sched.c 27.3 KB
Newer Older
1 2 3 4 5
/* sched.c - SPU scheduler.
 *
 * Copyright (C) IBM 2005
 * Author: Mark Nutter <mnutter@us.ibm.com>
 *
6
 * 2006-03-31	NUMA domains added.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27 28 29 30 31 32 33 34
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/completion.h>
#include <linux/vmalloc.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
35 36
#include <linux/numa.h>
#include <linux/mutex.h>
37
#include <linux/notifier.h>
38
#include <linux/kthread.h>
39 40 41
#include <linux/pid_namespace.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
42
#include <linux/marker.h>
43 44 45 46 47

#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/spu.h>
#include <asm/spu_csa.h>
48
#include <asm/spu_priv1.h>
49 50 51
#include "spufs.h"

struct spu_prio_array {
52
	DECLARE_BITMAP(bitmap, MAX_PRIO);
53 54
	struct list_head runq[MAX_PRIO];
	spinlock_t runq_lock;
55
	int nr_waiting;
56 57
};

58
static unsigned long spu_avenrun[3];
59
static struct spu_prio_array *spu_prio;
60 61
static struct task_struct *spusched_task;
static struct timer_list spusched_timer;
62
static struct timer_list spuloadavg_timer;
63

64 65 66 67 68 69 70 71 72 73 74 75 76 77
/*
 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
 */
#define NORMAL_PRIO		120

/*
 * Frequency of the spu scheduler tick.  By default we do one SPU scheduler
 * tick for every 10 CPU scheduler ticks.
 */
#define SPUSCHED_TICK		(10)

/*
 * These are the 'tuning knobs' of the scheduler:
 *
78 79
 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
80
 */
81 82
#define MIN_SPU_TIMESLICE	max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
#define DEF_SPU_TIMESLICE	(100 * HZ / (1000 * SPUSCHED_TICK))
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

#define MAX_USER_PRIO		(MAX_PRIO - MAX_RT_PRIO)
#define SCALE_PRIO(x, prio) \
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)

/*
 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
 * [800ms ... 100ms ... 5ms]
 *
 * The higher a thread's priority, the bigger timeslices
 * it gets during one round of execution. But even the lowest
 * priority thread gets MIN_TIMESLICE worth of execution time.
 */
void spu_set_timeslice(struct spu_context *ctx)
{
	if (ctx->prio < NORMAL_PRIO)
		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
	else
		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
}

104 105 106 107 108
/*
 * Update scheduling information from the owning thread.
 */
void __spu_update_sched_info(struct spu_context *ctx)
{
109 110 111 112 113 114
	/*
	 * assert that the context is not on the runqueue, so it is safe
	 * to change its scheduling parameters.
	 */
	BUG_ON(!list_empty(&ctx->rq));

115
	/*
116 117 118
	 * 32-Bit assignments are atomic on powerpc, and we don't care about
	 * memory ordering here because retrieving the controlling thread is
	 * per definition racy.
119 120 121
	 */
	ctx->tid = current->pid;

122 123
	/*
	 * We do our own priority calculations, so we normally want
124
	 * ->static_prio to start with. Unfortunately this field
125 126 127 128 129 130 131 132
	 * contains junk for threads with a realtime scheduling
	 * policy so we have to look at ->prio in this case.
	 */
	if (rt_prio(current->prio))
		ctx->prio = current->prio;
	else
		ctx->prio = current->static_prio;
	ctx->policy = current->policy;
133 134

	/*
135 136 137 138 139 140
	 * TO DO: the context may be loaded, so we may need to activate
	 * it again on a different node. But it shouldn't hurt anything
	 * to update its parameters, because we know that the scheduler
	 * is not actively looking at this field, since it is not on the
	 * runqueue. The context will be rescheduled on the proper node
	 * if it is timesliced or preempted.
141 142
	 */
	ctx->cpus_allowed = current->cpus_allowed;
143 144 145 146
}

void spu_update_sched_info(struct spu_context *ctx)
{
147
	int node;
148

149 150
	if (ctx->state == SPU_STATE_RUNNABLE) {
		node = ctx->spu->node;
151 152 153 154

		/*
		 * Take list_mutex to sync with find_victim().
		 */
155 156 157 158 159 160
		mutex_lock(&cbe_spu_info[node].list_mutex);
		__spu_update_sched_info(ctx);
		mutex_unlock(&cbe_spu_info[node].list_mutex);
	} else {
		__spu_update_sched_info(ctx);
	}
161 162
}

163
static int __node_allowed(struct spu_context *ctx, int node)
164
{
165 166
	if (nr_cpus_node(node)) {
		cpumask_t mask = node_to_cpumask(node);
167

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
		if (cpus_intersects(mask, ctx->cpus_allowed))
			return 1;
	}

	return 0;
}

static int node_allowed(struct spu_context *ctx, int node)
{
	int rval;

	spin_lock(&spu_prio->runq_lock);
	rval = __node_allowed(ctx, node);
	spin_unlock(&spu_prio->runq_lock);

	return rval;
184 185
}

186
void do_notify_spus_active(void)
187 188 189 190 191 192 193
{
	int node;

	/*
	 * Wake up the active spu_contexts.
	 *
	 * When the awakened processes see their "notify_active" flag is set,
194
	 * they will call spu_switch_notify().
195 196 197
	 */
	for_each_online_node(node) {
		struct spu *spu;
198 199 200 201 202 203 204 205 206 207

		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
			if (spu->alloc_state != SPU_FREE) {
				struct spu_context *ctx = spu->ctx;
				set_bit(SPU_SCHED_NOTIFY_ACTIVE,
					&ctx->sched_flags);
				mb();
				wake_up_all(&ctx->stop_wq);
			}
208
		}
209
		mutex_unlock(&cbe_spu_info[node].list_mutex);
210 211 212
	}
}

213 214 215 216 217 218
/**
 * spu_bind_context - bind spu context to physical spu
 * @spu:	physical spu to bind to
 * @ctx:	context to bind
 */
static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
219
{
220 221
	spu_context_trace(spu_bind_context__enter, ctx, spu);

222
	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
223

224 225 226
	if (ctx->flags & SPU_CREATE_NOSCHED)
		atomic_inc(&cbe_spu_info[spu->node].reserved_spus);

227 228 229
	ctx->stats.slb_flt_base = spu->stats.slb_flt;
	ctx->stats.class2_intr_base = spu->stats.class2_intr;

230 231 232 233 234
	spu->ctx = ctx;
	spu->flags = 0;
	ctx->spu = spu;
	ctx->ops = &spu_hw_ops;
	spu->pid = current->pid;
235
	spu->tgid = current->tgid;
236
	spu_associate_mm(spu, ctx->owner);
237 238
	spu->ibox_callback = spufs_ibox_callback;
	spu->wbox_callback = spufs_wbox_callback;
239
	spu->stop_callback = spufs_stop_callback;
240
	spu->mfc_callback = spufs_mfc_callback;
241
	mb();
242
	spu_unmap_mappings(ctx);
243
	spu_restore(&ctx->csa, spu);
244
	spu->timestamp = jiffies;
245
	spu_cpu_affinity_set(spu, raw_smp_processor_id());
246
	spu_switch_notify(spu, ctx);
247
	ctx->state = SPU_STATE_RUNNABLE;
248

249
	spuctx_switch_state(ctx, SPU_UTIL_USER);
250 251
}

252
/*
253
 * Must be used with the list_mutex held.
254 255 256
 */
static inline int sched_spu(struct spu *spu)
{
257 258
	BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
	return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
}

static void aff_merge_remaining_ctxs(struct spu_gang *gang)
{
	struct spu_context *ctx;

	list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
		if (list_empty(&ctx->aff_list))
			list_add(&ctx->aff_list, &gang->aff_list_head);
	}
	gang->aff_flags |= AFF_MERGED;
}

static void aff_set_offsets(struct spu_gang *gang)
{
	struct spu_context *ctx;
	int offset;

	offset = -1;
	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
								aff_list) {
		if (&ctx->aff_list == &gang->aff_list_head)
			break;
		ctx->aff_offset = offset--;
	}

	offset = 0;
	list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
		if (&ctx->aff_list == &gang->aff_list_head)
			break;
		ctx->aff_offset = offset++;
	}

	gang->aff_flags |= AFF_OFFSETS_SET;
}

static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
		 int group_size, int lowest_offset)
{
	struct spu *spu;
	int node, n;

	/*
	 * TODO: A better algorithm could be used to find a good spu to be
	 *       used as reference location for the ctxs chain.
	 */
	node = cpu_to_node(raw_smp_processor_id());
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
		if (!node_allowed(ctx, node))
			continue;
311
		mutex_lock(&cbe_spu_info[node].list_mutex);
312 313
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
			if ((!mem_aff || spu->has_mem_affinity) &&
314 315
							sched_spu(spu)) {
				mutex_unlock(&cbe_spu_info[node].list_mutex);
316
				return spu;
317
			}
318
		}
319
		mutex_unlock(&cbe_spu_info[node].list_mutex);
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
	}
	return NULL;
}

static void aff_set_ref_point_location(struct spu_gang *gang)
{
	int mem_aff, gs, lowest_offset;
	struct spu_context *ctx;
	struct spu *tmp;

	mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
	lowest_offset = 0;
	gs = 0;

	list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
		gs++;

	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
								aff_list) {
		if (&ctx->aff_list == &gang->aff_list_head)
			break;
		lowest_offset = ctx->aff_offset;
	}

344 345
	gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
							lowest_offset);
346 347
}

348
static struct spu *ctx_location(struct spu *ref, int offset, int node)
349 350 351 352 353 354
{
	struct spu *spu;

	spu = NULL;
	if (offset >= 0) {
		list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
355
			BUG_ON(spu->node != node);
356 357 358 359 360 361 362
			if (offset == 0)
				break;
			if (sched_spu(spu))
				offset--;
		}
	} else {
		list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
363
			BUG_ON(spu->node != node);
364 365 366 367 368 369
			if (offset == 0)
				break;
			if (sched_spu(spu))
				offset++;
		}
	}
370

371 372 373 374 375 376 377
	return spu;
}

/*
 * affinity_check is called each time a context is going to be scheduled.
 * It returns the spu ptr on which the context must run.
 */
378
static int has_affinity(struct spu_context *ctx)
379
{
380
	struct spu_gang *gang = ctx->gang;
381 382

	if (list_empty(&ctx->aff_list))
383 384
		return 0;

385 386 387 388 389 390 391
	if (!gang->aff_ref_spu) {
		if (!(gang->aff_flags & AFF_MERGED))
			aff_merge_remaining_ctxs(gang);
		if (!(gang->aff_flags & AFF_OFFSETS_SET))
			aff_set_offsets(gang);
		aff_set_ref_point_location(gang);
	}
392 393

	return gang->aff_ref_spu != NULL;
394 395
}

396 397 398 399 400
/**
 * spu_unbind_context - unbind spu context from physical spu
 * @spu:	physical spu to unbind from
 * @ctx:	context to unbind
 */
401
static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
402
{
403 404
	spu_context_trace(spu_unbind_context__enter, ctx, spu);

405
	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
406

407 408
 	if (spu->ctx->flags & SPU_CREATE_NOSCHED)
		atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
409 410 411 412 413 414 415 416 417 418

	if (ctx->gang){
		mutex_lock(&ctx->gang->aff_mutex);
		if (has_affinity(ctx)) {
			if (atomic_dec_and_test(&ctx->gang->aff_sched_count))
				ctx->gang->aff_ref_spu = NULL;
		}
		mutex_unlock(&ctx->gang->aff_mutex);
	}

419
	spu_switch_notify(spu, NULL);
420
	spu_unmap_mappings(ctx);
421
	spu_save(&ctx->csa, spu);
422
	spu->timestamp = jiffies;
423 424 425
	ctx->state = SPU_STATE_SAVED;
	spu->ibox_callback = NULL;
	spu->wbox_callback = NULL;
426
	spu->stop_callback = NULL;
427
	spu->mfc_callback = NULL;
428
	spu_associate_mm(spu, NULL);
429
	spu->pid = 0;
430
	spu->tgid = 0;
431
	ctx->ops = &spu_backing_ops;
432
	spu->flags = 0;
433
	spu->ctx = NULL;
434 435 436 437 438

	ctx->stats.slb_flt +=
		(spu->stats.slb_flt - ctx->stats.slb_flt_base);
	ctx->stats.class2_intr +=
		(spu->stats.class2_intr - ctx->stats.class2_intr_base);
439 440 441 442

	/* This maps the underlying spu state to idle */
	spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
	ctx->spu = NULL;
443 444
}

445 446 447 448
/**
 * spu_add_to_rq - add a context to the runqueue
 * @ctx:       context to add
 */
449
static void __spu_add_to_rq(struct spu_context *ctx)
450
{
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
	/*
	 * Unfortunately this code path can be called from multiple threads
	 * on behalf of a single context due to the way the problem state
	 * mmap support works.
	 *
	 * Fortunately we need to wake up all these threads at the same time
	 * and can simply skip the runqueue addition for every but the first
	 * thread getting into this codepath.
	 *
	 * It's still quite hacky, and long-term we should proxy all other
	 * threads through the owner thread so that spu_run is in control
	 * of all the scheduling activity for a given context.
	 */
	if (list_empty(&ctx->rq)) {
		list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
		set_bit(ctx->prio, spu_prio->bitmap);
		if (!spu_prio->nr_waiting++)
			__mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
	}
470
}
471

472 473 474 475 476 477 478
static void spu_add_to_rq(struct spu_context *ctx)
{
	spin_lock(&spu_prio->runq_lock);
	__spu_add_to_rq(ctx);
	spin_unlock(&spu_prio->runq_lock);
}

479
static void __spu_del_from_rq(struct spu_context *ctx)
480
{
481 482
	int prio = ctx->prio;

483
	if (!list_empty(&ctx->rq)) {
484 485
		if (!--spu_prio->nr_waiting)
			del_timer(&spusched_timer);
486
		list_del_init(&ctx->rq);
487 488 489

		if (list_empty(&spu_prio->runq[prio]))
			clear_bit(prio, spu_prio->bitmap);
490
	}
491
}
492

493 494 495 496 497 498 499
void spu_del_from_rq(struct spu_context *ctx)
{
	spin_lock(&spu_prio->runq_lock);
	__spu_del_from_rq(ctx);
	spin_unlock(&spu_prio->runq_lock);
}

500
static void spu_prio_wait(struct spu_context *ctx)
501
{
502
	DEFINE_WAIT(wait);
503

504 505 506 507 508 509 510
	/*
	 * The caller must explicitly wait for a context to be loaded
	 * if the nosched flag is set.  If NOSCHED is not set, the caller
	 * queues the context and waits for an spu event or error.
	 */
	BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED));

511
	spin_lock(&spu_prio->runq_lock);
512
	prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
513
	if (!signal_pending(current)) {
514 515
		__spu_add_to_rq(ctx);
		spin_unlock(&spu_prio->runq_lock);
516
		mutex_unlock(&ctx->state_mutex);
517
		schedule();
518
		mutex_lock(&ctx->state_mutex);
519 520
		spin_lock(&spu_prio->runq_lock);
		__spu_del_from_rq(ctx);
521
	}
522
	spin_unlock(&spu_prio->runq_lock);
523 524
	__set_current_state(TASK_RUNNING);
	remove_wait_queue(&ctx->stop_wq, &wait);
525 526
}

527
static struct spu *spu_get_idle(struct spu_context *ctx)
528
{
529
	struct spu *spu, *aff_ref_spu;
530 531
	int node, n;

532 533
	spu_context_nospu_trace(spu_get_idle__enter, ctx);

534 535 536 537 538 539 540 541 542 543 544 545 546
	if (ctx->gang) {
		mutex_lock(&ctx->gang->aff_mutex);
		if (has_affinity(ctx)) {
			aff_ref_spu = ctx->gang->aff_ref_spu;
			atomic_inc(&ctx->gang->aff_sched_count);
			mutex_unlock(&ctx->gang->aff_mutex);
			node = aff_ref_spu->node;

			mutex_lock(&cbe_spu_info[node].list_mutex);
			spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
			if (spu && spu->alloc_state == SPU_FREE)
				goto found;
			mutex_unlock(&cbe_spu_info[node].list_mutex);
547

548 549 550 551
			mutex_lock(&ctx->gang->aff_mutex);
			if (atomic_dec_and_test(&ctx->gang->aff_sched_count))
				ctx->gang->aff_ref_spu = NULL;
			mutex_unlock(&ctx->gang->aff_mutex);
552
			goto not_found;
553 554 555
		}
		mutex_unlock(&ctx->gang->aff_mutex);
	}
556
	node = cpu_to_node(raw_smp_processor_id());
557 558
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
559
		if (!node_allowed(ctx, node))
560
			continue;
561 562 563 564 565 566 567

		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
			if (spu->alloc_state == SPU_FREE)
				goto found;
		}
		mutex_unlock(&cbe_spu_info[node].list_mutex);
568
	}
569

570 571
 not_found:
	spu_context_nospu_trace(spu_get_idle__not_found, ctx);
572 573 574 575 576
	return NULL;

 found:
	spu->alloc_state = SPU_USED;
	mutex_unlock(&cbe_spu_info[node].list_mutex);
577
	spu_context_trace(spu_get_idle__found, ctx, spu);
578
	spu_init_channels(spu);
579 580
	return spu;
}
581

582 583 584 585 586 587 588 589 590 591 592 593
/**
 * find_victim - find a lower priority context to preempt
 * @ctx:	canidate context for running
 *
 * Returns the freed physical spu to run the new context on.
 */
static struct spu *find_victim(struct spu_context *ctx)
{
	struct spu_context *victim = NULL;
	struct spu *spu;
	int node, n;

594 595
	spu_context_nospu_trace(spu_find_vitim__enter, ctx);

596 597 598
	/*
	 * Look for a possible preemption candidate on the local node first.
	 * If there is no candidate look at the other nodes.  This isn't
599
	 * exactly fair, but so far the whole spu scheduler tries to keep
600 601 602 603 604 605 606
	 * a strong node affinity.  We might want to fine-tune this in
	 * the future.
	 */
 restart:
	node = cpu_to_node(raw_smp_processor_id());
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
607
		if (!node_allowed(ctx, node))
608 609
			continue;

610 611
		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
612 613
			struct spu_context *tmp = spu->ctx;

614
			if (tmp && tmp->prio > ctx->prio &&
615
			    !(tmp->flags & SPU_CREATE_NOSCHED) &&
616
			    (!victim || tmp->prio > victim->prio))
617 618
				victim = spu->ctx;
		}
619
		mutex_unlock(&cbe_spu_info[node].list_mutex);
620 621 622 623 624 625 626

		if (victim) {
			/*
			 * This nests ctx->state_mutex, but we always lock
			 * higher priority contexts before lower priority
			 * ones, so this is safe until we introduce
			 * priority inheritance schemes.
627 628 629 630
			 *
			 * XXX if the highest priority context is locked,
			 * this can loop a long time.  Might be better to
			 * look at another context or give up after X retries.
631 632 633 634 635 636 637
			 */
			if (!mutex_trylock(&victim->state_mutex)) {
				victim = NULL;
				goto restart;
			}

			spu = victim->spu;
638
			if (!spu || victim->prio <= ctx->prio) {
639 640
				/*
				 * This race can happen because we've dropped
641
				 * the active list mutex.  Not a problem, just
642 643 644 645 646 647
				 * restart the search.
				 */
				mutex_unlock(&victim->state_mutex);
				victim = NULL;
				goto restart;
			}
648

649 650
			spu_context_trace(__spu_deactivate__unload, ctx, spu);

651 652
			mutex_lock(&cbe_spu_info[node].list_mutex);
			cbe_spu_info[node].nr_active--;
653
			spu_unbind_context(spu, victim);
654 655
			mutex_unlock(&cbe_spu_info[node].list_mutex);

656
			victim->stats.invol_ctx_switch++;
657
			spu->stats.invol_ctx_switch++;
658 659
			spu_add_to_rq(victim);

660
			mutex_unlock(&victim->state_mutex);
661

662 663 664 665 666 667 668
			return spu;
		}
	}

	return NULL;
}

669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
static void __spu_schedule(struct spu *spu, struct spu_context *ctx)
{
	int node = spu->node;
	int success = 0;

	spu_set_timeslice(ctx);

	mutex_lock(&cbe_spu_info[node].list_mutex);
	if (spu->ctx == NULL) {
		spu_bind_context(spu, ctx);
		cbe_spu_info[node].nr_active++;
		spu->alloc_state = SPU_USED;
		success = 1;
	}
	mutex_unlock(&cbe_spu_info[node].list_mutex);

	if (success)
		wake_up_all(&ctx->run_wq);
	else
		spu_add_to_rq(ctx);
}

static void spu_schedule(struct spu *spu, struct spu_context *ctx)
{
693 694 695
	/* not a candidate for interruptible because it's called either
	   from the scheduler thread or from spu_deactivate */
	mutex_lock(&ctx->state_mutex);
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
	__spu_schedule(spu, ctx);
	spu_release(ctx);
}

static void spu_unschedule(struct spu *spu, struct spu_context *ctx)
{
	int node = spu->node;

	mutex_lock(&cbe_spu_info[node].list_mutex);
	cbe_spu_info[node].nr_active--;
	spu->alloc_state = SPU_FREE;
	spu_unbind_context(spu, ctx);
	ctx->stats.invol_ctx_switch++;
	spu->stats.invol_ctx_switch++;
	mutex_unlock(&cbe_spu_info[node].list_mutex);
}

713 714 715 716 717
/**
 * spu_activate - find a free spu for a context and execute it
 * @ctx:	spu context to schedule
 * @flags:	flags (currently ignored)
 *
718
 * Tries to find a free spu to run @ctx.  If no free spu is available
719 720 721
 * add the context to the runqueue so it gets woken up once an spu
 * is available.
 */
722
int spu_activate(struct spu_context *ctx, unsigned long flags)
723
{
724
	struct spu *spu;
725

726 727 728 729 730 731 732 733
	/*
	 * If there are multiple threads waiting for a single context
	 * only one actually binds the context while the others will
	 * only be able to acquire the state_mutex once the context
	 * already is in runnable state.
	 */
	if (ctx->spu)
		return 0;
734

735 736 737
spu_activate_top:
	if (signal_pending(current))
		return -ERESTARTSYS;
738

739 740 741 742 743 744 745 746 747 748 749 750 751 752
	spu = spu_get_idle(ctx);
	/*
	 * If this is a realtime thread we try to get it running by
	 * preempting a lower priority thread.
	 */
	if (!spu && rt_prio(ctx->prio))
		spu = find_victim(ctx);
	if (spu) {
		unsigned long runcntl;

		runcntl = ctx->ops->runcntl_read(ctx);
		__spu_schedule(spu, ctx);
		if (runcntl & SPU_RUNCNTL_RUNNABLE)
			spuctx_switch_state(ctx, SPU_UTIL_USER);
753

754 755 756 757
		return 0;
	}

	if (ctx->flags & SPU_CREATE_NOSCHED) {
758
		spu_prio_wait(ctx);
759 760 761 762
		goto spu_activate_top;
	}

	spu_add_to_rq(ctx);
763

764
	return 0;
765 766
}

767 768 769 770 771 772
/**
 * grab_runnable_context - try to find a runnable context
 *
 * Remove the highest priority context on the runqueue and return it
 * to the caller.  Returns %NULL if no runnable context was found.
 */
773
static struct spu_context *grab_runnable_context(int prio, int node)
774
{
775
	struct spu_context *ctx;
776 777 778
	int best;

	spin_lock(&spu_prio->runq_lock);
779
	best = find_first_bit(spu_prio->bitmap, prio);
780
	while (best < prio) {
781 782
		struct list_head *rq = &spu_prio->runq[best];

783 784 785 786 787 788 789 790
		list_for_each_entry(ctx, rq, rq) {
			/* XXX(hch): check for affinity here aswell */
			if (__node_allowed(ctx, node)) {
				__spu_del_from_rq(ctx);
				goto found;
			}
		}
		best++;
791
	}
792 793
	ctx = NULL;
 found:
794 795 796 797 798 799 800 801 802 803
	spin_unlock(&spu_prio->runq_lock);
	return ctx;
}

static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
{
	struct spu *spu = ctx->spu;
	struct spu_context *new = NULL;

	if (spu) {
804
		new = grab_runnable_context(max_prio, spu->node);
805
		if (new || force) {
806 807 808 809 810 811 812
			spu_unschedule(spu, ctx);
			if (new) {
				if (new->flags & SPU_CREATE_NOSCHED)
					wake_up(&new->stop_wq);
				else {
					spu_release(ctx);
					spu_schedule(spu, new);
813 814 815
					/* this one can't easily be made
					   interruptible */
					mutex_lock(&ctx->state_mutex);
816 817
				}
			}
818 819 820 821 822 823
		}
	}

	return new != NULL;
}

824 825 826 827 828 829 830
/**
 * spu_deactivate - unbind a context from it's physical spu
 * @ctx:	spu context to unbind
 *
 * Unbind @ctx from the physical spu it is running on and schedule
 * the highest priority context to run on the freed physical spu.
 */
831 832
void spu_deactivate(struct spu_context *ctx)
{
833
	spu_context_nospu_trace(spu_deactivate__enter, ctx);
834
	__spu_deactivate(ctx, 1, MAX_PRIO);
835 836
}

837
/**
838
 * spu_yield -	yield a physical spu if others are waiting
839 840 841 842 843 844
 * @ctx:	spu context to yield
 *
 * Check if there is a higher priority context waiting and if yes
 * unbind @ctx from the physical spu and schedule the highest
 * priority context to run on the freed physical spu instead.
 */
845 846
void spu_yield(struct spu_context *ctx)
{
847
	spu_context_nospu_trace(spu_yield__enter, ctx);
848 849
	if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
		mutex_lock(&ctx->state_mutex);
850
		__spu_deactivate(ctx, 0, MAX_PRIO);
851 852
		mutex_unlock(&ctx->state_mutex);
	}
853
}
854

855
static noinline void spusched_tick(struct spu_context *ctx)
856
{
857 858 859
	struct spu_context *new = NULL;
	struct spu *spu = NULL;

860 861
	if (spu_acquire(ctx))
		BUG();	/* a kernel thread never has signals pending */
862 863 864

	if (ctx->state != SPU_STATE_RUNNABLE)
		goto out;
865
	if (ctx->flags & SPU_CREATE_NOSCHED)
866
		goto out;
867
	if (ctx->policy == SCHED_FIFO)
868
		goto out;
869

870
	if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
871
		goto out;
872

873
	spu = ctx->spu;
874 875 876

	spu_context_trace(spusched_tick__preempt, ctx, spu);

877 878 879
	new = grab_runnable_context(ctx->prio + 1, spu->node);
	if (new) {
		spu_unschedule(spu, ctx);
880
		if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
881
			spu_add_to_rq(ctx);
882
	} else {
883
		spu_context_nospu_trace(spusched_tick__newslice, ctx);
884
		ctx->time_slice++;
885
	}
886 887 888 889 890
out:
	spu_release(ctx);

	if (new)
		spu_schedule(spu, new);
891 892
}

893 894 895 896 897
/**
 * count_active_contexts - count nr of active tasks
 *
 * Return the number of tasks currently running or waiting to run.
 *
898
 * Note that we don't take runq_lock / list_mutex here.  Reading
899 900 901 902 903 904 905 906
 * a single 32bit value is atomic on powerpc, and we don't care
 * about memory ordering issues here.
 */
static unsigned long count_active_contexts(void)
{
	int nr_active = 0, node;

	for (node = 0; node < MAX_NUMNODES; node++)
907
		nr_active += cbe_spu_info[node].nr_active;
908 909 910 911 912 913
	nr_active += spu_prio->nr_waiting;

	return nr_active;
}

/**
914
 * spu_calc_load - update the avenrun load estimates.
915 916 917 918
 *
 * No locking against reading these values from userspace, as for
 * the CPU loadavg code.
 */
919
static void spu_calc_load(void)
920 921
{
	unsigned long active_tasks; /* fixed-point */
922 923 924 925 926

	active_tasks = count_active_contexts() * FIXED_1;
	CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
	CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
	CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
927 928
}

929 930 931 932
static void spusched_wake(unsigned long data)
{
	mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
	wake_up_process(spusched_task);
933 934 935 936 937 938
}

static void spuloadavg_wake(unsigned long data)
{
	mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ);
	spu_calc_load();
939 940 941 942
}

static int spusched_thread(void *unused)
{
943
	struct spu *spu;
944 945 946 947 948 949
	int node;

	while (!kthread_should_stop()) {
		set_current_state(TASK_INTERRUPTIBLE);
		schedule();
		for (node = 0; node < MAX_NUMNODES; node++) {
950 951 952 953 954 955 956 957 958 959 960 961 962 963
			struct mutex *mtx = &cbe_spu_info[node].list_mutex;

			mutex_lock(mtx);
			list_for_each_entry(spu, &cbe_spu_info[node].spus,
					cbe_list) {
				struct spu_context *ctx = spu->ctx;

				if (ctx) {
					mutex_unlock(mtx);
					spusched_tick(ctx);
					mutex_lock(mtx);
				}
			}
			mutex_unlock(mtx);
964 965 966 967 968 969
		}
	}

	return 0;
}

970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
void spuctx_switch_state(struct spu_context *ctx,
		enum spu_utilization_state new_state)
{
	unsigned long long curtime;
	signed long long delta;
	struct timespec ts;
	struct spu *spu;
	enum spu_utilization_state old_state;

	ktime_get_ts(&ts);
	curtime = timespec_to_ns(&ts);
	delta = curtime - ctx->stats.tstamp;

	WARN_ON(!mutex_is_locked(&ctx->state_mutex));
	WARN_ON(delta < 0);

	spu = ctx->spu;
	old_state = ctx->stats.util_state;
	ctx->stats.util_state = new_state;
	ctx->stats.tstamp = curtime;

	/*
	 * Update the physical SPU utilization statistics.
	 */
	if (spu) {
		ctx->stats.times[old_state] += delta;
		spu->stats.times[old_state] += delta;
		spu->stats.util_state = new_state;
		spu->stats.tstamp = curtime;
	}
}

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
#define LOAD_INT(x) ((x) >> FSHIFT)
#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)

static int show_spu_loadavg(struct seq_file *s, void *private)
{
	int a, b, c;

	a = spu_avenrun[0] + (FIXED_1/200);
	b = spu_avenrun[1] + (FIXED_1/200);
	c = spu_avenrun[2] + (FIXED_1/200);

	/*
	 * Note that last_pid doesn't really make much sense for the
1015
	 * SPU loadavg (it even seems very odd on the CPU side...),
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	 * but we include it here to have a 100% compatible interface.
	 */
	seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
		LOAD_INT(a), LOAD_FRAC(a),
		LOAD_INT(b), LOAD_FRAC(b),
		LOAD_INT(c), LOAD_FRAC(c),
		count_active_contexts(),
		atomic_read(&nr_spu_contexts),
		current->nsproxy->pid_ns->last_pid);
	return 0;
}

static int spu_loadavg_open(struct inode *inode, struct file *file)
{
	return single_open(file, show_spu_loadavg, NULL);
}

static const struct file_operations spu_loadavg_fops = {
	.open		= spu_loadavg_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1040 1041
int __init spu_sched_init(void)
{
1042 1043
	struct proc_dir_entry *entry;
	int err = -ENOMEM, i;
1044

1045
	spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
1046
	if (!spu_prio)
1047
		goto out;
1048

1049
	for (i = 0; i < MAX_PRIO; i++) {
1050
		INIT_LIST_HEAD(&spu_prio->runq[i]);
1051
		__clear_bit(i, spu_prio->bitmap);
1052
	}
1053
	spin_lock_init(&spu_prio->runq_lock);
1054

1055
	setup_timer(&spusched_timer, spusched_wake, 0);
1056
	setup_timer(&spuloadavg_timer, spuloadavg_wake, 0);
1057

1058 1059
	spusched_task = kthread_run(spusched_thread, NULL, "spusched");
	if (IS_ERR(spusched_task)) {
1060 1061
		err = PTR_ERR(spusched_task);
		goto out_free_spu_prio;
1062
	}
1063

1064 1065
	mod_timer(&spuloadavg_timer, 0);

1066 1067 1068 1069 1070
	entry = create_proc_entry("spu_loadavg", 0, NULL);
	if (!entry)
		goto out_stop_kthread;
	entry->proc_fops = &spu_loadavg_fops;

1071 1072
	pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
			SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
1073
	return 0;
1074

1075 1076 1077 1078 1079 1080
 out_stop_kthread:
	kthread_stop(spusched_task);
 out_free_spu_prio:
	kfree(spu_prio);
 out:
	return err;
1081 1082
}

1083
void spu_sched_exit(void)
1084
{
1085
	struct spu *spu;
1086 1087
	int node;

1088 1089
	remove_proc_entry("spu_loadavg", NULL);

1090
	del_timer_sync(&spusched_timer);
1091
	del_timer_sync(&spuloadavg_timer);
1092 1093
	kthread_stop(spusched_task);

1094
	for (node = 0; node < MAX_NUMNODES; node++) {
1095 1096 1097 1098 1099
		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
			if (spu->alloc_state != SPU_FREE)
				spu->alloc_state = SPU_FREE;
		mutex_unlock(&cbe_spu_info[node].list_mutex);
1100
	}
1101
	kfree(spu_prio);
1102
}