book3s_hv.c 111.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Paul Mackerras <paulus@au1.ibm.com>
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *
 * Description: KVM functions specific to running on Book 3S
 * processors in hypervisor mode (specifically POWER7 and later).
 *
 * This file is derived from arch/powerpc/kvm/book3s.c,
 * by Alexander Graf <agraf@suse.de>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
25
#include <linux/sched/signal.h>
26
#include <linux/sched/stat.h>
27
#include <linux/delay.h>
28
#include <linux/export.h>
29 30
#include <linux/fs.h>
#include <linux/anon_inodes.h>
31
#include <linux/cpu.h>
32
#include <linux/cpumask.h>
33 34
#include <linux/spinlock.h>
#include <linux/page-flags.h>
35
#include <linux/srcu.h>
36
#include <linux/miscdevice.h>
37
#include <linux/debugfs.h>
38 39 40 41 42 43 44 45 46
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
#include <linux/module.h>
#include <linux/compiler.h>
#include <linux/of.h>
47 48

#include <asm/reg.h>
49 50
#include <asm/ppc-opcode.h>
#include <asm/disassemble.h>
51 52 53
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
54
#include <linux/uaccess.h>
55 56 57 58 59 60
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
61
#include <asm/cputhreads.h>
62
#include <asm/page.h>
63
#include <asm/hvcall.h>
64
#include <asm/switch_to.h>
65
#include <asm/smp.h>
66
#include <asm/dbell.h>
67
#include <asm/hmi.h>
68
#include <asm/pnv-pci.h>
69
#include <asm/mmu.h>
70 71
#include <asm/opal.h>
#include <asm/xics.h>
72
#include <asm/xive.h>
73

74 75
#include "book3s.h"

76 77 78
#define CREATE_TRACE_POINTS
#include "trace_hv.h"

79 80 81 82
/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */

83 84
/* Used to indicate that a guest page fault needs to be handled */
#define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
85 86
/* Used to indicate that a guest passthrough interrupt needs to be handled */
#define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
87

88 89 90
/* Used as a "null" value for timebase values */
#define TB_NIL	(~(u64)0)

91 92
static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);

93 94 95
static int dynamic_mt_modes = 6;
module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
96 97 98
static int target_smt_mode;
module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
99

100 101 102 103 104 105
#ifdef CONFIG_KVM_XICS
static struct kernel_param_ops module_param_ops = {
	.set = param_set_int,
	.get = param_get_int,
};

106 107 108 109
module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass,
							S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");

110 111 112 113 114
module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect,
							S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
#endif

115
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
116
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
117

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
		int *ip)
{
	int i = *ip;
	struct kvm_vcpu *vcpu;

	while (++i < MAX_SMT_THREADS) {
		vcpu = READ_ONCE(vc->runnable_threads[i]);
		if (vcpu) {
			*ip = i;
			return vcpu;
		}
	}
	return NULL;
}

/* Used to traverse the list of runnable threads for a given vcore */
#define for_each_runnable_thread(i, vcpu, vc) \
	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )

138 139
static bool kvmppc_ipi_thread(int cpu)
{
140 141 142 143 144 145 146 147 148 149
	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);

	/* On POWER9 we can use msgsnd to IPI any cpu */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		msg |= get_hard_smp_processor_id(cpu);
		smp_mb();
		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
		return true;
	}

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		preempt_disable();
		if (cpu_first_thread_sibling(cpu) ==
		    cpu_first_thread_sibling(smp_processor_id())) {
			msg |= cpu_thread_in_core(cpu);
			smp_mb();
			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
			preempt_enable();
			return true;
		}
		preempt_enable();
	}

#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
165 166 167 168 169 170
	if (cpu >= 0 && cpu < nr_cpu_ids) {
		if (paca[cpu].kvm_hstate.xics_phys) {
			xics_wake_cpu(cpu);
			return true;
		}
		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
171 172 173 174 175 176 177
		return true;
	}
#endif

	return false;
}

178
static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
179
{
180
	int cpu;
181
	struct swait_queue_head *wqp;
182 183

	wqp = kvm_arch_vcpu_wq(vcpu);
184 185
	if (swait_active(wqp)) {
		swake_up(wqp);
186 187 188
		++vcpu->stat.halt_wakeup;
	}

189 190
	cpu = READ_ONCE(vcpu->arch.thread_cpu);
	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
191
		return;
192 193

	/* CPU points to the first thread of the core */
194
	cpu = vcpu->cpu;
195 196
	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
		smp_send_reschedule(cpu);
197 198
}

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
/*
 * We use the vcpu_load/put functions to measure stolen time.
 * Stolen time is counted as time when either the vcpu is able to
 * run as part of a virtual core, but the task running the vcore
 * is preempted or sleeping, or when the vcpu needs something done
 * in the kernel by the task running the vcpu, but that task is
 * preempted or sleeping.  Those two things have to be counted
 * separately, since one of the vcpu tasks will take on the job
 * of running the core, and the other vcpu tasks in the vcore will
 * sleep waiting for it to do that, but that sleep shouldn't count
 * as stolen time.
 *
 * Hence we accumulate stolen time when the vcpu can run as part of
 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
 * needs its task to do other things in the kernel (for example,
 * service a page fault) in busy_stolen.  We don't accumulate
 * stolen time for a vcore when it is inactive, or for a vcpu
 * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
 * a misnomer; it means that the vcpu task is not executing in
 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
 * the kernel.  We don't have any way of dividing up that time
 * between time that the vcpu is genuinely stopped, time that
 * the task is actively working on behalf of the vcpu, and time
 * that the task is preempted, so we don't count any of it as
 * stolen.
 *
 * Updates to busy_stolen are protected by arch.tbacct_lock;
226 227 228 229
 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
 * lock.  The stolen times are measured in units of timebase ticks.
 * (Note that the != TB_NIL checks below are purely defensive;
 * they should never fail.)
230 231
 */

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	vc->preempt_tb = mftb();
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	if (vc->preempt_tb != TB_NIL) {
		vc->stolen_tb += mftb() - vc->preempt_tb;
		vc->preempt_tb = TB_NIL;
	}
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

253
static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
254
{
255
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
256
	unsigned long flags;
257

258 259 260 261 262 263
	/*
	 * We can test vc->runner without taking the vcore lock,
	 * because only this task ever sets vc->runner to this
	 * vcpu, and once it is set to this vcpu, only this task
	 * ever sets it to NULL.
	 */
264 265 266
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_end_stolen(vc);

267
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
268 269 270 271 272
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
	    vcpu->arch.busy_preempt != TB_NIL) {
		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
		vcpu->arch.busy_preempt = TB_NIL;
	}
273
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
274 275
}

276
static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
277
{
278
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
279
	unsigned long flags;
280

281 282 283
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_start_stolen(vc);

284
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
285 286
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
		vcpu->arch.busy_preempt = mftb();
287
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
288 289
}

290
static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
291
{
292 293 294 295 296 297
	/*
	 * Check for illegal transactional state bit combination
	 * and if we find it, force the TS field to a safe state.
	 */
	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
		msr &= ~MSR_TS_MASK;
298
	vcpu->arch.shregs.msr = msr;
299
	kvmppc_end_cede(vcpu);
300 301
}

T
Thomas Huth 已提交
302
static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
303 304 305 306
{
	vcpu->arch.pvr = pvr;
}

307 308 309
/* Dummy value used in computing PCR value below */
#define PCR_ARCH_300	(PCR_ARCH_207 << 1)

T
Thomas Huth 已提交
310
static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
311
{
312
	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
313 314
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

315 316 317 318 319 320 321 322 323 324 325 326
	/* We can (emulate) our own architecture version and anything older */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		host_pcr_bit = PCR_ARCH_300;
	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
		host_pcr_bit = PCR_ARCH_207;
	else if (cpu_has_feature(CPU_FTR_ARCH_206))
		host_pcr_bit = PCR_ARCH_206;
	else
		host_pcr_bit = PCR_ARCH_205;

	/* Determine lowest PCR bit needed to run guest in given PVR level */
	guest_pcr_bit = host_pcr_bit;
327 328 329
	if (arch_compat) {
		switch (arch_compat) {
		case PVR_ARCH_205:
330
			guest_pcr_bit = PCR_ARCH_205;
331 332 333
			break;
		case PVR_ARCH_206:
		case PVR_ARCH_206p:
334
			guest_pcr_bit = PCR_ARCH_206;
335 336
			break;
		case PVR_ARCH_207:
337 338 339 340
			guest_pcr_bit = PCR_ARCH_207;
			break;
		case PVR_ARCH_300:
			guest_pcr_bit = PCR_ARCH_300;
341 342 343 344 345 346
			break;
		default:
			return -EINVAL;
		}
	}

347 348 349 350
	/* Check requested PCR bits don't exceed our capabilities */
	if (guest_pcr_bit > host_pcr_bit)
		return -EINVAL;

351 352
	spin_lock(&vc->lock);
	vc->arch_compat = arch_compat;
353 354
	/* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
	vc->pcr = host_pcr_bit - guest_pcr_bit;
355 356 357 358 359
	spin_unlock(&vc->lock);

	return 0;
}

T
Thomas Huth 已提交
360
static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
{
	int r;

	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
	for (r = 0; r < 16; ++r)
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
		       r, kvmppc_get_gpr(vcpu, r),
		       r+16, kvmppc_get_gpr(vcpu, r+16));
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
	       vcpu->arch.ctr, vcpu->arch.lr);
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
	for (r = 0; r < vcpu->arch.slb_max; ++r)
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
389
	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
390 391 392
	       vcpu->arch.last_inst);
}

T
Thomas Huth 已提交
393
static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
394
{
395
	struct kvm_vcpu *ret;
396 397

	mutex_lock(&kvm->lock);
398
	ret = kvm_get_vcpu_by_id(kvm, id);
399 400 401 402 403 404
	mutex_unlock(&kvm->lock);
	return ret;
}

static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
405
	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
406
	vpa->yield_count = cpu_to_be32(1);
407 408
}

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
		   unsigned long addr, unsigned long len)
{
	/* check address is cacheline aligned */
	if (addr & (L1_CACHE_BYTES - 1))
		return -EINVAL;
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (v->next_gpa != addr || v->len != len) {
		v->next_gpa = addr;
		v->len = addr ? len : 0;
		v->update_pending = 1;
	}
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return 0;
}

425 426 427 428
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
struct reg_vpa {
	u32 dummy;
	union {
429 430
		__be16 hword;
		__be32 word;
431 432 433 434 435 436 437 438 439 440
	} length;
};

static int vpa_is_registered(struct kvmppc_vpa *vpap)
{
	if (vpap->update_pending)
		return vpap->next_gpa != 0;
	return vpap->pinned_addr != NULL;
}

441 442 443 444 445
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
				       unsigned long flags,
				       unsigned long vcpuid, unsigned long vpa)
{
	struct kvm *kvm = vcpu->kvm;
446
	unsigned long len, nb;
447 448
	void *va;
	struct kvm_vcpu *tvcpu;
449 450 451
	int err;
	int subfunc;
	struct kvmppc_vpa *vpap;
452 453 454 455 456

	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
	if (!tvcpu)
		return H_PARAMETER;

457 458 459 460 461
	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
	    subfunc == H_VPA_REG_SLB) {
		/* Registering new area - address must be cache-line aligned */
		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
462
			return H_PARAMETER;
463 464

		/* convert logical addr to kernel addr and read length */
465 466
		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
		if (va == NULL)
467
			return H_PARAMETER;
468
		if (subfunc == H_VPA_REG_VPA)
469
			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
470
		else
471
			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
472
		kvmppc_unpin_guest_page(kvm, va, vpa, false);
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487

		/* Check length */
		if (len > nb || len < sizeof(struct reg_vpa))
			return H_PARAMETER;
	} else {
		vpa = 0;
		len = 0;
	}

	err = H_PARAMETER;
	vpap = NULL;
	spin_lock(&tvcpu->arch.vpa_update_lock);

	switch (subfunc) {
	case H_VPA_REG_VPA:		/* register VPA */
488 489 490 491 492 493 494
		/*
		 * The size of our lppaca is 1kB because of the way we align
		 * it for the guest to avoid crossing a 4kB boundary. We only
		 * use 640 bytes of the structure though, so we should accept
		 * clients that set a size of 640.
		 */
		if (len < 640)
495
			break;
496 497 498 499 500 501
		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_REG_DTL:		/* register DTL */
		if (len < sizeof(struct dtl_entry))
502
			break;
503 504 505 506 507
		len -= len % sizeof(struct dtl_entry);

		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
508
			break;
509 510 511 512 513 514 515 516 517

		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
518
			break;
519 520 521 522 523 524 525 526 527 528

		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;

	case H_VPA_DEREG_VPA:		/* deregister VPA */
		/* Check they don't still have a DTL or SLB buf registered */
		err = H_RESOURCE;
		if (vpa_is_registered(&tvcpu->arch.dtl) ||
		    vpa_is_registered(&tvcpu->arch.slb_shadow))
529
			break;
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549

		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_DEREG_DTL:		/* deregister DTL */
		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;
	}

	if (vpap) {
		vpap->next_gpa = vpa;
		vpap->len = len;
		vpap->update_pending = 1;
550
	}
551

552 553
	spin_unlock(&tvcpu->arch.vpa_update_lock);

554
	return err;
555 556
}

557
static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
558
{
559
	struct kvm *kvm = vcpu->kvm;
560 561
	void *va;
	unsigned long nb;
562
	unsigned long gpa;
563

564 565 566 567 568 569 570 571 572 573 574 575 576 577
	/*
	 * We need to pin the page pointed to by vpap->next_gpa,
	 * but we can't call kvmppc_pin_guest_page under the lock
	 * as it does get_user_pages() and down_read().  So we
	 * have to drop the lock, pin the page, then get the lock
	 * again and check that a new area didn't get registered
	 * in the meantime.
	 */
	for (;;) {
		gpa = vpap->next_gpa;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		va = NULL;
		nb = 0;
		if (gpa)
578
			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
579 580 581 582 583
		spin_lock(&vcpu->arch.vpa_update_lock);
		if (gpa == vpap->next_gpa)
			break;
		/* sigh... unpin that one and try again */
		if (va)
584
			kvmppc_unpin_guest_page(kvm, va, gpa, false);
585 586 587 588 589 590 591 592 593
	}

	vpap->update_pending = 0;
	if (va && nb < vpap->len) {
		/*
		 * If it's now too short, it must be that userspace
		 * has changed the mappings underlying guest memory,
		 * so unregister the region.
		 */
594
		kvmppc_unpin_guest_page(kvm, va, gpa, false);
595
		va = NULL;
596 597
	}
	if (vpap->pinned_addr)
598 599 600
		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
					vpap->dirty);
	vpap->gpa = gpa;
601
	vpap->pinned_addr = va;
602
	vpap->dirty = false;
603 604 605 606 607 608
	if (va)
		vpap->pinned_end = va + vpap->len;
}

static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
{
609 610 611 612 613
	if (!(vcpu->arch.vpa.update_pending ||
	      vcpu->arch.slb_shadow.update_pending ||
	      vcpu->arch.dtl.update_pending))
		return;

614 615
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.vpa.update_pending) {
616
		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
617 618
		if (vcpu->arch.vpa.pinned_addr)
			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
619 620
	}
	if (vcpu->arch.dtl.update_pending) {
621
		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
622 623 624 625
		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
		vcpu->arch.dtl_index = 0;
	}
	if (vcpu->arch.slb_shadow.update_pending)
626
		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
627 628 629
	spin_unlock(&vcpu->arch.vpa_update_lock);
}

630 631 632 633 634 635 636
/*
 * Return the accumulated stolen time for the vcore up until `now'.
 * The caller should hold the vcore lock.
 */
static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
{
	u64 p;
637
	unsigned long flags;
638

639 640
	spin_lock_irqsave(&vc->stoltb_lock, flags);
	p = vc->stolen_tb;
641
	if (vc->vcore_state != VCORE_INACTIVE &&
642 643 644
	    vc->preempt_tb != TB_NIL)
		p += now - vc->preempt_tb;
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
645 646 647
	return p;
}

648 649 650 651 652
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
				    struct kvmppc_vcore *vc)
{
	struct dtl_entry *dt;
	struct lppaca *vpa;
653 654 655
	unsigned long stolen;
	unsigned long core_stolen;
	u64 now;
656
	unsigned long flags;
657 658 659

	dt = vcpu->arch.dtl_ptr;
	vpa = vcpu->arch.vpa.pinned_addr;
660 661 662 663
	now = mftb();
	core_stolen = vcore_stolen_time(vc, now);
	stolen = core_stolen - vcpu->arch.stolen_logged;
	vcpu->arch.stolen_logged = core_stolen;
664
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
665 666
	stolen += vcpu->arch.busy_stolen;
	vcpu->arch.busy_stolen = 0;
667
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
668 669 670 671
	if (!dt || !vpa)
		return;
	memset(dt, 0, sizeof(struct dtl_entry));
	dt->dispatch_reason = 7;
672 673 674 675 676
	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
	dt->timebase = cpu_to_be64(now + vc->tb_offset);
	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
677 678 679 680 681 682
	++dt;
	if (dt == vcpu->arch.dtl.pinned_end)
		dt = vcpu->arch.dtl.pinned_addr;
	vcpu->arch.dtl_ptr = dt;
	/* order writing *dt vs. writing vpa->dtl_idx */
	smp_wmb();
683
	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
684
	vcpu->arch.dtl.dirty = true;
685 686
}

687 688 689 690 691 692
/* See if there is a doorbell interrupt pending for a vcpu */
static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
{
	int thr;
	struct kvmppc_vcore *vc;

693 694 695 696 697 698 699 700 701
	if (vcpu->arch.doorbell_request)
		return true;
	/*
	 * Ensure that the read of vcore->dpdes comes after the read
	 * of vcpu->doorbell_request.  This barrier matches the
	 * lwsync in book3s_hv_rmhandlers.S just before the
	 * fast_guest_return label.
	 */
	smp_rmb();
702 703 704 705 706
	vc = vcpu->arch.vcore;
	thr = vcpu->vcpu_id - vc->first_vcpuid;
	return !!(vc->dpdes & (1 << thr));
}

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
		return true;
	if ((!vcpu->arch.vcore->arch_compat) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		return true;
	return false;
}

static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
			     unsigned long resource, unsigned long value1,
			     unsigned long value2)
{
	switch (resource) {
	case H_SET_MODE_RESOURCE_SET_CIABR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
		if (value2)
			return H_P4;
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		/* Guests can't breakpoint the hypervisor */
		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
			return H_P3;
		vcpu->arch.ciabr  = value1;
		return H_SUCCESS;
	case H_SET_MODE_RESOURCE_SET_DAWR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		if (value2 & DABRX_HYP)
			return H_P4;
		vcpu->arch.dawr  = value1;
		vcpu->arch.dawrx = value2;
		return H_SUCCESS;
	default:
		return H_TOO_HARD;
	}
}

749 750 751 752 753 754 755 756 757 758 759 760 761 762
static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
{
	struct kvmppc_vcore *vcore = target->arch.vcore;

	/*
	 * We expect to have been called by the real mode handler
	 * (kvmppc_rm_h_confer()) which would have directly returned
	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
	 * have useful work to do and should not confer) so we don't
	 * recheck that here.
	 */

	spin_lock(&vcore->lock);
	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
763 764
	    vcore->vcore_state != VCORE_INACTIVE &&
	    vcore->runner)
765 766 767 768 769 770 771 772 773 774 775 776 777 778
		target = vcore->runner;
	spin_unlock(&vcore->lock);

	return kvm_vcpu_yield_to(target);
}

static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
{
	int yield_count = 0;
	struct lppaca *lppaca;

	spin_lock(&vcpu->arch.vpa_update_lock);
	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
	if (lppaca)
779
		yield_count = be32_to_cpu(lppaca->yield_count);
780 781 782 783
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return yield_count;
}

784 785 786 787
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
	unsigned long target, ret = H_SUCCESS;
788
	int yield_count;
789
	struct kvm_vcpu *tvcpu;
790
	int idx, rc;
791

792 793 794 795
	if (req <= MAX_HCALL_OPCODE &&
	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
		return RESUME_HOST;

796 797 798 799 800 801 802 803 804 805 806 807
	switch (req) {
	case H_CEDE:
		break;
	case H_PROD:
		target = kvmppc_get_gpr(vcpu, 4);
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		tvcpu->arch.prodded = 1;
		smp_mb();
808 809
		if (tvcpu->arch.ceded)
			kvmppc_fast_vcpu_kick_hv(tvcpu);
810 811
		break;
	case H_CONFER:
812 813 814 815 816 817 818 819
		target = kvmppc_get_gpr(vcpu, 4);
		if (target == -1)
			break;
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
820 821 822 823
		yield_count = kvmppc_get_gpr(vcpu, 5);
		if (kvmppc_get_yield_count(tvcpu) != yield_count)
			break;
		kvm_arch_vcpu_yield_to(tvcpu);
824 825 826 827 828 829
		break;
	case H_REGISTER_VPA:
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6));
		break;
830 831 832 833
	case H_RTAS:
		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
			return RESUME_HOST;

834
		idx = srcu_read_lock(&vcpu->kvm->srcu);
835
		rc = kvmppc_rtas_hcall(vcpu);
836
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
837 838 839 840 841 842 843 844

		if (rc == -ENOENT)
			return RESUME_HOST;
		else if (rc == 0)
			break;

		/* Send the error out to userspace via KVM_RUN */
		return rc;
845 846 847 848 849 850 851 852 853 854
	case H_LOGICAL_CI_LOAD:
		ret = kvmppc_h_logical_ci_load(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_LOGICAL_CI_STORE:
		ret = kvmppc_h_logical_ci_store(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
855 856 857 858 859 860 861 862
	case H_SET_MODE:
		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6),
					kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
863 864 865 866
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
867 868
	case H_IPOLL:
	case H_XIRR_X:
869
		if (kvmppc_xics_enabled(vcpu)) {
870 871 872 873
			if (xive_enabled()) {
				ret = H_NOT_AVAILABLE;
				return RESUME_GUEST;
			}
874 875
			ret = kvmppc_xics_hcall(vcpu, req);
			break;
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
		}
		return RESUME_HOST;
	case H_PUT_TCE:
		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_PUT_TCE_INDIRECT:
		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_STUFF_TCE:
		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
901 902 903 904 905 906 907 908
	default:
		return RESUME_HOST;
	}
	kvmppc_set_gpr(vcpu, 3, ret);
	vcpu->arch.hcall_needed = 0;
	return RESUME_GUEST;
}

909 910 911 912 913 914 915
static int kvmppc_hcall_impl_hv(unsigned long cmd)
{
	switch (cmd) {
	case H_CEDE:
	case H_PROD:
	case H_CONFER:
	case H_REGISTER_VPA:
916
	case H_SET_MODE:
917 918
	case H_LOGICAL_CI_LOAD:
	case H_LOGICAL_CI_STORE:
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
#ifdef CONFIG_KVM_XICS
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
	case H_IPOLL:
	case H_XIRR_X:
#endif
		return 1;
	}

	/* See if it's in the real-mode table */
	return kvmppc_hcall_impl_hv_realmode(cmd);
}

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
static int kvmppc_emulate_debug_inst(struct kvm_run *run,
					struct kvm_vcpu *vcpu)
{
	u32 last_inst;

	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
					EMULATE_DONE) {
		/*
		 * Fetch failed, so return to guest and
		 * try executing it again.
		 */
		return RESUME_GUEST;
	}

	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
		run->exit_reason = KVM_EXIT_DEBUG;
		run->debug.arch.address = kvmppc_get_pc(vcpu);
		return RESUME_HOST;
	} else {
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
		return RESUME_GUEST;
	}
}

958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
static void do_nothing(void *x)
{
}

static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
{
	int thr, cpu, pcpu, nthreads;
	struct kvm_vcpu *v;
	unsigned long dpdes;

	nthreads = vcpu->kvm->arch.emul_smt_mode;
	dpdes = 0;
	cpu = vcpu->vcpu_id & ~(nthreads - 1);
	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
		if (!v)
			continue;
		/*
		 * If the vcpu is currently running on a physical cpu thread,
		 * interrupt it in order to pull it out of the guest briefly,
		 * which will update its vcore->dpdes value.
		 */
		pcpu = READ_ONCE(v->cpu);
		if (pcpu >= 0)
			smp_call_function_single(pcpu, do_nothing, NULL, 1);
		if (kvmppc_doorbell_pending(v))
			dpdes |= 1 << thr;
	}
	return dpdes;
}

/*
 * On POWER9, emulate doorbell-related instructions in order to
 * give the guest the illusion of running on a multi-threaded core.
 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
 * and mfspr DPDES.
 */
static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
{
	u32 inst, rb, thr;
	unsigned long arg;
	struct kvm *kvm = vcpu->kvm;
	struct kvm_vcpu *tvcpu;

	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return EMULATE_FAIL;
	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
		return RESUME_GUEST;
	if (get_op(inst) != 31)
		return EMULATE_FAIL;
	rb = get_rb(inst);
	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
	switch (get_xop(inst)) {
	case OP_31_XOP_MSGSNDP:
		arg = kvmppc_get_gpr(vcpu, rb);
		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
			break;
		arg &= 0x3f;
		if (arg >= kvm->arch.emul_smt_mode)
			break;
		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
		if (!tvcpu)
			break;
		if (!tvcpu->arch.doorbell_request) {
			tvcpu->arch.doorbell_request = 1;
			kvmppc_fast_vcpu_kick_hv(tvcpu);
		}
		break;
	case OP_31_XOP_MSGCLRP:
		arg = kvmppc_get_gpr(vcpu, rb);
		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
			break;
		vcpu->arch.vcore->dpdes = 0;
		vcpu->arch.doorbell_request = 0;
		break;
	case OP_31_XOP_MFSPR:
		switch (get_sprn(inst)) {
		case SPRN_TIR:
			arg = thr;
			break;
		case SPRN_DPDES:
			arg = kvmppc_read_dpdes(vcpu);
			break;
		default:
			return EMULATE_FAIL;
		}
		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
		break;
	default:
		return EMULATE_FAIL;
	}
	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
	return RESUME_GUEST;
}

1053 1054
static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				 struct task_struct *tsk)
1055 1056 1057 1058 1059
{
	int r = RESUME_HOST;

	vcpu->stat.sum_exits++;

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
	/*
	 * This can happen if an interrupt occurs in the last stages
	 * of guest entry or the first stages of guest exit (i.e. after
	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
	 * That can happen due to a bug, or due to a machine check
	 * occurring at just the wrong time.
	 */
	if (vcpu->arch.shregs.msr & MSR_HV) {
		printk(KERN_EMERG "KVM trap in HV mode!\n");
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
		kvmppc_dump_regs(vcpu);
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		run->hw.hardware_exit_reason = vcpu->arch.trap;
		return RESUME_HOST;
	}
1078 1079 1080 1081 1082 1083 1084 1085 1086
	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
1087
	case BOOK3S_INTERRUPT_H_DOORBELL:
1088
	case BOOK3S_INTERRUPT_H_VIRT:
1089 1090 1091
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
1092 1093
	/* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
	case BOOK3S_INTERRUPT_HMI:
1094 1095 1096
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
1097
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
		/* Exit to guest with KVM_EXIT_NMI as exit reason */
		run->exit_reason = KVM_EXIT_NMI;
		run->hw.hardware_exit_reason = vcpu->arch.trap;
		/* Clear out the old NMI status from run->flags */
		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
		/* Now set the NMI status */
		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
		else
			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;

		r = RESUME_HOST;
		/* Print the MCE event to host console. */
		machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1112
		break;
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
	case BOOK3S_INTERRUPT_PROGRAM:
	{
		ulong flags;
		/*
		 * Normally program interrupts are delivered directly
		 * to the guest by the hardware, but we can get here
		 * as a result of a hypervisor emulation interrupt
		 * (e40) getting turned into a 700 by BML RTAS.
		 */
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
	{
		/* hcall - punt to userspace */
		int i;

1132 1133 1134 1135
		/* hypercall with MSR_PR has already been handled in rmode,
		 * and never reaches here.
		 */

1136 1137 1138 1139 1140 1141 1142 1143 1144
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
		for (i = 0; i < 9; ++i)
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
		vcpu->arch.hcall_needed = 1;
		r = RESUME_HOST;
		break;
	}
	/*
1145 1146 1147 1148 1149
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.  Any other HDSI/HISI interrupts
	 * have been handled already.
1150 1151
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1152
		r = RESUME_PAGE_FAULT;
1153 1154
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1155 1156 1157
		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
		vcpu->arch.fault_dsisr = 0;
		r = RESUME_PAGE_FAULT;
1158 1159 1160
		break;
	/*
	 * This occurs if the guest executes an illegal instruction.
1161 1162 1163 1164
	 * If the guest debug is disabled, generate a program interrupt
	 * to the guest. If guest debug is enabled, we need to check
	 * whether the instruction is a software breakpoint instruction.
	 * Accordingly return to Guest or Host.
1165 1166
	 */
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1167 1168 1169 1170
		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
				swab32(vcpu->arch.emul_inst) :
				vcpu->arch.emul_inst;
1171 1172 1173 1174 1175 1176
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
			r = kvmppc_emulate_debug_inst(run, vcpu);
		} else {
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			r = RESUME_GUEST;
		}
1177 1178 1179
		break;
	/*
	 * This occurs if the guest (kernel or userspace), does something that
1180 1181 1182 1183
	 * is prohibited by HFSCR.
	 * On POWER9, this could be a doorbell instruction that we need
	 * to emulate.
	 * Otherwise, we just generate a program interrupt to the guest.
1184 1185
	 */
	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1186 1187 1188 1189 1190 1191 1192
		r = EMULATE_FAIL;
		if ((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG)
			r = kvmppc_emulate_doorbell_instr(vcpu);
		if (r == EMULATE_FAIL) {
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			r = RESUME_GUEST;
		}
1193
		break;
1194 1195 1196
	case BOOK3S_INTERRUPT_HV_RM_HARD:
		r = RESUME_PASSTHROUGH;
		break;
1197 1198 1199 1200 1201
	default:
		kvmppc_dump_regs(vcpu);
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
1202
		run->hw.hardware_exit_reason = vcpu->arch.trap;
1203 1204 1205 1206 1207 1208 1209
		r = RESUME_HOST;
		break;
	}

	return r;
}

1210 1211
static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1212 1213 1214 1215
{
	int i;

	memset(sregs, 0, sizeof(struct kvm_sregs));
1216
	sregs->pvr = vcpu->arch.pvr;
1217 1218 1219 1220 1221 1222 1223 1224
	for (i = 0; i < vcpu->arch.slb_max; i++) {
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
	}

	return 0;
}

1225 1226
static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1227 1228 1229
{
	int i, j;

1230 1231 1232
	/* Only accept the same PVR as the host's, since we can't spoof it */
	if (sregs->pvr != vcpu->arch.pvr)
		return -EINVAL;
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246

	j = 0;
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
			++j;
		}
	}
	vcpu->arch.slb_max = j;

	return 0;
}

1247 1248
static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
		bool preserve_top32)
1249
{
1250
	struct kvm *kvm = vcpu->kvm;
1251 1252 1253
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	u64 mask;

1254
	mutex_lock(&kvm->lock);
1255
	spin_lock(&vc->lock);
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	/*
	 * If ILE (interrupt little-endian) has changed, update the
	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
	 */
	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
		struct kvm_vcpu *vcpu;
		int i;

		kvm_for_each_vcpu(i, vcpu, kvm) {
			if (vcpu->arch.vcore != vc)
				continue;
			if (new_lpcr & LPCR_ILE)
				vcpu->arch.intr_msr |= MSR_LE;
			else
				vcpu->arch.intr_msr &= ~MSR_LE;
		}
	}

1274 1275 1276
	/*
	 * Userspace can only modify DPFD (default prefetch depth),
	 * ILE (interrupt little-endian) and TC (translation control).
1277
	 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1278 1279
	 */
	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1280 1281
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		mask |= LPCR_AIL;
1282 1283 1284 1285 1286 1287
	/*
	 * On POWER9, allow userspace to enable large decrementer for the
	 * guest, whether or not the host has it enabled.
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		mask |= LPCR_LD;
1288 1289 1290 1291

	/* Broken 32-bit version of LPCR must not clear top bits */
	if (preserve_top32)
		mask &= 0xFFFFFFFF;
1292 1293
	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
	spin_unlock(&vc->lock);
1294
	mutex_unlock(&kvm->lock);
1295 1296
}

1297 1298
static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1299
{
1300 1301
	int r = 0;
	long int i;
1302

1303
	switch (id) {
1304 1305 1306
	case KVM_REG_PPC_DEBUG_INST:
		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
		break;
1307
	case KVM_REG_PPC_HIOR:
1308 1309 1310 1311 1312
		*val = get_reg_val(id, 0);
		break;
	case KVM_REG_PPC_DABR:
		*val = get_reg_val(id, vcpu->arch.dabr);
		break;
1313 1314 1315
	case KVM_REG_PPC_DABRX:
		*val = get_reg_val(id, vcpu->arch.dabrx);
		break;
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
	case KVM_REG_PPC_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr);
		break;
	case KVM_REG_PPC_PURR:
		*val = get_reg_val(id, vcpu->arch.purr);
		break;
	case KVM_REG_PPC_SPURR:
		*val = get_reg_val(id, vcpu->arch.spurr);
		break;
	case KVM_REG_PPC_AMR:
		*val = get_reg_val(id, vcpu->arch.amr);
		break;
	case KVM_REG_PPC_UAMOR:
		*val = get_reg_val(id, vcpu->arch.uamor);
		break;
1331
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1332 1333 1334 1335 1336 1337
		i = id - KVM_REG_PPC_MMCR0;
		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1338
		break;
1339 1340 1341 1342
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		*val = get_reg_val(id, vcpu->arch.spmc[i]);
		break;
1343 1344 1345 1346 1347 1348
	case KVM_REG_PPC_SIAR:
		*val = get_reg_val(id, vcpu->arch.siar);
		break;
	case KVM_REG_PPC_SDAR:
		*val = get_reg_val(id, vcpu->arch.sdar);
		break;
1349 1350
	case KVM_REG_PPC_SIER:
		*val = get_reg_val(id, vcpu->arch.sier);
1351
		break;
1352 1353 1354 1355 1356 1357 1358 1359 1360
	case KVM_REG_PPC_IAMR:
		*val = get_reg_val(id, vcpu->arch.iamr);
		break;
	case KVM_REG_PPC_PSPB:
		*val = get_reg_val(id, vcpu->arch.pspb);
		break;
	case KVM_REG_PPC_DPDES:
		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
		break;
1361 1362 1363
	case KVM_REG_PPC_VTB:
		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
		break;
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
	case KVM_REG_PPC_DAWR:
		*val = get_reg_val(id, vcpu->arch.dawr);
		break;
	case KVM_REG_PPC_DAWRX:
		*val = get_reg_val(id, vcpu->arch.dawrx);
		break;
	case KVM_REG_PPC_CIABR:
		*val = get_reg_val(id, vcpu->arch.ciabr);
		break;
	case KVM_REG_PPC_CSIGR:
		*val = get_reg_val(id, vcpu->arch.csigr);
		break;
	case KVM_REG_PPC_TACR:
		*val = get_reg_val(id, vcpu->arch.tacr);
		break;
	case KVM_REG_PPC_TCSCR:
		*val = get_reg_val(id, vcpu->arch.tcscr);
		break;
	case KVM_REG_PPC_PID:
		*val = get_reg_val(id, vcpu->arch.pid);
		break;
	case KVM_REG_PPC_ACOP:
		*val = get_reg_val(id, vcpu->arch.acop);
		break;
	case KVM_REG_PPC_WORT:
		*val = get_reg_val(id, vcpu->arch.wort);
1390
		break;
1391 1392 1393 1394 1395 1396
	case KVM_REG_PPC_TIDR:
		*val = get_reg_val(id, vcpu->arch.tid);
		break;
	case KVM_REG_PPC_PSSCR:
		*val = get_reg_val(id, vcpu->arch.psscr);
		break;
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
	case KVM_REG_PPC_VPA_ADDR:
		spin_lock(&vcpu->arch.vpa_update_lock);
		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_SLB:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
		val->vpaval.length = vcpu->arch.slb_shadow.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_DTL:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
		val->vpaval.length = vcpu->arch.dtl.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
1414 1415 1416
	case KVM_REG_PPC_TB_OFFSET:
		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
		break;
1417
	case KVM_REG_PPC_LPCR:
1418
	case KVM_REG_PPC_LPCR_64:
1419 1420
		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
		break;
1421 1422 1423
	case KVM_REG_PPC_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr);
		break;
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		*val = get_reg_val(id, vcpu->arch.tfhar);
		break;
	case KVM_REG_PPC_TFIAR:
		*val = get_reg_val(id, vcpu->arch.tfiar);
		break;
	case KVM_REG_PPC_TEXASR:
		*val = get_reg_val(id, vcpu->arch.texasr);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
		else {
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				val->vval = vcpu->arch.vr_tm.vr[i-32];
			else
				r = -ENXIO;
		}
		break;
	}
	case KVM_REG_PPC_TM_CR:
		*val = get_reg_val(id, vcpu->arch.cr_tm);
		break;
1456 1457 1458
	case KVM_REG_PPC_TM_XER:
		*val = get_reg_val(id, vcpu->arch.xer_tm);
		break;
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
	case KVM_REG_PPC_TM_LR:
		*val = get_reg_val(id, vcpu->arch.lr_tm);
		break;
	case KVM_REG_PPC_TM_CTR:
		*val = get_reg_val(id, vcpu->arch.ctr_tm);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
		break;
	case KVM_REG_PPC_TM_AMR:
		*val = get_reg_val(id, vcpu->arch.amr_tm);
		break;
	case KVM_REG_PPC_TM_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr_tm);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
		else
			r = -ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr_tm);
		break;
	case KVM_REG_PPC_TM_TAR:
		*val = get_reg_val(id, vcpu->arch.tar_tm);
		break;
#endif
1490 1491 1492
	case KVM_REG_PPC_ARCH_COMPAT:
		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
		break;
1493
	default:
1494
		r = -EINVAL;
1495 1496 1497 1498 1499 1500
		break;
	}

	return r;
}

1501 1502
static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1503
{
1504 1505
	int r = 0;
	long int i;
1506
	unsigned long addr, len;
1507

1508
	switch (id) {
1509 1510
	case KVM_REG_PPC_HIOR:
		/* Only allow this to be set to zero */
1511
		if (set_reg_val(id, *val))
1512 1513
			r = -EINVAL;
		break;
1514 1515 1516
	case KVM_REG_PPC_DABR:
		vcpu->arch.dabr = set_reg_val(id, *val);
		break;
1517 1518 1519
	case KVM_REG_PPC_DABRX:
		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
		break;
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
	case KVM_REG_PPC_DSCR:
		vcpu->arch.dscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PURR:
		vcpu->arch.purr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SPURR:
		vcpu->arch.spurr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_AMR:
		vcpu->arch.amr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_UAMOR:
		vcpu->arch.uamor = set_reg_val(id, *val);
		break;
1535
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1536 1537 1538 1539 1540 1541 1542
		i = id - KVM_REG_PPC_MMCR0;
		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		vcpu->arch.pmc[i] = set_reg_val(id, *val);
		break;
1543 1544 1545 1546
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		vcpu->arch.spmc[i] = set_reg_val(id, *val);
		break;
1547 1548 1549 1550 1551 1552
	case KVM_REG_PPC_SIAR:
		vcpu->arch.siar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SDAR:
		vcpu->arch.sdar = set_reg_val(id, *val);
		break;
1553 1554
	case KVM_REG_PPC_SIER:
		vcpu->arch.sier = set_reg_val(id, *val);
1555
		break;
1556 1557 1558 1559 1560 1561 1562 1563 1564
	case KVM_REG_PPC_IAMR:
		vcpu->arch.iamr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSPB:
		vcpu->arch.pspb = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DPDES:
		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
		break;
1565 1566 1567
	case KVM_REG_PPC_VTB:
		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
		break;
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
	case KVM_REG_PPC_DAWR:
		vcpu->arch.dawr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DAWRX:
		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
		break;
	case KVM_REG_PPC_CIABR:
		vcpu->arch.ciabr = set_reg_val(id, *val);
		/* Don't allow setting breakpoints in hypervisor code */
		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
		break;
	case KVM_REG_PPC_CSIGR:
		vcpu->arch.csigr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TACR:
		vcpu->arch.tacr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TCSCR:
		vcpu->arch.tcscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PID:
		vcpu->arch.pid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_ACOP:
		vcpu->arch.acop = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_WORT:
		vcpu->arch.wort = set_reg_val(id, *val);
1597
		break;
1598 1599 1600 1601 1602 1603
	case KVM_REG_PPC_TIDR:
		vcpu->arch.tid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSSCR:
		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
		break;
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
	case KVM_REG_PPC_VPA_ADDR:
		addr = set_reg_val(id, *val);
		r = -EINVAL;
		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
			      vcpu->arch.dtl.next_gpa))
			break;
		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
		break;
	case KVM_REG_PPC_VPA_SLB:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
		if (addr && !vcpu->arch.vpa.next_gpa)
			break;
		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
		break;
	case KVM_REG_PPC_VPA_DTL:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
1624 1625
		if (addr && (len < sizeof(struct dtl_entry) ||
			     !vcpu->arch.vpa.next_gpa))
1626 1627 1628 1629
			break;
		len -= len % sizeof(struct dtl_entry);
		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
		break;
1630
	case KVM_REG_PPC_TB_OFFSET:
1631 1632 1633 1634 1635 1636 1637 1638
		/*
		 * POWER9 DD1 has an erratum where writing TBU40 causes
		 * the timebase to lose ticks.  So we don't let the
		 * timebase offset be changed on P9 DD1.  (It is
		 * initialized to zero.)
		 */
		if (cpu_has_feature(CPU_FTR_POWER9_DD1))
			break;
1639 1640 1641 1642
		/* round up to multiple of 2^24 */
		vcpu->arch.vcore->tb_offset =
			ALIGN(set_reg_val(id, *val), 1UL << 24);
		break;
1643
	case KVM_REG_PPC_LPCR:
1644 1645 1646 1647
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
		break;
	case KVM_REG_PPC_LPCR_64:
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1648
		break;
1649 1650 1651
	case KVM_REG_PPC_PPR:
		vcpu->arch.ppr = set_reg_val(id, *val);
		break;
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		vcpu->arch.tfhar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TFIAR:
		vcpu->arch.tfiar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TEXASR:
		vcpu->arch.texasr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
		else
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				vcpu->arch.vr_tm.vr[i-32] = val->vval;
			else
				r = -ENXIO;
		break;
	}
	case KVM_REG_PPC_TM_CR:
		vcpu->arch.cr_tm = set_reg_val(id, *val);
		break;
1683 1684 1685
	case KVM_REG_PPC_TM_XER:
		vcpu->arch.xer_tm = set_reg_val(id, *val);
		break;
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
	case KVM_REG_PPC_TM_LR:
		vcpu->arch.lr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_CTR:
		vcpu->arch.ctr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_AMR:
		vcpu->arch.amr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_PPR:
		vcpu->arch.ppr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
		else
			r = - ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		vcpu->arch.dscr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_TAR:
		vcpu->arch.tar_tm = set_reg_val(id, *val);
		break;
#endif
1717 1718 1719
	case KVM_REG_PPC_ARCH_COMPAT:
		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
		break;
1720
	default:
1721
		r = -EINVAL;
1722 1723 1724 1725 1726 1727
		break;
	}

	return r;
}

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
/*
 * On POWER9, threads are independent and can be in different partitions.
 * Therefore we consider each thread to be a subcore.
 * There is a restriction that all threads have to be in the same
 * MMU mode (radix or HPT), unfortunately, but since we only support
 * HPT guests on a HPT host so far, that isn't an impediment yet.
 */
static int threads_per_vcore(void)
{
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		return 1;
	return threads_per_subcore;
}

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
{
	struct kvmppc_vcore *vcore;

	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);

	if (vcore == NULL)
		return NULL;

	spin_lock_init(&vcore->lock);
1752
	spin_lock_init(&vcore->stoltb_lock);
1753
	init_swait_queue_head(&vcore->wq);
1754 1755
	vcore->preempt_tb = TB_NIL;
	vcore->lpcr = kvm->arch.lpcr;
1756
	vcore->first_vcpuid = core * kvm->arch.smt_mode;
1757
	vcore->kvm = kvm;
1758
	INIT_LIST_HEAD(&vcore->preempt_list);
1759 1760 1761 1762

	return vcore;
}

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
static struct debugfs_timings_element {
	const char *name;
	size_t offset;
} timings[] = {
	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
};

#define N_TIMINGS	(sizeof(timings) / sizeof(timings[0]))

struct debugfs_timings_state {
	struct kvm_vcpu	*vcpu;
	unsigned int	buflen;
	char		buf[N_TIMINGS * 100];
};

static int debugfs_timings_open(struct inode *inode, struct file *file)
{
	struct kvm_vcpu *vcpu = inode->i_private;
	struct debugfs_timings_state *p;

	p = kzalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return -ENOMEM;

	kvm_get_kvm(vcpu->kvm);
	p->vcpu = vcpu;
	file->private_data = p;

	return nonseekable_open(inode, file);
}

static int debugfs_timings_release(struct inode *inode, struct file *file)
{
	struct debugfs_timings_state *p = file->private_data;

	kvm_put_kvm(p->vcpu->kvm);
	kfree(p);
	return 0;
}

static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
				    size_t len, loff_t *ppos)
{
	struct debugfs_timings_state *p = file->private_data;
	struct kvm_vcpu *vcpu = p->vcpu;
	char *s, *buf_end;
	struct kvmhv_tb_accumulator tb;
	u64 count;
	loff_t pos;
	ssize_t n;
	int i, loops;
	bool ok;

	if (!p->buflen) {
		s = p->buf;
		buf_end = s + sizeof(p->buf);
		for (i = 0; i < N_TIMINGS; ++i) {
			struct kvmhv_tb_accumulator *acc;

			acc = (struct kvmhv_tb_accumulator *)
				((unsigned long)vcpu + timings[i].offset);
			ok = false;
			for (loops = 0; loops < 1000; ++loops) {
				count = acc->seqcount;
				if (!(count & 1)) {
					smp_rmb();
					tb = *acc;
					smp_rmb();
					if (count == acc->seqcount) {
						ok = true;
						break;
					}
				}
				udelay(1);
			}
			if (!ok)
				snprintf(s, buf_end - s, "%s: stuck\n",
					timings[i].name);
			else
				snprintf(s, buf_end - s,
					"%s: %llu %llu %llu %llu\n",
					timings[i].name, count / 2,
					tb_to_ns(tb.tb_total),
					tb_to_ns(tb.tb_min),
					tb_to_ns(tb.tb_max));
			s += strlen(s);
		}
		p->buflen = s - p->buf;
	}

	pos = *ppos;
	if (pos >= p->buflen)
		return 0;
	if (len > p->buflen - pos)
		len = p->buflen - pos;
	n = copy_to_user(buf, p->buf + pos, len);
	if (n) {
		if (n == len)
			return -EFAULT;
		len -= n;
	}
	*ppos = pos + len;
	return len;
}

static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
				     size_t len, loff_t *ppos)
{
	return -EACCES;
}

static const struct file_operations debugfs_timings_ops = {
	.owner	 = THIS_MODULE,
	.open	 = debugfs_timings_open,
	.release = debugfs_timings_release,
	.read	 = debugfs_timings_read,
	.write	 = debugfs_timings_write,
	.llseek	 = generic_file_llseek,
};

/* Create a debugfs directory for the vcpu */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
	char buf[16];
	struct kvm *kvm = vcpu->kvm;

	snprintf(buf, sizeof(buf), "vcpu%u", id);
	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_timings =
		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
				    vcpu, &debugfs_timings_ops);
}

#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
}
#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */

1911 1912
static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
						   unsigned int id)
1913 1914
{
	struct kvm_vcpu *vcpu;
1915
	int err;
1916 1917
	int core;
	struct kvmppc_vcore *vcore;
1918

1919
	err = -ENOMEM;
1920
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1921 1922 1923 1924 1925 1926 1927 1928
	if (!vcpu)
		goto out;

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

	vcpu->arch.shared = &vcpu->arch.shregs;
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
	/*
	 * The shared struct is never shared on HV,
	 * so we can always use host endianness
	 */
#ifdef __BIG_ENDIAN__
	vcpu->arch.shared_big_endian = true;
#else
	vcpu->arch.shared_big_endian = false;
#endif
#endif
1940 1941 1942
	vcpu->arch.mmcr[0] = MMCR0_FC;
	vcpu->arch.ctrl = CTRL_RUNLATCH;
	/* default to host PVR, since we can't spoof it */
1943
	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1944
	spin_lock_init(&vcpu->arch.vpa_update_lock);
1945 1946
	spin_lock_init(&vcpu->arch.tbacct_lock);
	vcpu->arch.busy_preempt = TB_NIL;
1947
	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1948

1949 1950 1951 1952 1953
	/*
	 * Set the default HFSCR for the guest from the host value.
	 * This value is only used on POWER9.
	 * On POWER9 DD1, TM doesn't work, so we make sure to
	 * prevent the guest from using it.
1954 1955
	 * On POWER9, we want to virtualize the doorbell facility, so we
	 * turn off the HFSCR bit, which causes those instructions to trap.
1956 1957 1958 1959
	 */
	vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
	if (!cpu_has_feature(CPU_FTR_TM))
		vcpu->arch.hfscr &= ~HFSCR_TM;
1960 1961
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		vcpu->arch.hfscr &= ~HFSCR_MSGP;
1962

1963 1964
	kvmppc_mmu_book3s_hv_init(vcpu);

1965
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1966 1967 1968 1969

	init_waitqueue_head(&vcpu->arch.cpu_run);

	mutex_lock(&kvm->lock);
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
	vcore = NULL;
	err = -EINVAL;
	core = id / kvm->arch.smt_mode;
	if (core < KVM_MAX_VCORES) {
		vcore = kvm->arch.vcores[core];
		if (!vcore) {
			err = -ENOMEM;
			vcore = kvmppc_vcore_create(kvm, core);
			kvm->arch.vcores[core] = vcore;
			kvm->arch.online_vcores++;
		}
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
	}
	mutex_unlock(&kvm->lock);

	if (!vcore)
		goto free_vcpu;

	spin_lock(&vcore->lock);
	++vcore->num_threads;
	spin_unlock(&vcore->lock);
	vcpu->arch.vcore = vcore;
1991
	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1992
	vcpu->arch.thread_cpu = -1;
1993
	vcpu->arch.prev_cpu = -1;
1994

1995 1996 1997
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
	kvmppc_sanity_check(vcpu);

1998 1999
	debugfs_vcpu_init(vcpu, id);

2000 2001 2002
	return vcpu;

free_vcpu:
2003
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2004 2005 2006 2007
out:
	return ERR_PTR(err);
}

2008 2009 2010 2011
static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
			      unsigned long flags)
{
	int err;
2012
	int esmt = 0;
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

	if (flags)
		return -EINVAL;
	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
		return -EINVAL;
	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
		/*
		 * On POWER8 (or POWER7), the threading mode is "strict",
		 * so we pack smt_mode vcpus per vcore.
		 */
		if (smt_mode > threads_per_subcore)
			return -EINVAL;
	} else {
		/*
		 * On POWER9, the threading mode is "loose",
		 * so each vcpu gets its own vcore.
		 */
2030
		esmt = smt_mode;
2031 2032 2033 2034 2035 2036
		smt_mode = 1;
	}
	mutex_lock(&kvm->lock);
	err = -EBUSY;
	if (!kvm->arch.online_vcores) {
		kvm->arch.smt_mode = smt_mode;
2037
		kvm->arch.emul_smt_mode = esmt;
2038 2039 2040 2041 2042 2043 2044
		err = 0;
	}
	mutex_unlock(&kvm->lock);

	return err;
}

2045 2046 2047 2048 2049 2050 2051
static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
{
	if (vpa->pinned_addr)
		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
					vpa->dirty);
}

2052
static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2053
{
2054
	spin_lock(&vcpu->arch.vpa_update_lock);
2055 2056 2057
	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2058
	spin_unlock(&vcpu->arch.vpa_update_lock);
2059
	kvm_vcpu_uninit(vcpu);
2060
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2061 2062
}

2063 2064 2065 2066 2067 2068
static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
{
	/* Indicate we want to get back into the guest */
	return 1;
}

2069
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2070
{
2071
	unsigned long dec_nsec, now;
2072

2073 2074 2075 2076
	now = get_tb();
	if (now > vcpu->arch.dec_expires) {
		/* decrementer has already gone negative */
		kvmppc_core_queue_dec(vcpu);
2077
		kvmppc_core_prepare_to_enter(vcpu);
2078
		return;
2079
	}
2080 2081
	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
		   / tb_ticks_per_sec;
T
Thomas Gleixner 已提交
2082
	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2083
	vcpu->arch.timer_running = 1;
2084 2085
}

2086
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2087
{
2088 2089 2090 2091 2092
	vcpu->arch.ceded = 0;
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
2093 2094
}

2095
extern int __kvmppc_vcore_entry(void);
2096

2097 2098
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
				   struct kvm_vcpu *vcpu)
2099
{
2100 2101
	u64 now;

2102 2103
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
2104
	spin_lock_irq(&vcpu->arch.tbacct_lock);
2105 2106 2107 2108 2109
	now = mftb();
	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
		vcpu->arch.stolen_logged;
	vcpu->arch.busy_preempt = now;
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2110
	spin_unlock_irq(&vcpu->arch.tbacct_lock);
2111
	--vc->n_runnable;
2112
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2113 2114
}

2115 2116 2117
static int kvmppc_grab_hwthread(int cpu)
{
	struct paca_struct *tpaca;
2118
	long timeout = 10000;
2119

2120 2121 2122 2123 2124 2125 2126 2127 2128
	/*
	 * ISA v3.0 idle routines do not set hwthread_state or test
	 * hwthread_req, so they can not grab idle threads.
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		WARN(1, "KVM: can not control sibling threads\n");
		return -EBUSY;
	}

2129 2130 2131
	tpaca = &paca[cpu];

	/* Ensure the thread won't go into the kernel if it wakes */
2132
	tpaca->kvm_hstate.kvm_vcpu = NULL;
2133
	tpaca->kvm_hstate.kvm_vcore = NULL;
2134 2135 2136
	tpaca->kvm_hstate.napping = 0;
	smp_wmb();
	tpaca->kvm_hstate.hwthread_req = 1;
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163

	/*
	 * If the thread is already executing in the kernel (e.g. handling
	 * a stray interrupt), wait for it to get back to nap mode.
	 * The smp_mb() is to ensure that our setting of hwthread_req
	 * is visible before we look at hwthread_state, so if this
	 * races with the code at system_reset_pSeries and the thread
	 * misses our setting of hwthread_req, we are sure to see its
	 * setting of hwthread_state, and vice versa.
	 */
	smp_mb();
	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
		if (--timeout <= 0) {
			pr_err("KVM: couldn't grab cpu %d\n", cpu);
			return -EBUSY;
		}
		udelay(1);
	}
	return 0;
}

static void kvmppc_release_hwthread(int cpu)
{
	struct paca_struct *tpaca;

	tpaca = &paca[cpu];
	tpaca->kvm_hstate.kvm_vcpu = NULL;
2164 2165
	tpaca->kvm_hstate.kvm_vcore = NULL;
	tpaca->kvm_hstate.kvm_split_mode = NULL;
2166 2167 2168
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		tpaca->kvm_hstate.hwthread_req = 0;

2169 2170
}

2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
{
	int i;

	cpu = cpu_first_thread_sibling(cpu);
	cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
	/*
	 * Make sure setting of bit in need_tlb_flush precedes
	 * testing of cpu_in_guest bits.  The matching barrier on
	 * the other side is the first smp_mb() in kvmppc_run_core().
	 */
	smp_mb();
	for (i = 0; i < threads_per_core; ++i)
		if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
}

2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
{
	struct kvm *kvm = vcpu->kvm;

	/*
	 * With radix, the guest can do TLB invalidations itself,
	 * and it could choose to use the local form (tlbiel) if
	 * it is invalidating a translation that has only ever been
	 * used on one vcpu.  However, that doesn't mean it has
	 * only ever been used on one physical cpu, since vcpus
	 * can move around between pcpus.  To cope with this, when
	 * a vcpu moves from one pcpu to another, we need to tell
	 * any vcpus running on the same core as this vcpu previously
	 * ran to flush the TLB.  The TLB is shared between threads,
	 * so we use a single bit in .need_tlb_flush for all 4 threads.
	 */
	if (vcpu->arch.prev_cpu != pcpu) {
		if (vcpu->arch.prev_cpu >= 0 &&
		    cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
		    cpu_first_thread_sibling(pcpu))
			radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
		vcpu->arch.prev_cpu = pcpu;
	}
}

2213
static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2214 2215 2216
{
	int cpu;
	struct paca_struct *tpaca;
2217
	struct kvm *kvm = vc->kvm;
2218

2219 2220 2221 2222 2223 2224 2225
	cpu = vc->pcpu;
	if (vcpu) {
		if (vcpu->arch.timer_running) {
			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
			vcpu->arch.timer_running = 0;
		}
		cpu += vcpu->arch.ptid;
2226
		vcpu->cpu = vc->pcpu;
2227
		vcpu->arch.thread_cpu = cpu;
2228
		cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2229
	}
2230
	tpaca = &paca[cpu];
2231
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
2232
	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2233
	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2234
	smp_wmb();
2235
	tpaca->kvm_hstate.kvm_vcore = vc;
2236
	if (cpu != smp_processor_id())
2237
		kvmppc_ipi_thread(cpu);
2238
}
2239

2240
static void kvmppc_wait_for_nap(void)
2241
{
2242 2243
	int cpu = smp_processor_id();
	int i, loops;
2244
	int n_threads = threads_per_vcore();
2245

2246 2247
	if (n_threads <= 1)
		return;
2248 2249 2250
	for (loops = 0; loops < 1000000; ++loops) {
		/*
		 * Check if all threads are finished.
2251
		 * We set the vcore pointer when starting a thread
2252
		 * and the thread clears it when finished, so we look
2253
		 * for any threads that still have a non-NULL vcore ptr.
2254
		 */
2255
		for (i = 1; i < n_threads; ++i)
2256
			if (paca[cpu + i].kvm_hstate.kvm_vcore)
2257
				break;
2258
		if (i == n_threads) {
2259 2260
			HMT_medium();
			return;
2261
		}
2262
		HMT_low();
2263 2264
	}
	HMT_medium();
2265
	for (i = 1; i < n_threads; ++i)
2266
		if (paca[cpu + i].kvm_hstate.kvm_vcore)
2267
			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2268 2269 2270 2271
}

/*
 * Check that we are on thread 0 and that any other threads in
2272 2273
 * this core are off-line.  Then grab the threads so they can't
 * enter the kernel.
2274 2275 2276 2277
 */
static int on_primary_thread(void)
{
	int cpu = smp_processor_id();
2278
	int thr;
2279

2280 2281
	/* Are we on a primary subcore? */
	if (cpu_thread_in_subcore(cpu))
2282
		return 0;
2283 2284 2285

	thr = 0;
	while (++thr < threads_per_subcore)
2286 2287
		if (cpu_online(cpu + thr))
			return 0;
2288 2289

	/* Grab all hw threads so they can't go into the kernel */
2290
	for (thr = 1; thr < threads_per_subcore; ++thr) {
2291 2292 2293 2294 2295 2296 2297 2298
		if (kvmppc_grab_hwthread(cpu + thr)) {
			/* Couldn't grab one; let the others go */
			do {
				kvmppc_release_hwthread(cpu + thr);
			} while (--thr > 0);
			return 0;
		}
	}
2299 2300 2301
	return 1;
}

2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
/*
 * A list of virtual cores for each physical CPU.
 * These are vcores that could run but their runner VCPU tasks are
 * (or may be) preempted.
 */
struct preempted_vcore_list {
	struct list_head	list;
	spinlock_t		lock;
};

static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);

static void init_vcore_lists(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
		spin_lock_init(&lp->lock);
		INIT_LIST_HEAD(&lp->list);
	}
}

static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);

	vc->vcore_state = VCORE_PREEMPT;
	vc->pcpu = smp_processor_id();
2331
	if (vc->num_threads < threads_per_vcore()) {
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
		spin_lock(&lp->lock);
		list_add_tail(&vc->preempt_list, &lp->list);
		spin_unlock(&lp->lock);
	}

	/* Start accumulating stolen time */
	kvmppc_core_start_stolen(vc);
}

static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
{
2343
	struct preempted_vcore_list *lp;
2344 2345 2346

	kvmppc_core_end_stolen(vc);
	if (!list_empty(&vc->preempt_list)) {
2347
		lp = &per_cpu(preempted_vcores, vc->pcpu);
2348 2349 2350 2351 2352 2353 2354
		spin_lock(&lp->lock);
		list_del_init(&vc->preempt_list);
		spin_unlock(&lp->lock);
	}
	vc->vcore_state = VCORE_INACTIVE;
}

2355 2356 2357 2358
/*
 * This stores information about the virtual cores currently
 * assigned to a physical core.
 */
2359
struct core_info {
2360 2361
	int		n_subcores;
	int		max_subcore_threads;
2362
	int		total_threads;
2363
	int		subcore_threads[MAX_SUBCORES];
2364
	struct kvmppc_vcore *vc[MAX_SUBCORES];
2365 2366
};

2367 2368 2369 2370 2371 2372
/*
 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
 * respectively in 2-way micro-threading (split-core) mode.
 */
static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };

2373 2374 2375
static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
{
	memset(cip, 0, sizeof(*cip));
2376 2377
	cip->n_subcores = 1;
	cip->max_subcore_threads = vc->num_threads;
2378
	cip->total_threads = vc->num_threads;
2379
	cip->subcore_threads[0] = vc->num_threads;
2380
	cip->vc[0] = vc;
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
}

static bool subcore_config_ok(int n_subcores, int n_threads)
{
	/* Can only dynamically split if unsplit to begin with */
	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
		return false;
	if (n_subcores > MAX_SUBCORES)
		return false;
	if (n_subcores > 1) {
		if (!(dynamic_mt_modes & 2))
			n_subcores = 4;
		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
			return false;
	}

	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2398 2399
}

2400
static void init_vcore_to_run(struct kvmppc_vcore *vc)
2401 2402 2403 2404 2405 2406 2407
{
	vc->entry_exit_map = 0;
	vc->in_guest = 0;
	vc->napping_threads = 0;
	vc->conferring_threads = 0;
}

2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
{
	int n_threads = vc->num_threads;
	int sub;

	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
		return false;

	if (n_threads < cip->max_subcore_threads)
		n_threads = cip->max_subcore_threads;
2418
	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2419
		return false;
2420
	cip->max_subcore_threads = n_threads;
2421 2422 2423 2424 2425

	sub = cip->n_subcores;
	++cip->n_subcores;
	cip->total_threads += vc->num_threads;
	cip->subcore_threads[sub] = vc->num_threads;
2426 2427 2428
	cip->vc[sub] = vc;
	init_vcore_to_run(vc);
	list_del_init(&vc->preempt_list);
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442

	return true;
}

/*
 * Work out whether it is possible to piggyback the execution of
 * vcore *pvc onto the execution of the other vcores described in *cip.
 */
static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
			  int target_threads)
{
	if (cip->total_threads + pvc->num_threads > target_threads)
		return false;

2443
	return can_dynamic_split(pvc, cip);
2444 2445
}

2446 2447
static void prepare_threads(struct kvmppc_vcore *vc)
{
2448 2449
	int i;
	struct kvm_vcpu *vcpu;
2450

2451
	for_each_runnable_thread(i, vcpu, vc) {
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
		if (signal_pending(vcpu->arch.run_task))
			vcpu->arch.ret = -EINTR;
		else if (vcpu->arch.vpa.update_pending ||
			 vcpu->arch.slb_shadow.update_pending ||
			 vcpu->arch.dtl.update_pending)
			vcpu->arch.ret = RESUME_GUEST;
		else
			continue;
		kvmppc_remove_runnable(vc, vcpu);
		wake_up(&vcpu->arch.cpu_run);
	}
}

2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
static void collect_piggybacks(struct core_info *cip, int target_threads)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
	struct kvmppc_vcore *pvc, *vcnext;

	spin_lock(&lp->lock);
	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
		if (!spin_trylock(&pvc->lock))
			continue;
		prepare_threads(pvc);
		if (!pvc->n_runnable) {
			list_del_init(&pvc->preempt_list);
			if (pvc->runner == NULL) {
				pvc->vcore_state = VCORE_INACTIVE;
				kvmppc_core_end_stolen(pvc);
			}
			spin_unlock(&pvc->lock);
			continue;
		}
		if (!can_piggyback(pvc, cip, target_threads)) {
			spin_unlock(&pvc->lock);
			continue;
		}
		kvmppc_core_end_stolen(pvc);
		pvc->vcore_state = VCORE_PIGGYBACK;
		if (cip->total_threads >= target_threads)
			break;
	}
	spin_unlock(&lp->lock);
}

2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
static bool recheck_signals(struct core_info *cip)
{
	int sub, i;
	struct kvm_vcpu *vcpu;

	for (sub = 0; sub < cip->n_subcores; ++sub)
		for_each_runnable_thread(i, vcpu, cip->vc[sub])
			if (signal_pending(vcpu->arch.run_task))
				return true;
	return false;
}

2508
static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2509
{
2510
	int still_running = 0, i;
2511 2512
	u64 now;
	long ret;
2513
	struct kvm_vcpu *vcpu;
2514

2515
	spin_lock(&vc->lock);
2516
	now = get_tb();
2517
	for_each_runnable_thread(i, vcpu, vc) {
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
		/* cancel pending dec exception if dec is positive */
		if (now < vcpu->arch.dec_expires &&
		    kvmppc_core_pending_dec(vcpu))
			kvmppc_core_dequeue_dec(vcpu);

		trace_kvm_guest_exit(vcpu);

		ret = RESUME_GUEST;
		if (vcpu->arch.trap)
			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
						    vcpu->arch.run_task);

		vcpu->arch.ret = ret;
		vcpu->arch.trap = 0;

2533 2534 2535 2536
		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
			if (vcpu->arch.pending_exceptions)
				kvmppc_core_prepare_to_enter(vcpu);
			if (vcpu->arch.ceded)
2537
				kvmppc_set_timer(vcpu);
2538 2539 2540
			else
				++still_running;
		} else {
2541 2542 2543 2544
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
	}
2545
	if (!is_master) {
2546
		if (still_running > 0) {
2547
			kvmppc_vcore_preempt(vc);
2548 2549 2550 2551 2552 2553
		} else if (vc->runner) {
			vc->vcore_state = VCORE_PREEMPT;
			kvmppc_core_start_stolen(vc);
		} else {
			vc->vcore_state = VCORE_INACTIVE;
		}
2554 2555
		if (vc->n_runnable > 0 && vc->runner == NULL) {
			/* make sure there's a candidate runner awake */
2556 2557
			i = -1;
			vcpu = next_runnable_thread(vc, &i);
2558 2559 2560 2561
			wake_up(&vcpu->arch.cpu_run);
		}
	}
	spin_unlock(&vc->lock);
2562 2563
}

2564 2565 2566 2567 2568
/*
 * Clear core from the list of active host cores as we are about to
 * enter the guest. Only do this if it is the primary thread of the
 * core (not if a subcore) that is entering the guest.
 */
2569
static inline int kvmppc_clear_host_core(unsigned int cpu)
2570 2571 2572 2573
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2574
		return 0;
2575 2576 2577 2578 2579 2580 2581
	/*
	 * Memory barrier can be omitted here as we will do a smp_wmb()
	 * later in kvmppc_start_thread and we need ensure that state is
	 * visible to other CPUs only after we enter guest.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2582
	return 0;
2583 2584 2585 2586 2587 2588 2589
}

/*
 * Advertise this core as an active host core since we exited the guest
 * Only need to do this if it is the primary thread of the core that is
 * exiting.
 */
2590
static inline int kvmppc_set_host_core(unsigned int cpu)
2591 2592 2593 2594
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2595
		return 0;
2596 2597 2598 2599 2600 2601 2602

	/*
	 * Memory barrier can be omitted here because we do a spin_unlock
	 * immediately after this which provides the memory barrier.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2603
	return 0;
2604 2605
}

2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
static void set_irq_happened(int trap)
{
	switch (trap) {
	case BOOK3S_INTERRUPT_EXTERNAL:
		local_paca->irq_happened |= PACA_IRQ_EE;
		break;
	case BOOK3S_INTERRUPT_H_DOORBELL:
		local_paca->irq_happened |= PACA_IRQ_DBELL;
		break;
	case BOOK3S_INTERRUPT_HMI:
		local_paca->irq_happened |= PACA_IRQ_HMI;
		break;
	}
}

2621 2622 2623 2624
/*
 * Run a set of guest threads on a physical core.
 * Called with vc->lock held.
 */
2625
static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2626
{
2627
	struct kvm_vcpu *vcpu;
2628
	int i;
2629
	int srcu_idx;
2630
	struct core_info core_info;
2631
	struct kvmppc_vcore *pvc;
2632 2633 2634 2635 2636
	struct kvm_split_mode split_info, *sip;
	int split, subcore_size, active;
	int sub;
	bool thr0_done;
	unsigned long cmd_bit, stat_bit;
2637 2638
	int pcpu, thr;
	int target_threads;
2639
	int controlled_threads;
2640
	int trap;
2641

2642 2643 2644 2645 2646 2647 2648 2649 2650
	/*
	 * Remove from the list any threads that have a signal pending
	 * or need a VPA update done
	 */
	prepare_threads(vc);

	/* if the runner is no longer runnable, let the caller pick a new one */
	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
2651 2652

	/*
2653
	 * Initialize *vc.
2654
	 */
2655
	init_vcore_to_run(vc);
2656
	vc->preempt_tb = TB_NIL;
2657

2658 2659 2660 2661 2662 2663 2664
	/*
	 * Number of threads that we will be controlling: the same as
	 * the number of threads per subcore, except on POWER9,
	 * where it's 1 because the threads are (mostly) independent.
	 */
	controlled_threads = threads_per_vcore();

2665
	/*
2666 2667 2668
	 * Make sure we are running on primary threads, and that secondary
	 * threads are offline.  Also check if the number of threads in this
	 * guest are greater than the current system threads per guest.
2669
	 */
2670
	if ((controlled_threads > 1) &&
2671
	    ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
2672
		for_each_runnable_thread(i, vcpu, vc) {
2673
			vcpu->arch.ret = -EBUSY;
2674 2675 2676
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
2677 2678 2679
		goto out;
	}

2680 2681 2682 2683 2684 2685
	/*
	 * See if we could run any other vcores on the physical core
	 * along with this one.
	 */
	init_core_info(&core_info, vc);
	pcpu = smp_processor_id();
2686
	target_threads = controlled_threads;
2687 2688 2689 2690
	if (target_smt_mode && target_smt_mode < target_threads)
		target_threads = target_smt_mode;
	if (vc->num_threads < target_threads)
		collect_piggybacks(&core_info, target_threads);
2691

2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
	/*
	 * On radix, arrange for TLB flushing if necessary.
	 * This has to be done before disabling interrupts since
	 * it uses smp_call_function().
	 */
	pcpu = smp_processor_id();
	if (kvm_is_radix(vc->kvm)) {
		for (sub = 0; sub < core_info.n_subcores; ++sub)
			for_each_runnable_thread(i, vcpu, core_info.vc[sub])
				kvmppc_prepare_radix_vcpu(vcpu, pcpu);
	}

	/*
	 * Hard-disable interrupts, and check resched flag and signals.
	 * If we need to reschedule or deliver a signal, clean up
	 * and return without going into the guest(s).
	 */
	local_irq_disable();
	hard_irq_disable();
	if (lazy_irq_pending() || need_resched() ||
	    recheck_signals(&core_info)) {
		local_irq_enable();
		vc->vcore_state = VCORE_INACTIVE;
		/* Unlock all except the primary vcore */
		for (sub = 1; sub < core_info.n_subcores; ++sub) {
			pvc = core_info.vc[sub];
			/* Put back on to the preempted vcores list */
			kvmppc_vcore_preempt(pvc);
			spin_unlock(&pvc->lock);
		}
		for (i = 0; i < controlled_threads; ++i)
			kvmppc_release_hwthread(pcpu + i);
		return;
	}

	kvmppc_clear_host_core(pcpu);

2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
	/* Decide on micro-threading (split-core) mode */
	subcore_size = threads_per_subcore;
	cmd_bit = stat_bit = 0;
	split = core_info.n_subcores;
	sip = NULL;
	if (split > 1) {
		/* threads_per_subcore must be MAX_SMT_THREADS (8) here */
		if (split == 2 && (dynamic_mt_modes & 2)) {
			cmd_bit = HID0_POWER8_1TO2LPAR;
			stat_bit = HID0_POWER8_2LPARMODE;
		} else {
			split = 4;
			cmd_bit = HID0_POWER8_1TO4LPAR;
			stat_bit = HID0_POWER8_4LPARMODE;
		}
		subcore_size = MAX_SMT_THREADS / split;
		sip = &split_info;
		memset(&split_info, 0, sizeof(split_info));
		split_info.rpr = mfspr(SPRN_RPR);
		split_info.pmmar = mfspr(SPRN_PMMAR);
		split_info.ldbar = mfspr(SPRN_LDBAR);
		split_info.subcore_size = subcore_size;
		for (sub = 0; sub < core_info.n_subcores; ++sub)
2752
			split_info.vc[sub] = core_info.vc[sub];
2753 2754 2755
		/* order writes to split_info before kvm_split_mode pointer */
		smp_wmb();
	}
2756
	for (thr = 0; thr < controlled_threads; ++thr)
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
		paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;

	/* Initiate micro-threading (split-core) if required */
	if (cmd_bit) {
		unsigned long hid0 = mfspr(SPRN_HID0);

		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (hid0 & stat_bit)
				break;
			cpu_relax();
2772
		}
2773
	}
2774

2775 2776 2777 2778 2779 2780
	/* Start all the threads */
	active = 0;
	for (sub = 0; sub < core_info.n_subcores; ++sub) {
		thr = subcore_thread_map[sub];
		thr0_done = false;
		active |= 1 << thr;
2781 2782 2783 2784 2785 2786 2787 2788 2789
		pvc = core_info.vc[sub];
		pvc->pcpu = pcpu + thr;
		for_each_runnable_thread(i, vcpu, pvc) {
			kvmppc_start_thread(vcpu, pvc);
			kvmppc_create_dtl_entry(vcpu, pvc);
			trace_kvm_guest_enter(vcpu);
			if (!vcpu->arch.ptid)
				thr0_done = true;
			active |= 1 << (thr + vcpu->arch.ptid);
2790
		}
2791 2792 2793 2794 2795 2796 2797
		/*
		 * We need to start the first thread of each subcore
		 * even if it doesn't have a vcpu.
		 */
		if (!thr0_done)
			kvmppc_start_thread(NULL, pvc);
		thr += pvc->num_threads;
2798
	}
2799

2800 2801 2802 2803 2804 2805 2806 2807
	/*
	 * Ensure that split_info.do_nap is set after setting
	 * the vcore pointer in the PACA of the secondaries.
	 */
	smp_mb();
	if (cmd_bit)
		split_info.do_nap = 1;	/* ask secondaries to nap when done */

2808 2809 2810 2811 2812 2813 2814 2815 2816
	/*
	 * When doing micro-threading, poke the inactive threads as well.
	 * This gets them to the nap instruction after kvm_do_nap,
	 * which reduces the time taken to unsplit later.
	 */
	if (split > 1)
		for (thr = 1; thr < threads_per_subcore; ++thr)
			if (!(active & (1 << thr)))
				kvmppc_ipi_thread(pcpu + thr);
2817

2818
	vc->vcore_state = VCORE_RUNNING;
2819
	preempt_disable();
2820 2821 2822

	trace_kvmppc_run_core(vc, 0);

2823
	for (sub = 0; sub < core_info.n_subcores; ++sub)
2824
		spin_unlock(&core_info.vc[sub]->lock);
2825

2826 2827 2828 2829 2830
	/*
	 * Interrupts will be enabled once we get into the guest,
	 * so tell lockdep that we're about to enable interrupts.
	 */
	trace_hardirqs_on();
2831

2832
	guest_enter();
2833

2834
	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2835

2836
	trap = __kvmppc_vcore_entry();
2837

2838 2839
	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);

2840 2841 2842 2843 2844
	guest_exit();

	trace_hardirqs_off();
	set_irq_happened(trap);

2845
	spin_lock(&vc->lock);
2846
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
2847
	vc->vcore_state = VCORE_EXITING;
2848

2849
	/* wait for secondary threads to finish writing their state to memory */
2850
	kvmppc_wait_for_nap();
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871

	/* Return to whole-core mode if we split the core earlier */
	if (split > 1) {
		unsigned long hid0 = mfspr(SPRN_HID0);
		unsigned long loops = 0;

		hid0 &= ~HID0_POWER8_DYNLPARDIS;
		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (!(hid0 & stat_bit))
				break;
			cpu_relax();
			++loops;
		}
		split_info.do_nap = 0;
	}

2872 2873 2874 2875
	kvmppc_set_host_core(pcpu);

	local_irq_enable();

2876
	/* Let secondaries go back to the offline loop */
2877
	for (i = 0; i < controlled_threads; ++i) {
2878 2879 2880
		kvmppc_release_hwthread(pcpu + i);
		if (sip && sip->napped[i])
			kvmppc_ipi_thread(pcpu + i);
2881
		cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
2882 2883
	}

2884
	spin_unlock(&vc->lock);
2885

2886 2887
	/* make sure updates to secondary vcpu structs are visible now */
	smp_mb();
2888

2889 2890 2891 2892
	for (sub = 0; sub < core_info.n_subcores; ++sub) {
		pvc = core_info.vc[sub];
		post_guest_process(pvc, pvc == vc);
	}
2893

2894
	spin_lock(&vc->lock);
2895
	preempt_enable();
2896 2897

 out:
2898
	vc->vcore_state = VCORE_INACTIVE;
2899
	trace_kvmppc_run_core(vc, 1);
2900 2901
}

2902 2903 2904 2905
/*
 * Wait for some other vcpu thread to execute us, and
 * wake us up when we need to handle something in the host.
 */
2906 2907
static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
				 struct kvm_vcpu *vcpu, int wait_state)
2908 2909 2910
{
	DEFINE_WAIT(wait);

2911
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2912 2913
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		spin_unlock(&vc->lock);
2914
		schedule();
2915 2916
		spin_lock(&vc->lock);
	}
2917 2918 2919
	finish_wait(&vcpu->arch.cpu_run, &wait);
}

2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
{
	/* 10us base */
	if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
		vc->halt_poll_ns = 10000;
	else
		vc->halt_poll_ns *= halt_poll_ns_grow;
}

static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
{
	if (halt_poll_ns_shrink == 0)
		vc->halt_poll_ns = 0;
	else
		vc->halt_poll_ns /= halt_poll_ns_shrink;
}

2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
#ifdef CONFIG_KVM_XICS
static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
{
	if (!xive_enabled())
		return false;
	return vcpu->arch.xive_saved_state.pipr <
		vcpu->arch.xive_saved_state.cppr;
}
#else
static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
{
	return false;
}
#endif /* CONFIG_KVM_XICS */

2952 2953 2954
static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
2955
	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
2956 2957 2958 2959 2960
		return true;

	return false;
}

2961 2962
/*
 * Check to see if any of the runnable vcpus on the vcore have pending
2963 2964 2965 2966 2967 2968 2969 2970
 * exceptions or are no longer ceded
 */
static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
{
	struct kvm_vcpu *vcpu;
	int i;

	for_each_runnable_thread(i, vcpu, vc) {
2971
		if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
2972 2973 2974 2975 2976 2977
			return 1;
	}

	return 0;
}

2978 2979 2980 2981 2982 2983
/*
 * All the vcpus in this vcore are idle, so wait for a decrementer
 * or external interrupt to one of the vcpus.  vc->lock is held.
 */
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
2984
	ktime_t cur, start_poll, start_wait;
2985 2986
	int do_sleep = 1;
	u64 block_ns;
2987
	DECLARE_SWAITQUEUE(wait);
2988

2989
	/* Poll for pending exceptions and ceded state */
2990
	cur = start_poll = ktime_get();
2991
	if (vc->halt_poll_ns) {
2992 2993
		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
		++vc->runner->stat.halt_attempted_poll;
2994

2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
		vc->vcore_state = VCORE_POLLING;
		spin_unlock(&vc->lock);

		do {
			if (kvmppc_vcore_check_block(vc)) {
				do_sleep = 0;
				break;
			}
			cur = ktime_get();
		} while (single_task_running() && ktime_before(cur, stop));

		spin_lock(&vc->lock);
		vc->vcore_state = VCORE_INACTIVE;

3009 3010
		if (!do_sleep) {
			++vc->runner->stat.halt_successful_poll;
3011
			goto out;
3012
		}
3013 3014
	}

3015 3016 3017
	prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);

	if (kvmppc_vcore_check_block(vc)) {
3018
		finish_swait(&vc->wq, &wait);
3019
		do_sleep = 0;
3020 3021 3022
		/* If we polled, count this as a successful poll */
		if (vc->halt_poll_ns)
			++vc->runner->stat.halt_successful_poll;
3023
		goto out;
3024 3025
	}

3026 3027
	start_wait = ktime_get();

3028
	vc->vcore_state = VCORE_SLEEPING;
3029
	trace_kvmppc_vcore_blocked(vc, 0);
3030
	spin_unlock(&vc->lock);
3031
	schedule();
3032
	finish_swait(&vc->wq, &wait);
3033 3034
	spin_lock(&vc->lock);
	vc->vcore_state = VCORE_INACTIVE;
3035
	trace_kvmppc_vcore_blocked(vc, 1);
3036
	++vc->runner->stat.halt_successful_wait;
3037 3038 3039 3040

	cur = ktime_get();

out:
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);

	/* Attribute wait time */
	if (do_sleep) {
		vc->runner->stat.halt_wait_ns +=
			ktime_to_ns(cur) - ktime_to_ns(start_wait);
		/* Attribute failed poll time */
		if (vc->halt_poll_ns)
			vc->runner->stat.halt_poll_fail_ns +=
				ktime_to_ns(start_wait) -
				ktime_to_ns(start_poll);
	} else {
		/* Attribute successful poll time */
		if (vc->halt_poll_ns)
			vc->runner->stat.halt_poll_success_ns +=
				ktime_to_ns(cur) -
				ktime_to_ns(start_poll);
	}
3059 3060

	/* Adjust poll time */
3061
	if (halt_poll_ns) {
3062 3063 3064
		if (block_ns <= vc->halt_poll_ns)
			;
		/* We slept and blocked for longer than the max halt time */
3065
		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3066 3067
			shrink_halt_poll_ns(vc);
		/* We slept and our poll time is too small */
3068 3069
		else if (vc->halt_poll_ns < halt_poll_ns &&
				block_ns < halt_poll_ns)
3070
			grow_halt_poll_ns(vc);
3071 3072
		if (vc->halt_poll_ns > halt_poll_ns)
			vc->halt_poll_ns = halt_poll_ns;
3073 3074 3075 3076
	} else
		vc->halt_poll_ns = 0;

	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3077
}
3078

3079 3080
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
3081
	int n_ceded, i;
3082
	struct kvmppc_vcore *vc;
3083
	struct kvm_vcpu *v;
3084

3085 3086
	trace_kvmppc_run_vcpu_enter(vcpu);

3087 3088 3089
	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;
3090
	kvmppc_update_vpas(vcpu);
3091 3092 3093 3094 3095 3096

	/*
	 * Synchronize with other threads in this virtual core
	 */
	vc = vcpu->arch.vcore;
	spin_lock(&vc->lock);
3097
	vcpu->arch.ceded = 0;
3098 3099
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
3100
	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3101
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3102
	vcpu->arch.busy_preempt = TB_NIL;
3103
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3104 3105
	++vc->n_runnable;

3106 3107 3108 3109 3110
	/*
	 * This happens the first time this is called for a vcpu.
	 * If the vcore is already running, we may be able to start
	 * this thread straight away and have it join in.
	 */
3111
	if (!signal_pending(current)) {
3112
		if (vc->vcore_state == VCORE_PIGGYBACK) {
3113 3114 3115
			if (spin_trylock(&vc->lock)) {
				if (vc->vcore_state == VCORE_RUNNING &&
				    !VCORE_IS_EXITING(vc)) {
3116
					kvmppc_create_dtl_entry(vcpu, vc);
3117
					kvmppc_start_thread(vcpu, vc);
3118 3119
					trace_kvm_guest_enter(vcpu);
				}
3120
				spin_unlock(&vc->lock);
3121 3122 3123
			}
		} else if (vc->vcore_state == VCORE_RUNNING &&
			   !VCORE_IS_EXITING(vc)) {
3124
			kvmppc_create_dtl_entry(vcpu, vc);
3125
			kvmppc_start_thread(vcpu, vc);
3126
			trace_kvm_guest_enter(vcpu);
3127
		} else if (vc->vcore_state == VCORE_SLEEPING) {
3128
			swake_up(&vc->wq);
3129 3130
		}

3131
	}
3132

3133 3134
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       !signal_pending(current)) {
3135 3136 3137
		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
			kvmppc_vcore_end_preempt(vc);

3138
		if (vc->vcore_state != VCORE_INACTIVE) {
3139
			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3140 3141
			continue;
		}
3142
		for_each_runnable_thread(i, v, vc) {
3143
			kvmppc_core_prepare_to_enter(v);
3144 3145 3146 3147 3148 3149 3150 3151
			if (signal_pending(v->arch.run_task)) {
				kvmppc_remove_runnable(vc, v);
				v->stat.signal_exits++;
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
				v->arch.ret = -EINTR;
				wake_up(&v->arch.cpu_run);
			}
		}
3152 3153 3154
		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
			break;
		n_ceded = 0;
3155
		for_each_runnable_thread(i, v, vc) {
3156
			if (!kvmppc_vcpu_woken(v))
3157
				n_ceded += v->arch.ceded;
3158 3159 3160
			else
				v->arch.ceded = 0;
		}
3161 3162
		vc->runner = vcpu;
		if (n_ceded == vc->n_runnable) {
3163
			kvmppc_vcore_blocked(vc);
3164
		} else if (need_resched()) {
3165
			kvmppc_vcore_preempt(vc);
3166 3167
			/* Let something else run */
			cond_resched_lock(&vc->lock);
3168 3169
			if (vc->vcore_state == VCORE_PREEMPT)
				kvmppc_vcore_end_preempt(vc);
3170
		} else {
3171
			kvmppc_run_core(vc);
3172
		}
3173
		vc->runner = NULL;
3174
	}
3175

3176 3177
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       (vc->vcore_state == VCORE_RUNNING ||
3178 3179
		vc->vcore_state == VCORE_EXITING ||
		vc->vcore_state == VCORE_PIGGYBACK))
3180
		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3181

3182 3183 3184
	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
		kvmppc_vcore_end_preempt(vc);

3185 3186 3187 3188 3189 3190 3191 3192 3193
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		kvmppc_remove_runnable(vc, vcpu);
		vcpu->stat.signal_exits++;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		vcpu->arch.ret = -EINTR;
	}

	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
		/* Wake up some vcpu to run the core */
3194 3195
		i = -1;
		v = next_runnable_thread(vc, &i);
3196
		wake_up(&v->arch.cpu_run);
3197 3198
	}

3199
	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3200 3201
	spin_unlock(&vc->lock);
	return vcpu->arch.ret;
3202 3203
}

3204
static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3205 3206
{
	int r;
3207
	int srcu_idx;
3208
	unsigned long ebb_regs[3] = {};	/* shut up GCC */
3209 3210
	unsigned long user_tar = 0;
	unsigned int user_vrsave;
3211

3212 3213 3214 3215 3216
	if (!vcpu->arch.sane) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
	/*
	 * Don't allow entry with a suspended transaction, because
	 * the guest entry/exit code will lose it.
	 * If the guest has TM enabled, save away their TM-related SPRs
	 * (they will get restored by the TM unavailable interrupt).
	 */
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
	    (current->thread.regs->msr & MSR_TM)) {
		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
			run->fail_entry.hardware_entry_failure_reason = 0;
			return -EINVAL;
		}
3231 3232
		/* Enable TM so we can read the TM SPRs */
		mtmsr(mfmsr() | MSR_TM);
3233 3234 3235 3236 3237 3238 3239
		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
		current->thread.regs->msr &= ~MSR_TM;
	}
#endif

3240 3241
	kvmppc_core_prepare_to_enter(vcpu);

3242 3243 3244 3245 3246 3247
	/* No need to go into the guest when all we'll do is come back out */
	if (signal_pending(current)) {
		run->exit_reason = KVM_EXIT_INTR;
		return -EINTR;
	}

3248
	atomic_inc(&vcpu->kvm->arch.vcpus_running);
3249
	/* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
3250 3251
	smp_mb();

3252
	/* On the first time here, set up HTAB and VRMA */
3253
	if (!kvm_is_radix(vcpu->kvm) && !vcpu->kvm->arch.hpte_setup_done) {
3254
		r = kvmppc_hv_setup_htab_rma(vcpu);
3255
		if (r)
3256
			goto out;
3257
	}
3258

3259 3260
	flush_all_to_thread(current);

3261
	/* Save userspace EBB and other register values */
3262 3263 3264 3265
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		ebb_regs[0] = mfspr(SPRN_EBBHR);
		ebb_regs[1] = mfspr(SPRN_EBBRR);
		ebb_regs[2] = mfspr(SPRN_BESCR);
3266
		user_tar = mfspr(SPRN_TAR);
3267
	}
3268
	user_vrsave = mfspr(SPRN_VRSAVE);
3269

3270
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3271
	vcpu->arch.pgdir = current->mm->pgd;
3272
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3273

3274 3275 3276 3277 3278
	do {
		r = kvmppc_run_vcpu(run, vcpu);

		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
3279
			trace_kvm_hcall_enter(vcpu);
3280
			r = kvmppc_pseries_do_hcall(vcpu);
3281
			trace_kvm_hcall_exit(vcpu, r);
3282
			kvmppc_core_prepare_to_enter(vcpu);
3283 3284 3285 3286 3287
		} else if (r == RESUME_PAGE_FAULT) {
			srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
			r = kvmppc_book3s_hv_page_fault(run, vcpu,
				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
			srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
3288 3289 3290 3291 3292 3293
		} else if (r == RESUME_PASSTHROUGH) {
			if (WARN_ON(xive_enabled()))
				r = H_SUCCESS;
			else
				r = kvmppc_xics_rm_complete(vcpu, 0);
		}
3294
	} while (is_kvmppc_resume_guest(r));
3295

3296
	/* Restore userspace EBB and other register values */
3297 3298 3299 3300
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		mtspr(SPRN_EBBHR, ebb_regs[0]);
		mtspr(SPRN_EBBRR, ebb_regs[1]);
		mtspr(SPRN_BESCR, ebb_regs[2]);
3301 3302
		mtspr(SPRN_TAR, user_tar);
		mtspr(SPRN_FSCR, current->thread.fscr);
3303
	}
3304
	mtspr(SPRN_VRSAVE, user_vrsave);
3305

3306
 out:
3307
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3308
	atomic_dec(&vcpu->kvm->arch.vcpus_running);
3309 3310 3311
	return r;
}

3312 3313 3314 3315 3316 3317 3318 3319 3320 3321
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
				     int linux_psize)
{
	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];

	if (!def->shift)
		return;
	(*sps)->page_shift = def->shift;
	(*sps)->slb_enc = def->sllp;
	(*sps)->enc[0].page_shift = def->shift;
3322
	(*sps)->enc[0].pte_enc = def->penc[linux_psize];
3323 3324 3325 3326 3327 3328 3329
	/*
	 * Add 16MB MPSS support if host supports it
	 */
	if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
		(*sps)->enc[1].page_shift = 24;
		(*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
	}
3330 3331 3332
	(*sps)++;
}

3333 3334
static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
3335 3336 3337
{
	struct kvm_ppc_one_seg_page_size *sps;

3338 3339 3340 3341 3342 3343 3344
	/*
	 * Since we don't yet support HPT guests on a radix host,
	 * return an error if the host uses radix.
	 */
	if (radix_enabled())
		return -EINVAL;

3345 3346 3347 3348 3349 3350 3351 3352
	/*
	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
	 * POWER7 doesn't support keys for instruction accesses,
	 * POWER8 and POWER9 do.
	 */
	info->data_keys = 32;
	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;

3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
	info->flags = KVM_PPC_PAGE_SIZES_REAL;
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		info->flags |= KVM_PPC_1T_SEGMENTS;
	info->slb_size = mmu_slb_size;

	/* We only support these sizes for now, and no muti-size segments */
	sps = &info->sps[0];
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);

	return 0;
}

3367 3368 3369
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
3370 3371
static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
					 struct kvm_dirty_log *log)
3372
{
3373
	struct kvm_memslots *slots;
3374
	struct kvm_memory_slot *memslot;
3375
	int i, r;
3376
	unsigned long n;
3377 3378
	unsigned long *buf;
	struct kvm_vcpu *vcpu;
3379 3380 3381 3382

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
3383
	if (log->slot >= KVM_USER_MEM_SLOTS)
3384 3385
		goto out;

3386 3387
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
3388 3389 3390 3391
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

3392 3393 3394 3395
	/*
	 * Use second half of bitmap area because radix accumulates
	 * bits in the first half.
	 */
3396
	n = kvm_dirty_bitmap_bytes(memslot);
3397 3398
	buf = memslot->dirty_bitmap + n / sizeof(long);
	memset(buf, 0, n);
3399

3400 3401 3402 3403
	if (kvm_is_radix(kvm))
		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
	else
		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
3404 3405 3406
	if (r)
		goto out;

3407 3408 3409 3410 3411 3412 3413 3414 3415
	/* Harvest dirty bits from VPA and DTL updates */
	/* Note: we never modify the SLB shadow buffer areas */
	kvm_for_each_vcpu(i, vcpu, kvm) {
		spin_lock(&vcpu->arch.vpa_update_lock);
		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
		spin_unlock(&vcpu->arch.vpa_update_lock);
	}

3416
	r = -EFAULT;
3417
	if (copy_to_user(log->dirty_bitmap, buf, n))
3418 3419 3420 3421 3422 3423 3424 3425
		goto out;

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

3426 3427
static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
3428 3429 3430 3431
{
	if (!dont || free->arch.rmap != dont->arch.rmap) {
		vfree(free->arch.rmap);
		free->arch.rmap = NULL;
3432
	}
3433 3434
}

3435 3436
static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
					 unsigned long npages)
3437
{
3438 3439 3440 3441 3442 3443 3444 3445 3446
	/*
	 * For now, if radix_enabled() then we only support radix guests,
	 * and in that case we don't need the rmap array.
	 */
	if (radix_enabled()) {
		slot->arch.rmap = NULL;
		return 0;
	}

3447 3448 3449
	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
	if (!slot->arch.rmap)
		return -ENOMEM;
3450

3451 3452
	return 0;
}
3453

3454 3455
static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
3456
					const struct kvm_userspace_memory_region *mem)
3457
{
3458
	return 0;
3459 3460
}

3461
static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3462
				const struct kvm_userspace_memory_region *mem,
3463 3464
				const struct kvm_memory_slot *old,
				const struct kvm_memory_slot *new)
3465
{
3466
	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3467
	struct kvm_memslots *slots;
3468 3469
	struct kvm_memory_slot *memslot;

3470 3471 3472 3473 3474 3475 3476 3477 3478
	/*
	 * If we are making a new memslot, it might make
	 * some address that was previously cached as emulated
	 * MMIO be no longer emulated MMIO, so invalidate
	 * all the caches of emulated MMIO translations.
	 */
	if (npages)
		atomic64_inc(&kvm->arch.mmio_update);

3479
	if (npages && old->npages && !kvm_is_radix(kvm)) {
3480 3481 3482 3483 3484 3485
		/*
		 * If modifying a memslot, reset all the rmap dirty bits.
		 * If this is a new memslot, we don't need to do anything
		 * since the rmap array starts out as all zeroes,
		 * i.e. no pages are dirty.
		 */
3486 3487
		slots = kvm_memslots(kvm);
		memslot = id_to_memslot(slots, mem->slot);
3488
		kvmppc_hv_get_dirty_log_hpt(kvm, memslot, NULL);
3489
	}
3490 3491
}

3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
/*
 * Update LPCR values in kvm->arch and in vcores.
 * Caller must hold kvm->lock.
 */
void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
{
	long int i;
	u32 cores_done = 0;

	if ((kvm->arch.lpcr & mask) == lpcr)
		return;

	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;

	for (i = 0; i < KVM_MAX_VCORES; ++i) {
		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
		if (!vc)
			continue;
		spin_lock(&vc->lock);
		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
		spin_unlock(&vc->lock);
		if (++cores_done >= kvm->arch.online_vcores)
			break;
	}
}

3518 3519 3520 3521 3522
static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
{
	return;
}

3523 3524 3525 3526
static void kvmppc_setup_partition_table(struct kvm *kvm)
{
	unsigned long dw0, dw1;

3527 3528 3529 3530 3531 3532
	if (!kvm_is_radix(kvm)) {
		/* PS field - page size for VRMA */
		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
		/* HTABSIZE and HTABORG fields */
		dw0 |= kvm->arch.sdr1;
3533

3534 3535 3536 3537 3538 3539 3540
		/* Second dword as set by userspace */
		dw1 = kvm->arch.process_table;
	} else {
		dw0 = PATB_HR | radix__get_tree_size() |
			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
		dw1 = PATB_GR | kvm->arch.process_table;
	}
3541 3542 3543 3544

	mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
}

3545
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3546 3547 3548 3549 3550 3551
{
	int err = 0;
	struct kvm *kvm = vcpu->kvm;
	unsigned long hva;
	struct kvm_memory_slot *memslot;
	struct vm_area_struct *vma;
3552
	unsigned long lpcr = 0, senc;
3553
	unsigned long psize, porder;
3554
	int srcu_idx;
3555 3556

	mutex_lock(&kvm->lock);
3557
	if (kvm->arch.hpte_setup_done)
3558
		goto out;	/* another vcpu beat us to it */
3559

3560
	/* Allocate hashed page table (if not done already) and reset it */
3561
	if (!kvm->arch.hpt.virt) {
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
		int order = KVM_DEFAULT_HPT_ORDER;
		struct kvm_hpt_info info;

		err = kvmppc_allocate_hpt(&info, order);
		/* If we get here, it means userspace didn't specify a
		 * size explicitly.  So, try successively smaller
		 * sizes if the default failed. */
		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
			err  = kvmppc_allocate_hpt(&info, order);

		if (err < 0) {
3573 3574 3575
			pr_err("KVM: Couldn't alloc HPT\n");
			goto out;
		}
3576 3577

		kvmppc_set_hpt(kvm, &info);
3578 3579
	}

3580
	/* Look up the memslot for guest physical address 0 */
3581
	srcu_idx = srcu_read_lock(&kvm->srcu);
3582
	memslot = gfn_to_memslot(kvm, 0);
3583

3584 3585 3586
	/* We must have some memory at 0 by now */
	err = -EINVAL;
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3587
		goto out_srcu;
3588 3589 3590 3591 3592 3593 3594 3595 3596

	/* Look up the VMA for the start of this memory slot */
	hva = memslot->userspace_addr;
	down_read(&current->mm->mmap_sem);
	vma = find_vma(current->mm, hva);
	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
		goto up_out;

	psize = vma_kernel_pagesize(vma);
3597
	porder = __ilog2(psize);
3598 3599 3600

	up_read(&current->mm->mmap_sem);

3601 3602 3603 3604 3605
	/* We can handle 4k, 64k or 16M pages in the VRMA */
	err = -EINVAL;
	if (!(psize == 0x1000 || psize == 0x10000 ||
	      psize == 0x1000000))
		goto out_srcu;
3606

3607 3608 3609 3610 3611
	senc = slb_pgsize_encoding(psize);
	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* Create HPTEs in the hash page table for the VRMA */
	kvmppc_map_vrma(vcpu, memslot, porder);
3612

3613 3614 3615 3616 3617 3618 3619 3620
	/* Update VRMASD field in the LPCR */
	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
		/* the -4 is to account for senc values starting at 0x10 */
		lpcr = senc << (LPCR_VRMASD_SH - 4);
		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
	} else {
		kvmppc_setup_partition_table(kvm);
	}
3621

3622
	/* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
3623
	smp_wmb();
3624
	kvm->arch.hpte_setup_done = 1;
3625
	err = 0;
3626 3627
 out_srcu:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
3628 3629 3630
 out:
	mutex_unlock(&kvm->lock);
	return err;
3631

3632 3633
 up_out:
	up_read(&current->mm->mmap_sem);
3634
	goto out_srcu;
3635 3636
}

3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
#ifdef CONFIG_KVM_XICS
/*
 * Allocate a per-core structure for managing state about which cores are
 * running in the host versus the guest and for exchanging data between
 * real mode KVM and CPU running in the host.
 * This is only done for the first VM.
 * The allocated structure stays even if all VMs have stopped.
 * It is only freed when the kvm-hv module is unloaded.
 * It's OK for this routine to fail, we just don't support host
 * core operations like redirecting H_IPI wakeups.
 */
void kvmppc_alloc_host_rm_ops(void)
{
	struct kvmppc_host_rm_ops *ops;
	unsigned long l_ops;
	int cpu, core;
	int size;

	/* Not the first time here ? */
	if (kvmppc_host_rm_ops_hv != NULL)
		return;

	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
	if (!ops)
		return;

	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
	ops->rm_core = kzalloc(size, GFP_KERNEL);

	if (!ops->rm_core) {
		kfree(ops);
		return;
	}

3671
	cpus_read_lock();
3672

3673 3674 3675 3676 3677 3678 3679 3680
	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
		if (!cpu_online(cpu))
			continue;

		core = cpu >> threads_shift;
		ops->rm_core[core].rm_state.in_host = 1;
	}

3681 3682
	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;

3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
	/*
	 * Make the contents of the kvmppc_host_rm_ops structure visible
	 * to other CPUs before we assign it to the global variable.
	 * Do an atomic assignment (no locks used here), but if someone
	 * beats us to it, just free our copy and return.
	 */
	smp_wmb();
	l_ops = (unsigned long) ops;

	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3693
		cpus_read_unlock();
3694 3695
		kfree(ops->rm_core);
		kfree(ops);
3696
		return;
3697
	}
3698

3699 3700 3701 3702 3703
	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
					     "ppc/kvm_book3s:prepare",
					     kvmppc_set_host_core,
					     kvmppc_clear_host_core);
	cpus_read_unlock();
3704 3705 3706 3707 3708
}

void kvmppc_free_host_rm_ops(void)
{
	if (kvmppc_host_rm_ops_hv) {
3709
		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3710 3711 3712 3713 3714 3715 3716
		kfree(kvmppc_host_rm_ops_hv->rm_core);
		kfree(kvmppc_host_rm_ops_hv);
		kvmppc_host_rm_ops_hv = NULL;
	}
}
#endif

3717
static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3718
{
3719
	unsigned long lpcr, lpid;
3720
	char buf[32];
3721
	int ret;
3722

3723 3724 3725
	/* Allocate the guest's logical partition ID */

	lpid = kvmppc_alloc_lpid();
3726
	if ((long)lpid < 0)
3727 3728
		return -ENOMEM;
	kvm->arch.lpid = lpid;
3729

3730 3731
	kvmppc_alloc_host_rm_ops();

3732 3733 3734 3735
	/*
	 * Since we don't flush the TLB when tearing down a VM,
	 * and this lpid might have previously been used,
	 * make sure we flush on each core before running the new VM.
3736 3737
	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
	 * does this flush for us.
3738
	 */
3739 3740
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		cpumask_setall(&kvm->arch.need_tlb_flush);
3741

3742 3743 3744 3745
	/* Start out with the default set of hcalls enabled */
	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
	       sizeof(kvm->arch.enabled_hcalls));

3746 3747
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3748

3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
	/* Init LPCR for virtual RMA mode */
	kvm->arch.host_lpid = mfspr(SPRN_LPID);
	kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
	lpcr &= LPCR_PECE | LPCR_LPES;
	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
		LPCR_VPM0 | LPCR_VPM1;
	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* On POWER8 turn on online bit to enable PURR/SPURR */
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		lpcr |= LPCR_ONL;
3760 3761 3762
	/*
	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
	 * Set HVICE bit to enable hypervisor virtualization interrupts.
3763 3764 3765
	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
	 * be unnecessary but better safe than sorry in case we re-enable
	 * EE in HV mode with this LPCR still set)
3766 3767
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3768
		lpcr &= ~LPCR_VPM0;
3769 3770 3771 3772 3773 3774 3775 3776
		lpcr |= LPCR_HVICE | LPCR_HEIC;

		/*
		 * If xive is enabled, we route 0x500 interrupts directly
		 * to the guest.
		 */
		if (xive_enabled())
			lpcr |= LPCR_LPES;
3777 3778
	}

3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
	/*
	 * For now, if the host uses radix, the guest must be radix.
	 */
	if (radix_enabled()) {
		kvm->arch.radix = 1;
		lpcr &= ~LPCR_VPM1;
		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
		ret = kvmppc_init_vm_radix(kvm);
		if (ret) {
			kvmppc_free_lpid(kvm->arch.lpid);
			return ret;
		}
		kvmppc_setup_partition_table(kvm);
	}

3794
	kvm->arch.lpcr = lpcr;
3795

3796 3797 3798
	/* Initialization for future HPT resizes */
	kvm->arch.resize_hpt = NULL;

3799 3800 3801 3802
	/*
	 * Work out how many sets the TLB has, for the use of
	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
	 */
3803 3804 3805
	if (kvm_is_radix(kvm))
		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
	else if (cpu_has_feature(CPU_FTR_ARCH_300))
3806 3807 3808 3809 3810 3811
		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
	else
		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */

3812
	/*
3813 3814
	 * Track that we now have a HV mode VM active. This blocks secondary
	 * CPU threads from coming online.
3815 3816
	 * On POWER9, we only need to do this for HPT guests on a radix
	 * host, which is not yet supported.
3817
	 */
3818 3819
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		kvm_hv_vm_activated();
3820

3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
	/*
	 * Initialize smt_mode depending on processor.
	 * POWER8 and earlier have to use "strict" threading, where
	 * all vCPUs in a vcore have to run on the same (sub)core,
	 * whereas on POWER9 the threads can each run a different
	 * guest.
	 */
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		kvm->arch.smt_mode = threads_per_subcore;
	else
		kvm->arch.smt_mode = 1;
3832
	kvm->arch.emul_smt_mode = 1;
3833

3834 3835 3836 3837 3838 3839 3840 3841
	/*
	 * Create a debugfs directory for the VM
	 */
	snprintf(buf, sizeof(buf), "vm%d", current->pid);
	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
	if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
		kvmppc_mmu_debugfs_init(kvm);

3842
	return 0;
3843 3844
}

3845 3846 3847 3848
static void kvmppc_free_vcores(struct kvm *kvm)
{
	long int i;

3849
	for (i = 0; i < KVM_MAX_VCORES; ++i)
3850 3851 3852 3853
		kfree(kvm->arch.vcores[i]);
	kvm->arch.online_vcores = 0;
}

3854
static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3855
{
3856 3857
	debugfs_remove_recursive(kvm->arch.debugfs_dir);

3858 3859
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		kvm_hv_vm_deactivated();
3860

3861
	kvmppc_free_vcores(kvm);
3862

3863 3864
	kvmppc_free_lpid(kvm->arch.lpid);

3865 3866 3867
	if (kvm_is_radix(kvm))
		kvmppc_free_radix(kvm);
	else
3868
		kvmppc_free_hpt(&kvm->arch.hpt);
3869 3870

	kvmppc_free_pimap(kvm);
3871 3872
}

3873 3874 3875
/* We don't need to emulate any privileged instructions or dcbz */
static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				     unsigned int inst, int *advance)
3876
{
3877
	return EMULATE_FAIL;
3878 3879
}

3880 3881
static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong spr_val)
3882 3883 3884 3885
{
	return EMULATE_FAIL;
}

3886 3887
static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong *spr_val)
3888 3889 3890 3891
{
	return EMULATE_FAIL;
}

3892
static int kvmppc_core_check_processor_compat_hv(void)
3893
{
3894 3895
	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
	    !cpu_has_feature(CPU_FTR_ARCH_206))
3896
		return -EIO;
3897

3898
	return 0;
3899 3900
}

3901 3902 3903 3904 3905 3906 3907
#ifdef CONFIG_KVM_XICS

void kvmppc_free_pimap(struct kvm *kvm)
{
	kfree(kvm->arch.pimap);
}

3908
static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
3909 3910 3911
{
	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
}
3912 3913 3914 3915 3916 3917 3918

static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
{
	struct irq_desc *desc;
	struct kvmppc_irq_map *irq_map;
	struct kvmppc_passthru_irqmap *pimap;
	struct irq_chip *chip;
3919
	int i, rc = 0;
3920

3921 3922 3923
	if (!kvm_irq_bypass)
		return 1;

3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
	desc = irq_to_desc(host_irq);
	if (!desc)
		return -EIO;

	mutex_lock(&kvm->lock);

	pimap = kvm->arch.pimap;
	if (pimap == NULL) {
		/* First call, allocate structure to hold IRQ map */
		pimap = kvmppc_alloc_pimap();
		if (pimap == NULL) {
			mutex_unlock(&kvm->lock);
			return -ENOMEM;
		}
		kvm->arch.pimap = pimap;
	}

	/*
	 * For now, we only support interrupts for which the EOI operation
	 * is an OPAL call followed by a write to XIRR, since that's
3944
	 * what our real-mode EOI code does, or a XIVE interrupt
3945 3946
	 */
	chip = irq_data_get_irq_chip(&desc->irq_data);
3947
	if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
			host_irq, guest_gsi);
		mutex_unlock(&kvm->lock);
		return -ENOENT;
	}

	/*
	 * See if we already have an entry for this guest IRQ number.
	 * If it's mapped to a hardware IRQ number, that's an error,
	 * otherwise re-use this entry.
	 */
	for (i = 0; i < pimap->n_mapped; i++) {
		if (guest_gsi == pimap->mapped[i].v_hwirq) {
			if (pimap->mapped[i].r_hwirq) {
				mutex_unlock(&kvm->lock);
				return -EINVAL;
			}
			break;
		}
	}

	if (i == KVMPPC_PIRQ_MAPPED) {
		mutex_unlock(&kvm->lock);
		return -EAGAIN;		/* table is full */
	}

	irq_map = &pimap->mapped[i];

	irq_map->v_hwirq = guest_gsi;
	irq_map->desc = desc;

3979 3980 3981 3982 3983 3984 3985
	/*
	 * Order the above two stores before the next to serialize with
	 * the KVM real mode handler.
	 */
	smp_wmb();
	irq_map->r_hwirq = desc->irq_data.hwirq;

3986 3987 3988
	if (i == pimap->n_mapped)
		pimap->n_mapped++;

3989 3990 3991 3992 3993 3994
	if (xive_enabled())
		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
	else
		kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
	if (rc)
		irq_map->r_hwirq = 0;
3995

3996 3997 3998 3999 4000 4001 4002 4003 4004
	mutex_unlock(&kvm->lock);

	return 0;
}

static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
{
	struct irq_desc *desc;
	struct kvmppc_passthru_irqmap *pimap;
4005
	int i, rc = 0;
4006

4007 4008 4009
	if (!kvm_irq_bypass)
		return 0;

4010 4011 4012 4013 4014
	desc = irq_to_desc(host_irq);
	if (!desc)
		return -EIO;

	mutex_lock(&kvm->lock);
4015 4016
	if (!kvm->arch.pimap)
		goto unlock;
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029

	pimap = kvm->arch.pimap;

	for (i = 0; i < pimap->n_mapped; i++) {
		if (guest_gsi == pimap->mapped[i].v_hwirq)
			break;
	}

	if (i == pimap->n_mapped) {
		mutex_unlock(&kvm->lock);
		return -ENODEV;
	}

4030 4031 4032 4033
	if (xive_enabled())
		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
	else
		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4034

4035
	/* invalidate the entry (what do do on error from the above ?) */
4036 4037 4038 4039 4040 4041
	pimap->mapped[i].r_hwirq = 0;

	/*
	 * We don't free this structure even when the count goes to
	 * zero. The structure is freed when we destroy the VM.
	 */
4042
 unlock:
4043
	mutex_unlock(&kvm->lock);
4044
	return rc;
4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
}

static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
					     struct irq_bypass_producer *prod)
{
	int ret = 0;
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	irqfd->producer = prod;

	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
	if (ret)
		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
			prod->irq, irqfd->gsi, ret);

	return ret;
}

static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
					      struct irq_bypass_producer *prod)
{
	int ret;
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	irqfd->producer = NULL;

	/*
	 * When producer of consumer is unregistered, we change back to
	 * default external interrupt handling mode - KVM real mode
	 * will switch back to host.
	 */
	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
	if (ret)
		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
			prod->irq, irqfd->gsi, ret);
}
4083 4084
#endif

4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
static long kvm_arch_vm_ioctl_hv(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm __maybe_unused = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {

	case KVM_PPC_ALLOCATE_HTAB: {
		u32 htab_order;

		r = -EFAULT;
		if (get_user(htab_order, (u32 __user *)argp))
			break;
4100
		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
		if (r)
			break;
		r = 0;
		break;
	}

	case KVM_PPC_GET_HTAB_FD: {
		struct kvm_get_htab_fd ghf;

		r = -EFAULT;
		if (copy_from_user(&ghf, argp, sizeof(ghf)))
			break;
		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
		break;
	}

4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
	case KVM_PPC_RESIZE_HPT_PREPARE: {
		struct kvm_ppc_resize_hpt rhpt;

		r = -EFAULT;
		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
			break;

		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
		break;
	}

	case KVM_PPC_RESIZE_HPT_COMMIT: {
		struct kvm_ppc_resize_hpt rhpt;

		r = -EFAULT;
		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
			break;

		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
		break;
	}

4139 4140 4141 4142 4143 4144 4145
	default:
		r = -ENOTTY;
	}

	return r;
}

4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
/*
 * List of hcall numbers to enable by default.
 * For compatibility with old userspace, we enable by default
 * all hcalls that were implemented before the hcall-enabling
 * facility was added.  Note this list should not include H_RTAS.
 */
static unsigned int default_hcall_list[] = {
	H_REMOVE,
	H_ENTER,
	H_READ,
	H_PROTECT,
	H_BULK_REMOVE,
	H_GET_TCE,
	H_PUT_TCE,
	H_SET_DABR,
	H_SET_XDABR,
	H_CEDE,
	H_PROD,
	H_CONFER,
	H_REGISTER_VPA,
#ifdef CONFIG_KVM_XICS
	H_EOI,
	H_CPPR,
	H_IPI,
	H_IPOLL,
	H_XIRR,
	H_XIRR_X,
#endif
	0
};

static void init_default_hcalls(void)
{
	int i;
4180
	unsigned int hcall;
4181

4182 4183 4184 4185 4186
	for (i = 0; default_hcall_list[i]; ++i) {
		hcall = default_hcall_list[i];
		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
		__set_bit(hcall / 4, default_enabled_hcalls);
	}
4187 4188
}

4189 4190
static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
{
4191
	unsigned long lpcr;
4192
	int radix;
4193 4194 4195 4196 4197 4198 4199 4200 4201

	/* If not on a POWER9, reject it */
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return -ENODEV;

	/* If any unknown flags set, reject it */
	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
		return -EINVAL;

4202 4203 4204
	/* We can't change a guest to/from radix yet */
	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
	if (radix != kvm_is_radix(kvm))
4205 4206 4207
		return -EINVAL;

	/* GR (guest radix) bit in process_table field must match */
4208
	if (!!(cfg->process_table & PATB_GR) != radix)
4209 4210 4211 4212 4213 4214
		return -EINVAL;

	/* Process table size field must be reasonable, i.e. <= 24 */
	if ((cfg->process_table & PRTS_MASK) > 24)
		return -EINVAL;

4215
	mutex_lock(&kvm->lock);
4216 4217 4218 4219 4220
	kvm->arch.process_table = cfg->process_table;
	kvmppc_setup_partition_table(kvm);

	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4221
	mutex_unlock(&kvm->lock);
4222 4223

	return 0;
4224 4225
}

4226
static struct kvmppc_ops kvm_ops_hv = {
4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
	.get_one_reg = kvmppc_get_one_reg_hv,
	.set_one_reg = kvmppc_set_one_reg_hv,
	.vcpu_load   = kvmppc_core_vcpu_load_hv,
	.vcpu_put    = kvmppc_core_vcpu_put_hv,
	.set_msr     = kvmppc_set_msr_hv,
	.vcpu_run    = kvmppc_vcpu_run_hv,
	.vcpu_create = kvmppc_core_vcpu_create_hv,
	.vcpu_free   = kvmppc_core_vcpu_free_hv,
	.check_requests = kvmppc_core_check_requests_hv,
	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
	.flush_memslot  = kvmppc_core_flush_memslot_hv,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
	.unmap_hva = kvm_unmap_hva_hv,
	.unmap_hva_range = kvm_unmap_hva_range_hv,
	.age_hva  = kvm_age_hva_hv,
	.test_age_hva = kvm_test_age_hva_hv,
	.set_spte_hva = kvm_set_spte_hva_hv,
	.mmu_destroy  = kvmppc_mmu_destroy_hv,
	.free_memslot = kvmppc_core_free_memslot_hv,
	.create_memslot = kvmppc_core_create_memslot_hv,
	.init_vm =  kvmppc_core_init_vm_hv,
	.destroy_vm = kvmppc_core_destroy_vm_hv,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
	.emulate_op = kvmppc_core_emulate_op_hv,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
4258
	.hcall_implemented = kvmppc_hcall_impl_hv,
4259 4260 4261 4262
#ifdef CONFIG_KVM_XICS
	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
#endif
4263 4264
	.configure_mmu = kvmhv_configure_mmu,
	.get_rmmu_info = kvmhv_get_rmmu_info,
4265
	.set_smt_mode = kvmhv_set_smt_mode,
4266 4267
};

4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
static int kvm_init_subcore_bitmap(void)
{
	int i, j;
	int nr_cores = cpu_nr_cores();
	struct sibling_subcore_state *sibling_subcore_state;

	for (i = 0; i < nr_cores; i++) {
		int first_cpu = i * threads_per_core;
		int node = cpu_to_node(first_cpu);

		/* Ignore if it is already allocated. */
		if (paca[first_cpu].sibling_subcore_state)
			continue;

		sibling_subcore_state =
			kmalloc_node(sizeof(struct sibling_subcore_state),
							GFP_KERNEL, node);
		if (!sibling_subcore_state)
			return -ENOMEM;

		memset(sibling_subcore_state, 0,
				sizeof(struct sibling_subcore_state));

		for (j = 0; j < threads_per_core; j++) {
			int cpu = first_cpu + j;

			paca[cpu].sibling_subcore_state = sibling_subcore_state;
		}
	}
	return 0;
}

4300 4301 4302 4303 4304
static int kvmppc_radix_possible(void)
{
	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
}

4305
static int kvmppc_book3s_init_hv(void)
4306 4307
{
	int r;
4308 4309 4310 4311 4312
	/*
	 * FIXME!! Do we need to check on all cpus ?
	 */
	r = kvmppc_core_check_processor_compat_hv();
	if (r < 0)
4313
		return -ENODEV;
4314

4315 4316 4317 4318
	r = kvm_init_subcore_bitmap();
	if (r)
		return r;

4319 4320 4321 4322 4323 4324
	/*
	 * We need a way of accessing the XICS interrupt controller,
	 * either directly, via paca[cpu].kvm_hstate.xics_phys, or
	 * indirectly, via OPAL.
	 */
#ifdef CONFIG_SMP
4325
	if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
		struct device_node *np;

		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
		if (!np) {
			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
			return -ENODEV;
		}
	}
#endif

4336 4337
	kvm_ops_hv.owner = THIS_MODULE;
	kvmppc_hv_ops = &kvm_ops_hv;
4338

4339 4340
	init_default_hcalls();

4341 4342
	init_vcore_lists();

4343
	r = kvmppc_mmu_hv_init();
4344 4345 4346 4347 4348
	if (r)
		return r;

	if (kvmppc_radix_possible())
		r = kvmppc_radix_init();
4349 4350 4351
	return r;
}

4352
static void kvmppc_book3s_exit_hv(void)
4353
{
4354
	kvmppc_free_host_rm_ops();
4355 4356
	if (kvmppc_radix_possible())
		kvmppc_radix_exit();
4357
	kvmppc_hv_ops = NULL;
4358 4359
}

4360 4361
module_init(kvmppc_book3s_init_hv);
module_exit(kvmppc_book3s_exit_hv);
4362
MODULE_LICENSE("GPL");
4363 4364
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");
4365