kvm_host.h 24.7 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0-only */
2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Copyright (C) 2012,2013 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * Derived from arch/arm/include/asm/kvm_host.h:
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

#ifndef __ARM64_KVM_HOST_H__
#define __ARM64_KVM_HOST_H__

14
#include <linux/arm-smccc.h>
15
#include <linux/bitmap.h>
16
#include <linux/types.h>
17
#include <linux/jump_label.h>
18
#include <linux/kvm_types.h>
19
#include <linux/percpu.h>
20
#include <linux/psci.h>
21
#include <asm/arch_gicv3.h>
22
#include <asm/barrier.h>
23
#include <asm/cpufeature.h>
24
#include <asm/cputype.h>
25
#include <asm/daifflags.h>
26
#include <asm/fpsimd.h>
27
#include <asm/kvm.h>
28
#include <asm/kvm_asm.h>
29
#include <asm/thread_info.h>
30

31 32
#define __KVM_HAVE_ARCH_INTC_INITIALIZED

33
#define KVM_HALT_POLL_NS_DEFAULT 500000
34 35 36

#include <kvm/arm_vgic.h>
#include <kvm/arm_arch_timer.h>
37
#include <kvm/arm_pmu.h>
38

39 40
#define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS

41
#define KVM_VCPU_MAX_FEATURES 7
42

43
#define KVM_REQ_SLEEP \
44
	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
45
#define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
46
#define KVM_REQ_VCPU_RESET	KVM_ARCH_REQ(2)
47
#define KVM_REQ_RECORD_STEAL	KVM_ARCH_REQ(3)
48
#define KVM_REQ_RELOAD_GICv4	KVM_ARCH_REQ(4)
49
#define KVM_REQ_RELOAD_PMU	KVM_ARCH_REQ(5)
50

51 52 53
#define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
				     KVM_DIRTY_LOG_INITIALLY_SET)

54 55 56 57 58 59 60
/*
 * Mode of operation configurable with kvm-arm.mode early param.
 * See Documentation/admin-guide/kernel-parameters.txt for more information.
 */
enum kvm_mode {
	KVM_MODE_DEFAULT,
	KVM_MODE_PROTECTED,
61
	KVM_MODE_NONE,
62
};
63
enum kvm_mode kvm_get_mode(void);
64

65 66
DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

67
extern unsigned int kvm_sve_max_vl;
68
int kvm_arm_init_sve(void);
69

70
u32 __attribute_const__ kvm_target_cpu(void);
71
int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
72
void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
73

74
struct kvm_vmid {
75 76 77
	/* The VMID generation used for the virt. memory system */
	u64    vmid_gen;
	u32    vmid;
78 79
};

80
struct kvm_s2_mmu {
81
	struct kvm_vmid vmid;
82

83 84 85 86 87 88 89 90 91 92 93
	/*
	 * stage2 entry level table
	 *
	 * Two kvm_s2_mmu structures in the same VM can point to the same
	 * pgd here.  This happens when running a guest using a
	 * translation regime that isn't affected by its own stage-2
	 * translation, such as a non-VHE hypervisor running at vEL2, or
	 * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
	 * canonical stage-2 page tables.
	 */
	phys_addr_t	pgd_phys;
94
	struct kvm_pgtable *pgt;
95

96 97 98
	/* The last vcpu id that ran on each physical CPU */
	int __percpu *last_vcpu_ran;

99
	struct kvm_arch *arch;
100 101
};

102 103 104
struct kvm_arch_memory_slot {
};

105 106 107 108 109 110
struct kvm_arch {
	struct kvm_s2_mmu mmu;

	/* VTCR_EL2 value for this VM */
	u64    vtcr;

111 112 113
	/* The maximum number of vCPUs depends on the used GIC model */
	int max_vcpus;

114 115
	/* Interrupt controller */
	struct vgic_dist	vgic;
116 117 118

	/* Mandated version of PSCI */
	u32 psci_version;
119 120 121 122 123 124 125 126

	/*
	 * If we encounter a data abort without valid instruction syndrome
	 * information, report this to user space.  User space can (and
	 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
	 * supported.
	 */
	bool return_nisv_io_abort_to_user;
127

128 129 130 131 132
	/*
	 * VM-wide PMU filter, implemented as a bitmap and big enough for
	 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
	 */
	unsigned long *pmu_filter;
133
	unsigned int pmuver;
134 135

	u8 pfr0_csv2;
136
	u8 pfr0_csv3;
137 138 139

	/* Memory Tagging Extension enabled for the guest */
	bool mte_enabled;
140 141 142 143 144 145
};

struct kvm_vcpu_fault_info {
	u32 esr_el2;		/* Hyp Syndrom Register */
	u64 far_el2;		/* Hyp Fault Address Register */
	u64 hpfar_el2;		/* Hyp IPA Fault Address Register */
146
	u64 disr_el1;		/* Deferred [SError] Status Register */
147 148
};

149
enum vcpu_sysreg {
150
	__INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
151 152 153 154 155
	MPIDR_EL1,	/* MultiProcessor Affinity Register */
	CSSELR_EL1,	/* Cache Size Selection Register */
	SCTLR_EL1,	/* System Control Register */
	ACTLR_EL1,	/* Auxiliary Control Register */
	CPACR_EL1,	/* Coprocessor Access Control */
156
	ZCR_EL1,	/* SVE Control */
157 158 159 160
	TTBR0_EL1,	/* Translation Table Base Register 0 */
	TTBR1_EL1,	/* Translation Table Base Register 1 */
	TCR_EL1,	/* Translation Control Register */
	ESR_EL1,	/* Exception Syndrome Register */
161 162
	AFSR0_EL1,	/* Auxiliary Fault Status Register 0 */
	AFSR1_EL1,	/* Auxiliary Fault Status Register 1 */
163 164 165 166 167 168 169 170 171 172 173 174
	FAR_EL1,	/* Fault Address Register */
	MAIR_EL1,	/* Memory Attribute Indirection Register */
	VBAR_EL1,	/* Vector Base Address Register */
	CONTEXTIDR_EL1,	/* Context ID Register */
	TPIDR_EL0,	/* Thread ID, User R/W */
	TPIDRRO_EL0,	/* Thread ID, User R/O */
	TPIDR_EL1,	/* Thread ID, Privileged */
	AMAIR_EL1,	/* Aux Memory Attribute Indirection Register */
	CNTKCTL_EL1,	/* Timer Control Register (EL1) */
	PAR_EL1,	/* Physical Address Register */
	MDSCR_EL1,	/* Monitor Debug System Control Register */
	MDCCINT_EL1,	/* Monitor Debug Comms Channel Interrupt Enable Reg */
175
	DISR_EL1,	/* Deferred Interrupt Status Register */
176

177 178
	/* Performance Monitors Registers */
	PMCR_EL0,	/* Control Register */
179
	PMSELR_EL0,	/* Event Counter Selection Register */
180 181 182
	PMEVCNTR0_EL0,	/* Event Counter Register (0-30) */
	PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
	PMCCNTR_EL0,	/* Cycle Counter Register */
183 184 185
	PMEVTYPER0_EL0,	/* Event Type Register (0-30) */
	PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
	PMCCFILTR_EL0,	/* Cycle Count Filter Register */
186
	PMCNTENSET_EL0,	/* Count Enable Set Register */
187
	PMINTENSET_EL1,	/* Interrupt Enable Set Register */
188
	PMOVSSET_EL0,	/* Overflow Flag Status Set Register */
189
	PMUSERENR_EL0,	/* User Enable Register */
190

191 192 193 194 195 196 197 198 199 200 201 202
	/* Pointer Authentication Registers in a strict increasing order. */
	APIAKEYLO_EL1,
	APIAKEYHI_EL1,
	APIBKEYLO_EL1,
	APIBKEYHI_EL1,
	APDAKEYLO_EL1,
	APDAKEYHI_EL1,
	APDBKEYLO_EL1,
	APDBKEYHI_EL1,
	APGAKEYLO_EL1,
	APGAKEYHI_EL1,

203
	ELR_EL1,
204
	SP_EL1,
205
	SPSR_EL1,
206

207 208 209 210 211 212
	CNTVOFF_EL2,
	CNTV_CVAL_EL0,
	CNTV_CTL_EL0,
	CNTP_CVAL_EL0,
	CNTP_CTL_EL0,

213 214 215 216 217 218
	/* Memory Tagging Extension registers */
	RGSR_EL1,	/* Random Allocation Tag Seed Register */
	GCR_EL1,	/* Tag Control Register */
	TFSR_EL1,	/* Tag Fault Status Register (EL1) */
	TFSRE0_EL1,	/* Tag Fault Status Register (EL0) */

219 220 221 222 223 224 225 226 227
	/* 32bit specific registers. Keep them at the end of the range */
	DACR32_EL2,	/* Domain Access Control Register */
	IFSR32_EL2,	/* Instruction Fault Status Register */
	FPEXC32_EL2,	/* Floating-Point Exception Control Register */
	DBGVCR32_EL2,	/* Debug Vector Catch Register */

	NR_SYS_REGS	/* Nothing after this line! */
};

228
struct kvm_cpu_context {
229 230
	struct user_pt_regs regs;	/* sp = sp_el0 */

231 232 233 234
	u64	spsr_abt;
	u64	spsr_und;
	u64	spsr_irq;
	u64	spsr_fiq;
235 236 237

	struct user_fpsimd_state fp_regs;

238
	u64 sys_regs[NR_SYS_REGS];
239 240

	struct kvm_vcpu *__hyp_running_vcpu;
241 242
};

243 244 245 246 247
struct kvm_pmu_events {
	u32 events_host;
	u32 events_guest;
};

248 249
struct kvm_host_data {
	struct kvm_cpu_context host_ctxt;
250
	struct kvm_pmu_events pmu_events;
251 252
};

253 254 255 256 257 258 259
struct kvm_host_psci_config {
	/* PSCI version used by host. */
	u32 version;

	/* Function IDs used by host if version is v0.1. */
	struct psci_0_1_function_ids function_ids_0_1;

260 261 262 263
	bool psci_0_1_cpu_suspend_implemented;
	bool psci_0_1_cpu_on_implemented;
	bool psci_0_1_cpu_off_implemented;
	bool psci_0_1_migrate_implemented;
264 265 266 267 268
};

extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
#define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)

269 270 271 272 273 274
extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
#define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)

extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
#define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)

275 276 277 278 279 280 281
struct vcpu_reset_state {
	unsigned long	pc;
	unsigned long	r0;
	bool		be;
	bool		reset;
};

282 283
struct kvm_vcpu_arch {
	struct kvm_cpu_context ctxt;
284 285
	void *sve_state;
	unsigned int sve_max_vl;
286

287 288 289
	/* Stage 2 paging state used by the hardware on next switch */
	struct kvm_s2_mmu *hw_mmu;

290
	/* Values of trap registers for the guest. */
291
	u64 hcr_el2;
292
	u64 mdcr_el2;
293
	u64 cptr_el2;
294

295 296
	/* Values of trap registers for the host before guest entry. */
	u64 mdcr_el2_host;
297 298 299 300

	/* Exception Information */
	struct kvm_vcpu_fault_info fault;

301 302 303
	/* State of various workarounds, see kvm_asm.h for bit assignment */
	u64 workaround_flags;

304 305
	/* Miscellaneous vcpu state flags */
	u64 flags;
306

307 308 309 310 311
	/*
	 * We maintain more than a single set of debug registers to support
	 * debugging the guest from the host and to maintain separate host and
	 * guest state during world switches. vcpu_debug_state are the debug
	 * registers of the vcpu as the guest sees them.  host_debug_state are
312 313 314 315
	 * the host registers which are saved and restored during
	 * world switches. external_debug_state contains the debug
	 * values we want to debug the guest. This is set via the
	 * KVM_SET_GUEST_DEBUG ioctl.
316 317 318 319 320 321
	 *
	 * debug_ptr points to the set of debug registers that should be loaded
	 * onto the hardware when running the guest.
	 */
	struct kvm_guest_debug_arch *debug_ptr;
	struct kvm_guest_debug_arch vcpu_debug_state;
322
	struct kvm_guest_debug_arch external_debug_state;
323

324 325 326
	struct thread_info *host_thread_info;	/* hyp VA */
	struct user_fpsimd_state *host_fpsimd_state;	/* hyp VA */

327 328 329 330 331
	struct {
		/* {Break,watch}point registers */
		struct kvm_guest_debug_arch regs;
		/* Statistical profiling extension */
		u64 pmscr_el1;
332 333
		/* Self-hosted trace */
		u64 trfcr_el1;
334
	} host_debug_state;
335 336 337 338

	/* VGIC state */
	struct vgic_cpu vgic_cpu;
	struct arch_timer_cpu timer_cpu;
339
	struct kvm_pmu pmu;
340 341 342 343 344 345

	/*
	 * Anything that is not used directly from assembly code goes
	 * here.
	 */

346 347 348 349 350 351 352 353 354 355 356
	/*
	 * Guest registers we preserve during guest debugging.
	 *
	 * These shadow registers are updated by the kvm_handle_sys_reg
	 * trap handler if the guest accesses or updates them while we
	 * are using guest debug.
	 */
	struct {
		u32	mdscr_el1;
	} guest_debug_preserved;

357 358
	/* vcpu power-off state */
	bool power_off;
359

360 361 362
	/* Don't run the guest (internal implementation need) */
	bool pause;

363 364 365 366
	/* Cache some mmu pages needed inside spinlock regions */
	struct kvm_mmu_memory_cache mmu_page_cache;

	/* Target CPU and feature flags */
367
	int target;
368 369
	DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);

370 371
	/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
	u64 vsesr_el2;
372

373 374 375
	/* Additional reset state */
	struct vcpu_reset_state	reset_state;

376
	/* True when deferrable sysregs are loaded on the physical CPU,
377
	 * see kvm_vcpu_load_sysregs_vhe and kvm_vcpu_put_sysregs_vhe. */
378
	bool sysregs_loaded_on_cpu;
379 380 381 382 383 384

	/* Guest PV state */
	struct {
		u64 last_steal;
		gpa_t base;
	} steal;
385 386
};

387
/* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
388 389
#define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) +	\
			     sve_ffr_offset((vcpu)->arch.sve_max_vl))
390

391
#define vcpu_sve_max_vq(vcpu)	sve_vq_from_vl((vcpu)->arch.sve_max_vl)
392

393 394 395 396 397 398 399
#define vcpu_sve_state_size(vcpu) ({					\
	size_t __size_ret;						\
	unsigned int __vcpu_vq;						\
									\
	if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {		\
		__size_ret = 0;						\
	} else {							\
400
		__vcpu_vq = vcpu_sve_max_vq(vcpu);			\
401 402 403 404 405 406
		__size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);		\
	}								\
									\
	__size_ret;							\
})

407 408
/* vcpu_arch flags field values: */
#define KVM_ARM64_DEBUG_DIRTY		(1 << 0)
409 410 411
#define KVM_ARM64_FP_ENABLED		(1 << 1) /* guest FP regs loaded */
#define KVM_ARM64_FP_HOST		(1 << 2) /* host FP regs loaded */
#define KVM_ARM64_HOST_SVE_IN_USE	(1 << 3) /* backup for host TIF_SVE */
412
#define KVM_ARM64_HOST_SVE_ENABLED	(1 << 4) /* SVE enabled for EL0 */
413
#define KVM_ARM64_GUEST_HAS_SVE		(1 << 5) /* SVE exposed to guest */
414
#define KVM_ARM64_VCPU_SVE_FINALIZED	(1 << 6) /* SVE config completed */
415
#define KVM_ARM64_GUEST_HAS_PTRAUTH	(1 << 7) /* PTRAUTH exposed to guest */
416 417
#define KVM_ARM64_PENDING_EXCEPTION	(1 << 8) /* Exception pending */
#define KVM_ARM64_EXCEPT_MASK		(7 << 9) /* Target EL/MODE */
418
#define KVM_ARM64_DEBUG_STATE_SAVE_SPE	(1 << 12) /* Save SPE context if active  */
419
#define KVM_ARM64_DEBUG_STATE_SAVE_TRBE	(1 << 13) /* Save TRBE context if active  */
420

421 422 423 424
#define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
				 KVM_GUESTDBG_USE_SW_BP | \
				 KVM_GUESTDBG_USE_HW | \
				 KVM_GUESTDBG_SINGLESTEP)
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
/*
 * When KVM_ARM64_PENDING_EXCEPTION is set, KVM_ARM64_EXCEPT_MASK can
 * take the following values:
 *
 * For AArch32 EL1:
 */
#define KVM_ARM64_EXCEPT_AA32_UND	(0 << 9)
#define KVM_ARM64_EXCEPT_AA32_IABT	(1 << 9)
#define KVM_ARM64_EXCEPT_AA32_DABT	(2 << 9)
/* For AArch64: */
#define KVM_ARM64_EXCEPT_AA64_ELx_SYNC	(0 << 9)
#define KVM_ARM64_EXCEPT_AA64_ELx_IRQ	(1 << 9)
#define KVM_ARM64_EXCEPT_AA64_ELx_FIQ	(2 << 9)
#define KVM_ARM64_EXCEPT_AA64_ELx_SERR	(3 << 9)
#define KVM_ARM64_EXCEPT_AA64_EL1	(0 << 11)
#define KVM_ARM64_EXCEPT_AA64_EL2	(1 << 11)

/*
 * Overlaps with KVM_ARM64_EXCEPT_MASK on purpose so that it can't be
 * set together with an exception...
 */
#define KVM_ARM64_INCREMENT_PC		(1 << 9) /* Increment PC */

#define vcpu_has_sve(vcpu) (system_supports_sve() &&			\
449
			    ((vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_SVE))
450

451 452 453 454 455 456 457 458
#ifdef CONFIG_ARM64_PTR_AUTH
#define vcpu_has_ptrauth(vcpu)						\
	((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||		\
	  cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&		\
	 (vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_PTRAUTH)
#else
#define vcpu_has_ptrauth(vcpu)		false
#endif
459

460
#define vcpu_gp_regs(v)		(&(v)->arch.ctxt.regs)
461 462

/*
463 464 465 466 467
 * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
 * memory backed version of a register, and not the one most recently
 * accessed by a running VCPU.  For example, for userspace access or
 * for system registers that are never context switched, but only
 * emulated.
468
 */
469 470 471 472 473
#define __ctxt_sys_reg(c,r)	(&(c)->sys_regs[(r)])

#define ctxt_sys_reg(c,r)	(*__ctxt_sys_reg(c,r))

#define __vcpu_sys_reg(v,r)	(ctxt_sys_reg(&(v)->arch.ctxt, (r)))
474

475
u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
476
void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
477

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
{
	/*
	 * *** VHE ONLY ***
	 *
	 * System registers listed in the switch are not saved on every
	 * exit from the guest but are only saved on vcpu_put.
	 *
	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
	 * should never be listed below, because the guest cannot modify its
	 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
	 * thread when emulating cross-VCPU communication.
	 */
	if (!has_vhe())
		return false;

	switch (reg) {
	case CSSELR_EL1:	*val = read_sysreg_s(SYS_CSSELR_EL1);	break;
	case SCTLR_EL1:		*val = read_sysreg_s(SYS_SCTLR_EL12);	break;
	case CPACR_EL1:		*val = read_sysreg_s(SYS_CPACR_EL12);	break;
	case TTBR0_EL1:		*val = read_sysreg_s(SYS_TTBR0_EL12);	break;
	case TTBR1_EL1:		*val = read_sysreg_s(SYS_TTBR1_EL12);	break;
	case TCR_EL1:		*val = read_sysreg_s(SYS_TCR_EL12);	break;
	case ESR_EL1:		*val = read_sysreg_s(SYS_ESR_EL12);	break;
	case AFSR0_EL1:		*val = read_sysreg_s(SYS_AFSR0_EL12);	break;
	case AFSR1_EL1:		*val = read_sysreg_s(SYS_AFSR1_EL12);	break;
	case FAR_EL1:		*val = read_sysreg_s(SYS_FAR_EL12);	break;
	case MAIR_EL1:		*val = read_sysreg_s(SYS_MAIR_EL12);	break;
	case VBAR_EL1:		*val = read_sysreg_s(SYS_VBAR_EL12);	break;
	case CONTEXTIDR_EL1:	*val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
	case TPIDR_EL0:		*val = read_sysreg_s(SYS_TPIDR_EL0);	break;
	case TPIDRRO_EL0:	*val = read_sysreg_s(SYS_TPIDRRO_EL0);	break;
	case TPIDR_EL1:		*val = read_sysreg_s(SYS_TPIDR_EL1);	break;
	case AMAIR_EL1:		*val = read_sysreg_s(SYS_AMAIR_EL12);	break;
	case CNTKCTL_EL1:	*val = read_sysreg_s(SYS_CNTKCTL_EL12);	break;
	case ELR_EL1:		*val = read_sysreg_s(SYS_ELR_EL12);	break;
	case PAR_EL1:		*val = read_sysreg_par();		break;
	case DACR32_EL2:	*val = read_sysreg_s(SYS_DACR32_EL2);	break;
	case IFSR32_EL2:	*val = read_sysreg_s(SYS_IFSR32_EL2);	break;
	case DBGVCR32_EL2:	*val = read_sysreg_s(SYS_DBGVCR32_EL2);	break;
	default:		return false;
	}

	return true;
}

static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
{
	/*
	 * *** VHE ONLY ***
	 *
	 * System registers listed in the switch are not restored on every
	 * entry to the guest but are only restored on vcpu_load.
	 *
	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
	 * should never be listed below, because the MPIDR should only be set
	 * once, before running the VCPU, and never changed later.
	 */
	if (!has_vhe())
		return false;

	switch (reg) {
	case CSSELR_EL1:	write_sysreg_s(val, SYS_CSSELR_EL1);	break;
	case SCTLR_EL1:		write_sysreg_s(val, SYS_SCTLR_EL12);	break;
	case CPACR_EL1:		write_sysreg_s(val, SYS_CPACR_EL12);	break;
	case TTBR0_EL1:		write_sysreg_s(val, SYS_TTBR0_EL12);	break;
	case TTBR1_EL1:		write_sysreg_s(val, SYS_TTBR1_EL12);	break;
	case TCR_EL1:		write_sysreg_s(val, SYS_TCR_EL12);	break;
	case ESR_EL1:		write_sysreg_s(val, SYS_ESR_EL12);	break;
	case AFSR0_EL1:		write_sysreg_s(val, SYS_AFSR0_EL12);	break;
	case AFSR1_EL1:		write_sysreg_s(val, SYS_AFSR1_EL12);	break;
	case FAR_EL1:		write_sysreg_s(val, SYS_FAR_EL12);	break;
	case MAIR_EL1:		write_sysreg_s(val, SYS_MAIR_EL12);	break;
	case VBAR_EL1:		write_sysreg_s(val, SYS_VBAR_EL12);	break;
	case CONTEXTIDR_EL1:	write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	break;
	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	break;
	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	break;
	case AMAIR_EL1:		write_sysreg_s(val, SYS_AMAIR_EL12);	break;
	case CNTKCTL_EL1:	write_sysreg_s(val, SYS_CNTKCTL_EL12);	break;
	case ELR_EL1:		write_sysreg_s(val, SYS_ELR_EL12);	break;
	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	break;
	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	break;
	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	break;
	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	break;
	default:		return false;
	}

	return true;
}

569
struct kvm_vm_stat {
570
	struct kvm_vm_stat_generic generic;
571 572 573
};

struct kvm_vcpu_stat {
574
	struct kvm_vcpu_stat_generic generic;
575
	u64 hvc_exit_stat;
576 577 578 579
	u64 wfe_exit_stat;
	u64 wfi_exit_stat;
	u64 mmio_exit_user;
	u64 mmio_exit_kernel;
580
	u64 signal_exits;
581
	u64 exits;
582 583
};

584
void kvm_vcpu_preferred_target(struct kvm_vcpu_init *init);
585 586 587 588
unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
M
Marc Zyngier 已提交
589 590 591 592 593 594

unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *);
int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *);

595 596
int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
			      struct kvm_vcpu_events *events);
597

598 599
int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
			      struct kvm_vcpu_events *events);
600 601 602

#define KVM_ARCH_WANT_MMU_NOTIFIER

603 604
void kvm_arm_halt_guest(struct kvm *kvm);
void kvm_arm_resume_guest(struct kvm *kvm);
605

606 607
#define vcpu_has_run_once(vcpu)	!!rcu_access_pointer((vcpu)->pid)

608
#ifndef __KVM_NVHE_HYPERVISOR__
609
#define kvm_call_hyp_nvhe(f, ...)						\
610
	({								\
611 612 613 614 615 616 617
		struct arm_smccc_res res;				\
									\
		arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),		\
				  ##__VA_ARGS__, &res);			\
		WARN_ON(res.a0 != SMCCC_RET_SUCCESS);			\
									\
		res.a1;							\
618 619
	})

620 621 622 623 624 625 626 627 628 629 630
/*
 * The couple of isb() below are there to guarantee the same behaviour
 * on VHE as on !VHE, where the eret to EL1 acts as a context
 * synchronization event.
 */
#define kvm_call_hyp(f, ...)						\
	do {								\
		if (has_vhe()) {					\
			f(__VA_ARGS__);					\
			isb();						\
		} else {						\
631
			kvm_call_hyp_nvhe(f, ##__VA_ARGS__);		\
632 633 634 635 636 637 638 639 640 641 642
		}							\
	} while(0)

#define kvm_call_hyp_ret(f, ...)					\
	({								\
		typeof(f(__VA_ARGS__)) ret;				\
									\
		if (has_vhe()) {					\
			ret = f(__VA_ARGS__);				\
			isb();						\
		} else {						\
643
			ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__);	\
644 645 646 647
		}							\
									\
		ret;							\
	})
648 649 650 651 652
#else /* __KVM_NVHE_HYPERVISOR__ */
#define kvm_call_hyp(f, ...) f(__VA_ARGS__)
#define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
#define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
#endif /* __KVM_NVHE_HYPERVISOR__ */
653

654
void force_vm_exit(const cpumask_t *mask);
655

656 657
int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
658

M
Marc Zyngier 已提交
659 660 661 662 663 664 665 666 667 668 669
int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);

void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);

void kvm_sys_reg_table_init(void);

670 671 672 673
/* MMIO helpers */
void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);

674 675
int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
676

677 678 679
int kvm_perf_init(void);
int kvm_perf_teardown(void);

680
long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
681 682 683
gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
void kvm_update_stolen_time(struct kvm_vcpu *vcpu);

684
bool kvm_arm_pvtime_supported(void);
685 686 687 688 689 690 691
int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
			    struct kvm_device_attr *attr);
int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
			    struct kvm_device_attr *attr);
int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
			    struct kvm_device_attr *attr);

692 693 694 695 696 697 698 699 700
static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
{
	vcpu_arch->steal.base = GPA_INVALID;
}

static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
{
	return (vcpu_arch->steal.base != GPA_INVALID);
}
701

702 703
void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);

704 705
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);

706
DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
707

708
static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
709 710
{
	/* The host's MPIDR is immutable, so let's set it up at boot time */
711
	ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
712 713
}

714 715
void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu);

716 717 718
static inline void kvm_arch_hardware_unsetup(void) {}
static inline void kvm_arch_sync_events(struct kvm *kvm) {}
static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
719
static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {}
720

721
void kvm_arm_init_debug(void);
722
void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu);
723 724
void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
725
void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
726 727 728 729 730 731
int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
			       struct kvm_device_attr *attr);
int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
			       struct kvm_device_attr *attr);
int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
			       struct kvm_device_attr *attr);
732

733 734 735
long kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
				struct kvm_arm_copy_mte_tags *copy_tags);

736 737 738 739 740 741
/* Guest/host FPSIMD coordination helpers */
int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);

742 743
static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
{
744
	return (!has_vhe() && attr->exclude_host);
745 746
}

747 748 749 750
/* Flags for host debug state */
void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu);

751
#ifdef CONFIG_KVM
752 753
void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
void kvm_clr_pmu_events(u32 clr);
754

755 756
void kvm_vcpu_pmu_restore_guest(struct kvm_vcpu *vcpu);
void kvm_vcpu_pmu_restore_host(struct kvm_vcpu *vcpu);
757 758 759
#else
static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
static inline void kvm_clr_pmu_events(u32 clr) {}
760
#endif
761

762 763
void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu);
void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu);
764

765
int kvm_set_ipa_limit(void);
766

767 768 769
#define __KVM_HAVE_ARCH_VM_ALLOC
struct kvm *kvm_arch_alloc_vm(void);

770
int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type);
771

772 773 774 775 776
static inline bool kvm_vm_is_protected(struct kvm *kvm)
{
	return false;
}

777 778
void kvm_init_protected_traps(struct kvm_vcpu *vcpu);

779
int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
780 781 782 783
bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);

#define kvm_arm_vcpu_sve_finalized(vcpu) \
	((vcpu)->arch.flags & KVM_ARM64_VCPU_SVE_FINALIZED)
784

785
#define kvm_has_mte(kvm) (system_supports_mte() && (kvm)->arch.mte_enabled)
786 787 788
#define kvm_vcpu_has_pmu(vcpu)					\
	(test_bit(KVM_ARM_VCPU_PMU_V3, (vcpu)->arch.features))

789
int kvm_trng_call(struct kvm_vcpu *vcpu);
790 791 792 793 794 795 796
#ifdef CONFIG_KVM
extern phys_addr_t hyp_mem_base;
extern phys_addr_t hyp_mem_size;
void __init kvm_hyp_reserve(void);
#else
static inline void kvm_hyp_reserve(void) { }
#endif
797

798
#endif /* __ARM64_KVM_HOST_H__ */