kvm_host.h 20.9 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0-only */
2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Copyright (C) 2012,2013 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * Derived from arch/arm/include/asm/kvm_host.h:
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

#ifndef __ARM64_KVM_HOST_H__
#define __ARM64_KVM_HOST_H__

14
#include <linux/bitmap.h>
15
#include <linux/types.h>
16
#include <linux/jump_label.h>
17
#include <linux/kvm_types.h>
18
#include <linux/percpu.h>
19
#include <asm/arch_gicv3.h>
20
#include <asm/barrier.h>
21
#include <asm/cpufeature.h>
22
#include <asm/cputype.h>
23
#include <asm/daifflags.h>
24
#include <asm/fpsimd.h>
25
#include <asm/kvm.h>
26
#include <asm/kvm_asm.h>
27
#include <asm/thread_info.h>
28

29 30
#define __KVM_HAVE_ARCH_INTC_INITIALIZED

31
#define KVM_USER_MEM_SLOTS 512
32
#define KVM_HALT_POLL_NS_DEFAULT 500000
33 34 35

#include <kvm/arm_vgic.h>
#include <kvm/arm_arch_timer.h>
36
#include <kvm/arm_pmu.h>
37

38 39
#define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS

40
#define KVM_VCPU_MAX_FEATURES 7
41

42
#define KVM_REQ_SLEEP \
43
	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
44
#define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
45
#define KVM_REQ_VCPU_RESET	KVM_ARCH_REQ(2)
46
#define KVM_REQ_RECORD_STEAL	KVM_ARCH_REQ(3)
47
#define KVM_REQ_RELOAD_GICv4	KVM_ARCH_REQ(4)
48

49 50 51
#define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
				     KVM_DIRTY_LOG_INITIALLY_SET)

52 53
DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

54
extern unsigned int kvm_sve_max_vl;
55
int kvm_arm_init_sve(void);
56

57
int __attribute_const__ kvm_target_cpu(void);
58
int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
59
void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
60
int kvm_arch_vm_ioctl_check_extension(struct kvm *kvm, long ext);
61
void __extended_idmap_trampoline(phys_addr_t boot_pgd, phys_addr_t idmap_start);
62

63
struct kvm_vmid {
64 65 66
	/* The VMID generation used for the virt. memory system */
	u64    vmid_gen;
	u32    vmid;
67 68
};

69
struct kvm_s2_mmu {
70
	struct kvm_vmid vmid;
71

72 73 74 75 76 77 78 79 80 81 82 83
	/*
	 * stage2 entry level table
	 *
	 * Two kvm_s2_mmu structures in the same VM can point to the same
	 * pgd here.  This happens when running a guest using a
	 * translation regime that isn't affected by its own stage-2
	 * translation, such as a non-VHE hypervisor running at vEL2, or
	 * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
	 * canonical stage-2 page tables.
	 */
	pgd_t		*pgd;
	phys_addr_t	pgd_phys;
84

85 86 87
	/* The last vcpu id that ran on each physical CPU */
	int __percpu *last_vcpu_ran;

88 89 90 91 92 93 94 95 96
	struct kvm *kvm;
};

struct kvm_arch {
	struct kvm_s2_mmu mmu;

	/* VTCR_EL2 value for this VM */
	u64    vtcr;

97 98 99
	/* The maximum number of vCPUs depends on the used GIC model */
	int max_vcpus;

100 101
	/* Interrupt controller */
	struct vgic_dist	vgic;
102 103 104

	/* Mandated version of PSCI */
	u32 psci_version;
105 106 107 108 109 110 111 112

	/*
	 * If we encounter a data abort without valid instruction syndrome
	 * information, report this to user space.  User space can (and
	 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
	 * supported.
	 */
	bool return_nisv_io_abort_to_user;
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
};

#define KVM_NR_MEM_OBJS     40

/*
 * We don't want allocation failures within the mmu code, so we preallocate
 * enough memory for a single page fault in a cache.
 */
struct kvm_mmu_memory_cache {
	int nobjs;
	void *objects[KVM_NR_MEM_OBJS];
};

struct kvm_vcpu_fault_info {
	u32 esr_el2;		/* Hyp Syndrom Register */
	u64 far_el2;		/* Hyp Fault Address Register */
	u64 hpfar_el2;		/* Hyp IPA Fault Address Register */
130
	u64 disr_el1;		/* Deferred [SError] Status Register */
131 132
};

133
enum vcpu_sysreg {
134
	__INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
135 136 137 138 139
	MPIDR_EL1,	/* MultiProcessor Affinity Register */
	CSSELR_EL1,	/* Cache Size Selection Register */
	SCTLR_EL1,	/* System Control Register */
	ACTLR_EL1,	/* Auxiliary Control Register */
	CPACR_EL1,	/* Coprocessor Access Control */
140
	ZCR_EL1,	/* SVE Control */
141 142 143 144
	TTBR0_EL1,	/* Translation Table Base Register 0 */
	TTBR1_EL1,	/* Translation Table Base Register 1 */
	TCR_EL1,	/* Translation Control Register */
	ESR_EL1,	/* Exception Syndrome Register */
145 146
	AFSR0_EL1,	/* Auxiliary Fault Status Register 0 */
	AFSR1_EL1,	/* Auxiliary Fault Status Register 1 */
147 148 149 150 151 152 153 154 155 156 157 158
	FAR_EL1,	/* Fault Address Register */
	MAIR_EL1,	/* Memory Attribute Indirection Register */
	VBAR_EL1,	/* Vector Base Address Register */
	CONTEXTIDR_EL1,	/* Context ID Register */
	TPIDR_EL0,	/* Thread ID, User R/W */
	TPIDRRO_EL0,	/* Thread ID, User R/O */
	TPIDR_EL1,	/* Thread ID, Privileged */
	AMAIR_EL1,	/* Aux Memory Attribute Indirection Register */
	CNTKCTL_EL1,	/* Timer Control Register (EL1) */
	PAR_EL1,	/* Physical Address Register */
	MDSCR_EL1,	/* Monitor Debug System Control Register */
	MDCCINT_EL1,	/* Monitor Debug Comms Channel Interrupt Enable Reg */
159
	DISR_EL1,	/* Deferred Interrupt Status Register */
160

161 162
	/* Performance Monitors Registers */
	PMCR_EL0,	/* Control Register */
163
	PMSELR_EL0,	/* Event Counter Selection Register */
164 165 166
	PMEVCNTR0_EL0,	/* Event Counter Register (0-30) */
	PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
	PMCCNTR_EL0,	/* Cycle Counter Register */
167 168 169
	PMEVTYPER0_EL0,	/* Event Type Register (0-30) */
	PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
	PMCCFILTR_EL0,	/* Cycle Count Filter Register */
170
	PMCNTENSET_EL0,	/* Count Enable Set Register */
171
	PMINTENSET_EL1,	/* Interrupt Enable Set Register */
172
	PMOVSSET_EL0,	/* Overflow Flag Status Set Register */
173
	PMSWINC_EL0,	/* Software Increment Register */
174
	PMUSERENR_EL0,	/* User Enable Register */
175

176 177 178 179 180 181 182 183 184 185 186 187
	/* Pointer Authentication Registers in a strict increasing order. */
	APIAKEYLO_EL1,
	APIAKEYHI_EL1,
	APIBKEYLO_EL1,
	APIBKEYHI_EL1,
	APDAKEYLO_EL1,
	APDAKEYHI_EL1,
	APDBKEYLO_EL1,
	APDBKEYHI_EL1,
	APGAKEYLO_EL1,
	APGAKEYHI_EL1,

188 189
	ELR_EL1,

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
	/* 32bit specific registers. Keep them at the end of the range */
	DACR32_EL2,	/* Domain Access Control Register */
	IFSR32_EL2,	/* Instruction Fault Status Register */
	FPEXC32_EL2,	/* Floating-Point Exception Control Register */
	DBGVCR32_EL2,	/* Debug Vector Catch Register */

	NR_SYS_REGS	/* Nothing after this line! */
};

/* 32bit mapping */
#define c0_MPIDR	(MPIDR_EL1 * 2)	/* MultiProcessor ID Register */
#define c0_CSSELR	(CSSELR_EL1 * 2)/* Cache Size Selection Register */
#define c1_SCTLR	(SCTLR_EL1 * 2)	/* System Control Register */
#define c1_ACTLR	(ACTLR_EL1 * 2)	/* Auxiliary Control Register */
#define c1_CPACR	(CPACR_EL1 * 2)	/* Coprocessor Access Control */
#define c2_TTBR0	(TTBR0_EL1 * 2)	/* Translation Table Base Register 0 */
#define c2_TTBR0_high	(c2_TTBR0 + 1)	/* TTBR0 top 32 bits */
#define c2_TTBR1	(TTBR1_EL1 * 2)	/* Translation Table Base Register 1 */
#define c2_TTBR1_high	(c2_TTBR1 + 1)	/* TTBR1 top 32 bits */
#define c2_TTBCR	(TCR_EL1 * 2)	/* Translation Table Base Control R. */
#define c3_DACR		(DACR32_EL2 * 2)/* Domain Access Control Register */
#define c5_DFSR		(ESR_EL1 * 2)	/* Data Fault Status Register */
#define c5_IFSR		(IFSR32_EL2 * 2)/* Instruction Fault Status Register */
#define c5_ADFSR	(AFSR0_EL1 * 2)	/* Auxiliary Data Fault Status R */
#define c5_AIFSR	(AFSR1_EL1 * 2)	/* Auxiliary Instr Fault Status R */
#define c6_DFAR		(FAR_EL1 * 2)	/* Data Fault Address Register */
#define c6_IFAR		(c6_DFAR + 1)	/* Instruction Fault Address Register */
#define c7_PAR		(PAR_EL1 * 2)	/* Physical Address Register */
#define c7_PAR_high	(c7_PAR + 1)	/* PAR top 32 bits */
#define c10_PRRR	(MAIR_EL1 * 2)	/* Primary Region Remap Register */
#define c10_NMRR	(c10_PRRR + 1)	/* Normal Memory Remap Register */
#define c12_VBAR	(VBAR_EL1 * 2)	/* Vector Base Address Register */
#define c13_CID		(CONTEXTIDR_EL1 * 2)	/* Context ID Register */
#define c13_TID_URW	(TPIDR_EL0 * 2)	/* Thread ID, User R/W */
#define c13_TID_URO	(TPIDRRO_EL0 * 2)/* Thread ID, User R/O */
#define c13_TID_PRIV	(TPIDR_EL1 * 2)	/* Thread ID, Privileged */
#define c10_AMAIR0	(AMAIR_EL1 * 2)	/* Aux Memory Attr Indirection Reg */
#define c10_AMAIR1	(c10_AMAIR0 + 1)/* Aux Memory Attr Indirection Reg */
#define c14_CNTKCTL	(CNTKCTL_EL1 * 2) /* Timer Control Register (PL1) */

#define cp14_DBGDSCRext	(MDSCR_EL1 * 2)
#define cp14_DBGBCR0	(DBGBCR0_EL1 * 2)
#define cp14_DBGBVR0	(DBGBVR0_EL1 * 2)
#define cp14_DBGBXVR0	(cp14_DBGBVR0 + 1)
#define cp14_DBGWCR0	(DBGWCR0_EL1 * 2)
#define cp14_DBGWVR0	(DBGWVR0_EL1 * 2)
#define cp14_DBGDCCINT	(MDCCINT_EL1 * 2)

#define NR_COPRO_REGS	(NR_SYS_REGS * 2)

240
struct kvm_cpu_context {
241 242 243 244 245 246 247 248
	struct user_pt_regs regs;	/* sp = sp_el0 */

	u64	sp_el1;

	u64	spsr[KVM_NR_SPSR];

	struct user_fpsimd_state fp_regs;

249 250
	union {
		u64 sys_regs[NR_SYS_REGS];
251
		u32 copro[NR_COPRO_REGS];
252
	};
253 254

	struct kvm_vcpu *__hyp_running_vcpu;
255 256
};

257 258 259 260 261
struct kvm_pmu_events {
	u32 events_host;
	u32 events_guest;
};

262 263
struct kvm_host_data {
	struct kvm_cpu_context host_ctxt;
264
	struct kvm_pmu_events pmu_events;
265 266 267
};

typedef struct kvm_host_data kvm_host_data_t;
268

269 270 271 272 273 274 275
struct vcpu_reset_state {
	unsigned long	pc;
	unsigned long	r0;
	bool		be;
	bool		reset;
};

276 277
struct kvm_vcpu_arch {
	struct kvm_cpu_context ctxt;
278 279
	void *sve_state;
	unsigned int sve_max_vl;
280

281 282 283
	/* Stage 2 paging state used by the hardware on next switch */
	struct kvm_s2_mmu *hw_mmu;

284 285
	/* HYP configuration */
	u64 hcr_el2;
286
	u32 mdcr_el2;
287 288 289 290

	/* Exception Information */
	struct kvm_vcpu_fault_info fault;

291 292 293
	/* State of various workarounds, see kvm_asm.h for bit assignment */
	u64 workaround_flags;

294 295
	/* Miscellaneous vcpu state flags */
	u64 flags;
296

297 298 299 300 301
	/*
	 * We maintain more than a single set of debug registers to support
	 * debugging the guest from the host and to maintain separate host and
	 * guest state during world switches. vcpu_debug_state are the debug
	 * registers of the vcpu as the guest sees them.  host_debug_state are
302 303 304 305
	 * the host registers which are saved and restored during
	 * world switches. external_debug_state contains the debug
	 * values we want to debug the guest. This is set via the
	 * KVM_SET_GUEST_DEBUG ioctl.
306 307 308 309 310 311
	 *
	 * debug_ptr points to the set of debug registers that should be loaded
	 * onto the hardware when running the guest.
	 */
	struct kvm_guest_debug_arch *debug_ptr;
	struct kvm_guest_debug_arch vcpu_debug_state;
312
	struct kvm_guest_debug_arch external_debug_state;
313

314 315 316
	struct thread_info *host_thread_info;	/* hyp VA */
	struct user_fpsimd_state *host_fpsimd_state;	/* hyp VA */

317 318 319 320 321 322
	struct {
		/* {Break,watch}point registers */
		struct kvm_guest_debug_arch regs;
		/* Statistical profiling extension */
		u64 pmscr_el1;
	} host_debug_state;
323 324 325 326

	/* VGIC state */
	struct vgic_cpu vgic_cpu;
	struct arch_timer_cpu timer_cpu;
327
	struct kvm_pmu pmu;
328 329 330 331 332 333

	/*
	 * Anything that is not used directly from assembly code goes
	 * here.
	 */

334 335 336 337 338 339 340 341 342 343 344
	/*
	 * Guest registers we preserve during guest debugging.
	 *
	 * These shadow registers are updated by the kvm_handle_sys_reg
	 * trap handler if the guest accesses or updates them while we
	 * are using guest debug.
	 */
	struct {
		u32	mdscr_el1;
	} guest_debug_preserved;

345 346
	/* vcpu power-off state */
	bool power_off;
347

348 349 350
	/* Don't run the guest (internal implementation need) */
	bool pause;

351 352 353 354
	/* Cache some mmu pages needed inside spinlock regions */
	struct kvm_mmu_memory_cache mmu_page_cache;

	/* Target CPU and feature flags */
355
	int target;
356 357 358 359
	DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);

	/* Detect first run of a vcpu */
	bool has_run_once;
360 361 362

	/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
	u64 vsesr_el2;
363

364 365 366
	/* Additional reset state */
	struct vcpu_reset_state	reset_state;

367
	/* True when deferrable sysregs are loaded on the physical CPU,
368
	 * see kvm_vcpu_load_sysregs_vhe and kvm_vcpu_put_sysregs_vhe. */
369
	bool sysregs_loaded_on_cpu;
370 371 372 373 374 375 376

	/* Guest PV state */
	struct {
		u64 steal;
		u64 last_steal;
		gpa_t base;
	} steal;
377 378
};

379 380 381 382
/* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
#define vcpu_sve_pffr(vcpu) ((void *)((char *)((vcpu)->arch.sve_state) + \
				      sve_ffr_offset((vcpu)->arch.sve_max_vl)))

383 384 385 386 387 388 389 390 391 392 393 394 395 396
#define vcpu_sve_state_size(vcpu) ({					\
	size_t __size_ret;						\
	unsigned int __vcpu_vq;						\
									\
	if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {		\
		__size_ret = 0;						\
	} else {							\
		__vcpu_vq = sve_vq_from_vl((vcpu)->arch.sve_max_vl);	\
		__size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);		\
	}								\
									\
	__size_ret;							\
})

397 398
/* vcpu_arch flags field values: */
#define KVM_ARM64_DEBUG_DIRTY		(1 << 0)
399 400 401
#define KVM_ARM64_FP_ENABLED		(1 << 1) /* guest FP regs loaded */
#define KVM_ARM64_FP_HOST		(1 << 2) /* host FP regs loaded */
#define KVM_ARM64_HOST_SVE_IN_USE	(1 << 3) /* backup for host TIF_SVE */
402
#define KVM_ARM64_HOST_SVE_ENABLED	(1 << 4) /* SVE enabled for EL0 */
403
#define KVM_ARM64_GUEST_HAS_SVE		(1 << 5) /* SVE exposed to guest */
404
#define KVM_ARM64_VCPU_SVE_FINALIZED	(1 << 6) /* SVE config completed */
405
#define KVM_ARM64_GUEST_HAS_PTRAUTH	(1 << 7) /* PTRAUTH exposed to guest */
406 407 408

#define vcpu_has_sve(vcpu) (system_supports_sve() && \
			    ((vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_SVE))
409

410 411 412 413
#define vcpu_has_ptrauth(vcpu)	((system_supports_address_auth() || \
				  system_supports_generic_auth()) && \
				 ((vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_PTRAUTH))

414
#define vcpu_gp_regs(v)		(&(v)->arch.ctxt.regs)
415 416

/*
417 418 419 420 421
 * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
 * memory backed version of a register, and not the one most recently
 * accessed by a running VCPU.  For example, for userspace access or
 * for system registers that are never context switched, but only
 * emulated.
422
 */
423 424 425 426 427
#define __ctxt_sys_reg(c,r)	(&(c)->sys_regs[(r)])

#define ctxt_sys_reg(c,r)	(*__ctxt_sys_reg(c,r))

#define __vcpu_sys_reg(v,r)	(ctxt_sys_reg(&(v)->arch.ctxt, (r)))
428

429
u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
430
void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
431

432 433 434 435
/*
 * CP14 and CP15 live in the same array, as they are backed by the
 * same system registers.
 */
436 437 438 439
#define CPx_BIAS		IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)

#define vcpu_cp14(v,r)		((v)->arch.ctxt.copro[(r) ^ CPx_BIAS])
#define vcpu_cp15(v,r)		((v)->arch.ctxt.copro[(r) ^ CPx_BIAS])
440 441

struct kvm_vm_stat {
442
	ulong remote_tlb_flush;
443 444 445
};

struct kvm_vcpu_stat {
446 447
	u64 halt_successful_poll;
	u64 halt_attempted_poll;
448 449
	u64 halt_poll_success_ns;
	u64 halt_poll_fail_ns;
450 451 452
	u64 halt_poll_invalid;
	u64 halt_wakeup;
	u64 hvc_exit_stat;
453 454 455 456 457
	u64 wfe_exit_stat;
	u64 wfi_exit_stat;
	u64 mmio_exit_user;
	u64 mmio_exit_kernel;
	u64 exits;
458 459
};

460
int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init);
461 462 463 464
unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
465 466
int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
			      struct kvm_vcpu_events *events);
467

468 469
int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
			      struct kvm_vcpu_events *events);
470 471 472 473

#define KVM_ARCH_WANT_MMU_NOTIFIER
int kvm_unmap_hva_range(struct kvm *kvm,
			unsigned long start, unsigned long end);
474
int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
475 476
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end);
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva);
477

478 479
void kvm_arm_halt_guest(struct kvm *kvm);
void kvm_arm_resume_guest(struct kvm *kvm);
480

481
u64 __kvm_call_hyp(void *hypfn, ...);
482

483 484 485 486 487 488 489 490 491 492 493 494
#define kvm_call_hyp_nvhe(f, ...)					\
	do {								\
		DECLARE_KVM_NVHE_SYM(f);				\
		__kvm_call_hyp(kvm_ksym_ref_nvhe(f), ##__VA_ARGS__);	\
	} while(0)

#define kvm_call_hyp_nvhe_ret(f, ...)					\
	({								\
		DECLARE_KVM_NVHE_SYM(f);				\
		__kvm_call_hyp(kvm_ksym_ref_nvhe(f), ##__VA_ARGS__);	\
	})

495 496 497 498 499 500 501 502 503 504 505
/*
 * The couple of isb() below are there to guarantee the same behaviour
 * on VHE as on !VHE, where the eret to EL1 acts as a context
 * synchronization event.
 */
#define kvm_call_hyp(f, ...)						\
	do {								\
		if (has_vhe()) {					\
			f(__VA_ARGS__);					\
			isb();						\
		} else {						\
506
			kvm_call_hyp_nvhe(f, ##__VA_ARGS__);		\
507 508 509 510 511 512 513 514 515 516 517
		}							\
	} while(0)

#define kvm_call_hyp_ret(f, ...)					\
	({								\
		typeof(f(__VA_ARGS__)) ret;				\
									\
		if (has_vhe()) {					\
			ret = f(__VA_ARGS__);				\
			isb();						\
		} else {						\
518
			ret = kvm_call_hyp_nvhe_ret(f, ##__VA_ARGS__);	\
519 520 521 522
		}							\
									\
		ret;							\
	})
523

524
void force_vm_exit(const cpumask_t *mask);
525
void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot);
526 527 528

int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
		int exception_index);
529 530
void handle_exit_early(struct kvm_vcpu *vcpu, struct kvm_run *run,
		       int exception_index);
531

532 533 534 535 536 537 538 539
/* MMIO helpers */
void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);

int kvm_handle_mmio_return(struct kvm_vcpu *vcpu, struct kvm_run *run);
int io_mem_abort(struct kvm_vcpu *vcpu, struct kvm_run *run,
		 phys_addr_t fault_ipa);

540 541 542
int kvm_perf_init(void);
int kvm_perf_teardown(void);

543
long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
544 545 546
gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
void kvm_update_stolen_time(struct kvm_vcpu *vcpu);

547 548 549 550 551 552 553
int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
			    struct kvm_device_attr *attr);
int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
			    struct kvm_device_attr *attr);
int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
			    struct kvm_device_attr *attr);

554 555 556 557 558 559 560 561 562
static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
{
	vcpu_arch->steal.base = GPA_INVALID;
}

static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
{
	return (vcpu_arch->steal.base != GPA_INVALID);
}
563

564 565
void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);

566 567
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);

568
DECLARE_PER_CPU(kvm_host_data_t, kvm_host_data);
569

570
static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
571 572
{
	/* The host's MPIDR is immutable, so let's set it up at boot time */
573
	ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
574 575
}

576
static inline bool kvm_arch_requires_vhe(void)
577 578 579 580 581 582 583 584
{
	/*
	 * The Arm architecture specifies that implementation of SVE
	 * requires VHE also to be implemented.  The KVM code for arm64
	 * relies on this when SVE is present:
	 */
	if (system_supports_sve())
		return true;
585 586

	return false;
587 588
}

589 590
void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu);

591 592 593
static inline void kvm_arch_hardware_unsetup(void) {}
static inline void kvm_arch_sync_events(struct kvm *kvm) {}
static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
594
static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {}
595

596 597 598
void kvm_arm_init_debug(void);
void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
599
void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
600 601 602 603 604 605
int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
			       struct kvm_device_attr *attr);
int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
			       struct kvm_device_attr *attr);
int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
			       struct kvm_device_attr *attr);
606

607 608 609 610 611 612
/* Guest/host FPSIMD coordination helpers */
int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);

613 614
static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
{
615
	return (!has_vhe() && attr->exclude_host);
616 617
}

618 619
#ifdef CONFIG_KVM /* Avoid conflicts with core headers if CONFIG_KVM=n */
static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
620
{
621
	return kvm_arch_vcpu_run_map_fp(vcpu);
622
}
623 624 625

void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
void kvm_clr_pmu_events(u32 clr);
626

627 628
void kvm_vcpu_pmu_restore_guest(struct kvm_vcpu *vcpu);
void kvm_vcpu_pmu_restore_host(struct kvm_vcpu *vcpu);
629 630 631
#else
static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
static inline void kvm_clr_pmu_events(u32 clr) {}
632
#endif
633

634 635 636 637 638
#define KVM_BP_HARDEN_UNKNOWN		-1
#define KVM_BP_HARDEN_WA_NEEDED		0
#define KVM_BP_HARDEN_NOT_REQUIRED	1

static inline int kvm_arm_harden_branch_predictor(void)
639
{
640 641 642 643 644 645 646 647 648
	switch (get_spectre_v2_workaround_state()) {
	case ARM64_BP_HARDEN_WA_NEEDED:
		return KVM_BP_HARDEN_WA_NEEDED;
	case ARM64_BP_HARDEN_NOT_REQUIRED:
		return KVM_BP_HARDEN_NOT_REQUIRED;
	case ARM64_BP_HARDEN_UNKNOWN:
	default:
		return KVM_BP_HARDEN_UNKNOWN;
	}
649 650
}

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
#define KVM_SSBD_UNKNOWN		-1
#define KVM_SSBD_FORCE_DISABLE		0
#define KVM_SSBD_KERNEL		1
#define KVM_SSBD_FORCE_ENABLE		2
#define KVM_SSBD_MITIGATED		3

static inline int kvm_arm_have_ssbd(void)
{
	switch (arm64_get_ssbd_state()) {
	case ARM64_SSBD_FORCE_DISABLE:
		return KVM_SSBD_FORCE_DISABLE;
	case ARM64_SSBD_KERNEL:
		return KVM_SSBD_KERNEL;
	case ARM64_SSBD_FORCE_ENABLE:
		return KVM_SSBD_FORCE_ENABLE;
	case ARM64_SSBD_MITIGATED:
		return KVM_SSBD_MITIGATED;
	case ARM64_SSBD_UNKNOWN:
	default:
		return KVM_SSBD_UNKNOWN;
	}
}

674 675
void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu);
void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu);
676

677
int kvm_set_ipa_limit(void);
678

679 680 681 682
#define __KVM_HAVE_ARCH_VM_ALLOC
struct kvm *kvm_arch_alloc_vm(void);
void kvm_arch_free_vm(struct kvm *kvm);

683
int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type);
684

685
int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
686 687 688 689
bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);

#define kvm_arm_vcpu_sve_finalized(vcpu) \
	((vcpu)->arch.flags & KVM_ARM64_VCPU_SVE_FINALIZED)
690

691
#endif /* __ARM64_KVM_HOST_H__ */