kvm_host.h 20.3 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0-only */
2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Copyright (C) 2012,2013 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * Derived from arch/arm/include/asm/kvm_host.h:
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

#ifndef __ARM64_KVM_HOST_H__
#define __ARM64_KVM_HOST_H__

14
#include <linux/arm-smccc.h>
15
#include <linux/bitmap.h>
16
#include <linux/types.h>
17
#include <linux/jump_label.h>
18
#include <linux/kvm_types.h>
19
#include <linux/percpu.h>
20
#include <asm/arch_gicv3.h>
21
#include <asm/barrier.h>
22
#include <asm/cpufeature.h>
23
#include <asm/cputype.h>
24
#include <asm/daifflags.h>
25
#include <asm/fpsimd.h>
26
#include <asm/kvm.h>
27
#include <asm/kvm_asm.h>
28
#include <asm/thread_info.h>
29

30 31
#define __KVM_HAVE_ARCH_INTC_INITIALIZED

32
#define KVM_USER_MEM_SLOTS 512
33
#define KVM_HALT_POLL_NS_DEFAULT 500000
34 35 36

#include <kvm/arm_vgic.h>
#include <kvm/arm_arch_timer.h>
37
#include <kvm/arm_pmu.h>
38

39 40
#define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS

41
#define KVM_VCPU_MAX_FEATURES 7
42

43
#define KVM_REQ_SLEEP \
44
	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
45
#define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
46
#define KVM_REQ_VCPU_RESET	KVM_ARCH_REQ(2)
47
#define KVM_REQ_RECORD_STEAL	KVM_ARCH_REQ(3)
48
#define KVM_REQ_RELOAD_GICv4	KVM_ARCH_REQ(4)
49

50 51 52
#define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
				     KVM_DIRTY_LOG_INITIALLY_SET)

53 54 55 56 57 58 59 60 61
/*
 * Mode of operation configurable with kvm-arm.mode early param.
 * See Documentation/admin-guide/kernel-parameters.txt for more information.
 */
enum kvm_mode {
	KVM_MODE_DEFAULT,
	KVM_MODE_PROTECTED,
};

62 63
DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

64
extern unsigned int kvm_sve_max_vl;
65
int kvm_arm_init_sve(void);
66

67
int __attribute_const__ kvm_target_cpu(void);
68
int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
69
void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
70
int kvm_arch_vm_ioctl_check_extension(struct kvm *kvm, long ext);
71
void __extended_idmap_trampoline(phys_addr_t boot_pgd, phys_addr_t idmap_start);
72

73
struct kvm_vmid {
74 75 76
	/* The VMID generation used for the virt. memory system */
	u64    vmid_gen;
	u32    vmid;
77 78
};

79
struct kvm_s2_mmu {
80
	struct kvm_vmid vmid;
81

82 83 84 85 86 87 88 89 90 91 92
	/*
	 * stage2 entry level table
	 *
	 * Two kvm_s2_mmu structures in the same VM can point to the same
	 * pgd here.  This happens when running a guest using a
	 * translation regime that isn't affected by its own stage-2
	 * translation, such as a non-VHE hypervisor running at vEL2, or
	 * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
	 * canonical stage-2 page tables.
	 */
	phys_addr_t	pgd_phys;
93
	struct kvm_pgtable *pgt;
94

95 96 97
	/* The last vcpu id that ran on each physical CPU */
	int __percpu *last_vcpu_ran;

98 99 100 101 102 103 104 105 106
	struct kvm *kvm;
};

struct kvm_arch {
	struct kvm_s2_mmu mmu;

	/* VTCR_EL2 value for this VM */
	u64    vtcr;

107 108 109
	/* The maximum number of vCPUs depends on the used GIC model */
	int max_vcpus;

110 111
	/* Interrupt controller */
	struct vgic_dist	vgic;
112 113 114

	/* Mandated version of PSCI */
	u32 psci_version;
115 116 117 118 119 120 121 122

	/*
	 * If we encounter a data abort without valid instruction syndrome
	 * information, report this to user space.  User space can (and
	 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
	 * supported.
	 */
	bool return_nisv_io_abort_to_user;
123

124 125 126 127 128
	/*
	 * VM-wide PMU filter, implemented as a bitmap and big enough for
	 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
	 */
	unsigned long *pmu_filter;
129
	unsigned int pmuver;
130 131 132 133 134 135
};

struct kvm_vcpu_fault_info {
	u32 esr_el2;		/* Hyp Syndrom Register */
	u64 far_el2;		/* Hyp Fault Address Register */
	u64 hpfar_el2;		/* Hyp IPA Fault Address Register */
136
	u64 disr_el1;		/* Deferred [SError] Status Register */
137 138
};

139
enum vcpu_sysreg {
140
	__INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
141 142 143 144 145
	MPIDR_EL1,	/* MultiProcessor Affinity Register */
	CSSELR_EL1,	/* Cache Size Selection Register */
	SCTLR_EL1,	/* System Control Register */
	ACTLR_EL1,	/* Auxiliary Control Register */
	CPACR_EL1,	/* Coprocessor Access Control */
146
	ZCR_EL1,	/* SVE Control */
147 148 149 150
	TTBR0_EL1,	/* Translation Table Base Register 0 */
	TTBR1_EL1,	/* Translation Table Base Register 1 */
	TCR_EL1,	/* Translation Control Register */
	ESR_EL1,	/* Exception Syndrome Register */
151 152
	AFSR0_EL1,	/* Auxiliary Fault Status Register 0 */
	AFSR1_EL1,	/* Auxiliary Fault Status Register 1 */
153 154 155 156 157 158 159 160 161 162 163 164
	FAR_EL1,	/* Fault Address Register */
	MAIR_EL1,	/* Memory Attribute Indirection Register */
	VBAR_EL1,	/* Vector Base Address Register */
	CONTEXTIDR_EL1,	/* Context ID Register */
	TPIDR_EL0,	/* Thread ID, User R/W */
	TPIDRRO_EL0,	/* Thread ID, User R/O */
	TPIDR_EL1,	/* Thread ID, Privileged */
	AMAIR_EL1,	/* Aux Memory Attribute Indirection Register */
	CNTKCTL_EL1,	/* Timer Control Register (EL1) */
	PAR_EL1,	/* Physical Address Register */
	MDSCR_EL1,	/* Monitor Debug System Control Register */
	MDCCINT_EL1,	/* Monitor Debug Comms Channel Interrupt Enable Reg */
165
	DISR_EL1,	/* Deferred Interrupt Status Register */
166

167 168
	/* Performance Monitors Registers */
	PMCR_EL0,	/* Control Register */
169
	PMSELR_EL0,	/* Event Counter Selection Register */
170 171 172
	PMEVCNTR0_EL0,	/* Event Counter Register (0-30) */
	PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
	PMCCNTR_EL0,	/* Cycle Counter Register */
173 174 175
	PMEVTYPER0_EL0,	/* Event Type Register (0-30) */
	PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
	PMCCFILTR_EL0,	/* Cycle Count Filter Register */
176
	PMCNTENSET_EL0,	/* Count Enable Set Register */
177
	PMINTENSET_EL1,	/* Interrupt Enable Set Register */
178
	PMOVSSET_EL0,	/* Overflow Flag Status Set Register */
179
	PMSWINC_EL0,	/* Software Increment Register */
180
	PMUSERENR_EL0,	/* User Enable Register */
181

182 183 184 185 186 187 188 189 190 191 192 193
	/* Pointer Authentication Registers in a strict increasing order. */
	APIAKEYLO_EL1,
	APIAKEYHI_EL1,
	APIBKEYLO_EL1,
	APIBKEYHI_EL1,
	APDAKEYLO_EL1,
	APDAKEYHI_EL1,
	APDBKEYLO_EL1,
	APDBKEYHI_EL1,
	APGAKEYLO_EL1,
	APGAKEYHI_EL1,

194
	ELR_EL1,
195
	SP_EL1,
196
	SPSR_EL1,
197

198 199 200 201 202 203
	CNTVOFF_EL2,
	CNTV_CVAL_EL0,
	CNTV_CTL_EL0,
	CNTP_CVAL_EL0,
	CNTP_CTL_EL0,

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
	/* 32bit specific registers. Keep them at the end of the range */
	DACR32_EL2,	/* Domain Access Control Register */
	IFSR32_EL2,	/* Instruction Fault Status Register */
	FPEXC32_EL2,	/* Floating-Point Exception Control Register */
	DBGVCR32_EL2,	/* Debug Vector Catch Register */

	NR_SYS_REGS	/* Nothing after this line! */
};

/* 32bit mapping */
#define c0_MPIDR	(MPIDR_EL1 * 2)	/* MultiProcessor ID Register */
#define c0_CSSELR	(CSSELR_EL1 * 2)/* Cache Size Selection Register */
#define c1_SCTLR	(SCTLR_EL1 * 2)	/* System Control Register */
#define c1_ACTLR	(ACTLR_EL1 * 2)	/* Auxiliary Control Register */
#define c1_CPACR	(CPACR_EL1 * 2)	/* Coprocessor Access Control */
#define c2_TTBR0	(TTBR0_EL1 * 2)	/* Translation Table Base Register 0 */
#define c2_TTBR0_high	(c2_TTBR0 + 1)	/* TTBR0 top 32 bits */
#define c2_TTBR1	(TTBR1_EL1 * 2)	/* Translation Table Base Register 1 */
#define c2_TTBR1_high	(c2_TTBR1 + 1)	/* TTBR1 top 32 bits */
#define c2_TTBCR	(TCR_EL1 * 2)	/* Translation Table Base Control R. */
#define c3_DACR		(DACR32_EL2 * 2)/* Domain Access Control Register */
#define c5_DFSR		(ESR_EL1 * 2)	/* Data Fault Status Register */
#define c5_IFSR		(IFSR32_EL2 * 2)/* Instruction Fault Status Register */
#define c5_ADFSR	(AFSR0_EL1 * 2)	/* Auxiliary Data Fault Status R */
#define c5_AIFSR	(AFSR1_EL1 * 2)	/* Auxiliary Instr Fault Status R */
#define c6_DFAR		(FAR_EL1 * 2)	/* Data Fault Address Register */
#define c6_IFAR		(c6_DFAR + 1)	/* Instruction Fault Address Register */
#define c7_PAR		(PAR_EL1 * 2)	/* Physical Address Register */
#define c7_PAR_high	(c7_PAR + 1)	/* PAR top 32 bits */
#define c10_PRRR	(MAIR_EL1 * 2)	/* Primary Region Remap Register */
#define c10_NMRR	(c10_PRRR + 1)	/* Normal Memory Remap Register */
#define c12_VBAR	(VBAR_EL1 * 2)	/* Vector Base Address Register */
#define c13_CID		(CONTEXTIDR_EL1 * 2)	/* Context ID Register */
#define c13_TID_URW	(TPIDR_EL0 * 2)	/* Thread ID, User R/W */
#define c13_TID_URO	(TPIDRRO_EL0 * 2)/* Thread ID, User R/O */
#define c13_TID_PRIV	(TPIDR_EL1 * 2)	/* Thread ID, Privileged */
#define c10_AMAIR0	(AMAIR_EL1 * 2)	/* Aux Memory Attr Indirection Reg */
#define c10_AMAIR1	(c10_AMAIR0 + 1)/* Aux Memory Attr Indirection Reg */
#define c14_CNTKCTL	(CNTKCTL_EL1 * 2) /* Timer Control Register (PL1) */

#define cp14_DBGDSCRext	(MDSCR_EL1 * 2)
#define cp14_DBGBCR0	(DBGBCR0_EL1 * 2)
#define cp14_DBGBVR0	(DBGBVR0_EL1 * 2)
#define cp14_DBGBXVR0	(cp14_DBGBVR0 + 1)
#define cp14_DBGWCR0	(DBGWCR0_EL1 * 2)
#define cp14_DBGWVR0	(DBGWVR0_EL1 * 2)
#define cp14_DBGDCCINT	(MDCCINT_EL1 * 2)
251
#define cp14_DBGVCR	(DBGVCR32_EL2 * 2)
252 253 254

#define NR_COPRO_REGS	(NR_SYS_REGS * 2)

255
struct kvm_cpu_context {
256 257
	struct user_pt_regs regs;	/* sp = sp_el0 */

258 259 260 261
	u64	spsr_abt;
	u64	spsr_und;
	u64	spsr_irq;
	u64	spsr_fiq;
262 263 264

	struct user_fpsimd_state fp_regs;

265 266
	union {
		u64 sys_regs[NR_SYS_REGS];
267
		u32 copro[NR_COPRO_REGS];
268
	};
269 270

	struct kvm_vcpu *__hyp_running_vcpu;
271 272
};

273 274 275 276 277
struct kvm_pmu_events {
	u32 events_host;
	u32 events_guest;
};

278 279
struct kvm_host_data {
	struct kvm_cpu_context host_ctxt;
280
	struct kvm_pmu_events pmu_events;
281 282
};

283 284 285 286 287 288 289
struct vcpu_reset_state {
	unsigned long	pc;
	unsigned long	r0;
	bool		be;
	bool		reset;
};

290 291
struct kvm_vcpu_arch {
	struct kvm_cpu_context ctxt;
292 293
	void *sve_state;
	unsigned int sve_max_vl;
294

295 296 297
	/* Stage 2 paging state used by the hardware on next switch */
	struct kvm_s2_mmu *hw_mmu;

298 299
	/* HYP configuration */
	u64 hcr_el2;
300
	u32 mdcr_el2;
301 302 303 304

	/* Exception Information */
	struct kvm_vcpu_fault_info fault;

305 306 307
	/* State of various workarounds, see kvm_asm.h for bit assignment */
	u64 workaround_flags;

308 309
	/* Miscellaneous vcpu state flags */
	u64 flags;
310

311 312 313 314 315
	/*
	 * We maintain more than a single set of debug registers to support
	 * debugging the guest from the host and to maintain separate host and
	 * guest state during world switches. vcpu_debug_state are the debug
	 * registers of the vcpu as the guest sees them.  host_debug_state are
316 317 318 319
	 * the host registers which are saved and restored during
	 * world switches. external_debug_state contains the debug
	 * values we want to debug the guest. This is set via the
	 * KVM_SET_GUEST_DEBUG ioctl.
320 321 322 323 324 325
	 *
	 * debug_ptr points to the set of debug registers that should be loaded
	 * onto the hardware when running the guest.
	 */
	struct kvm_guest_debug_arch *debug_ptr;
	struct kvm_guest_debug_arch vcpu_debug_state;
326
	struct kvm_guest_debug_arch external_debug_state;
327

328 329 330
	struct thread_info *host_thread_info;	/* hyp VA */
	struct user_fpsimd_state *host_fpsimd_state;	/* hyp VA */

331 332 333 334 335 336
	struct {
		/* {Break,watch}point registers */
		struct kvm_guest_debug_arch regs;
		/* Statistical profiling extension */
		u64 pmscr_el1;
	} host_debug_state;
337 338 339 340

	/* VGIC state */
	struct vgic_cpu vgic_cpu;
	struct arch_timer_cpu timer_cpu;
341
	struct kvm_pmu pmu;
342 343 344 345 346 347

	/*
	 * Anything that is not used directly from assembly code goes
	 * here.
	 */

348 349 350 351 352 353 354 355 356 357 358
	/*
	 * Guest registers we preserve during guest debugging.
	 *
	 * These shadow registers are updated by the kvm_handle_sys_reg
	 * trap handler if the guest accesses or updates them while we
	 * are using guest debug.
	 */
	struct {
		u32	mdscr_el1;
	} guest_debug_preserved;

359 360
	/* vcpu power-off state */
	bool power_off;
361

362 363 364
	/* Don't run the guest (internal implementation need) */
	bool pause;

365 366 367 368
	/* Cache some mmu pages needed inside spinlock regions */
	struct kvm_mmu_memory_cache mmu_page_cache;

	/* Target CPU and feature flags */
369
	int target;
370 371 372 373
	DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);

	/* Detect first run of a vcpu */
	bool has_run_once;
374 375 376

	/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
	u64 vsesr_el2;
377

378 379 380
	/* Additional reset state */
	struct vcpu_reset_state	reset_state;

381
	/* True when deferrable sysregs are loaded on the physical CPU,
382
	 * see kvm_vcpu_load_sysregs_vhe and kvm_vcpu_put_sysregs_vhe. */
383
	bool sysregs_loaded_on_cpu;
384 385 386 387 388 389

	/* Guest PV state */
	struct {
		u64 last_steal;
		gpa_t base;
	} steal;
390 391
};

392 393 394 395
/* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
#define vcpu_sve_pffr(vcpu) ((void *)((char *)((vcpu)->arch.sve_state) + \
				      sve_ffr_offset((vcpu)->arch.sve_max_vl)))

396 397 398 399 400 401 402 403 404 405 406 407 408 409
#define vcpu_sve_state_size(vcpu) ({					\
	size_t __size_ret;						\
	unsigned int __vcpu_vq;						\
									\
	if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {		\
		__size_ret = 0;						\
	} else {							\
		__vcpu_vq = sve_vq_from_vl((vcpu)->arch.sve_max_vl);	\
		__size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);		\
	}								\
									\
	__size_ret;							\
})

410 411
/* vcpu_arch flags field values: */
#define KVM_ARM64_DEBUG_DIRTY		(1 << 0)
412 413 414
#define KVM_ARM64_FP_ENABLED		(1 << 1) /* guest FP regs loaded */
#define KVM_ARM64_FP_HOST		(1 << 2) /* host FP regs loaded */
#define KVM_ARM64_HOST_SVE_IN_USE	(1 << 3) /* backup for host TIF_SVE */
415
#define KVM_ARM64_HOST_SVE_ENABLED	(1 << 4) /* SVE enabled for EL0 */
416
#define KVM_ARM64_GUEST_HAS_SVE		(1 << 5) /* SVE exposed to guest */
417
#define KVM_ARM64_VCPU_SVE_FINALIZED	(1 << 6) /* SVE config completed */
418
#define KVM_ARM64_GUEST_HAS_PTRAUTH	(1 << 7) /* PTRAUTH exposed to guest */
419 420 421

#define vcpu_has_sve(vcpu) (system_supports_sve() && \
			    ((vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_SVE))
422

423 424 425 426 427 428 429 430
#ifdef CONFIG_ARM64_PTR_AUTH
#define vcpu_has_ptrauth(vcpu)						\
	((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||		\
	  cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&		\
	 (vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_PTRAUTH)
#else
#define vcpu_has_ptrauth(vcpu)		false
#endif
431

432
#define vcpu_gp_regs(v)		(&(v)->arch.ctxt.regs)
433 434

/*
435 436 437 438 439
 * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
 * memory backed version of a register, and not the one most recently
 * accessed by a running VCPU.  For example, for userspace access or
 * for system registers that are never context switched, but only
 * emulated.
440
 */
441 442 443 444 445
#define __ctxt_sys_reg(c,r)	(&(c)->sys_regs[(r)])

#define ctxt_sys_reg(c,r)	(*__ctxt_sys_reg(c,r))

#define __vcpu_sys_reg(v,r)	(ctxt_sys_reg(&(v)->arch.ctxt, (r)))
446

447
u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
448
void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
449

450 451 452 453
/*
 * CP14 and CP15 live in the same array, as they are backed by the
 * same system registers.
 */
454 455 456 457
#define CPx_BIAS		IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)

#define vcpu_cp14(v,r)		((v)->arch.ctxt.copro[(r) ^ CPx_BIAS])
#define vcpu_cp15(v,r)		((v)->arch.ctxt.copro[(r) ^ CPx_BIAS])
458 459

struct kvm_vm_stat {
460
	ulong remote_tlb_flush;
461 462 463
};

struct kvm_vcpu_stat {
464 465
	u64 halt_successful_poll;
	u64 halt_attempted_poll;
466 467
	u64 halt_poll_success_ns;
	u64 halt_poll_fail_ns;
468 469 470
	u64 halt_poll_invalid;
	u64 halt_wakeup;
	u64 hvc_exit_stat;
471 472 473 474 475
	u64 wfe_exit_stat;
	u64 wfi_exit_stat;
	u64 mmio_exit_user;
	u64 mmio_exit_kernel;
	u64 exits;
476 477
};

478
int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init);
479 480 481 482
unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
483 484
int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
			      struct kvm_vcpu_events *events);
485

486 487
int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
			      struct kvm_vcpu_events *events);
488 489 490

#define KVM_ARCH_WANT_MMU_NOTIFIER
int kvm_unmap_hva_range(struct kvm *kvm,
491
			unsigned long start, unsigned long end, unsigned flags);
492
int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
493 494
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end);
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva);
495

496 497
void kvm_arm_halt_guest(struct kvm *kvm);
void kvm_arm_resume_guest(struct kvm *kvm);
498

499
#define kvm_call_hyp_nvhe(f, ...)						\
500
	({								\
501 502 503 504 505 506 507
		struct arm_smccc_res res;				\
									\
		arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),		\
				  ##__VA_ARGS__, &res);			\
		WARN_ON(res.a0 != SMCCC_RET_SUCCESS);			\
									\
		res.a1;							\
508 509
	})

510 511 512 513 514 515 516 517 518 519 520
/*
 * The couple of isb() below are there to guarantee the same behaviour
 * on VHE as on !VHE, where the eret to EL1 acts as a context
 * synchronization event.
 */
#define kvm_call_hyp(f, ...)						\
	do {								\
		if (has_vhe()) {					\
			f(__VA_ARGS__);					\
			isb();						\
		} else {						\
521
			kvm_call_hyp_nvhe(f, ##__VA_ARGS__);		\
522 523 524 525 526 527 528 529 530 531 532
		}							\
	} while(0)

#define kvm_call_hyp_ret(f, ...)					\
	({								\
		typeof(f(__VA_ARGS__)) ret;				\
									\
		if (has_vhe()) {					\
			ret = f(__VA_ARGS__);				\
			isb();						\
		} else {						\
533
			ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__);	\
534 535 536 537
		}							\
									\
		ret;							\
	})
538

539
void force_vm_exit(const cpumask_t *mask);
540
void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot);
541

542 543
int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
544

545 546 547 548
/* MMIO helpers */
void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);

549 550
int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
551

552 553 554
int kvm_perf_init(void);
int kvm_perf_teardown(void);

555
long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
556 557 558
gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
void kvm_update_stolen_time(struct kvm_vcpu *vcpu);

559
bool kvm_arm_pvtime_supported(void);
560 561 562 563 564 565 566
int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
			    struct kvm_device_attr *attr);
int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
			    struct kvm_device_attr *attr);
int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
			    struct kvm_device_attr *attr);

567 568 569 570 571 572 573 574 575
static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
{
	vcpu_arch->steal.base = GPA_INVALID;
}

static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
{
	return (vcpu_arch->steal.base != GPA_INVALID);
}
576

577 578
void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);

579 580
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);

581
DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
582

583
static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
584 585
{
	/* The host's MPIDR is immutable, so let's set it up at boot time */
586
	ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
587 588
}

589
static inline bool kvm_arch_requires_vhe(void)
590 591 592 593 594 595 596 597
{
	/*
	 * The Arm architecture specifies that implementation of SVE
	 * requires VHE also to be implemented.  The KVM code for arm64
	 * relies on this when SVE is present:
	 */
	if (system_supports_sve())
		return true;
598 599

	return false;
600 601
}

602 603
void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu);

604 605 606
static inline void kvm_arch_hardware_unsetup(void) {}
static inline void kvm_arch_sync_events(struct kvm *kvm) {}
static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
607
static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {}
608

609 610 611
void kvm_arm_init_debug(void);
void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
612
void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
613 614 615 616 617 618
int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
			       struct kvm_device_attr *attr);
int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
			       struct kvm_device_attr *attr);
int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
			       struct kvm_device_attr *attr);
619

620 621 622 623 624 625
/* Guest/host FPSIMD coordination helpers */
int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);

626 627
static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
{
628
	return (!has_vhe() && attr->exclude_host);
629 630
}

631 632
#ifdef CONFIG_KVM /* Avoid conflicts with core headers if CONFIG_KVM=n */
static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
633
{
634
	return kvm_arch_vcpu_run_map_fp(vcpu);
635
}
636 637 638

void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
void kvm_clr_pmu_events(u32 clr);
639

640 641
void kvm_vcpu_pmu_restore_guest(struct kvm_vcpu *vcpu);
void kvm_vcpu_pmu_restore_host(struct kvm_vcpu *vcpu);
642 643 644
#else
static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
static inline void kvm_clr_pmu_events(u32 clr) {}
645
#endif
646

647 648
void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu);
void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu);
649

650
int kvm_set_ipa_limit(void);
651

652 653 654 655
#define __KVM_HAVE_ARCH_VM_ALLOC
struct kvm *kvm_arch_alloc_vm(void);
void kvm_arch_free_vm(struct kvm *kvm);

656
int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type);
657

658
int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
659 660 661 662
bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);

#define kvm_arm_vcpu_sve_finalized(vcpu) \
	((vcpu)->arch.flags & KVM_ARM64_VCPU_SVE_FINALIZED)
663

664
#endif /* __ARM64_KVM_HOST_H__ */