kvm_host.h 21.1 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0-only */
2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Copyright (C) 2012,2013 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * Derived from arch/arm/include/asm/kvm_host.h:
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

#ifndef __ARM64_KVM_HOST_H__
#define __ARM64_KVM_HOST_H__

14
#include <linux/bitmap.h>
15
#include <linux/types.h>
16
#include <linux/jump_label.h>
17
#include <linux/kvm_types.h>
18
#include <linux/percpu.h>
19
#include <asm/arch_gicv3.h>
20
#include <asm/barrier.h>
21
#include <asm/cpufeature.h>
22
#include <asm/cputype.h>
23
#include <asm/daifflags.h>
24
#include <asm/fpsimd.h>
25
#include <asm/kvm.h>
26
#include <asm/kvm_asm.h>
27
#include <asm/thread_info.h>
28

29 30
#define __KVM_HAVE_ARCH_INTC_INITIALIZED

31
#define KVM_USER_MEM_SLOTS 512
32
#define KVM_HALT_POLL_NS_DEFAULT 500000
33 34 35

#include <kvm/arm_vgic.h>
#include <kvm/arm_arch_timer.h>
36
#include <kvm/arm_pmu.h>
37

38 39
#define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS

40
#define KVM_VCPU_MAX_FEATURES 7
41

42
#define KVM_REQ_SLEEP \
43
	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
44
#define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
45
#define KVM_REQ_VCPU_RESET	KVM_ARCH_REQ(2)
46
#define KVM_REQ_RECORD_STEAL	KVM_ARCH_REQ(3)
47
#define KVM_REQ_RELOAD_GICv4	KVM_ARCH_REQ(4)
48

49 50
DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

51
extern unsigned int kvm_sve_max_vl;
52
int kvm_arm_init_sve(void);
53

54
int __attribute_const__ kvm_target_cpu(void);
55
int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
56
void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
57
int kvm_arch_vm_ioctl_check_extension(struct kvm *kvm, long ext);
58
void __extended_idmap_trampoline(phys_addr_t boot_pgd, phys_addr_t idmap_start);
59

60
struct kvm_vmid {
61 62 63
	/* The VMID generation used for the virt. memory system */
	u64    vmid_gen;
	u32    vmid;
64 65 66 67
};

struct kvm_arch {
	struct kvm_vmid vmid;
68

69
	/* stage2 entry level table */
70
	pgd_t *pgd;
71
	phys_addr_t pgd_phys;
72

73 74
	/* VTCR_EL2 value for this VM */
	u64    vtcr;
75

76 77 78
	/* The last vcpu id that ran on each physical CPU */
	int __percpu *last_vcpu_ran;

79 80 81
	/* The maximum number of vCPUs depends on the used GIC model */
	int max_vcpus;

82 83
	/* Interrupt controller */
	struct vgic_dist	vgic;
84 85 86

	/* Mandated version of PSCI */
	u32 psci_version;
87 88 89 90 91 92 93 94

	/*
	 * If we encounter a data abort without valid instruction syndrome
	 * information, report this to user space.  User space can (and
	 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
	 * supported.
	 */
	bool return_nisv_io_abort_to_user;
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
};

#define KVM_NR_MEM_OBJS     40

/*
 * We don't want allocation failures within the mmu code, so we preallocate
 * enough memory for a single page fault in a cache.
 */
struct kvm_mmu_memory_cache {
	int nobjs;
	void *objects[KVM_NR_MEM_OBJS];
};

struct kvm_vcpu_fault_info {
	u32 esr_el2;		/* Hyp Syndrom Register */
	u64 far_el2;		/* Hyp Fault Address Register */
	u64 hpfar_el2;		/* Hyp IPA Fault Address Register */
112
	u64 disr_el1;		/* Deferred [SError] Status Register */
113 114
};

115 116 117 118 119 120 121 122 123 124 125
/*
 * 0 is reserved as an invalid value.
 * Order should be kept in sync with the save/restore code.
 */
enum vcpu_sysreg {
	__INVALID_SYSREG__,
	MPIDR_EL1,	/* MultiProcessor Affinity Register */
	CSSELR_EL1,	/* Cache Size Selection Register */
	SCTLR_EL1,	/* System Control Register */
	ACTLR_EL1,	/* Auxiliary Control Register */
	CPACR_EL1,	/* Coprocessor Access Control */
126
	ZCR_EL1,	/* SVE Control */
127 128 129 130
	TTBR0_EL1,	/* Translation Table Base Register 0 */
	TTBR1_EL1,	/* Translation Table Base Register 1 */
	TCR_EL1,	/* Translation Control Register */
	ESR_EL1,	/* Exception Syndrome Register */
131 132
	AFSR0_EL1,	/* Auxiliary Fault Status Register 0 */
	AFSR1_EL1,	/* Auxiliary Fault Status Register 1 */
133 134 135 136 137 138 139 140 141 142 143 144
	FAR_EL1,	/* Fault Address Register */
	MAIR_EL1,	/* Memory Attribute Indirection Register */
	VBAR_EL1,	/* Vector Base Address Register */
	CONTEXTIDR_EL1,	/* Context ID Register */
	TPIDR_EL0,	/* Thread ID, User R/W */
	TPIDRRO_EL0,	/* Thread ID, User R/O */
	TPIDR_EL1,	/* Thread ID, Privileged */
	AMAIR_EL1,	/* Aux Memory Attribute Indirection Register */
	CNTKCTL_EL1,	/* Timer Control Register (EL1) */
	PAR_EL1,	/* Physical Address Register */
	MDSCR_EL1,	/* Monitor Debug System Control Register */
	MDCCINT_EL1,	/* Monitor Debug Comms Channel Interrupt Enable Reg */
145
	DISR_EL1,	/* Deferred Interrupt Status Register */
146

147 148
	/* Performance Monitors Registers */
	PMCR_EL0,	/* Control Register */
149
	PMSELR_EL0,	/* Event Counter Selection Register */
150 151 152
	PMEVCNTR0_EL0,	/* Event Counter Register (0-30) */
	PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
	PMCCNTR_EL0,	/* Cycle Counter Register */
153 154 155
	PMEVTYPER0_EL0,	/* Event Type Register (0-30) */
	PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
	PMCCFILTR_EL0,	/* Cycle Count Filter Register */
156
	PMCNTENSET_EL0,	/* Count Enable Set Register */
157
	PMINTENSET_EL1,	/* Interrupt Enable Set Register */
158
	PMOVSSET_EL0,	/* Overflow Flag Status Set Register */
159
	PMSWINC_EL0,	/* Software Increment Register */
160
	PMUSERENR_EL0,	/* User Enable Register */
161

162 163 164 165 166 167 168 169 170 171 172 173
	/* Pointer Authentication Registers in a strict increasing order. */
	APIAKEYLO_EL1,
	APIAKEYHI_EL1,
	APIBKEYLO_EL1,
	APIBKEYHI_EL1,
	APDAKEYLO_EL1,
	APDAKEYHI_EL1,
	APDBKEYLO_EL1,
	APDBKEYHI_EL1,
	APGAKEYLO_EL1,
	APGAKEYHI_EL1,

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
	/* 32bit specific registers. Keep them at the end of the range */
	DACR32_EL2,	/* Domain Access Control Register */
	IFSR32_EL2,	/* Instruction Fault Status Register */
	FPEXC32_EL2,	/* Floating-Point Exception Control Register */
	DBGVCR32_EL2,	/* Debug Vector Catch Register */

	NR_SYS_REGS	/* Nothing after this line! */
};

/* 32bit mapping */
#define c0_MPIDR	(MPIDR_EL1 * 2)	/* MultiProcessor ID Register */
#define c0_CSSELR	(CSSELR_EL1 * 2)/* Cache Size Selection Register */
#define c1_SCTLR	(SCTLR_EL1 * 2)	/* System Control Register */
#define c1_ACTLR	(ACTLR_EL1 * 2)	/* Auxiliary Control Register */
#define c1_CPACR	(CPACR_EL1 * 2)	/* Coprocessor Access Control */
#define c2_TTBR0	(TTBR0_EL1 * 2)	/* Translation Table Base Register 0 */
#define c2_TTBR0_high	(c2_TTBR0 + 1)	/* TTBR0 top 32 bits */
#define c2_TTBR1	(TTBR1_EL1 * 2)	/* Translation Table Base Register 1 */
#define c2_TTBR1_high	(c2_TTBR1 + 1)	/* TTBR1 top 32 bits */
#define c2_TTBCR	(TCR_EL1 * 2)	/* Translation Table Base Control R. */
#define c3_DACR		(DACR32_EL2 * 2)/* Domain Access Control Register */
#define c5_DFSR		(ESR_EL1 * 2)	/* Data Fault Status Register */
#define c5_IFSR		(IFSR32_EL2 * 2)/* Instruction Fault Status Register */
#define c5_ADFSR	(AFSR0_EL1 * 2)	/* Auxiliary Data Fault Status R */
#define c5_AIFSR	(AFSR1_EL1 * 2)	/* Auxiliary Instr Fault Status R */
#define c6_DFAR		(FAR_EL1 * 2)	/* Data Fault Address Register */
#define c6_IFAR		(c6_DFAR + 1)	/* Instruction Fault Address Register */
#define c7_PAR		(PAR_EL1 * 2)	/* Physical Address Register */
#define c7_PAR_high	(c7_PAR + 1)	/* PAR top 32 bits */
#define c10_PRRR	(MAIR_EL1 * 2)	/* Primary Region Remap Register */
#define c10_NMRR	(c10_PRRR + 1)	/* Normal Memory Remap Register */
#define c12_VBAR	(VBAR_EL1 * 2)	/* Vector Base Address Register */
#define c13_CID		(CONTEXTIDR_EL1 * 2)	/* Context ID Register */
#define c13_TID_URW	(TPIDR_EL0 * 2)	/* Thread ID, User R/W */
#define c13_TID_URO	(TPIDRRO_EL0 * 2)/* Thread ID, User R/O */
#define c13_TID_PRIV	(TPIDR_EL1 * 2)	/* Thread ID, Privileged */
#define c10_AMAIR0	(AMAIR_EL1 * 2)	/* Aux Memory Attr Indirection Reg */
#define c10_AMAIR1	(c10_AMAIR0 + 1)/* Aux Memory Attr Indirection Reg */
#define c14_CNTKCTL	(CNTKCTL_EL1 * 2) /* Timer Control Register (PL1) */

#define cp14_DBGDSCRext	(MDSCR_EL1 * 2)
#define cp14_DBGBCR0	(DBGBCR0_EL1 * 2)
#define cp14_DBGBVR0	(DBGBVR0_EL1 * 2)
#define cp14_DBGBXVR0	(cp14_DBGBVR0 + 1)
#define cp14_DBGWCR0	(DBGWCR0_EL1 * 2)
#define cp14_DBGWVR0	(DBGWVR0_EL1 * 2)
#define cp14_DBGDCCINT	(MDCCINT_EL1 * 2)

#define NR_COPRO_REGS	(NR_SYS_REGS * 2)

224 225
struct kvm_cpu_context {
	struct kvm_regs	gp_regs;
226 227
	union {
		u64 sys_regs[NR_SYS_REGS];
228
		u32 copro[NR_COPRO_REGS];
229
	};
230 231

	struct kvm_vcpu *__hyp_running_vcpu;
232 233
};

234 235 236 237 238
struct kvm_pmu_events {
	u32 events_host;
	u32 events_guest;
};

239 240
struct kvm_host_data {
	struct kvm_cpu_context host_ctxt;
241
	struct kvm_pmu_events pmu_events;
242 243 244
};

typedef struct kvm_host_data kvm_host_data_t;
245

246 247 248 249 250 251 252
struct vcpu_reset_state {
	unsigned long	pc;
	unsigned long	r0;
	bool		be;
	bool		reset;
};

253 254
struct kvm_vcpu_arch {
	struct kvm_cpu_context ctxt;
255 256
	void *sve_state;
	unsigned int sve_max_vl;
257 258 259

	/* HYP configuration */
	u64 hcr_el2;
260
	u32 mdcr_el2;
261 262 263 264

	/* Exception Information */
	struct kvm_vcpu_fault_info fault;

265 266 267
	/* State of various workarounds, see kvm_asm.h for bit assignment */
	u64 workaround_flags;

268 269
	/* Miscellaneous vcpu state flags */
	u64 flags;
270

271 272 273 274 275
	/*
	 * We maintain more than a single set of debug registers to support
	 * debugging the guest from the host and to maintain separate host and
	 * guest state during world switches. vcpu_debug_state are the debug
	 * registers of the vcpu as the guest sees them.  host_debug_state are
276 277 278 279
	 * the host registers which are saved and restored during
	 * world switches. external_debug_state contains the debug
	 * values we want to debug the guest. This is set via the
	 * KVM_SET_GUEST_DEBUG ioctl.
280 281 282 283 284 285
	 *
	 * debug_ptr points to the set of debug registers that should be loaded
	 * onto the hardware when running the guest.
	 */
	struct kvm_guest_debug_arch *debug_ptr;
	struct kvm_guest_debug_arch vcpu_debug_state;
286
	struct kvm_guest_debug_arch external_debug_state;
287

288
	/* Pointer to host CPU context */
289
	struct kvm_cpu_context *host_cpu_context;
290 291 292 293

	struct thread_info *host_thread_info;	/* hyp VA */
	struct user_fpsimd_state *host_fpsimd_state;	/* hyp VA */

294 295 296 297 298 299
	struct {
		/* {Break,watch}point registers */
		struct kvm_guest_debug_arch regs;
		/* Statistical profiling extension */
		u64 pmscr_el1;
	} host_debug_state;
300 301 302 303

	/* VGIC state */
	struct vgic_cpu vgic_cpu;
	struct arch_timer_cpu timer_cpu;
304
	struct kvm_pmu pmu;
305 306 307 308 309 310

	/*
	 * Anything that is not used directly from assembly code goes
	 * here.
	 */

311 312 313 314 315 316 317 318 319 320 321
	/*
	 * Guest registers we preserve during guest debugging.
	 *
	 * These shadow registers are updated by the kvm_handle_sys_reg
	 * trap handler if the guest accesses or updates them while we
	 * are using guest debug.
	 */
	struct {
		u32	mdscr_el1;
	} guest_debug_preserved;

322 323
	/* vcpu power-off state */
	bool power_off;
324

325 326 327
	/* Don't run the guest (internal implementation need) */
	bool pause;

328 329 330 331
	/* Cache some mmu pages needed inside spinlock regions */
	struct kvm_mmu_memory_cache mmu_page_cache;

	/* Target CPU and feature flags */
332
	int target;
333 334 335 336
	DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);

	/* Detect first run of a vcpu */
	bool has_run_once;
337 338 339

	/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
	u64 vsesr_el2;
340

341 342 343
	/* Additional reset state */
	struct vcpu_reset_state	reset_state;

344 345 346
	/* True when deferrable sysregs are loaded on the physical CPU,
	 * see kvm_vcpu_load_sysregs and kvm_vcpu_put_sysregs. */
	bool sysregs_loaded_on_cpu;
347 348 349 350 351 352 353

	/* Guest PV state */
	struct {
		u64 steal;
		u64 last_steal;
		gpa_t base;
	} steal;
354 355
};

356 357 358 359
/* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
#define vcpu_sve_pffr(vcpu) ((void *)((char *)((vcpu)->arch.sve_state) + \
				      sve_ffr_offset((vcpu)->arch.sve_max_vl)))

360 361 362 363 364 365 366 367 368 369 370 371 372 373
#define vcpu_sve_state_size(vcpu) ({					\
	size_t __size_ret;						\
	unsigned int __vcpu_vq;						\
									\
	if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {		\
		__size_ret = 0;						\
	} else {							\
		__vcpu_vq = sve_vq_from_vl((vcpu)->arch.sve_max_vl);	\
		__size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);		\
	}								\
									\
	__size_ret;							\
})

374 375
/* vcpu_arch flags field values: */
#define KVM_ARM64_DEBUG_DIRTY		(1 << 0)
376 377 378
#define KVM_ARM64_FP_ENABLED		(1 << 1) /* guest FP regs loaded */
#define KVM_ARM64_FP_HOST		(1 << 2) /* host FP regs loaded */
#define KVM_ARM64_HOST_SVE_IN_USE	(1 << 3) /* backup for host TIF_SVE */
379
#define KVM_ARM64_HOST_SVE_ENABLED	(1 << 4) /* SVE enabled for EL0 */
380
#define KVM_ARM64_GUEST_HAS_SVE		(1 << 5) /* SVE exposed to guest */
381
#define KVM_ARM64_VCPU_SVE_FINALIZED	(1 << 6) /* SVE config completed */
382
#define KVM_ARM64_GUEST_HAS_PTRAUTH	(1 << 7) /* PTRAUTH exposed to guest */
383 384 385

#define vcpu_has_sve(vcpu) (system_supports_sve() && \
			    ((vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_SVE))
386

387 388 389 390
#define vcpu_has_ptrauth(vcpu)	((system_supports_address_auth() || \
				  system_supports_generic_auth()) && \
				 ((vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_PTRAUTH))

391
#define vcpu_gp_regs(v)		(&(v)->arch.ctxt.gp_regs)
392 393 394 395 396 397 398 399 400

/*
 * Only use __vcpu_sys_reg if you know you want the memory backed version of a
 * register, and not the one most recently accessed by a running VCPU.  For
 * example, for userspace access or for system registers that are never context
 * switched, but only emulated.
 */
#define __vcpu_sys_reg(v,r)	((v)->arch.ctxt.sys_regs[(r)])

401
u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
402
void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
403

404 405 406 407 408 409
/*
 * CP14 and CP15 live in the same array, as they are backed by the
 * same system registers.
 */
#define vcpu_cp14(v,r)		((v)->arch.ctxt.copro[(r)])
#define vcpu_cp15(v,r)		((v)->arch.ctxt.copro[(r)])
410 411

struct kvm_vm_stat {
412
	ulong remote_tlb_flush;
413 414 415
};

struct kvm_vcpu_stat {
416 417 418 419 420
	u64 halt_successful_poll;
	u64 halt_attempted_poll;
	u64 halt_poll_invalid;
	u64 halt_wakeup;
	u64 hvc_exit_stat;
421 422 423 424 425
	u64 wfe_exit_stat;
	u64 wfi_exit_stat;
	u64 mmio_exit_user;
	u64 mmio_exit_kernel;
	u64 exits;
426 427
};

428
int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init);
429 430 431 432
unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
433 434
int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
			      struct kvm_vcpu_events *events);
435

436 437
int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
			      struct kvm_vcpu_events *events);
438 439 440 441

#define KVM_ARCH_WANT_MMU_NOTIFIER
int kvm_unmap_hva_range(struct kvm *kvm,
			unsigned long start, unsigned long end);
442
int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
443 444
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end);
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva);
445

446 447
void kvm_arm_halt_guest(struct kvm *kvm);
void kvm_arm_resume_guest(struct kvm *kvm);
448

449
u64 __kvm_call_hyp(void *hypfn, ...);
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479

/*
 * The couple of isb() below are there to guarantee the same behaviour
 * on VHE as on !VHE, where the eret to EL1 acts as a context
 * synchronization event.
 */
#define kvm_call_hyp(f, ...)						\
	do {								\
		if (has_vhe()) {					\
			f(__VA_ARGS__);					\
			isb();						\
		} else {						\
			__kvm_call_hyp(kvm_ksym_ref(f), ##__VA_ARGS__); \
		}							\
	} while(0)

#define kvm_call_hyp_ret(f, ...)					\
	({								\
		typeof(f(__VA_ARGS__)) ret;				\
									\
		if (has_vhe()) {					\
			ret = f(__VA_ARGS__);				\
			isb();						\
		} else {						\
			ret = __kvm_call_hyp(kvm_ksym_ref(f),		\
					     ##__VA_ARGS__);		\
		}							\
									\
		ret;							\
	})
480

481
void force_vm_exit(const cpumask_t *mask);
482
void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot);
483 484 485

int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
		int exception_index);
486 487
void handle_exit_early(struct kvm_vcpu *vcpu, struct kvm_run *run,
		       int exception_index);
488

489 490 491 492 493 494 495 496
/* MMIO helpers */
void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);

int kvm_handle_mmio_return(struct kvm_vcpu *vcpu, struct kvm_run *run);
int io_mem_abort(struct kvm_vcpu *vcpu, struct kvm_run *run,
		 phys_addr_t fault_ipa);

497 498 499
int kvm_perf_init(void);
int kvm_perf_teardown(void);

500
long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
501 502 503
gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
void kvm_update_stolen_time(struct kvm_vcpu *vcpu);

504 505 506 507 508 509 510
int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
			    struct kvm_device_attr *attr);
int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
			    struct kvm_device_attr *attr);
int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
			    struct kvm_device_attr *attr);

511 512 513 514 515 516 517 518 519
static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
{
	vcpu_arch->steal.base = GPA_INVALID;
}

static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
{
	return (vcpu_arch->steal.base != GPA_INVALID);
}
520

521 522
void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);

523 524
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);

525
DECLARE_PER_CPU(kvm_host_data_t, kvm_host_data);
526

527
static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
528 529
{
	/* The host's MPIDR is immutable, so let's set it up at boot time */
530
	cpu_ctxt->sys_regs[MPIDR_EL1] = read_cpuid_mpidr();
531 532
}

533 534
void __kvm_enable_ssbs(void);

M
Marc Zyngier 已提交
535
static inline void __cpu_init_hyp_mode(phys_addr_t pgd_ptr,
536 537 538
				       unsigned long hyp_stack_ptr,
				       unsigned long vector_ptr)
{
539 540 541 542 543
	/*
	 * Calculate the raw per-cpu offset without a translation from the
	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
	 * so that we can use adr_l to access per-cpu variables in EL2.
	 */
544 545
	u64 tpidr_el2 = ((u64)this_cpu_ptr(&kvm_host_data) -
			 (u64)kvm_ksym_ref(kvm_host_data));
546

547
	/*
548 549 550 551
	 * Call initialization code, and switch to the full blown HYP code.
	 * If the cpucaps haven't been finalized yet, something has gone very
	 * wrong, and hyp will crash and burn when it uses any
	 * cpus_have_const_cap() wrapper.
552
	 */
553
	BUG_ON(!system_capabilities_finalized());
554
	__kvm_call_hyp((void *)pgd_ptr, hyp_stack_ptr, vector_ptr, tpidr_el2);
555 556 557 558 559 560 561 562 563

	/*
	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
	 * at EL2.
	 */
	if (!has_vhe() && this_cpu_has_cap(ARM64_SSBS) &&
	    arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
		kvm_call_hyp(__kvm_enable_ssbs);
	}
564
}
565

566
static inline bool kvm_arch_requires_vhe(void)
567 568 569 570 571 572 573 574
{
	/*
	 * The Arm architecture specifies that implementation of SVE
	 * requires VHE also to be implemented.  The KVM code for arm64
	 * relies on this when SVE is present:
	 */
	if (system_supports_sve())
		return true;
575

576
	/* Some implementations have defects that confine them to VHE */
577
	if (cpus_have_cap(ARM64_WORKAROUND_SPECULATIVE_AT_VHE))
578 579
		return true;

580
	return false;
581 582
}

583 584
void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu);

585 586 587
static inline void kvm_arch_hardware_unsetup(void) {}
static inline void kvm_arch_sync_events(struct kvm *kvm) {}
static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
588
static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {}
589

590 591 592
void kvm_arm_init_debug(void);
void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
593
void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
594 595 596 597 598 599
int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
			       struct kvm_device_attr *attr);
int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
			       struct kvm_device_attr *attr);
int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
			       struct kvm_device_attr *attr);
600

601
static inline void __cpu_init_stage2(void) {}
602

603 604 605 606 607 608
/* Guest/host FPSIMD coordination helpers */
int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);

609 610
static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
{
611
	return (!has_vhe() && attr->exclude_host);
612 613
}

614 615
#ifdef CONFIG_KVM /* Avoid conflicts with core headers if CONFIG_KVM=n */
static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
616
{
617
	return kvm_arch_vcpu_run_map_fp(vcpu);
618
}
619 620 621

void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
void kvm_clr_pmu_events(u32 clr);
622

623 624
void kvm_vcpu_pmu_restore_guest(struct kvm_vcpu *vcpu);
void kvm_vcpu_pmu_restore_host(struct kvm_vcpu *vcpu);
625 626 627
#else
static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
static inline void kvm_clr_pmu_events(u32 clr) {}
628
#endif
629

630 631 632 633 634
#define KVM_BP_HARDEN_UNKNOWN		-1
#define KVM_BP_HARDEN_WA_NEEDED		0
#define KVM_BP_HARDEN_NOT_REQUIRED	1

static inline int kvm_arm_harden_branch_predictor(void)
635
{
636 637 638 639 640 641 642 643 644
	switch (get_spectre_v2_workaround_state()) {
	case ARM64_BP_HARDEN_WA_NEEDED:
		return KVM_BP_HARDEN_WA_NEEDED;
	case ARM64_BP_HARDEN_NOT_REQUIRED:
		return KVM_BP_HARDEN_NOT_REQUIRED;
	case ARM64_BP_HARDEN_UNKNOWN:
	default:
		return KVM_BP_HARDEN_UNKNOWN;
	}
645 646
}

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
#define KVM_SSBD_UNKNOWN		-1
#define KVM_SSBD_FORCE_DISABLE		0
#define KVM_SSBD_KERNEL		1
#define KVM_SSBD_FORCE_ENABLE		2
#define KVM_SSBD_MITIGATED		3

static inline int kvm_arm_have_ssbd(void)
{
	switch (arm64_get_ssbd_state()) {
	case ARM64_SSBD_FORCE_DISABLE:
		return KVM_SSBD_FORCE_DISABLE;
	case ARM64_SSBD_KERNEL:
		return KVM_SSBD_KERNEL;
	case ARM64_SSBD_FORCE_ENABLE:
		return KVM_SSBD_FORCE_ENABLE;
	case ARM64_SSBD_MITIGATED:
		return KVM_SSBD_MITIGATED;
	case ARM64_SSBD_UNKNOWN:
	default:
		return KVM_SSBD_UNKNOWN;
	}
}

670 671 672
void kvm_vcpu_load_sysregs(struct kvm_vcpu *vcpu);
void kvm_vcpu_put_sysregs(struct kvm_vcpu *vcpu);

673 674
void kvm_set_ipa_limit(void);

675 676 677 678
#define __KVM_HAVE_ARCH_VM_ALLOC
struct kvm *kvm_arch_alloc_vm(void);
void kvm_arch_free_vm(struct kvm *kvm);

679
int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type);
680

681
int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
682 683 684 685
bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);

#define kvm_arm_vcpu_sve_finalized(vcpu) \
	((vcpu)->arch.flags & KVM_ARM64_VCPU_SVE_FINALIZED)
686

687
#endif /* __ARM64_KVM_HOST_H__ */