kvm_host.h 23.8 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0-only */
2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Copyright (C) 2012,2013 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * Derived from arch/arm/include/asm/kvm_host.h:
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

#ifndef __ARM64_KVM_HOST_H__
#define __ARM64_KVM_HOST_H__

14
#include <linux/arm-smccc.h>
15
#include <linux/bitmap.h>
16
#include <linux/types.h>
17
#include <linux/jump_label.h>
18
#include <linux/kvm_types.h>
19
#include <linux/percpu.h>
20
#include <linux/psci.h>
21
#include <asm/arch_gicv3.h>
22
#include <asm/barrier.h>
23
#include <asm/cpufeature.h>
24
#include <asm/cputype.h>
25
#include <asm/daifflags.h>
26
#include <asm/fpsimd.h>
27
#include <asm/kvm.h>
28
#include <asm/kvm_asm.h>
29
#include <asm/thread_info.h>
30

31 32
#define __KVM_HAVE_ARCH_INTC_INITIALIZED

33
#define KVM_HALT_POLL_NS_DEFAULT 500000
34 35 36

#include <kvm/arm_vgic.h>
#include <kvm/arm_arch_timer.h>
37
#include <kvm/arm_pmu.h>
38

39 40
#define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS

41
#define KVM_VCPU_MAX_FEATURES 7
42

43
#define KVM_REQ_SLEEP \
44
	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
45
#define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
46
#define KVM_REQ_VCPU_RESET	KVM_ARCH_REQ(2)
47
#define KVM_REQ_RECORD_STEAL	KVM_ARCH_REQ(3)
48
#define KVM_REQ_RELOAD_GICv4	KVM_ARCH_REQ(4)
49

50 51 52
#define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
				     KVM_DIRTY_LOG_INITIALLY_SET)

53 54 55 56 57 58 59 60
/*
 * Mode of operation configurable with kvm-arm.mode early param.
 * See Documentation/admin-guide/kernel-parameters.txt for more information.
 */
enum kvm_mode {
	KVM_MODE_DEFAULT,
	KVM_MODE_PROTECTED,
};
61
enum kvm_mode kvm_get_mode(void);
62

63 64
DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

65
extern unsigned int kvm_sve_max_vl;
66
int kvm_arm_init_sve(void);
67

68
int __attribute_const__ kvm_target_cpu(void);
69
int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
70
void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
71

72
struct kvm_vmid {
73 74 75
	/* The VMID generation used for the virt. memory system */
	u64    vmid_gen;
	u32    vmid;
76 77
};

78
struct kvm_s2_mmu {
79
	struct kvm_vmid vmid;
80

81 82 83 84 85 86 87 88 89 90 91
	/*
	 * stage2 entry level table
	 *
	 * Two kvm_s2_mmu structures in the same VM can point to the same
	 * pgd here.  This happens when running a guest using a
	 * translation regime that isn't affected by its own stage-2
	 * translation, such as a non-VHE hypervisor running at vEL2, or
	 * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
	 * canonical stage-2 page tables.
	 */
	phys_addr_t	pgd_phys;
92
	struct kvm_pgtable *pgt;
93

94 95 96
	/* The last vcpu id that ran on each physical CPU */
	int __percpu *last_vcpu_ran;

97 98 99
	struct kvm *kvm;
};

100 101 102
struct kvm_arch_memory_slot {
};

103 104 105 106 107 108
struct kvm_arch {
	struct kvm_s2_mmu mmu;

	/* VTCR_EL2 value for this VM */
	u64    vtcr;

109 110 111
	/* The maximum number of vCPUs depends on the used GIC model */
	int max_vcpus;

112 113
	/* Interrupt controller */
	struct vgic_dist	vgic;
114 115 116

	/* Mandated version of PSCI */
	u32 psci_version;
117 118 119 120 121 122 123 124

	/*
	 * If we encounter a data abort without valid instruction syndrome
	 * information, report this to user space.  User space can (and
	 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
	 * supported.
	 */
	bool return_nisv_io_abort_to_user;
125

126 127 128 129 130
	/*
	 * VM-wide PMU filter, implemented as a bitmap and big enough for
	 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
	 */
	unsigned long *pmu_filter;
131
	unsigned int pmuver;
132 133

	u8 pfr0_csv2;
134
	u8 pfr0_csv3;
135 136 137 138 139 140
};

struct kvm_vcpu_fault_info {
	u32 esr_el2;		/* Hyp Syndrom Register */
	u64 far_el2;		/* Hyp Fault Address Register */
	u64 hpfar_el2;		/* Hyp IPA Fault Address Register */
141
	u64 disr_el1;		/* Deferred [SError] Status Register */
142 143
};

144
enum vcpu_sysreg {
145
	__INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
146 147 148 149 150
	MPIDR_EL1,	/* MultiProcessor Affinity Register */
	CSSELR_EL1,	/* Cache Size Selection Register */
	SCTLR_EL1,	/* System Control Register */
	ACTLR_EL1,	/* Auxiliary Control Register */
	CPACR_EL1,	/* Coprocessor Access Control */
151
	ZCR_EL1,	/* SVE Control */
152 153 154 155
	TTBR0_EL1,	/* Translation Table Base Register 0 */
	TTBR1_EL1,	/* Translation Table Base Register 1 */
	TCR_EL1,	/* Translation Control Register */
	ESR_EL1,	/* Exception Syndrome Register */
156 157
	AFSR0_EL1,	/* Auxiliary Fault Status Register 0 */
	AFSR1_EL1,	/* Auxiliary Fault Status Register 1 */
158 159 160 161 162 163 164 165 166 167 168 169
	FAR_EL1,	/* Fault Address Register */
	MAIR_EL1,	/* Memory Attribute Indirection Register */
	VBAR_EL1,	/* Vector Base Address Register */
	CONTEXTIDR_EL1,	/* Context ID Register */
	TPIDR_EL0,	/* Thread ID, User R/W */
	TPIDRRO_EL0,	/* Thread ID, User R/O */
	TPIDR_EL1,	/* Thread ID, Privileged */
	AMAIR_EL1,	/* Aux Memory Attribute Indirection Register */
	CNTKCTL_EL1,	/* Timer Control Register (EL1) */
	PAR_EL1,	/* Physical Address Register */
	MDSCR_EL1,	/* Monitor Debug System Control Register */
	MDCCINT_EL1,	/* Monitor Debug Comms Channel Interrupt Enable Reg */
170
	DISR_EL1,	/* Deferred Interrupt Status Register */
171

172 173
	/* Performance Monitors Registers */
	PMCR_EL0,	/* Control Register */
174
	PMSELR_EL0,	/* Event Counter Selection Register */
175 176 177
	PMEVCNTR0_EL0,	/* Event Counter Register (0-30) */
	PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
	PMCCNTR_EL0,	/* Cycle Counter Register */
178 179 180
	PMEVTYPER0_EL0,	/* Event Type Register (0-30) */
	PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
	PMCCFILTR_EL0,	/* Cycle Count Filter Register */
181
	PMCNTENSET_EL0,	/* Count Enable Set Register */
182
	PMINTENSET_EL1,	/* Interrupt Enable Set Register */
183
	PMOVSSET_EL0,	/* Overflow Flag Status Set Register */
184
	PMSWINC_EL0,	/* Software Increment Register */
185
	PMUSERENR_EL0,	/* User Enable Register */
186

187 188 189 190 191 192 193 194 195 196 197 198
	/* Pointer Authentication Registers in a strict increasing order. */
	APIAKEYLO_EL1,
	APIAKEYHI_EL1,
	APIBKEYLO_EL1,
	APIBKEYHI_EL1,
	APDAKEYLO_EL1,
	APDAKEYHI_EL1,
	APDBKEYLO_EL1,
	APDBKEYHI_EL1,
	APGAKEYLO_EL1,
	APGAKEYHI_EL1,

199
	ELR_EL1,
200
	SP_EL1,
201
	SPSR_EL1,
202

203 204 205 206 207 208
	CNTVOFF_EL2,
	CNTV_CVAL_EL0,
	CNTV_CTL_EL0,
	CNTP_CVAL_EL0,
	CNTP_CTL_EL0,

209 210 211 212 213 214 215 216 217
	/* 32bit specific registers. Keep them at the end of the range */
	DACR32_EL2,	/* Domain Access Control Register */
	IFSR32_EL2,	/* Instruction Fault Status Register */
	FPEXC32_EL2,	/* Floating-Point Exception Control Register */
	DBGVCR32_EL2,	/* Debug Vector Catch Register */

	NR_SYS_REGS	/* Nothing after this line! */
};

218
struct kvm_cpu_context {
219 220
	struct user_pt_regs regs;	/* sp = sp_el0 */

221 222 223 224
	u64	spsr_abt;
	u64	spsr_und;
	u64	spsr_irq;
	u64	spsr_fiq;
225 226 227

	struct user_fpsimd_state fp_regs;

228
	u64 sys_regs[NR_SYS_REGS];
229 230

	struct kvm_vcpu *__hyp_running_vcpu;
231 232
};

233 234 235 236 237
struct kvm_pmu_events {
	u32 events_host;
	u32 events_guest;
};

238 239
struct kvm_host_data {
	struct kvm_cpu_context host_ctxt;
240
	struct kvm_pmu_events pmu_events;
241 242
};

243 244 245 246 247 248 249
struct kvm_host_psci_config {
	/* PSCI version used by host. */
	u32 version;

	/* Function IDs used by host if version is v0.1. */
	struct psci_0_1_function_ids function_ids_0_1;

250 251 252 253
	bool psci_0_1_cpu_suspend_implemented;
	bool psci_0_1_cpu_on_implemented;
	bool psci_0_1_cpu_off_implemented;
	bool psci_0_1_migrate_implemented;
254 255 256 257 258
};

extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
#define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)

259 260 261 262 263 264
extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
#define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)

extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
#define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)

265 266 267 268 269 270 271
struct vcpu_reset_state {
	unsigned long	pc;
	unsigned long	r0;
	bool		be;
	bool		reset;
};

272 273
struct kvm_vcpu_arch {
	struct kvm_cpu_context ctxt;
274 275
	void *sve_state;
	unsigned int sve_max_vl;
276

277 278 279
	/* Stage 2 paging state used by the hardware on next switch */
	struct kvm_s2_mmu *hw_mmu;

280 281
	/* HYP configuration */
	u64 hcr_el2;
282
	u32 mdcr_el2;
283 284 285 286

	/* Exception Information */
	struct kvm_vcpu_fault_info fault;

287 288 289
	/* State of various workarounds, see kvm_asm.h for bit assignment */
	u64 workaround_flags;

290 291
	/* Miscellaneous vcpu state flags */
	u64 flags;
292

293 294 295 296 297
	/*
	 * We maintain more than a single set of debug registers to support
	 * debugging the guest from the host and to maintain separate host and
	 * guest state during world switches. vcpu_debug_state are the debug
	 * registers of the vcpu as the guest sees them.  host_debug_state are
298 299 300 301
	 * the host registers which are saved and restored during
	 * world switches. external_debug_state contains the debug
	 * values we want to debug the guest. This is set via the
	 * KVM_SET_GUEST_DEBUG ioctl.
302 303 304 305 306 307
	 *
	 * debug_ptr points to the set of debug registers that should be loaded
	 * onto the hardware when running the guest.
	 */
	struct kvm_guest_debug_arch *debug_ptr;
	struct kvm_guest_debug_arch vcpu_debug_state;
308
	struct kvm_guest_debug_arch external_debug_state;
309

310 311 312
	struct thread_info *host_thread_info;	/* hyp VA */
	struct user_fpsimd_state *host_fpsimd_state;	/* hyp VA */

313 314 315 316 317 318
	struct {
		/* {Break,watch}point registers */
		struct kvm_guest_debug_arch regs;
		/* Statistical profiling extension */
		u64 pmscr_el1;
	} host_debug_state;
319 320 321 322

	/* VGIC state */
	struct vgic_cpu vgic_cpu;
	struct arch_timer_cpu timer_cpu;
323
	struct kvm_pmu pmu;
324 325 326 327 328 329

	/*
	 * Anything that is not used directly from assembly code goes
	 * here.
	 */

330 331 332 333 334 335 336 337 338 339 340
	/*
	 * Guest registers we preserve during guest debugging.
	 *
	 * These shadow registers are updated by the kvm_handle_sys_reg
	 * trap handler if the guest accesses or updates them while we
	 * are using guest debug.
	 */
	struct {
		u32	mdscr_el1;
	} guest_debug_preserved;

341 342
	/* vcpu power-off state */
	bool power_off;
343

344 345 346
	/* Don't run the guest (internal implementation need) */
	bool pause;

347 348 349 350
	/* Cache some mmu pages needed inside spinlock regions */
	struct kvm_mmu_memory_cache mmu_page_cache;

	/* Target CPU and feature flags */
351
	int target;
352 353 354 355
	DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);

	/* Detect first run of a vcpu */
	bool has_run_once;
356 357 358

	/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
	u64 vsesr_el2;
359

360 361 362
	/* Additional reset state */
	struct vcpu_reset_state	reset_state;

363
	/* True when deferrable sysregs are loaded on the physical CPU,
364
	 * see kvm_vcpu_load_sysregs_vhe and kvm_vcpu_put_sysregs_vhe. */
365
	bool sysregs_loaded_on_cpu;
366 367 368 369 370 371

	/* Guest PV state */
	struct {
		u64 last_steal;
		gpa_t base;
	} steal;
372 373
};

374 375 376 377
/* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
#define vcpu_sve_pffr(vcpu) ((void *)((char *)((vcpu)->arch.sve_state) + \
				      sve_ffr_offset((vcpu)->arch.sve_max_vl)))

378 379 380 381 382 383 384 385 386 387 388 389 390 391
#define vcpu_sve_state_size(vcpu) ({					\
	size_t __size_ret;						\
	unsigned int __vcpu_vq;						\
									\
	if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {		\
		__size_ret = 0;						\
	} else {							\
		__vcpu_vq = sve_vq_from_vl((vcpu)->arch.sve_max_vl);	\
		__size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);		\
	}								\
									\
	__size_ret;							\
})

392 393
/* vcpu_arch flags field values: */
#define KVM_ARM64_DEBUG_DIRTY		(1 << 0)
394 395 396
#define KVM_ARM64_FP_ENABLED		(1 << 1) /* guest FP regs loaded */
#define KVM_ARM64_FP_HOST		(1 << 2) /* host FP regs loaded */
#define KVM_ARM64_HOST_SVE_IN_USE	(1 << 3) /* backup for host TIF_SVE */
397
#define KVM_ARM64_HOST_SVE_ENABLED	(1 << 4) /* SVE enabled for EL0 */
398
#define KVM_ARM64_GUEST_HAS_SVE		(1 << 5) /* SVE exposed to guest */
399
#define KVM_ARM64_VCPU_SVE_FINALIZED	(1 << 6) /* SVE config completed */
400
#define KVM_ARM64_GUEST_HAS_PTRAUTH	(1 << 7) /* PTRAUTH exposed to guest */
401 402
#define KVM_ARM64_PENDING_EXCEPTION	(1 << 8) /* Exception pending */
#define KVM_ARM64_EXCEPT_MASK		(7 << 9) /* Target EL/MODE */
403

404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
/*
 * When KVM_ARM64_PENDING_EXCEPTION is set, KVM_ARM64_EXCEPT_MASK can
 * take the following values:
 *
 * For AArch32 EL1:
 */
#define KVM_ARM64_EXCEPT_AA32_UND	(0 << 9)
#define KVM_ARM64_EXCEPT_AA32_IABT	(1 << 9)
#define KVM_ARM64_EXCEPT_AA32_DABT	(2 << 9)
/* For AArch64: */
#define KVM_ARM64_EXCEPT_AA64_ELx_SYNC	(0 << 9)
#define KVM_ARM64_EXCEPT_AA64_ELx_IRQ	(1 << 9)
#define KVM_ARM64_EXCEPT_AA64_ELx_FIQ	(2 << 9)
#define KVM_ARM64_EXCEPT_AA64_ELx_SERR	(3 << 9)
#define KVM_ARM64_EXCEPT_AA64_EL1	(0 << 11)
#define KVM_ARM64_EXCEPT_AA64_EL2	(1 << 11)

/*
 * Overlaps with KVM_ARM64_EXCEPT_MASK on purpose so that it can't be
 * set together with an exception...
 */
#define KVM_ARM64_INCREMENT_PC		(1 << 9) /* Increment PC */

#define vcpu_has_sve(vcpu) (system_supports_sve() &&			\
428
			    ((vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_SVE))
429

430 431 432 433 434 435 436 437
#ifdef CONFIG_ARM64_PTR_AUTH
#define vcpu_has_ptrauth(vcpu)						\
	((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||		\
	  cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&		\
	 (vcpu)->arch.flags & KVM_ARM64_GUEST_HAS_PTRAUTH)
#else
#define vcpu_has_ptrauth(vcpu)		false
#endif
438

439
#define vcpu_gp_regs(v)		(&(v)->arch.ctxt.regs)
440 441

/*
442 443 444 445 446
 * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
 * memory backed version of a register, and not the one most recently
 * accessed by a running VCPU.  For example, for userspace access or
 * for system registers that are never context switched, but only
 * emulated.
447
 */
448 449 450 451 452
#define __ctxt_sys_reg(c,r)	(&(c)->sys_regs[(r)])

#define ctxt_sys_reg(c,r)	(*__ctxt_sys_reg(c,r))

#define __vcpu_sys_reg(v,r)	(ctxt_sys_reg(&(v)->arch.ctxt, (r)))
453

454
u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
455
void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
456

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
{
	/*
	 * *** VHE ONLY ***
	 *
	 * System registers listed in the switch are not saved on every
	 * exit from the guest but are only saved on vcpu_put.
	 *
	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
	 * should never be listed below, because the guest cannot modify its
	 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
	 * thread when emulating cross-VCPU communication.
	 */
	if (!has_vhe())
		return false;

	switch (reg) {
	case CSSELR_EL1:	*val = read_sysreg_s(SYS_CSSELR_EL1);	break;
	case SCTLR_EL1:		*val = read_sysreg_s(SYS_SCTLR_EL12);	break;
	case CPACR_EL1:		*val = read_sysreg_s(SYS_CPACR_EL12);	break;
	case TTBR0_EL1:		*val = read_sysreg_s(SYS_TTBR0_EL12);	break;
	case TTBR1_EL1:		*val = read_sysreg_s(SYS_TTBR1_EL12);	break;
	case TCR_EL1:		*val = read_sysreg_s(SYS_TCR_EL12);	break;
	case ESR_EL1:		*val = read_sysreg_s(SYS_ESR_EL12);	break;
	case AFSR0_EL1:		*val = read_sysreg_s(SYS_AFSR0_EL12);	break;
	case AFSR1_EL1:		*val = read_sysreg_s(SYS_AFSR1_EL12);	break;
	case FAR_EL1:		*val = read_sysreg_s(SYS_FAR_EL12);	break;
	case MAIR_EL1:		*val = read_sysreg_s(SYS_MAIR_EL12);	break;
	case VBAR_EL1:		*val = read_sysreg_s(SYS_VBAR_EL12);	break;
	case CONTEXTIDR_EL1:	*val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
	case TPIDR_EL0:		*val = read_sysreg_s(SYS_TPIDR_EL0);	break;
	case TPIDRRO_EL0:	*val = read_sysreg_s(SYS_TPIDRRO_EL0);	break;
	case TPIDR_EL1:		*val = read_sysreg_s(SYS_TPIDR_EL1);	break;
	case AMAIR_EL1:		*val = read_sysreg_s(SYS_AMAIR_EL12);	break;
	case CNTKCTL_EL1:	*val = read_sysreg_s(SYS_CNTKCTL_EL12);	break;
	case ELR_EL1:		*val = read_sysreg_s(SYS_ELR_EL12);	break;
	case PAR_EL1:		*val = read_sysreg_par();		break;
	case DACR32_EL2:	*val = read_sysreg_s(SYS_DACR32_EL2);	break;
	case IFSR32_EL2:	*val = read_sysreg_s(SYS_IFSR32_EL2);	break;
	case DBGVCR32_EL2:	*val = read_sysreg_s(SYS_DBGVCR32_EL2);	break;
	default:		return false;
	}

	return true;
}

static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
{
	/*
	 * *** VHE ONLY ***
	 *
	 * System registers listed in the switch are not restored on every
	 * entry to the guest but are only restored on vcpu_load.
	 *
	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
	 * should never be listed below, because the MPIDR should only be set
	 * once, before running the VCPU, and never changed later.
	 */
	if (!has_vhe())
		return false;

	switch (reg) {
	case CSSELR_EL1:	write_sysreg_s(val, SYS_CSSELR_EL1);	break;
	case SCTLR_EL1:		write_sysreg_s(val, SYS_SCTLR_EL12);	break;
	case CPACR_EL1:		write_sysreg_s(val, SYS_CPACR_EL12);	break;
	case TTBR0_EL1:		write_sysreg_s(val, SYS_TTBR0_EL12);	break;
	case TTBR1_EL1:		write_sysreg_s(val, SYS_TTBR1_EL12);	break;
	case TCR_EL1:		write_sysreg_s(val, SYS_TCR_EL12);	break;
	case ESR_EL1:		write_sysreg_s(val, SYS_ESR_EL12);	break;
	case AFSR0_EL1:		write_sysreg_s(val, SYS_AFSR0_EL12);	break;
	case AFSR1_EL1:		write_sysreg_s(val, SYS_AFSR1_EL12);	break;
	case FAR_EL1:		write_sysreg_s(val, SYS_FAR_EL12);	break;
	case MAIR_EL1:		write_sysreg_s(val, SYS_MAIR_EL12);	break;
	case VBAR_EL1:		write_sysreg_s(val, SYS_VBAR_EL12);	break;
	case CONTEXTIDR_EL1:	write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	break;
	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	break;
	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	break;
	case AMAIR_EL1:		write_sysreg_s(val, SYS_AMAIR_EL12);	break;
	case CNTKCTL_EL1:	write_sysreg_s(val, SYS_CNTKCTL_EL12);	break;
	case ELR_EL1:		write_sysreg_s(val, SYS_ELR_EL12);	break;
	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	break;
	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	break;
	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	break;
	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	break;
	default:		return false;
	}

	return true;
}

548
struct kvm_vm_stat {
549
	ulong remote_tlb_flush;
550 551 552
};

struct kvm_vcpu_stat {
553 554
	u64 halt_successful_poll;
	u64 halt_attempted_poll;
555 556
	u64 halt_poll_success_ns;
	u64 halt_poll_fail_ns;
557 558 559
	u64 halt_poll_invalid;
	u64 halt_wakeup;
	u64 hvc_exit_stat;
560 561 562 563 564
	u64 wfe_exit_stat;
	u64 wfi_exit_stat;
	u64 mmio_exit_user;
	u64 mmio_exit_kernel;
	u64 exits;
565 566
};

567
int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init);
568 569 570 571
unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
M
Marc Zyngier 已提交
572 573 574 575 576 577

unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *);
int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *);

578 579
int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
			      struct kvm_vcpu_events *events);
580

581 582
int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
			      struct kvm_vcpu_events *events);
583 584 585

#define KVM_ARCH_WANT_MMU_NOTIFIER
int kvm_unmap_hva_range(struct kvm *kvm,
586
			unsigned long start, unsigned long end, unsigned flags);
587
int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
588 589
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end);
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva);
590

591 592
void kvm_arm_halt_guest(struct kvm *kvm);
void kvm_arm_resume_guest(struct kvm *kvm);
593

594
#define kvm_call_hyp_nvhe(f, ...)						\
595
	({								\
596 597 598 599 600 601 602
		struct arm_smccc_res res;				\
									\
		arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),		\
				  ##__VA_ARGS__, &res);			\
		WARN_ON(res.a0 != SMCCC_RET_SUCCESS);			\
									\
		res.a1;							\
603 604
	})

605 606 607 608 609 610 611 612 613 614 615
/*
 * The couple of isb() below are there to guarantee the same behaviour
 * on VHE as on !VHE, where the eret to EL1 acts as a context
 * synchronization event.
 */
#define kvm_call_hyp(f, ...)						\
	do {								\
		if (has_vhe()) {					\
			f(__VA_ARGS__);					\
			isb();						\
		} else {						\
616
			kvm_call_hyp_nvhe(f, ##__VA_ARGS__);		\
617 618 619 620 621 622 623 624 625 626 627
		}							\
	} while(0)

#define kvm_call_hyp_ret(f, ...)					\
	({								\
		typeof(f(__VA_ARGS__)) ret;				\
									\
		if (has_vhe()) {					\
			ret = f(__VA_ARGS__);				\
			isb();						\
		} else {						\
628
			ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__);	\
629 630 631 632
		}							\
									\
		ret;							\
	})
633

634
void force_vm_exit(const cpumask_t *mask);
635
void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot);
636

637 638
int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
639

M
Marc Zyngier 已提交
640 641 642 643 644 645 646 647 648 649 650
int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);

void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);

void kvm_sys_reg_table_init(void);

651 652 653 654
/* MMIO helpers */
void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);

655 656
int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
657

658 659 660
int kvm_perf_init(void);
int kvm_perf_teardown(void);

661
long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
662 663 664
gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
void kvm_update_stolen_time(struct kvm_vcpu *vcpu);

665
bool kvm_arm_pvtime_supported(void);
666 667 668 669 670 671 672
int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
			    struct kvm_device_attr *attr);
int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
			    struct kvm_device_attr *attr);
int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
			    struct kvm_device_attr *attr);

673 674 675 676 677 678 679 680 681
static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
{
	vcpu_arch->steal.base = GPA_INVALID;
}

static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
{
	return (vcpu_arch->steal.base != GPA_INVALID);
}
682

683 684
void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);

685 686
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);

687
DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
688

689
static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
690 691
{
	/* The host's MPIDR is immutable, so let's set it up at boot time */
692
	ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
693 694
}

695
static inline bool kvm_arch_requires_vhe(void)
696 697 698 699 700 701 702 703
{
	/*
	 * The Arm architecture specifies that implementation of SVE
	 * requires VHE also to be implemented.  The KVM code for arm64
	 * relies on this when SVE is present:
	 */
	if (system_supports_sve())
		return true;
704 705

	return false;
706 707
}

708 709
void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu);

710 711 712
static inline void kvm_arch_hardware_unsetup(void) {}
static inline void kvm_arch_sync_events(struct kvm *kvm) {}
static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
713
static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {}
714

715 716 717
void kvm_arm_init_debug(void);
void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
718
void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
719 720 721 722 723 724
int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
			       struct kvm_device_attr *attr);
int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
			       struct kvm_device_attr *attr);
int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
			       struct kvm_device_attr *attr);
725

726 727 728 729 730 731
/* Guest/host FPSIMD coordination helpers */
int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);

732 733
static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
{
734
	return (!has_vhe() && attr->exclude_host);
735 736
}

737 738
#ifdef CONFIG_KVM /* Avoid conflicts with core headers if CONFIG_KVM=n */
static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
739
{
740
	return kvm_arch_vcpu_run_map_fp(vcpu);
741
}
742 743 744

void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
void kvm_clr_pmu_events(u32 clr);
745

746 747
void kvm_vcpu_pmu_restore_guest(struct kvm_vcpu *vcpu);
void kvm_vcpu_pmu_restore_host(struct kvm_vcpu *vcpu);
748 749 750
#else
static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
static inline void kvm_clr_pmu_events(u32 clr) {}
751
#endif
752

753 754
void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu);
void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu);
755

756
int kvm_set_ipa_limit(void);
757

758 759 760 761
#define __KVM_HAVE_ARCH_VM_ALLOC
struct kvm *kvm_arch_alloc_vm(void);
void kvm_arch_free_vm(struct kvm *kvm);

762
int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type);
763

764
int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
765 766 767 768
bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);

#define kvm_arm_vcpu_sve_finalized(vcpu) \
	((vcpu)->arch.flags & KVM_ARM64_VCPU_SVE_FINALIZED)
769

770 771 772
#define kvm_vcpu_has_pmu(vcpu)					\
	(test_bit(KVM_ARM_VCPU_PMU_V3, (vcpu)->arch.features))

773 774
int kvm_trng_call(struct kvm_vcpu *vcpu);

775
#endif /* __ARM64_KVM_HOST_H__ */