_gtt_size(&dev_priv->guc));

2873 2874 2875
	ret = intel_vgt_balloon(dev_priv);
	if (ret)
		return ret;
2876

2877
	/* Reserve a mappable slot for our lockless error capture */
2878
	ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2879 2880 2881
					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
					  0, ggtt->mappable_end,
					  DRM_MM_INSERT_LOW);
2882 2883 2884
	if (ret)
		return ret;

2885
	/* Clear any non-preallocated blocks */
2886
	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2887 2888
		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
			      hole_start, hole_end);
2889 2890
		ggtt->vm.clear_range(&ggtt->vm, hole_start,
				     hole_end - hole_start);
2891 2892 2893
	}

	/* And finally clear the reserved guard page */
2894
	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2895

2896
	if (INTEL_PPGTT(dev_priv) == INTEL_PPGTT_ALIASING) {
2897
		ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2898
		if (ret)
2899
			goto err;
2900 2901
	}

2902
	return 0;
2903 2904 2905 2906

err:
	drm_mm_remove_node(&ggtt->error_capture);
	return ret;
2907 2908
}

2909 2910
/**
 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2911
 * @dev_priv: i915 device
2912
 */
2913
void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2914
{
2915
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2916
	struct i915_vma *vma, *vn;
2917
	struct pagevec *pvec;
2918

2919
	ggtt->vm.closed = true;
2920 2921

	mutex_lock(&dev_priv->drm.struct_mutex);
2922 2923
	i915_gem_fini_aliasing_ppgtt(dev_priv);

2924 2925
	GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
	list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link)
2926
		WARN_ON(i915_vma_unbind(vma));
2927

2928 2929 2930
	if (drm_mm_node_allocated(&ggtt->error_capture))
		drm_mm_remove_node(&ggtt->error_capture);

2931
	if (drm_mm_initialized(&ggtt->vm.mm)) {
2932
		intel_vgt_deballoon(dev_priv);
2933
		i915_address_space_fini(&ggtt->vm);
2934 2935
	}

2936
	ggtt->vm.cleanup(&ggtt->vm);
2937

2938
	pvec = &dev_priv->mm.wc_stash.pvec;
2939 2940 2941 2942 2943
	if (pvec->nr) {
		set_pages_array_wb(pvec->pages, pvec->nr);
		__pagevec_release(pvec);
	}

2944
	mutex_unlock(&dev_priv->drm.struct_mutex);
2945 2946

	arch_phys_wc_del(ggtt->mtrr);
2947
	io_mapping_fini(&ggtt->iomap);
2948

2949
	i915_gem_cleanup_stolen(dev_priv);
2950
}
2951

2952
static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2953 2954 2955 2956 2957 2958
{
	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
	return snb_gmch_ctl << 20;
}

2959
static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2960 2961 2962 2963 2964
{
	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
	if (bdw_gmch_ctl)
		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2965 2966

#ifdef CONFIG_X86_32
2967
	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
2968 2969 2970 2971
	if (bdw_gmch_ctl > 4)
		bdw_gmch_ctl = 4;
#endif

2972 2973 2974
	return bdw_gmch_ctl << 20;
}

2975
static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
{
	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
	gmch_ctrl &= SNB_GMCH_GGMS_MASK;

	if (gmch_ctrl)
		return 1 << (20 + gmch_ctrl);

	return 0;
}

2986
static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
B
Ben Widawsky 已提交
2987
{
2988
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
2989
	struct pci_dev *pdev = dev_priv->drm.pdev;
2990
	phys_addr_t phys_addr;
2991
	int ret;
B
Ben Widawsky 已提交
2992 2993

	/* For Modern GENs the PTEs and register space are split in the BAR */
2994
	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
B
Ben Widawsky 已提交
2995

I
Imre Deak 已提交
2996
	/*
2997 2998 2999
	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
	 * will be dropped. For WC mappings in general we have 64 byte burst
	 * writes when the WC buffer is flushed, so we can't use it, but have to
I
Imre Deak 已提交
3000 3001 3002
	 * resort to an uncached mapping. The WC issue is easily caught by the
	 * readback check when writing GTT PTE entries.
	 */
3003
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
3004
		ggtt->gsm = ioremap_nocache(phys_addr, size);
I
Imre Deak 已提交
3005
	else
3006
		ggtt->gsm = ioremap_wc(phys_addr, size);
3007
	if (!ggtt->gsm) {
3008
		DRM_ERROR("Failed to map the ggtt page table\n");
B
Ben Widawsky 已提交
3009 3010 3011
		return -ENOMEM;
	}

3012
	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
3013
	if (ret) {
B
Ben Widawsky 已提交
3014 3015
		DRM_ERROR("Scratch setup failed\n");
		/* iounmap will also get called at remove, but meh */
3016
		iounmap(ggtt->gsm);
3017
		return ret;
B
Ben Widawsky 已提交
3018 3019
	}

3020 3021 3022 3023
	ggtt->vm.scratch_pte =
		ggtt->vm.pte_encode(ggtt->vm.scratch_page.daddr,
				    I915_CACHE_NONE, 0);

3024
	return 0;
B
Ben Widawsky 已提交
3025 3026
}

3027 3028
static struct intel_ppat_entry *
__alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
R
Rodrigo Vivi 已提交
3029
{
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
	struct intel_ppat_entry *entry = &ppat->entries[index];

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(test_bit(index, ppat->used));

	entry->ppat = ppat;
	entry->value = value;
	kref_init(&entry->ref);
	set_bit(index, ppat->used);
	set_bit(index, ppat->dirty);

	return entry;
}

static void __free_ppat_entry(struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(!test_bit(index, ppat->used));

	entry->value = ppat->clear_value;
	clear_bit(index, ppat->used);
	set_bit(index, ppat->dirty);
}

/**
 * intel_ppat_get - get a usable PPAT entry
 * @i915: i915 device instance
 * @value: the PPAT value required by the caller
 *
 * The function tries to search if there is an existing PPAT entry which
 * matches with the required value. If perfectly matched, the existing PPAT
 * entry will be used. If only partially matched, it will try to check if
 * there is any available PPAT index. If yes, it will allocate a new PPAT
 * index for the required entry and update the HW. If not, the partially
 * matched entry will be used.
 */
const struct intel_ppat_entry *
intel_ppat_get(struct drm_i915_private *i915, u8 value)
{
	struct intel_ppat *ppat = &i915->ppat;
3073
	struct intel_ppat_entry *entry = NULL;
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
	unsigned int scanned, best_score;
	int i;

	GEM_BUG_ON(!ppat->max_entries);

	scanned = best_score = 0;
	for_each_set_bit(i, ppat->used, ppat->max_entries) {
		unsigned int score;

		score = ppat->match(ppat->entries[i].value, value);
		if (score > best_score) {
			entry = &ppat->entries[i];
			if (score == INTEL_PPAT_PERFECT_MATCH) {
				kref_get(&entry->ref);
				return entry;
			}
			best_score = score;
		}
		scanned++;
	}

	if (scanned == ppat->max_entries) {
3096
		if (!entry)
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
			return ERR_PTR(-ENOSPC);

		kref_get(&entry->ref);
		return entry;
	}

	i = find_first_zero_bit(ppat->used, ppat->max_entries);
	entry = __alloc_ppat_entry(ppat, i, value);
	ppat->update_hw(i915);
	return entry;
}

static void release_ppat(struct kref *kref)
{
	struct intel_ppat_entry *entry =
		container_of(kref, struct intel_ppat_entry, ref);
	struct drm_i915_private *i915 = entry->ppat->i915;

	__free_ppat_entry(entry);
	entry->ppat->update_hw(i915);
}

/**
 * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
 * @entry: an intel PPAT entry
 *
 * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
 * entry is dynamically allocated, its reference count will be decreased. Once
 * the reference count becomes into zero, the PPAT index becomes free again.
 */
void intel_ppat_put(const struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(!ppat->max_entries);

	kref_put(&ppat->entries[index].ref, release_ppat);
}

static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
		clear_bit(i, ppat->dirty);
	}
}

static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	u64 pat = 0;
	int i;

	for (i = 0; i < ppat->max_entries; i++)
		pat |= GEN8_PPAT(i, ppat->entries[i].value);

	bitmap_clear(ppat->dirty, 0, ppat->max_entries);

	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
}

static unsigned int bdw_private_pat_match(u8 src, u8 dst)
{
	unsigned int score = 0;
	enum {
		AGE_MATCH = BIT(0),
		TC_MATCH = BIT(1),
		CA_MATCH = BIT(2),
	};

	/* Cache attribute has to be matched. */
3173
	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
		return 0;

	score |= CA_MATCH;

	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
		score |= TC_MATCH;

	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
		score |= AGE_MATCH;

	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
		return INTEL_PPAT_PERFECT_MATCH;

	return score;
}

static unsigned int chv_private_pat_match(u8 src, u8 dst)
{
	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
		INTEL_PPAT_PERFECT_MATCH : 0;
}

static void cnl_setup_private_ppat(struct intel_ppat *ppat)
{
	ppat->max_entries = 8;
	ppat->update_hw = cnl_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);

	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
R
Rodrigo Vivi 已提交
3211 3212
}

B
Ben Widawsky 已提交
3213 3214 3215
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
 * bits. When using advanced contexts each context stores its own PAT, but
 * writing this data shouldn't be harmful even in those cases. */
3216
static void bdw_setup_private_ppat(struct intel_ppat *ppat)
B
Ben Widawsky 已提交
3217
{
3218 3219 3220 3221
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
B
Ben Widawsky 已提交
3222

3223
	if (!HAS_PPGTT(ppat->i915)) {
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
		 * so RTL will always use the value corresponding to
		 * pat_sel = 000".
		 * So let's disable cache for GGTT to avoid screen corruptions.
		 * MOCS still can be used though.
		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
		 * before this patch, i.e. the same uncached + snooping access
		 * like on gen6/7 seems to be in effect.
		 * - So this just fixes blitter/render access. Again it looks
		 * like it's not just uncached access, but uncached + snooping.
		 * So we can still hold onto all our assumptions wrt cpu
		 * clflushing on LLC machines.
		 */
3237 3238 3239
		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
		return;
	}
3240

3241 3242 3243 3244 3245 3246 3247 3248
	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
B
Ben Widawsky 已提交
3249 3250
}

3251
static void chv_setup_private_ppat(struct intel_ppat *ppat)
3252
{
3253 3254 3255 3256
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = chv_private_pat_match;
	ppat->clear_value = CHV_PPAT_SNOOP;
3257 3258 3259 3260 3261 3262 3263

	/*
	 * Map WB on BDW to snooped on CHV.
	 *
	 * Only the snoop bit has meaning for CHV, the rest is
	 * ignored.
	 *
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
	 * The hardware will never snoop for certain types of accesses:
	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
	 * - PPGTT page tables
	 * - some other special cycles
	 *
	 * As with BDW, we also need to consider the following for GT accesses:
	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
	 * so RTL will always use the value corresponding to
	 * pat_sel = 000".
	 * Which means we must set the snoop bit in PAT entry 0
	 * in order to keep the global status page working.
3275 3276
	 */

3277 3278 3279 3280 3281 3282 3283 3284
	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 1, 0);
	__alloc_ppat_entry(ppat, 2, 0);
	__alloc_ppat_entry(ppat, 3, 0);
	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3285 3286
}

3287 3288 3289 3290 3291
static void gen6_gmch_remove(struct i915_address_space *vm)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);

	iounmap(ggtt->gsm);
3292
	cleanup_scratch_page(vm);
3293 3294
}

3295 3296
static void setup_private_pat(struct drm_i915_private *dev_priv)
{
3297 3298 3299 3300 3301
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	ppat->i915 = dev_priv;

3302
	if (INTEL_GEN(dev_priv) >= 10)
3303
		cnl_setup_private_ppat(ppat);
3304
	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3305
		chv_setup_private_ppat(ppat);
3306
	else
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
		bdw_setup_private_ppat(ppat);

	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);

	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
		ppat->entries[i].value = ppat->clear_value;
		ppat->entries[i].ppat = ppat;
		set_bit(i, ppat->dirty);
	}

	ppat->update_hw(dev_priv);
3318 3319
}

3320
static int gen8_gmch_probe(struct i915_ggtt *ggtt)
B
Ben Widawsky 已提交
3321
{
3322
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3323
	struct pci_dev *pdev = dev_priv->drm.pdev;
3324
	unsigned int size;
B
Ben Widawsky 已提交
3325
	u16 snb_gmch_ctl;
3326
	int err;
B
Ben Widawsky 已提交
3327 3328

	/* TODO: We're not aware of mappable constraints on gen8 yet */
3329 3330 3331 3332
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
B
Ben Widawsky 已提交
3333

3334 3335 3336 3337 3338
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
B
Ben Widawsky 已提交
3339

3340
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3341
	if (IS_CHERRYVIEW(dev_priv))
3342
		size = chv_get_total_gtt_size(snb_gmch_ctl);
3343
	else
3344
		size = gen8_get_total_gtt_size(snb_gmch_ctl);
B
Ben Widawsky 已提交
3345

3346
	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
3347 3348 3349
	ggtt->vm.cleanup = gen6_gmch_remove;
	ggtt->vm.insert_page = gen8_ggtt_insert_page;
	ggtt->vm.clear_range = nop_clear_range;
3350
	if (intel_scanout_needs_vtd_wa(dev_priv))
3351
		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3352

3353
	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3354

3355 3356
	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
	if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
3357 3358 3359 3360
		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
		if (ggtt->vm.clear_range != nop_clear_range)
			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3361 3362 3363 3364 3365

		/* Prevent recursively calling stop_machine() and deadlocks. */
		dev_info(dev_priv->drm.dev,
			 "Disabling error capture for VT-d workaround\n");
		i915_disable_error_state(dev_priv, -ENODEV);
3366 3367
	}

3368 3369
	ggtt->invalidate = gen6_ggtt_invalidate;

3370 3371 3372 3373 3374
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3375 3376
	ggtt->vm.pte_encode = gen8_pte_encode;

3377 3378
	setup_private_pat(dev_priv);

3379
	return ggtt_probe_common(ggtt, size);
B
Ben Widawsky 已提交
3380 3381
}

3382
static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3383
{
3384
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3385
	struct pci_dev *pdev = dev_priv->drm.pdev;
3386
	unsigned int size;
3387
	u16 snb_gmch_ctl;
3388
	int err;
3389

3390 3391 3392 3393
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3394

3395 3396
	/* 64/512MB is the current min/max we actually know of, but this is just
	 * a coarse sanity check.
3397
	 */
3398
	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3399
		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3400
		return -ENXIO;
3401 3402
	}

3403 3404 3405 3406 3407
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3408
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3409

3410
	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3411
	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
3412

3413 3414 3415 3416
	ggtt->vm.clear_range = gen6_ggtt_clear_range;
	ggtt->vm.insert_page = gen6_ggtt_insert_page;
	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
	ggtt->vm.cleanup = gen6_gmch_remove;
3417

3418 3419
	ggtt->invalidate = gen6_ggtt_invalidate;

3420
	if (HAS_EDRAM(dev_priv))
3421
		ggtt->vm.pte_encode = iris_pte_encode;
3422
	else if (IS_HASWELL(dev_priv))
3423
		ggtt->vm.pte_encode = hsw_pte_encode;
3424
	else if (IS_VALLEYVIEW(dev_priv))
3425
		ggtt->vm.pte_encode = byt_pte_encode;
3426
	else if (INTEL_GEN(dev_priv) >= 7)
3427
		ggtt->vm.pte_encode = ivb_pte_encode;
3428
	else
3429
		ggtt->vm.pte_encode = snb_pte_encode;
3430

3431 3432 3433 3434 3435
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3436
	return ggtt_probe_common(ggtt, size);
3437 3438
}

3439
static void i915_gmch_remove(struct i915_address_space *vm)
3440
{
3441
	intel_gmch_remove();
3442
}
3443

3444
static int i915_gmch_probe(struct i915_ggtt *ggtt)
3445
{
3446
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3447
	phys_addr_t gmadr_base;
3448 3449
	int ret;

3450
	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3451 3452 3453 3454 3455
	if (!ret) {
		DRM_ERROR("failed to set up gmch\n");
		return -EIO;
	}

3456
	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3457

3458 3459 3460 3461
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(gmadr_base,
						 ggtt->mappable_end);

3462
	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3463 3464 3465 3466
	ggtt->vm.insert_page = i915_ggtt_insert_page;
	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
	ggtt->vm.clear_range = i915_ggtt_clear_range;
	ggtt->vm.cleanup = i915_gmch_remove;
3467

3468 3469
	ggtt->invalidate = gmch_ggtt_invalidate;

3470 3471 3472 3473 3474
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3475
	if (unlikely(ggtt->do_idle_maps))
3476 3477
		DRM_INFO("applying Ironlake quirks for intel_iommu\n");

3478 3479 3480
	return 0;
}

3481
/**
3482
 * i915_ggtt_probe_hw - Probe GGTT hardware location
3483
 * @dev_priv: i915 device
3484
 */
3485
int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3486
{
3487
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3488 3489
	int ret;

3490 3491
	ggtt->vm.i915 = dev_priv;
	ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3492

3493 3494 3495 3496 3497 3498
	if (INTEL_GEN(dev_priv) <= 5)
		ret = i915_gmch_probe(ggtt);
	else if (INTEL_GEN(dev_priv) < 8)
		ret = gen6_gmch_probe(ggtt);
	else
		ret = gen8_gmch_probe(ggtt);
3499
	if (ret)
3500 3501
		return ret;

3502 3503 3504 3505 3506
	/* Trim the GGTT to fit the GuC mappable upper range (when enabled).
	 * This is easier than doing range restriction on the fly, as we
	 * currently don't have any bits spare to pass in this upper
	 * restriction!
	 */
3507
	if (USES_GUC(dev_priv)) {
3508 3509 3510
		ggtt->vm.total = min_t(u64, ggtt->vm.total, GUC_GGTT_TOP);
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3511 3512
	}

3513
	if ((ggtt->vm.total - 1) >> 32) {
3514
		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3515
			  " of address space! Found %lldM!\n",
3516 3517 3518 3519
			  ggtt->vm.total >> 20);
		ggtt->vm.total = 1ULL << 32;
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3520 3521
	}

3522
	if (ggtt->mappable_end > ggtt->vm.total) {
3523
		DRM_ERROR("mappable aperture extends past end of GGTT,"
3524
			  " aperture=%pa, total=%llx\n",
3525 3526
			  &ggtt->mappable_end, ggtt->vm.total);
		ggtt->mappable_end = ggtt->vm.total;
3527 3528
	}

3529
	/* GMADR is the PCI mmio aperture into the global GTT. */
3530
	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3531
	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3532
	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3533
			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3534
	if (intel_vtd_active())
3535
		DRM_INFO("VT-d active for gfx access\n");
3536 3537

	return 0;
3538 3539 3540 3541
}

/**
 * i915_ggtt_init_hw - Initialize GGTT hardware
3542
 * @dev_priv: i915 device
3543
 */
3544
int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3545 3546 3547 3548
{
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	int ret;

3549 3550
	stash_init(&dev_priv->mm.wc_stash);

3551 3552 3553 3554
	/* Note that we use page colouring to enforce a guard page at the
	 * end of the address space. This is required as the CS may prefetch
	 * beyond the end of the batch buffer, across the page boundary,
	 * and beyond the end of the GTT if we do not provide a guard.
3555
	 */
C
Chris Wilson 已提交
3556
	mutex_lock(&dev_priv->drm.struct_mutex);
3557
	i915_address_space_init(&ggtt->vm, dev_priv);
3558

3559 3560
	ggtt->vm.is_ggtt = true;

3561 3562 3563
	/* Only VLV supports read-only GGTT mappings */
	ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv);

3564
	if (!HAS_LLC(dev_priv) && !HAS_PPGTT(dev_priv))
3565
		ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
C
Chris Wilson 已提交
3566
	mutex_unlock(&dev_priv->drm.struct_mutex);
3567

3568 3569
	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
				dev_priv->ggtt.gmadr.start,
3570
				dev_priv->ggtt.mappable_end)) {
3571 3572 3573 3574
		ret = -EIO;
		goto out_gtt_cleanup;
	}

3575
	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3576

3577 3578 3579 3580
	/*
	 * Initialise stolen early so that we may reserve preallocated
	 * objects for the BIOS to KMS transition.
	 */
3581
	ret = i915_gem_init_stolen(dev_priv);
3582 3583 3584 3585
	if (ret)
		goto out_gtt_cleanup;

	return 0;
3586 3587

out_gtt_cleanup:
3588
	ggtt->vm.cleanup(&ggtt->vm);
3589
	return ret;
3590
}
3591

3592
int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3593
{
3594
	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3595 3596 3597 3598 3599
		return -EIO;

	return 0;
}

3600 3601
void i915_ggtt_enable_guc(struct drm_i915_private *i915)
{
3602 3603
	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);

3604
	i915->ggtt.invalidate = guc_ggtt_invalidate;
3605 3606

	i915_ggtt_invalidate(i915);
3607 3608 3609 3610
}

void i915_ggtt_disable_guc(struct drm_i915_private *i915)
{
3611 3612 3613 3614
	/* XXX Temporary pardon for error unload */
	if (i915->ggtt.invalidate == gen6_ggtt_invalidate)
		return;

3615 3616 3617 3618
	/* We should only be called after i915_ggtt_enable_guc() */
	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);

	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3619 3620

	i915_ggtt_invalidate(i915);
3621 3622
}

3623
void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3624
{
3625
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3626
	struct i915_vma *vma, *vn;
3627

3628
	i915_check_and_clear_faults(dev_priv);
3629 3630

	/* First fill our portion of the GTT with scratch pages */
3631
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
3632

3633
	ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3634 3635

	/* clflush objects bound into the GGTT and rebind them. */
3636 3637
	GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
	list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link) {
3638
		struct drm_i915_gem_object *obj = vma->obj;
3639

3640 3641
		if (!(vma->flags & I915_VMA_GLOBAL_BIND))
			continue;
3642

3643 3644
		if (!i915_vma_unbind(vma))
			continue;
3645

3646 3647 3648 3649 3650
		WARN_ON(i915_vma_bind(vma,
				      obj ? obj->cache_level : 0,
				      PIN_UPDATE));
		if (obj)
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3651
	}
3652

3653
	ggtt->vm.closed = false;
3654
	i915_ggtt_invalidate(dev_priv);
3655

3656
	if (INTEL_GEN(dev_priv) >= 8) {
3657
		struct intel_ppat *ppat = &dev_priv->ppat;
3658

3659 3660
		bitmap_set(ppat->dirty, 0, ppat->max_entries);
		dev_priv->ppat.update_hw(dev_priv);
3661 3662 3663 3664
		return;
	}
}

3665
static struct scatterlist *
3666
rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3667
	     unsigned int width, unsigned int height,
3668
	     unsigned int stride,
3669
	     struct sg_table *st, struct scatterlist *sg)
3670 3671 3672 3673 3674
{
	unsigned int column, row;
	unsigned int src_idx;

	for (column = 0; column < width; column++) {
3675
		src_idx = stride * (height - 1) + column + offset;
3676 3677 3678 3679 3680 3681
		for (row = 0; row < height; row++) {
			st->nents++;
			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */
3682
			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3683 3684
			sg_dma_address(sg) =
				i915_gem_object_get_dma_address(obj, src_idx);
3685
			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3686
			sg = sg_next(sg);
3687
			src_idx -= stride;
3688 3689
		}
	}
3690 3691

	return sg;
3692 3693
}

3694 3695 3696
static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info *rot_info,
		   struct drm_i915_gem_object *obj)
3697
{
3698
	unsigned int size = intel_rotation_info_size(rot_info);
3699
	struct sg_table *st;
3700
	struct scatterlist *sg;
3701
	int ret = -ENOMEM;
3702
	int i;
3703 3704 3705 3706 3707 3708

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3709
	ret = sg_alloc_table(st, size, GFP_KERNEL);
3710 3711 3712
	if (ret)
		goto err_sg_alloc;

3713 3714 3715
	st->nents = 0;
	sg = st->sgl;

3716
	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3717
		sg = rotate_pages(obj, rot_info->plane[i].offset,
3718 3719
				  rot_info->plane[i].width, rot_info->plane[i].height,
				  rot_info->plane[i].stride, st, sg);
3720 3721
	}

3722 3723 3724 3725 3726 3727
	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:

3728 3729
	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3730

3731 3732
	return ERR_PTR(ret);
}
3733

3734
static noinline struct sg_table *
3735 3736 3737 3738
intel_partial_pages(const struct i915_ggtt_view *view,
		    struct drm_i915_gem_object *obj)
{
	struct sg_table *st;
3739
	struct scatterlist *sg, *iter;
3740
	unsigned int count = view->partial.size;
3741
	unsigned int offset;
3742 3743 3744 3745 3746 3747
	int ret = -ENOMEM;

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3748
	ret = sg_alloc_table(st, count, GFP_KERNEL);
3749 3750 3751
	if (ret)
		goto err_sg_alloc;

3752
	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3753 3754
	GEM_BUG_ON(!iter);

3755 3756
	sg = st->sgl;
	st->nents = 0;
3757 3758
	do {
		unsigned int len;
3759

3760 3761 3762 3763 3764 3765
		len = min(iter->length - (offset << PAGE_SHIFT),
			  count << PAGE_SHIFT);
		sg_set_page(sg, NULL, len, 0);
		sg_dma_address(sg) =
			sg_dma_address(iter) + (offset << PAGE_SHIFT);
		sg_dma_len(sg) = len;
3766 3767

		st->nents++;
3768 3769 3770
		count -= len >> PAGE_SHIFT;
		if (count == 0) {
			sg_mark_end(sg);
3771 3772
			i915_sg_trim(st); /* Drop any unused tail entries. */

3773 3774
			return st;
		}
3775

3776 3777 3778 3779
		sg = __sg_next(sg);
		iter = __sg_next(iter);
		offset = 0;
	} while (1);
3780 3781 3782 3783 3784 3785 3786

err_sg_alloc:
	kfree(st);
err_st_alloc:
	return ERR_PTR(ret);
}

3787
static int
3788
i915_get_ggtt_vma_pages(struct i915_vma *vma)
3789
{
3790
	int ret;
3791

3792 3793 3794 3795 3796 3797 3798
	/* The vma->pages are only valid within the lifespan of the borrowed
	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
	 * must be the vma->pages. A simple rule is that vma->pages must only
	 * be accessed when the obj->mm.pages are pinned.
	 */
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));

3799
	switch (vma->ggtt_view.type) {
3800 3801 3802
	default:
		GEM_BUG_ON(vma->ggtt_view.type);
		/* fall through */
3803 3804
	case I915_GGTT_VIEW_NORMAL:
		vma->pages = vma->obj->mm.pages;
3805 3806
		return 0;

3807
	case I915_GGTT_VIEW_ROTATED:
3808
		vma->pages =
3809 3810 3811 3812
			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
		break;

	case I915_GGTT_VIEW_PARTIAL:
3813
		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3814 3815
		break;
	}
3816

3817 3818
	ret = 0;
	if (unlikely(IS_ERR(vma->pages))) {
3819 3820
		ret = PTR_ERR(vma->pages);
		vma->pages = NULL;
3821 3822
		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
			  vma->ggtt_view.type, ret);
3823
	}
3824
	return ret;
3825 3826
}

3827 3828
/**
 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.mode)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @offset: where to insert inside the GTT,
 *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
 *          (@offset + @size) must fit within the address space
 * @color: color to apply to node, if this node is not from a VMA,
 *         color must be #I915_COLOR_UNEVICTABLE
 * @flags: control search and eviction behaviour
3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
 *
 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
 * the address space (using @size and @color). If the @node does not fit, it
 * tries to evict any overlapping nodes from the GTT, including any
 * neighbouring nodes if the colors do not match (to ensure guard pages between
 * differing domains). See i915_gem_evict_for_node() for the gory details
 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
 * evicting active overlapping objects, and any overlapping node that is pinned
 * or marked as unevictable will also result in failure.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_reserve(struct i915_address_space *vm,
			 struct drm_mm_node *node,
			 u64 size, u64 offset, unsigned long color,
			 unsigned int flags)
{
	int err;

	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3863
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3864
	GEM_BUG_ON(drm_mm_node_allocated(node));
3865 3866 3867 3868 3869 3870 3871 3872 3873

	node->size = size;
	node->start = offset;
	node->color = color;

	err = drm_mm_reserve_node(&vm->mm, node);
	if (err != -ENOSPC)
		return err;

3874 3875 3876
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

3877 3878 3879 3880 3881 3882 3883
	err = i915_gem_evict_for_node(vm, node, flags);
	if (err == 0)
		err = drm_mm_reserve_node(&vm->mm, node);

	return err;
}

3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
{
	u64 range, addr;

	GEM_BUG_ON(range_overflows(start, len, end));
	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));

	range = round_down(end - len, align) - round_up(start, align);
	if (range) {
		if (sizeof(unsigned long) == sizeof(u64)) {
			addr = get_random_long();
		} else {
			addr = get_random_int();
			if (range > U32_MAX) {
				addr <<= 32;
				addr |= get_random_int();
			}
		}
		div64_u64_rem(addr, range, &addr);
		start += addr;
	}

	return round_up(start, align);
}

3909 3910
/**
 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3911 3912 3913 3914 3915 3916 3917 3918 3919
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.node)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @alignment: required alignment of starting offset, may be 0 but
 *             if specified, this must be a power-of-two and at least
 *             #I915_GTT_MIN_ALIGNMENT
 * @color: color to apply to node
 * @start: start of any range restriction inside GTT (0 for all),
3920
 *         must be #I915_GTT_PAGE_SIZE aligned
3921 3922 3923
 * @end: end of any range restriction inside GTT (U64_MAX for all),
 *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
 * @flags: control search and eviction behaviour
3924 3925 3926 3927 3928 3929
 *
 * i915_gem_gtt_insert() first searches for an available hole into which
 * is can insert the node. The hole address is aligned to @alignment and
 * its @size must then fit entirely within the [@start, @end] bounds. The
 * nodes on either side of the hole must match @color, or else a guard page
 * will be inserted between the two nodes (or the node evicted). If no
3930 3931
 * suitable hole is found, first a victim is randomly selected and tested
 * for eviction, otherwise then the LRU list of objects within the GTT
3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
 * is scanned to find the first set of replacement nodes to create the hole.
 * Those old overlapping nodes are evicted from the GTT (and so must be
 * rebound before any future use). Any node that is currently pinned cannot
 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
 * active and #PIN_NONBLOCK is specified, that node is also skipped when
 * searching for an eviction candidate. See i915_gem_evict_something() for
 * the gory details on the eviction algorithm.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_insert(struct i915_address_space *vm,
			struct drm_mm_node *node,
			u64 size, u64 alignment, unsigned long color,
			u64 start, u64 end, unsigned int flags)
{
3948
	enum drm_mm_insert_mode mode;
3949
	u64 offset;
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
	int err;

	lockdep_assert_held(&vm->i915->drm.struct_mutex);
	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(start >= end);
	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3960
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3961
	GEM_BUG_ON(drm_mm_node_allocated(node));
3962 3963 3964 3965 3966 3967 3968

	if (unlikely(range_overflows(start, size, end)))
		return -ENOSPC;

	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
		return -ENOSPC;

3969 3970
	mode = DRM_MM_INSERT_BEST;
	if (flags & PIN_HIGH)
3971
		mode = DRM_MM_INSERT_HIGHEST;
3972 3973
	if (flags & PIN_MAPPABLE)
		mode = DRM_MM_INSERT_LOW;
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984

	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
	 * so we know that we always have a minimum alignment of 4096.
	 * The drm_mm range manager is optimised to return results
	 * with zero alignment, so where possible use the optimal
	 * path.
	 */
	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
	if (alignment <= I915_GTT_MIN_ALIGNMENT)
		alignment = 0;

3985 3986 3987
	err = drm_mm_insert_node_in_range(&vm->mm, node,
					  size, alignment, color,
					  start, end, mode);
3988 3989 3990
	if (err != -ENOSPC)
		return err;

3991 3992 3993 3994 3995 3996 3997 3998 3999
	if (mode & DRM_MM_INSERT_ONCE) {
		err = drm_mm_insert_node_in_range(&vm->mm, node,
						  size, alignment, color,
						  start, end,
						  DRM_MM_INSERT_BEST);
		if (err != -ENOSPC)
			return err;
	}

4000 4001 4002
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
	/* No free space, pick a slot at random.
	 *
	 * There is a pathological case here using a GTT shared between
	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
	 *
	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
	 *         (64k objects)             (448k objects)
	 *
	 * Now imagine that the eviction LRU is ordered top-down (just because
	 * pathology meets real life), and that we need to evict an object to
	 * make room inside the aperture. The eviction scan then has to walk
	 * the 448k list before it finds one within range. And now imagine that
	 * it has to search for a new hole between every byte inside the memcpy,
	 * for several simultaneous clients.
	 *
	 * On a full-ppgtt system, if we have run out of available space, there
	 * will be lots and lots of objects in the eviction list! Again,
	 * searching that LRU list may be slow if we are also applying any
	 * range restrictions (e.g. restriction to low 4GiB) and so, for
	 * simplicity and similarilty between different GTT, try the single
	 * random replacement first.
	 */
	offset = random_offset(start, end,
			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
	if (err != -ENOSPC)
		return err;

	/* Randomly selected placement is pinned, do a search */
4032 4033 4034 4035 4036
	err = i915_gem_evict_something(vm, size, alignment, color,
				       start, end, flags);
	if (err)
		return err;

4037 4038 4039
	return drm_mm_insert_node_in_range(&vm->mm, node,
					   size, alignment, color,
					   start, end, DRM_MM_INSERT_EVICT);
4040
}
4041 4042 4043

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_gtt.c"
4044
#include "selftests/i915_gem_gtt.c"
4045
#endif