slub.c 143.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Christoph Lameter 已提交
2 3 4 5
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
6 7
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
8
 *
C
Christoph Lameter 已提交
9
 * (C) 2007 SGI, Christoph Lameter
10
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
11 12 13
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
14
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
15 16 17 18 19
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
20
#include "slab.h"
21
#include <linux/proc_fs.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
23
#include <linux/kasan.h>
C
Christoph Lameter 已提交
24 25 26 27
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
28
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
29
#include <linux/kallsyms.h>
30
#include <linux/memory.h>
R
Roman Zippel 已提交
31
#include <linux/math64.h>
A
Akinobu Mita 已提交
32
#include <linux/fault-inject.h>
33
#include <linux/stacktrace.h>
34
#include <linux/prefetch.h>
35
#include <linux/memcontrol.h>
36
#include <linux/random.h>
C
Christoph Lameter 已提交
37

38 39
#include <trace/events/kmem.h>

40 41
#include "internal.h"

C
Christoph Lameter 已提交
42 43
/*
 * Lock order:
44
 *   1. slab_mutex (Global Mutex)
45 46
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
47
 *
48
 *   slab_mutex
49
 *
50
 *   The role of the slab_mutex is to protect the list of all the slabs
51 52 53
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
54
 *   have the ability to do a cmpxchg_double. It only protects:
55
 *	A. page->freelist	-> List of object free in a page
56 57 58
 *	B. page->inuse		-> Number of objects in use
 *	C. page->objects	-> Number of objects in page
 *	D. page->frozen		-> frozen state
59 60
 *
 *   If a slab is frozen then it is exempt from list management. It is not
61 62 63 64 65
 *   on any list except per cpu partial list. The processor that froze the
 *   slab is the one who can perform list operations on the page. Other
 *   processors may put objects onto the freelist but the processor that
 *   froze the slab is the only one that can retrieve the objects from the
 *   page's freelist.
C
Christoph Lameter 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
86 87
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
88
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
89 90
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
91 92 93 94 95
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
Y
Yu Zhao 已提交
96
 * page->frozen		The slab is frozen and exempt from list processing.
97 98 99 100 101 102 103 104 105 106 107
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
108
 * 			freelist that allows lockless access to
109 110
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
111
 *
Y
Yu Zhao 已提交
112
 * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
C
Christoph Lameter 已提交
113
 * 			options set. This moves	slab handling out of
114
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
115 116
 */

117 118
static inline int kmem_cache_debug(struct kmem_cache *s)
{
119
#ifdef CONFIG_SLUB_DEBUG
120
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121
#else
122
	return 0;
123
#endif
124
}
125

126
void *fixup_red_left(struct kmem_cache *s, void *p)
J
Joonsoo Kim 已提交
127 128 129 130 131 132 133
{
	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
		p += s->red_left_pad;

	return p;
}

134 135 136 137 138 139 140 141 142
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
143 144 145 146 147 148 149 150 151 152 153
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

154 155 156
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

157 158 159 160
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
161
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
162

163 164 165
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
Z
Zhi Yong Wu 已提交
166
 * sort the partial list by the number of objects in use.
167 168 169
 */
#define MAX_PARTIAL 10

170
#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
C
Christoph Lameter 已提交
171
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
172

173 174 175 176 177 178 179 180
/*
 * These debug flags cannot use CMPXCHG because there might be consistency
 * issues when checking or reading debug information
 */
#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
				SLAB_TRACE)


181
/*
182 183 184
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
185
 */
186
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
187

188 189
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
190
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
191

C
Christoph Lameter 已提交
192
/* Internal SLUB flags */
193
/* Poison object */
194
#define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
195
/* Use cmpxchg_double */
196
#define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
C
Christoph Lameter 已提交
197

198 199 200
/*
 * Tracking user of a slab.
 */
201
#define TRACK_ADDRS_COUNT 16
202
struct track {
203
	unsigned long addr;	/* Called from address */
204 205 206
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
207 208 209 210 211 212 213
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

214
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
215 216
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
217
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
218
static void sysfs_slab_remove(struct kmem_cache *s);
C
Christoph Lameter 已提交
219
#else
220 221 222
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
223
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
224
static inline void sysfs_slab_remove(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
225 226
#endif

227
static inline void stat(const struct kmem_cache *s, enum stat_item si)
228 229
{
#ifdef CONFIG_SLUB_STATS
230 231 232 233 234
	/*
	 * The rmw is racy on a preemptible kernel but this is acceptable, so
	 * avoid this_cpu_add()'s irq-disable overhead.
	 */
	raw_cpu_inc(s->cpu_slab->stat[si]);
235 236 237
#endif
}

C
Christoph Lameter 已提交
238 239 240 241
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

242 243 244 245 246 247 248 249 250
/*
 * Returns freelist pointer (ptr). With hardening, this is obfuscated
 * with an XOR of the address where the pointer is held and a per-cache
 * random number.
 */
static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
				 unsigned long ptr_addr)
{
#ifdef CONFIG_SLAB_FREELIST_HARDENED
251 252 253 254 255 256 257 258 259 260 261 262
	/*
	 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
	 * Normally, this doesn't cause any issues, as both set_freepointer()
	 * and get_freepointer() are called with a pointer with the same tag.
	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
	 * example, when __free_slub() iterates over objects in a cache, it
	 * passes untagged pointers to check_object(). check_object() in turns
	 * calls get_freepointer() with an untagged pointer, which causes the
	 * freepointer to be restored incorrectly.
	 */
	return (void *)((unsigned long)ptr ^ s->random ^
			(unsigned long)kasan_reset_tag((void *)ptr_addr));
263 264 265 266 267 268 269 270 271 272 273 274 275
#else
	return ptr;
#endif
}

/* Returns the freelist pointer recorded at location ptr_addr. */
static inline void *freelist_dereference(const struct kmem_cache *s,
					 void *ptr_addr)
{
	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
			    (unsigned long)ptr_addr);
}

276 277
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
278
	return freelist_dereference(s, object + s->offset);
279 280
}

281 282
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
283
	prefetch(object + s->offset);
284 285
}

286 287
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
288
	unsigned long freepointer_addr;
289 290
	void *p;

291
	if (!debug_pagealloc_enabled_static())
292 293
		return get_freepointer(s, object);

294 295 296
	freepointer_addr = (unsigned long)object + s->offset;
	probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
	return freelist_ptr(s, p, freepointer_addr);
297 298
}

299 300
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
301 302
	unsigned long freeptr_addr = (unsigned long)object + s->offset;

303 304 305 306
#ifdef CONFIG_SLAB_FREELIST_HARDENED
	BUG_ON(object == fp); /* naive detection of double free or corruption */
#endif

307
	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
308 309 310
}

/* Loop over all objects in a slab */
311
#define for_each_object(__p, __s, __addr, __objects) \
J
Joonsoo Kim 已提交
312 313 314
	for (__p = fixup_red_left(__s, __addr); \
		__p < (__addr) + (__objects) * (__s)->size; \
		__p += (__s)->size)
315 316

/* Determine object index from a given position */
317
static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
318
{
319
	return (kasan_reset_tag(p) - addr) / s->size;
320 321
}

322
static inline unsigned int order_objects(unsigned int order, unsigned int size)
323
{
324
	return ((unsigned int)PAGE_SIZE << order) / size;
325 326
}

327
static inline struct kmem_cache_order_objects oo_make(unsigned int order,
328
		unsigned int size)
329 330
{
	struct kmem_cache_order_objects x = {
331
		(order << OO_SHIFT) + order_objects(order, size)
332 333 334 335 336
	};

	return x;
}

337
static inline unsigned int oo_order(struct kmem_cache_order_objects x)
338
{
339
	return x.x >> OO_SHIFT;
340 341
}

342
static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
343
{
344
	return x.x & OO_MASK;
345 346
}

347 348 349 350 351
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
352
	VM_BUG_ON_PAGE(PageTail(page), page);
353 354 355 356 357
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
358
	VM_BUG_ON_PAGE(PageTail(page), page);
359 360 361
	__bit_spin_unlock(PG_locked, &page->flags);
}

362 363 364 365 366 367 368
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
369 370
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
371
	if (s->flags & __CMPXCHG_DOUBLE) {
372
		if (cmpxchg_double(&page->freelist, &page->counters,
373 374
				   freelist_old, counters_old,
				   freelist_new, counters_new))
375
			return true;
376 377 378 379
	} else
#endif
	{
		slab_lock(page);
380 381
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
382
			page->freelist = freelist_new;
383
			page->counters = counters_new;
384
			slab_unlock(page);
385
			return true;
386 387 388 389 390 391 392 393
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
394
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
395 396
#endif

397
	return false;
398 399
}

400 401 402 403 404
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
405 406
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
407
	if (s->flags & __CMPXCHG_DOUBLE) {
408
		if (cmpxchg_double(&page->freelist, &page->counters,
409 410
				   freelist_old, counters_old,
				   freelist_new, counters_new))
411
			return true;
412 413 414
	} else
#endif
	{
415 416 417
		unsigned long flags;

		local_irq_save(flags);
418
		slab_lock(page);
419 420
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
421
			page->freelist = freelist_new;
422
			page->counters = counters_new;
423
			slab_unlock(page);
424
			local_irq_restore(flags);
425
			return true;
426
		}
427
		slab_unlock(page);
428
		local_irq_restore(flags);
429 430 431 432 433 434
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
435
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
436 437
#endif

438
	return false;
439 440
}

C
Christoph Lameter 已提交
441
#ifdef CONFIG_SLUB_DEBUG
442 443 444
/*
 * Determine a map of object in use on a page.
 *
445
 * Node listlock must be held to guarantee that the page does
446 447 448 449 450 451 452 453 454 455 456
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

457
static inline unsigned int size_from_object(struct kmem_cache *s)
J
Joonsoo Kim 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
{
	if (s->flags & SLAB_RED_ZONE)
		return s->size - s->red_left_pad;

	return s->size;
}

static inline void *restore_red_left(struct kmem_cache *s, void *p)
{
	if (s->flags & SLAB_RED_ZONE)
		p -= s->red_left_pad;

	return p;
}

C
Christoph Lameter 已提交
473 474 475
/*
 * Debug settings:
 */
476
#if defined(CONFIG_SLUB_DEBUG_ON)
477
static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
478
#else
479
static slab_flags_t slub_debug;
480
#endif
C
Christoph Lameter 已提交
481 482

static char *slub_debug_slabs;
483
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
484

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
/*
 * slub is about to manipulate internal object metadata.  This memory lies
 * outside the range of the allocated object, so accessing it would normally
 * be reported by kasan as a bounds error.  metadata_access_enable() is used
 * to tell kasan that these accesses are OK.
 */
static inline void metadata_access_enable(void)
{
	kasan_disable_current();
}

static inline void metadata_access_disable(void)
{
	kasan_enable_current();
}

C
Christoph Lameter 已提交
501 502 503
/*
 * Object debugging
 */
J
Joonsoo Kim 已提交
504 505 506 507 508 509 510 511 512 513 514

/* Verify that a pointer has an address that is valid within a slab page */
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, void *object)
{
	void *base;

	if (!object)
		return 1;

	base = page_address(page);
515
	object = kasan_reset_tag(object);
J
Joonsoo Kim 已提交
516 517 518 519 520 521 522 523 524
	object = restore_red_left(s, object);
	if (object < base || object >= base + page->objects * s->size ||
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

525 526
static void print_section(char *level, char *text, u8 *addr,
			  unsigned int length)
C
Christoph Lameter 已提交
527
{
528
	metadata_access_enable();
529
	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
530
			length, 1);
531
	metadata_access_disable();
C
Christoph Lameter 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
548
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
549
{
A
Akinobu Mita 已提交
550
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
551 552

	if (addr) {
553
#ifdef CONFIG_STACKTRACE
554
		unsigned int nr_entries;
555

556
		metadata_access_enable();
557
		nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
558
		metadata_access_disable();
559

560 561
		if (nr_entries < TRACK_ADDRS_COUNT)
			p->addrs[nr_entries] = 0;
562
#endif
C
Christoph Lameter 已提交
563 564
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
565
		p->pid = current->pid;
C
Christoph Lameter 已提交
566
		p->when = jiffies;
567
	} else {
C
Christoph Lameter 已提交
568
		memset(p, 0, sizeof(struct track));
569
	}
C
Christoph Lameter 已提交
570 571 572 573
}

static void init_tracking(struct kmem_cache *s, void *object)
{
574 575 576
	if (!(s->flags & SLAB_STORE_USER))
		return;

577 578
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
579 580
}

581
static void print_track(const char *s, struct track *t, unsigned long pr_time)
C
Christoph Lameter 已提交
582 583 584 585
{
	if (!t->addr)
		return;

586
	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
587
	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
588 589 590 591 592
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
593
				pr_err("\t%pS\n", (void *)t->addrs[i]);
594 595 596 597
			else
				break;
	}
#endif
598 599 600 601
}

static void print_tracking(struct kmem_cache *s, void *object)
{
602
	unsigned long pr_time = jiffies;
603 604 605
	if (!(s->flags & SLAB_STORE_USER))
		return;

606 607
	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
608 609 610 611
}

static void print_page_info(struct page *page)
{
612
	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
613
	       page, page->objects, page->inuse, page->freelist, page->flags);
614 615 616 617 618

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
619
	struct va_format vaf;
620 621 622
	va_list args;

	va_start(args, fmt);
623 624
	vaf.fmt = fmt;
	vaf.va = &args;
625
	pr_err("=============================================================================\n");
626
	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
627
	pr_err("-----------------------------------------------------------------------------\n\n");
628

629
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
630
	va_end(args);
C
Christoph Lameter 已提交
631 632
}

633 634
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
635
	struct va_format vaf;
636 637 638
	va_list args;

	va_start(args, fmt);
639 640 641
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_err("FIX %s: %pV\n", s->name, &vaf);
642 643 644 645
	va_end(args);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
646 647
{
	unsigned int off;	/* Offset of last byte */
648
	u8 *addr = page_address(page);
649 650 651 652 653

	print_tracking(s, p);

	print_page_info(page);

654 655
	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
	       p, p - addr, get_freepointer(s, p));
656

J
Joonsoo Kim 已提交
657
	if (s->flags & SLAB_RED_ZONE)
658 659
		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
			      s->red_left_pad);
J
Joonsoo Kim 已提交
660
	else if (p > addr + 16)
661
		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
662

663
	print_section(KERN_ERR, "Object ", p,
664
		      min_t(unsigned int, s->object_size, PAGE_SIZE));
C
Christoph Lameter 已提交
665
	if (s->flags & SLAB_RED_ZONE)
666
		print_section(KERN_ERR, "Redzone ", p + s->object_size,
667
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
668 669 670 671 672 673

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

674
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
675 676
		off += 2 * sizeof(struct track);

677 678
	off += kasan_metadata_size(s);

J
Joonsoo Kim 已提交
679
	if (off != size_from_object(s))
C
Christoph Lameter 已提交
680
		/* Beginning of the filler is the free pointer */
681 682
		print_section(KERN_ERR, "Padding ", p + off,
			      size_from_object(s) - off);
683 684

	dump_stack();
C
Christoph Lameter 已提交
685 686
}

687
void object_err(struct kmem_cache *s, struct page *page,
C
Christoph Lameter 已提交
688 689
			u8 *object, char *reason)
{
690
	slab_bug(s, "%s", reason);
691
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
692 693
}

694
static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
695
			const char *fmt, ...)
C
Christoph Lameter 已提交
696 697 698 699
{
	va_list args;
	char buf[100];

700 701
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
702
	va_end(args);
703
	slab_bug(s, "%s", buf);
704
	print_page_info(page);
C
Christoph Lameter 已提交
705 706 707
	dump_stack();
}

708
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
709 710 711
{
	u8 *p = object;

J
Joonsoo Kim 已提交
712 713 714
	if (s->flags & SLAB_RED_ZONE)
		memset(p - s->red_left_pad, val, s->red_left_pad);

C
Christoph Lameter 已提交
715
	if (s->flags & __OBJECT_POISON) {
716 717
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
718 719 720
	}

	if (s->flags & SLAB_RED_ZONE)
721
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
722 723
}

724 725 726 727 728 729 730 731 732
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
733
			u8 *start, unsigned int value, unsigned int bytes)
734 735 736
{
	u8 *fault;
	u8 *end;
737
	u8 *addr = page_address(page);
738

739
	metadata_access_enable();
740
	fault = memchr_inv(start, value, bytes);
741
	metadata_access_disable();
742 743 744 745 746 747 748 749
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
750 751 752
	pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
					fault, end - 1, fault - addr,
					fault[0], value);
753 754 755 756
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
757 758 759 760 761 762 763 764 765
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
766
 *
C
Christoph Lameter 已提交
767 768 769
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
770
 * object + s->object_size
C
Christoph Lameter 已提交
771
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
772
 * 	Padding is extended by another word if Redzoning is enabled and
773
 * 	object_size == inuse.
C
Christoph Lameter 已提交
774
 *
C
Christoph Lameter 已提交
775 776 777 778
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
779 780
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
781 782
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
783
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
784
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
785 786 787
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
788 789
 *
 * object + s->size
C
Christoph Lameter 已提交
790
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
791
 *
792
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
793
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

809 810
	off += kasan_metadata_size(s);

J
Joonsoo Kim 已提交
811
	if (size_from_object(s) == off)
C
Christoph Lameter 已提交
812 813
		return 1;

814
	return check_bytes_and_report(s, page, p, "Object padding",
J
Joonsoo Kim 已提交
815
			p + off, POISON_INUSE, size_from_object(s) - off);
C
Christoph Lameter 已提交
816 817
}

818
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
819 820
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
821 822 823
	u8 *start;
	u8 *fault;
	u8 *end;
824
	u8 *pad;
825 826
	int length;
	int remainder;
C
Christoph Lameter 已提交
827 828 829 830

	if (!(s->flags & SLAB_POISON))
		return 1;

831
	start = page_address(page);
832
	length = page_size(page);
833 834
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
835 836 837
	if (!remainder)
		return 1;

838
	pad = end - remainder;
839
	metadata_access_enable();
840
	fault = memchr_inv(pad, POISON_INUSE, remainder);
841
	metadata_access_disable();
842 843 844 845 846
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

847 848
	slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
			fault, end - 1, fault - start);
849
	print_section(KERN_ERR, "Padding ", pad, remainder);
850

851
	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
852
	return 0;
C
Christoph Lameter 已提交
853 854 855
}

static int check_object(struct kmem_cache *s, struct page *page,
856
					void *object, u8 val)
C
Christoph Lameter 已提交
857 858
{
	u8 *p = object;
859
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
860 861

	if (s->flags & SLAB_RED_ZONE) {
J
Joonsoo Kim 已提交
862 863 864 865
		if (!check_bytes_and_report(s, page, object, "Redzone",
			object - s->red_left_pad, val, s->red_left_pad))
			return 0;

866
		if (!check_bytes_and_report(s, page, object, "Redzone",
867
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
868 869
			return 0;
	} else {
870
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
871
			check_bytes_and_report(s, page, p, "Alignment padding",
872 873
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
I
Ingo Molnar 已提交
874
		}
C
Christoph Lameter 已提交
875 876 877
	}

	if (s->flags & SLAB_POISON) {
878
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
879
			(!check_bytes_and_report(s, page, p, "Poison", p,
880
					POISON_FREE, s->object_size - 1) ||
881
			 !check_bytes_and_report(s, page, p, "Poison",
882
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
883 884 885 886 887 888 889
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

890
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
891 892 893 894 895 896 897 898 899 900
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
901
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
902
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
903
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
904
		 */
905
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
906 907 908 909 910 911 912
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
913 914
	int maxobj;

C
Christoph Lameter 已提交
915 916 917
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
918
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
919 920
		return 0;
	}
921

922
	maxobj = order_objects(compound_order(page), s->size);
923 924
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
925
			page->objects, maxobj);
926 927 928
		return 0;
	}
	if (page->inuse > page->objects) {
929
		slab_err(s, page, "inuse %u > max %u",
930
			page->inuse, page->objects);
C
Christoph Lameter 已提交
931 932 933 934 935 936 937 938
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
939 940
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
941 942 943 944
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
945
	void *fp;
C
Christoph Lameter 已提交
946
	void *object = NULL;
947
	int max_objects;
C
Christoph Lameter 已提交
948

949
	fp = page->freelist;
950
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
951 952 953 954 955 956
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
957
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
958
			} else {
959
				slab_err(s, page, "Freepointer corrupt");
960
				page->freelist = NULL;
961
				page->inuse = page->objects;
962
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
963 964 965 966 967 968 969 970 971
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

972
	max_objects = order_objects(compound_order(page), s->size);
973 974
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
975 976

	if (page->objects != max_objects) {
J
Joe Perches 已提交
977 978
		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
			 page->objects, max_objects);
979 980 981
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
982
	if (page->inuse != page->objects - nr) {
J
Joe Perches 已提交
983 984
		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
			 page->inuse, page->objects - nr);
985
		page->inuse = page->objects - nr;
986
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
987 988 989 990
	}
	return search == NULL;
}

991 992
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
993 994
{
	if (s->flags & SLAB_TRACE) {
995
		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
C
Christoph Lameter 已提交
996 997 998 999 1000 1001
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
1002
			print_section(KERN_INFO, "Object ", (void *)object,
1003
					s->object_size);
C
Christoph Lameter 已提交
1004 1005 1006 1007 1008

		dump_stack();
	}
}

1009
/*
C
Christoph Lameter 已提交
1010
 * Tracking of fully allocated slabs for debugging purposes.
1011
 */
1012 1013
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
1014
{
1015 1016 1017
	if (!(s->flags & SLAB_STORE_USER))
		return;

1018
	lockdep_assert_held(&n->list_lock);
1019
	list_add(&page->slab_list, &n->full);
1020 1021
}

P
Peter Zijlstra 已提交
1022
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1023 1024 1025 1026
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

1027
	lockdep_assert_held(&n->list_lock);
1028
	list_del(&page->slab_list);
1029 1030
}

1031 1032 1033 1034 1035 1036 1037 1038
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

1039 1040 1041 1042 1043
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

1044
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1045 1046 1047 1048 1049 1050 1051 1052 1053
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
1054
	if (likely(n)) {
1055
		atomic_long_inc(&n->nr_slabs);
1056 1057
		atomic_long_add(objects, &n->total_objects);
	}
1058
}
1059
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1060 1061 1062 1063
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
1064
	atomic_long_sub(objects, &n->total_objects);
1065 1066 1067
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1068 1069 1070 1071 1072 1073
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1074
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1075 1076 1077
	init_tracking(s, object);
}

1078 1079
static
void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1080 1081 1082 1083 1084
{
	if (!(s->flags & SLAB_POISON))
		return;

	metadata_access_enable();
1085
	memset(addr, POISON_INUSE, page_size(page));
1086 1087 1088
	metadata_access_disable();
}

1089
static inline int alloc_consistency_checks(struct kmem_cache *s,
1090
					struct page *page, void *object)
C
Christoph Lameter 已提交
1091 1092
{
	if (!check_slab(s, page))
1093
		return 0;
C
Christoph Lameter 已提交
1094 1095 1096

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1097
		return 0;
C
Christoph Lameter 已提交
1098 1099
	}

1100
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
		return 0;

	return 1;
}

static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
					void *object, unsigned long addr)
{
	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1111
		if (!alloc_consistency_checks(s, page, object))
1112 1113
			goto bad;
	}
C
Christoph Lameter 已提交
1114

C
Christoph Lameter 已提交
1115 1116 1117 1118
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1119
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1120
	return 1;
C
Christoph Lameter 已提交
1121

C
Christoph Lameter 已提交
1122 1123 1124 1125 1126
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1127
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1128
		 */
1129
		slab_fix(s, "Marking all objects used");
1130
		page->inuse = page->objects;
1131
		page->freelist = NULL;
C
Christoph Lameter 已提交
1132 1133 1134 1135
	}
	return 0;
}

1136 1137
static inline int free_consistency_checks(struct kmem_cache *s,
		struct page *page, void *object, unsigned long addr)
C
Christoph Lameter 已提交
1138 1139
{
	if (!check_valid_pointer(s, page, object)) {
1140
		slab_err(s, page, "Invalid object pointer 0x%p", object);
1141
		return 0;
C
Christoph Lameter 已提交
1142 1143 1144
	}

	if (on_freelist(s, page, object)) {
1145
		object_err(s, page, object, "Object already free");
1146
		return 0;
C
Christoph Lameter 已提交
1147 1148
	}

1149
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1150
		return 0;
C
Christoph Lameter 已提交
1151

1152
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1153
		if (!PageSlab(page)) {
J
Joe Perches 已提交
1154 1155
			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
				 object);
1156
		} else if (!page->slab_cache) {
1157 1158
			pr_err("SLUB <none>: no slab for object 0x%p.\n",
			       object);
1159
			dump_stack();
P
Pekka Enberg 已提交
1160
		} else
1161 1162
			object_err(s, page, object,
					"page slab pointer corrupt.");
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
		return 0;
	}
	return 1;
}

/* Supports checking bulk free of a constructed freelist */
static noinline int free_debug_processing(
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
	unsigned long addr)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	void *object = head;
	int cnt = 0;
	unsigned long uninitialized_var(flags);
	int ret = 0;

	spin_lock_irqsave(&n->list_lock, flags);
	slab_lock(page);

	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!check_slab(s, page))
			goto out;
	}

next_object:
	cnt++;

	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!free_consistency_checks(s, page, object, addr))
			goto out;
C
Christoph Lameter 已提交
1194
	}
C
Christoph Lameter 已提交
1195 1196 1197 1198

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1199
	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1200
	init_object(s, object, SLUB_RED_INACTIVE);
1201 1202 1203 1204 1205 1206

	/* Reached end of constructed freelist yet? */
	if (object != tail) {
		object = get_freepointer(s, object);
		goto next_object;
	}
1207 1208
	ret = 1;

1209
out:
1210 1211 1212 1213
	if (cnt != bulk_cnt)
		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
			 bulk_cnt, cnt);

1214
	slab_unlock(page);
1215
	spin_unlock_irqrestore(&n->list_lock, flags);
1216 1217 1218
	if (!ret)
		slab_fix(s, "Object at 0x%p not freed", object);
	return ret;
C
Christoph Lameter 已提交
1219 1220
}

C
Christoph Lameter 已提交
1221 1222
static int __init setup_slub_debug(char *str)
{
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1247
	for (; *str && *str != ','; str++) {
1248 1249
		switch (tolower(*str)) {
		case 'f':
1250
			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1264 1265 1266
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1267 1268 1269 1270 1271 1272 1273
		case 'o':
			/*
			 * Avoid enabling debugging on caches if its minimum
			 * order would increase as a result.
			 */
			disable_higher_order_debug = 1;
			break;
1274
		default:
1275 1276
			pr_err("slub_debug option '%c' unknown. skipped\n",
			       *str);
1277
		}
C
Christoph Lameter 已提交
1278 1279
	}

1280
check_slabs:
C
Christoph Lameter 已提交
1281 1282
	if (*str == ',')
		slub_debug_slabs = str + 1;
1283
out:
1284 1285 1286 1287
	if ((static_branch_unlikely(&init_on_alloc) ||
	     static_branch_unlikely(&init_on_free)) &&
	    (slub_debug & SLAB_POISON))
		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
C
Christoph Lameter 已提交
1288 1289 1290 1291 1292
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
/*
 * kmem_cache_flags - apply debugging options to the cache
 * @object_size:	the size of an object without meta data
 * @flags:		flags to set
 * @name:		name of the cache
 * @ctor:		constructor function
 *
 * Debug option(s) are applied to @flags. In addition to the debug
 * option(s), if a slab name (or multiple) is specified i.e.
 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
 * then only the select slabs will receive the debug option(s).
 */
1305
slab_flags_t kmem_cache_flags(unsigned int object_size,
1306
	slab_flags_t flags, const char *name,
1307
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1308
{
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
	char *iter;
	size_t len;

	/* If slub_debug = 0, it folds into the if conditional. */
	if (!slub_debug_slabs)
		return flags | slub_debug;

	len = strlen(name);
	iter = slub_debug_slabs;
	while (*iter) {
		char *end, *glob;
		size_t cmplen;

1322
		end = strchrnul(iter, ',');
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338

		glob = strnchr(iter, end - iter, '*');
		if (glob)
			cmplen = glob - iter;
		else
			cmplen = max_t(size_t, len, (end - iter));

		if (!strncmp(name, iter, cmplen)) {
			flags |= slub_debug;
			break;
		}

		if (!*end)
			break;
		iter = end + 1;
	}
1339 1340

	return flags;
C
Christoph Lameter 已提交
1341
}
1342
#else /* !CONFIG_SLUB_DEBUG */
C
Christoph Lameter 已提交
1343 1344
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
1345 1346
static inline
void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
C
Christoph Lameter 已提交
1347

C
Christoph Lameter 已提交
1348
static inline int alloc_debug_processing(struct kmem_cache *s,
1349
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1350

1351
static inline int free_debug_processing(
1352 1353
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
1354
	unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1355 1356 1357 1358

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1359
			void *object, u8 val) { return 1; }
1360 1361
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
P
Peter Zijlstra 已提交
1362 1363
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1364
slab_flags_t kmem_cache_flags(unsigned int object_size,
1365
	slab_flags_t flags, const char *name,
1366
	void (*ctor)(void *))
1367 1368 1369
{
	return flags;
}
C
Christoph Lameter 已提交
1370
#define slub_debug 0
1371

1372 1373
#define disable_higher_order_debug 0

1374 1375
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1376 1377
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1378 1379 1380 1381
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1382

1383 1384 1385 1386 1387 1388
#endif /* CONFIG_SLUB_DEBUG */

/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
1389
static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1390
{
1391
	ptr = kasan_kmalloc_large(ptr, size, flags);
1392
	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1393
	kmemleak_alloc(ptr, size, 1, flags);
1394
	return ptr;
1395 1396
}

1397
static __always_inline void kfree_hook(void *x)
1398 1399
{
	kmemleak_free(x);
1400
	kasan_kfree_large(x, _RET_IP_);
1401 1402
}

1403
static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1404 1405
{
	kmemleak_free_recursive(x, s->flags);
1406

1407 1408 1409 1410 1411
	/*
	 * Trouble is that we may no longer disable interrupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
1412
#ifdef CONFIG_LOCKDEP
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
	{
		unsigned long flags;

		local_irq_save(flags);
		debug_check_no_locks_freed(x, s->object_size);
		local_irq_restore(flags);
	}
#endif
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(x, s->object_size);
1423

1424 1425
	/* KASAN might put x into memory quarantine, delaying its reuse */
	return kasan_slab_free(s, x, _RET_IP_);
1426
}
1427

1428 1429
static inline bool slab_free_freelist_hook(struct kmem_cache *s,
					   void **head, void **tail)
1430
{
1431 1432 1433 1434 1435 1436

	void *object;
	void *next = *head;
	void *old_tail = *tail ? *tail : *head;
	int rsize;

1437 1438 1439
	/* Head and tail of the reconstructed freelist */
	*head = NULL;
	*tail = NULL;
1440

1441 1442 1443 1444 1445
	do {
		object = next;
		next = get_freepointer(s, object);

		if (slab_want_init_on_free(s)) {
1446 1447 1448 1449 1450 1451 1452 1453 1454
			/*
			 * Clear the object and the metadata, but don't touch
			 * the redzone.
			 */
			memset(object, 0, s->object_size);
			rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
							   : 0;
			memset((char *)object + s->inuse, 0,
			       s->size - s->inuse - rsize);
1455

1456
		}
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
		/* If object's reuse doesn't have to be delayed */
		if (!slab_free_hook(s, object)) {
			/* Move object to the new freelist */
			set_freepointer(s, object, *head);
			*head = object;
			if (!*tail)
				*tail = object;
		}
	} while (object != old_tail);

	if (*head == *tail)
		*tail = NULL;

	return *head != NULL;
1471 1472
}

1473
static void *setup_object(struct kmem_cache *s, struct page *page,
1474 1475 1476
				void *object)
{
	setup_object_debug(s, page, object);
1477
	object = kasan_init_slab_obj(s, object);
1478 1479 1480 1481 1482
	if (unlikely(s->ctor)) {
		kasan_unpoison_object_data(s, object);
		s->ctor(object);
		kasan_poison_object_data(s, object);
	}
1483
	return object;
1484 1485
}

C
Christoph Lameter 已提交
1486 1487 1488
/*
 * Slab allocation and freeing
 */
1489 1490
static inline struct page *alloc_slab_page(struct kmem_cache *s,
		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1491
{
1492
	struct page *page;
1493
	unsigned int order = oo_order(oo);
1494

1495
	if (node == NUMA_NO_NODE)
1496
		page = alloc_pages(flags, order);
1497
	else
1498
		page = __alloc_pages_node(node, flags, order);
1499

1500
	if (page && charge_slab_page(page, flags, order, s)) {
1501 1502 1503
		__free_pages(page, order);
		page = NULL;
	}
1504 1505

	return page;
1506 1507
}

T
Thomas Garnier 已提交
1508 1509 1510 1511
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Pre-initialize the random sequence cache */
static int init_cache_random_seq(struct kmem_cache *s)
{
1512
	unsigned int count = oo_objects(s->oo);
T
Thomas Garnier 已提交
1513 1514
	int err;

1515 1516 1517 1518
	/* Bailout if already initialised */
	if (s->random_seq)
		return 0;

T
Thomas Garnier 已提交
1519 1520 1521 1522 1523 1524 1525 1526 1527
	err = cache_random_seq_create(s, count, GFP_KERNEL);
	if (err) {
		pr_err("SLUB: Unable to initialize free list for %s\n",
			s->name);
		return err;
	}

	/* Transform to an offset on the set of pages */
	if (s->random_seq) {
1528 1529
		unsigned int i;

T
Thomas Garnier 已提交
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
		for (i = 0; i < count; i++)
			s->random_seq[i] *= s->size;
	}
	return 0;
}

/* Initialize each random sequence freelist per cache */
static void __init init_freelist_randomization(void)
{
	struct kmem_cache *s;

	mutex_lock(&slab_mutex);

	list_for_each_entry(s, &slab_caches, list)
		init_cache_random_seq(s);

	mutex_unlock(&slab_mutex);
}

/* Get the next entry on the pre-computed freelist randomized */
static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
				unsigned long *pos, void *start,
				unsigned long page_limit,
				unsigned long freelist_count)
{
	unsigned int idx;

	/*
	 * If the target page allocation failed, the number of objects on the
	 * page might be smaller than the usual size defined by the cache.
	 */
	do {
		idx = s->random_seq[*pos];
		*pos += 1;
		if (*pos >= freelist_count)
			*pos = 0;
	} while (unlikely(idx >= page_limit));

	return (char *)start + idx;
}

/* Shuffle the single linked freelist based on a random pre-computed sequence */
static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
{
	void *start;
	void *cur;
	void *next;
	unsigned long idx, pos, page_limit, freelist_count;

	if (page->objects < 2 || !s->random_seq)
		return false;

	freelist_count = oo_objects(s->oo);
	pos = get_random_int() % freelist_count;

	page_limit = page->objects * s->size;
	start = fixup_red_left(s, page_address(page));

	/* First entry is used as the base of the freelist */
	cur = next_freelist_entry(s, page, &pos, start, page_limit,
				freelist_count);
1591
	cur = setup_object(s, page, cur);
T
Thomas Garnier 已提交
1592 1593 1594 1595 1596
	page->freelist = cur;

	for (idx = 1; idx < page->objects; idx++) {
		next = next_freelist_entry(s, page, &pos, start, page_limit,
			freelist_count);
1597
		next = setup_object(s, page, next);
T
Thomas Garnier 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
		set_freepointer(s, cur, next);
		cur = next;
	}
	set_freepointer(s, cur, NULL);

	return true;
}
#else
static inline int init_cache_random_seq(struct kmem_cache *s)
{
	return 0;
}
static inline void init_freelist_randomization(void) { }
static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
{
	return false;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

C
Christoph Lameter 已提交
1617 1618
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1619
	struct page *page;
1620
	struct kmem_cache_order_objects oo = s->oo;
1621
	gfp_t alloc_gfp;
1622
	void *start, *p, *next;
1623
	int idx;
T
Thomas Garnier 已提交
1624
	bool shuffle;
C
Christoph Lameter 已提交
1625

1626 1627
	flags &= gfp_allowed_mask;

1628
	if (gfpflags_allow_blocking(flags))
1629 1630
		local_irq_enable();

1631
	flags |= s->allocflags;
1632

1633 1634 1635 1636 1637
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1638
	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1639
		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1640

1641
	page = alloc_slab_page(s, alloc_gfp, node, oo);
1642 1643
	if (unlikely(!page)) {
		oo = s->min;
1644
		alloc_gfp = flags;
1645 1646 1647 1648
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
1649
		page = alloc_slab_page(s, alloc_gfp, node, oo);
1650 1651 1652
		if (unlikely(!page))
			goto out;
		stat(s, ORDER_FALLBACK);
1653
	}
V
Vegard Nossum 已提交
1654

1655
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1656

1657
	page->slab_cache = s;
1658
	__SetPageSlab(page);
1659
	if (page_is_pfmemalloc(page))
1660
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1661

1662
	kasan_poison_slab(page);
C
Christoph Lameter 已提交
1663

1664
	start = page_address(page);
C
Christoph Lameter 已提交
1665

1666
	setup_page_debug(s, page, start);
1667

T
Thomas Garnier 已提交
1668 1669 1670
	shuffle = shuffle_freelist(s, page);

	if (!shuffle) {
1671 1672 1673
		start = fixup_red_left(s, start);
		start = setup_object(s, page, start);
		page->freelist = start;
1674 1675 1676 1677 1678 1679 1680
		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
			next = p + s->size;
			next = setup_object(s, page, next);
			set_freepointer(s, p, next);
			p = next;
		}
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
1681 1682
	}

1683
	page->inuse = page->objects;
1684
	page->frozen = 1;
1685

C
Christoph Lameter 已提交
1686
out:
1687
	if (gfpflags_allow_blocking(flags))
1688 1689 1690 1691 1692 1693
		local_irq_disable();
	if (!page)
		return NULL;

	inc_slabs_node(s, page_to_nid(page), page->objects);

C
Christoph Lameter 已提交
1694 1695 1696
	return page;
}

1697 1698 1699
static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1700
		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1701 1702 1703
		flags &= ~GFP_SLAB_BUG_MASK;
		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
				invalid_mask, &invalid_mask, flags, &flags);
1704
		dump_stack();
1705 1706 1707 1708 1709 1710
	}

	return allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
}

C
Christoph Lameter 已提交
1711 1712
static void __free_slab(struct kmem_cache *s, struct page *page)
{
1713 1714
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1715

1716
	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
C
Christoph Lameter 已提交
1717 1718 1719
		void *p;

		slab_pad_check(s, page);
1720 1721
		for_each_object(p, s, page_address(page),
						page->objects)
1722
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1723 1724
	}

1725
	__ClearPageSlabPfmemalloc(page);
1726
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1727

1728
	page->mapping = NULL;
N
Nick Piggin 已提交
1729 1730
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1731
	uncharge_slab_page(page, order, s);
1732
	__free_pages(page, order);
C
Christoph Lameter 已提交
1733 1734 1735 1736
}

static void rcu_free_slab(struct rcu_head *h)
{
1737
	struct page *page = container_of(h, struct page, rcu_head);
1738

1739
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1740 1741 1742 1743
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
1744
	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1745
		call_rcu(&page->rcu_head, rcu_free_slab);
C
Christoph Lameter 已提交
1746 1747 1748 1749 1750 1751
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1752
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1753 1754 1755 1756
	free_slab(s, page);
}

/*
1757
 * Management of partially allocated slabs.
C
Christoph Lameter 已提交
1758
 */
1759 1760
static inline void
__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
C
Christoph Lameter 已提交
1761
{
C
Christoph Lameter 已提交
1762
	n->nr_partial++;
1763
	if (tail == DEACTIVATE_TO_TAIL)
1764
		list_add_tail(&page->slab_list, &n->partial);
1765
	else
1766
		list_add(&page->slab_list, &n->partial);
C
Christoph Lameter 已提交
1767 1768
}

1769 1770
static inline void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
1771
{
P
Peter Zijlstra 已提交
1772
	lockdep_assert_held(&n->list_lock);
1773 1774
	__add_partial(n, page, tail);
}
P
Peter Zijlstra 已提交
1775

1776 1777 1778 1779
static inline void remove_partial(struct kmem_cache_node *n,
					struct page *page)
{
	lockdep_assert_held(&n->list_lock);
1780
	list_del(&page->slab_list);
1781
	n->nr_partial--;
1782 1783
}

C
Christoph Lameter 已提交
1784
/*
1785 1786
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1787
 *
1788
 * Returns a list of objects or NULL if it fails.
C
Christoph Lameter 已提交
1789
 */
1790
static inline void *acquire_slab(struct kmem_cache *s,
1791
		struct kmem_cache_node *n, struct page *page,
1792
		int mode, int *objects)
C
Christoph Lameter 已提交
1793
{
1794 1795 1796 1797
	void *freelist;
	unsigned long counters;
	struct page new;

P
Peter Zijlstra 已提交
1798 1799
	lockdep_assert_held(&n->list_lock);

1800 1801 1802 1803 1804
	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1805 1806 1807
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1808
	*objects = new.objects - new.inuse;
1809
	if (mode) {
1810
		new.inuse = page->objects;
1811 1812 1813 1814
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1815

1816
	VM_BUG_ON(new.frozen);
1817
	new.frozen = 1;
1818

1819
	if (!__cmpxchg_double_slab(s, page,
1820
			freelist, counters,
1821
			new.freelist, new.counters,
1822 1823
			"acquire_slab"))
		return NULL;
1824 1825

	remove_partial(n, page);
1826
	WARN_ON(!freelist);
1827
	return freelist;
C
Christoph Lameter 已提交
1828 1829
}

1830
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1831
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1832

C
Christoph Lameter 已提交
1833
/*
C
Christoph Lameter 已提交
1834
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1835
 */
1836 1837
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1838
{
1839 1840
	struct page *page, *page2;
	void *object = NULL;
1841
	unsigned int available = 0;
1842
	int objects;
C
Christoph Lameter 已提交
1843 1844 1845 1846

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1847 1848
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1849 1850 1851 1852 1853
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1854
	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1855
		void *t;
1856

1857 1858 1859
		if (!pfmemalloc_match(page, flags))
			continue;

1860
		t = acquire_slab(s, n, page, object == NULL, &objects);
1861 1862 1863
		if (!t)
			break;

1864
		available += objects;
1865
		if (!object) {
1866 1867 1868 1869
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1870
			put_cpu_partial(s, page, 0);
1871
			stat(s, CPU_PARTIAL_NODE);
1872
		}
1873
		if (!kmem_cache_has_cpu_partial(s)
1874
			|| available > slub_cpu_partial(s) / 2)
1875 1876
			break;

1877
	}
C
Christoph Lameter 已提交
1878
	spin_unlock(&n->list_lock);
1879
	return object;
C
Christoph Lameter 已提交
1880 1881 1882
}

/*
C
Christoph Lameter 已提交
1883
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1884
 */
1885
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1886
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1887 1888 1889
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1890
	struct zoneref *z;
1891 1892
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1893
	void *object;
1894
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1895 1896

	/*
C
Christoph Lameter 已提交
1897 1898 1899 1900
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1901
	 *
C
Christoph Lameter 已提交
1902 1903 1904 1905
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1906
	 *
1907 1908 1909 1910 1911
	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
	 * (which makes defrag_ratio = 1000) then every (well almost)
	 * allocation will first attempt to defrag slab caches on other nodes.
	 * This means scanning over all nodes to look for partial slabs which
	 * may be expensive if we do it every time we are trying to find a slab
C
Christoph Lameter 已提交
1912
	 * with available objects.
C
Christoph Lameter 已提交
1913
	 */
1914 1915
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1916 1917
		return NULL;

1918
	do {
1919
		cpuset_mems_cookie = read_mems_allowed_begin();
1920
		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1921 1922 1923 1924 1925
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

1926
			if (n && cpuset_zone_allowed(zone, flags) &&
1927
					n->nr_partial > s->min_partial) {
1928
				object = get_partial_node(s, n, c, flags);
1929 1930
				if (object) {
					/*
1931 1932 1933 1934 1935
					 * Don't check read_mems_allowed_retry()
					 * here - if mems_allowed was updated in
					 * parallel, that was a harmless race
					 * between allocation and the cpuset
					 * update
1936 1937 1938
					 */
					return object;
				}
1939
			}
C
Christoph Lameter 已提交
1940
		}
1941
	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1942
#endif	/* CONFIG_NUMA */
C
Christoph Lameter 已提交
1943 1944 1945 1946 1947 1948
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1949
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1950
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1951
{
1952
	void *object;
1953 1954 1955 1956 1957 1958
	int searchnode = node;

	if (node == NUMA_NO_NODE)
		searchnode = numa_mem_id();
	else if (!node_present_pages(node))
		searchnode = node_to_mem_node(node);
C
Christoph Lameter 已提交
1959

1960
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1961 1962
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1963

1964
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1965 1966
}

1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

1987
#ifdef SLUB_DEBUG_CMPXCHG
1988 1989 1990 1991 1992 1993 1994 1995 1996
static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}
1997
#endif
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

2010
	pr_info("%s %s: cmpxchg redo ", n, s->name);
2011 2012 2013

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2014
		pr_warn("due to cpu change %d -> %d\n",
2015 2016 2017 2018
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
2019
		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2020 2021
			tid_to_event(tid), tid_to_event(actual_tid));
	else
2022
		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2023 2024
			actual_tid, tid, next_tid(tid));
#endif
2025
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2026 2027
}

2028
static void init_kmem_cache_cpus(struct kmem_cache *s)
2029 2030 2031 2032 2033 2034
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
2035

C
Christoph Lameter 已提交
2036 2037 2038
/*
 * Remove the cpu slab
 */
2039
static void deactivate_slab(struct kmem_cache *s, struct page *page,
2040
				void *freelist, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2041
{
2042 2043 2044 2045 2046
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
2047
	int tail = DEACTIVATE_TO_HEAD;
2048 2049 2050 2051
	struct page new;
	struct page old;

	if (page->freelist) {
2052
		stat(s, DEACTIVATE_REMOTE_FREES);
2053
		tail = DEACTIVATE_TO_TAIL;
2054 2055
	}

2056
	/*
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
2074
			VM_BUG_ON(!new.frozen);
2075

2076
		} while (!__cmpxchg_double_slab(s, page,
2077 2078 2079 2080 2081 2082 2083
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

2084
	/*
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
2097
	 */
2098
redo:
2099

2100 2101
	old.freelist = page->freelist;
	old.counters = page->counters;
2102
	VM_BUG_ON(!old.frozen);
2103

2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

2115
	if (!new.inuse && n->nr_partial >= s->min_partial)
2116 2117 2118 2119 2120 2121
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
W
Wei Yang 已提交
2122
			 * Taking the spinlock removes the possibility
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {
		if (l == M_PARTIAL)
			remove_partial(n, page);
		else if (l == M_FULL)
P
Peter Zijlstra 已提交
2145
			remove_full(s, n, page);
2146

2147
		if (m == M_PARTIAL)
2148
			add_partial(n, page, tail);
2149
		else if (m == M_FULL)
2150 2151 2152 2153
			add_full(s, n, page);
	}

	l = m;
2154
	if (!__cmpxchg_double_slab(s, page,
2155 2156 2157 2158 2159 2160 2161 2162
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

2163 2164 2165 2166 2167
	if (m == M_PARTIAL)
		stat(s, tail);
	else if (m == M_FULL)
		stat(s, DEACTIVATE_FULL);
	else if (m == M_FREE) {
2168 2169 2170
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
2171
	}
2172 2173 2174

	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2175 2176
}

2177 2178 2179
/*
 * Unfreeze all the cpu partial slabs.
 *
2180 2181 2182
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
2183
 */
2184 2185
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
2186
{
2187
#ifdef CONFIG_SLUB_CPU_PARTIAL
2188
	struct kmem_cache_node *n = NULL, *n2 = NULL;
2189
	struct page *page, *discard_page = NULL;
2190 2191 2192 2193 2194 2195

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
2196 2197 2198 2199 2200 2201 2202 2203 2204

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
2205 2206 2207 2208 2209

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
2210
			VM_BUG_ON(!old.frozen);
2211 2212 2213 2214 2215 2216

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

2217
		} while (!__cmpxchg_double_slab(s, page,
2218 2219 2220 2221
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

2222
		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2223 2224
			page->next = discard_page;
			discard_page = page;
2225 2226 2227
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
2228 2229 2230 2231 2232
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
2233 2234 2235 2236 2237 2238 2239 2240 2241

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
2242
#endif	/* CONFIG_SLUB_CPU_PARTIAL */
2243 2244 2245
}

/*
2246 2247
 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
 * partial page slot if available.
2248 2249 2250 2251
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
2252
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2253
{
2254
#ifdef CONFIG_SLUB_CPU_PARTIAL
2255 2256 2257 2258
	struct page *oldpage;
	int pages;
	int pobjects;

2259
	preempt_disable();
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2275
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2276
				local_irq_restore(flags);
2277
				oldpage = NULL;
2278 2279
				pobjects = 0;
				pages = 0;
2280
				stat(s, CPU_PARTIAL_DRAIN);
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2291 2292
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2293 2294 2295 2296 2297 2298 2299 2300
	if (unlikely(!s->cpu_partial)) {
		unsigned long flags;

		local_irq_save(flags);
		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
		local_irq_restore(flags);
	}
	preempt_enable();
2301
#endif	/* CONFIG_SLUB_CPU_PARTIAL */
2302 2303
}

2304
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2305
{
2306
	stat(s, CPUSLAB_FLUSH);
2307
	deactivate_slab(s, c->page, c->freelist, c);
2308 2309

	c->tid = next_tid(c->tid);
C
Christoph Lameter 已提交
2310 2311 2312 2313
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2314
 *
C
Christoph Lameter 已提交
2315 2316
 * Called from IPI handler with interrupts disabled.
 */
2317
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2318
{
2319
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2320

2321 2322
	if (c->page)
		flush_slab(s, c);
2323

2324
	unfreeze_partials(s, c);
C
Christoph Lameter 已提交
2325 2326 2327 2328 2329 2330
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2331
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2332 2333
}

2334 2335 2336 2337 2338
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2339
	return c->page || slub_percpu_partial(c);
2340 2341
}

C
Christoph Lameter 已提交
2342 2343
static void flush_all(struct kmem_cache *s)
{
2344
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
C
Christoph Lameter 已提交
2345 2346
}

2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
/*
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
 */
static int slub_cpu_dead(unsigned int cpu)
{
	struct kmem_cache *s;
	unsigned long flags;

	mutex_lock(&slab_mutex);
	list_for_each_entry(s, &slab_caches, list) {
		local_irq_save(flags);
		__flush_cpu_slab(s, cpu);
		local_irq_restore(flags);
	}
	mutex_unlock(&slab_mutex);
	return 0;
}

2366 2367 2368 2369
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2370
static inline int node_match(struct page *page, int node)
2371 2372
{
#ifdef CONFIG_NUMA
2373
	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2374 2375 2376 2377 2378
		return 0;
#endif
	return 1;
}

2379
#ifdef CONFIG_SLUB_DEBUG
P
Pekka Enberg 已提交
2380 2381 2382 2383 2384
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

2385 2386 2387 2388 2389 2390 2391
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->total_objects);
}
#endif /* CONFIG_SLUB_DEBUG */

#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
P
Pekka Enberg 已提交
2392 2393 2394 2395 2396 2397 2398 2399
static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
2400
	list_for_each_entry(page, &n->partial, slab_list)
P
Pekka Enberg 已提交
2401 2402 2403 2404
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}
2405
#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2406

P
Pekka Enberg 已提交
2407 2408 2409
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
2410 2411 2412
#ifdef CONFIG_SLUB_DEBUG
	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);
P
Pekka Enberg 已提交
2413
	int node;
C
Christoph Lameter 已提交
2414
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
2415

2416 2417 2418
	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
		return;

2419 2420
	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nid, gfpflags, &gfpflags);
2421
	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2422 2423
		s->name, s->object_size, s->size, oo_order(s->oo),
		oo_order(s->min));
P
Pekka Enberg 已提交
2424

2425
	if (oo_order(s->min) > get_order(s->object_size))
2426 2427
		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
			s->name);
2428

C
Christoph Lameter 已提交
2429
	for_each_kmem_cache_node(s, node, n) {
P
Pekka Enberg 已提交
2430 2431 2432 2433
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

2434 2435 2436
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2437

2438
		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
P
Pekka Enberg 已提交
2439 2440
			node, nr_slabs, nr_objs, nr_free);
	}
2441
#endif
P
Pekka Enberg 已提交
2442 2443
}

2444 2445 2446
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2447
	void *freelist;
2448 2449
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2450

2451 2452
	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));

2453
	freelist = get_partial(s, flags, node, c);
2454

2455 2456 2457 2458
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2459
	if (page) {
2460
		c = raw_cpu_ptr(s->cpu_slab);
2461 2462 2463 2464 2465 2466 2467
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2468
		freelist = page->freelist;
2469 2470 2471 2472 2473
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
2474
	}
2475

2476
	return freelist;
2477 2478
}

2479 2480 2481 2482 2483 2484 2485 2486
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2487
/*
2488 2489
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2490 2491 2492 2493
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2494 2495
 *
 * This function must be called with interrupt disabled.
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2506

2507
		new.counters = counters;
2508
		VM_BUG_ON(!new.frozen);
2509 2510 2511 2512

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2513
	} while (!__cmpxchg_double_slab(s, page,
2514 2515 2516 2517 2518 2519 2520
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2521
/*
2522 2523 2524 2525 2526 2527
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2528
 *
2529 2530 2531
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2532
 *
2533
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2534 2535
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
2536 2537 2538
 *
 * Version of __slab_alloc to use when we know that interrupts are
 * already disabled (which is the case for bulk allocation).
C
Christoph Lameter 已提交
2539
 */
2540
static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2541
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2542
{
2543
	void *freelist;
2544
	struct page *page;
C
Christoph Lameter 已提交
2545

2546 2547
	page = c->page;
	if (!page)
C
Christoph Lameter 已提交
2548
		goto new_slab;
2549
redo:
2550

2551
	if (unlikely(!node_match(page, node))) {
2552 2553 2554 2555 2556 2557 2558
		int searchnode = node;

		if (node != NUMA_NO_NODE && !node_present_pages(node))
			searchnode = node_to_mem_node(node);

		if (unlikely(!node_match(page, searchnode))) {
			stat(s, ALLOC_NODE_MISMATCH);
2559
			deactivate_slab(s, page, c->freelist, c);
2560 2561
			goto new_slab;
		}
2562
	}
C
Christoph Lameter 已提交
2563

2564 2565 2566 2567 2568 2569
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2570
		deactivate_slab(s, page, c->freelist, c);
2571 2572 2573
		goto new_slab;
	}

2574
	/* must check again c->freelist in case of cpu migration or IRQ */
2575 2576
	freelist = c->freelist;
	if (freelist)
2577
		goto load_freelist;
2578

2579
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2580

2581
	if (!freelist) {
2582 2583
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2584
		goto new_slab;
2585
	}
C
Christoph Lameter 已提交
2586

2587
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2588

2589
load_freelist:
2590 2591 2592 2593 2594
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
2595
	VM_BUG_ON(!c->page->frozen);
2596
	c->freelist = get_freepointer(s, freelist);
2597
	c->tid = next_tid(c->tid);
2598
	return freelist;
C
Christoph Lameter 已提交
2599 2600

new_slab:
2601

2602 2603 2604
	if (slub_percpu_partial(c)) {
		page = c->page = slub_percpu_partial(c);
		slub_set_percpu_partial(c, page);
2605 2606
		stat(s, CPU_PARTIAL_ALLOC);
		goto redo;
C
Christoph Lameter 已提交
2607 2608
	}

2609
	freelist = new_slab_objects(s, gfpflags, node, &c);
2610

2611
	if (unlikely(!freelist)) {
2612
		slab_out_of_memory(s, gfpflags, node);
2613
		return NULL;
C
Christoph Lameter 已提交
2614
	}
2615

2616
	page = c->page;
2617
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2618
		goto load_freelist;
2619

2620
	/* Only entered in the debug case */
2621 2622
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2623
		goto new_slab;	/* Slab failed checks. Next slab needed */
2624

2625
	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2626
	return freelist;
2627 2628
}

2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
/*
 * Another one that disabled interrupt and compensates for possible
 * cpu changes by refetching the per cpu area pointer.
 */
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
{
	void *p;
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif

	p = ___slab_alloc(s, gfpflags, node, addr, c);
	local_irq_restore(flags);
	return p;
}

2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
/*
 * If the object has been wiped upon free, make sure it's fully initialized by
 * zeroing out freelist pointer.
 */
static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
						   void *obj)
{
	if (unlikely(slab_want_init_on_free(s)) && obj)
		memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
}

2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2675
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2676
		gfp_t gfpflags, int node, unsigned long addr)
2677
{
2678
	void *object;
2679
	struct kmem_cache_cpu *c;
2680
	struct page *page;
2681
	unsigned long tid;
2682

2683 2684
	s = slab_pre_alloc_hook(s, gfpflags);
	if (!s)
A
Akinobu Mita 已提交
2685
		return NULL;
2686 2687 2688 2689 2690 2691
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2692
	 *
2693 2694 2695
	 * We should guarantee that tid and kmem_cache are retrieved on
	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
	 * to check if it is matched or not.
2696
	 */
2697 2698 2699
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2700 2701
	} while (IS_ENABLED(CONFIG_PREEMPT) &&
		 unlikely(tid != READ_ONCE(c->tid)));
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711

	/*
	 * Irqless object alloc/free algorithm used here depends on sequence
	 * of fetching cpu_slab's data. tid should be fetched before anything
	 * on c to guarantee that object and page associated with previous tid
	 * won't be used with current tid. If we fetch tid first, object and
	 * page could be one associated with next tid and our alloc/free
	 * request will be failed. In this case, we will retry. So, no problem.
	 */
	barrier();
2712 2713 2714 2715 2716 2717 2718 2719

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */

2720
	object = c->freelist;
2721
	page = c->page;
D
Dave Hansen 已提交
2722
	if (unlikely(!object || !node_match(page, node))) {
2723
		object = __slab_alloc(s, gfpflags, node, addr, c);
D
Dave Hansen 已提交
2724 2725
		stat(s, ALLOC_SLOWPATH);
	} else {
2726 2727
		void *next_object = get_freepointer_safe(s, object);

2728
		/*
L
Lucas De Marchi 已提交
2729
		 * The cmpxchg will only match if there was no additional
2730 2731
		 * operation and if we are on the right processor.
		 *
2732 2733
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2734 2735 2736 2737
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2738 2739 2740
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2741
		 */
2742
		if (unlikely(!this_cpu_cmpxchg_double(
2743 2744
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2745
				next_object, next_tid(tid)))) {
2746 2747 2748 2749

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2750
		prefetch_freepointer(s, next_object);
2751
		stat(s, ALLOC_FASTPATH);
2752
	}
2753 2754

	maybe_wipe_obj_freeptr(s, object);
2755

2756
	if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2757
		memset(object, 0, s->object_size);
2758

2759
	slab_post_alloc_hook(s, gfpflags, 1, &object);
V
Vegard Nossum 已提交
2760

2761
	return object;
C
Christoph Lameter 已提交
2762 2763
}

2764 2765 2766 2767 2768 2769
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2770 2771
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2772
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2773

2774 2775
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2776 2777

	return ret;
C
Christoph Lameter 已提交
2778 2779 2780
}
EXPORT_SYMBOL(kmem_cache_alloc);

2781
#ifdef CONFIG_TRACING
2782 2783
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2784
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2785
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2786
	ret = kasan_kmalloc(s, ret, size, gfpflags);
2787 2788 2789
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
2790 2791
#endif

C
Christoph Lameter 已提交
2792 2793 2794
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2795
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2796

2797
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2798
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2799 2800

	return ret;
C
Christoph Lameter 已提交
2801 2802 2803
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2804
#ifdef CONFIG_TRACING
2805
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2806
				    gfp_t gfpflags,
2807
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2808
{
2809
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2810 2811 2812

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
2813

2814
	ret = kasan_kmalloc(s, ret, size, gfpflags);
2815
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2816
}
2817
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2818
#endif
2819
#endif	/* CONFIG_NUMA */
E
Eduard - Gabriel Munteanu 已提交
2820

C
Christoph Lameter 已提交
2821
/*
K
Kim Phillips 已提交
2822
 * Slow path handling. This may still be called frequently since objects
2823
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2824
 *
2825 2826 2827
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2828
 */
2829
static void __slab_free(struct kmem_cache *s, struct page *page,
2830 2831 2832
			void *head, void *tail, int cnt,
			unsigned long addr)

C
Christoph Lameter 已提交
2833 2834
{
	void *prior;
2835 2836 2837 2838
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2839
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2840

2841
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2842

2843
	if (kmem_cache_debug(s) &&
2844
	    !free_debug_processing(s, page, head, tail, cnt, addr))
2845
		return;
C
Christoph Lameter 已提交
2846

2847
	do {
2848 2849 2850 2851
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2852 2853
		prior = page->freelist;
		counters = page->counters;
2854
		set_freepointer(s, tail, prior);
2855 2856
		new.counters = counters;
		was_frozen = new.frozen;
2857
		new.inuse -= cnt;
2858
		if ((!new.inuse || !prior) && !was_frozen) {
2859

P
Peter Zijlstra 已提交
2860
			if (kmem_cache_has_cpu_partial(s) && !prior) {
2861 2862

				/*
2863 2864 2865 2866
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
2867 2868 2869
				 */
				new.frozen = 1;

P
Peter Zijlstra 已提交
2870
			} else { /* Needs to be taken off a list */
2871

2872
				n = get_node(s, page_to_nid(page));
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2884
		}
C
Christoph Lameter 已提交
2885

2886 2887
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
2888
		head, new.counters,
2889
		"__slab_free"));
C
Christoph Lameter 已提交
2890

2891
	if (likely(!n)) {
2892 2893 2894 2895 2896

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2897
		if (new.frozen && !was_frozen) {
2898
			put_cpu_partial(s, page, 1);
2899 2900
			stat(s, CPU_PARTIAL_FREE);
		}
2901
		/*
2902 2903 2904
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
2905 2906 2907 2908
		if (was_frozen)
			stat(s, FREE_FROZEN);
		return;
	}
C
Christoph Lameter 已提交
2909

2910
	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2911 2912
		goto slab_empty;

C
Christoph Lameter 已提交
2913
	/*
2914 2915
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2916
	 */
2917
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2918
		remove_full(s, n, page);
2919 2920
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2921
	}
2922
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2923 2924 2925
	return;

slab_empty:
2926
	if (prior) {
C
Christoph Lameter 已提交
2927
		/*
2928
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2929
		 */
2930
		remove_partial(n, page);
2931
		stat(s, FREE_REMOVE_PARTIAL);
P
Peter Zijlstra 已提交
2932
	} else {
2933
		/* Slab must be on the full list */
P
Peter Zijlstra 已提交
2934 2935
		remove_full(s, n, page);
	}
2936

2937
	spin_unlock_irqrestore(&n->list_lock, flags);
2938
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2939 2940 2941
	discard_slab(s, page);
}

2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
2952 2953 2954 2955
 *
 * Bulk free of a freelist with several objects (all pointing to the
 * same page) possible by specifying head and tail ptr, plus objects
 * count (cnt). Bulk free indicated by tail pointer being set.
2956
 */
2957 2958 2959
static __always_inline void do_slab_free(struct kmem_cache *s,
				struct page *page, void *head, void *tail,
				int cnt, unsigned long addr)
2960
{
2961
	void *tail_obj = tail ? : head;
2962
	struct kmem_cache_cpu *c;
2963 2964 2965 2966 2967 2968
	unsigned long tid;
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
2969
	 * during the cmpxchg then the free will succeed.
2970
	 */
2971 2972 2973
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2974 2975
	} while (IS_ENABLED(CONFIG_PREEMPT) &&
		 unlikely(tid != READ_ONCE(c->tid)));
2976

2977 2978
	/* Same with comment on barrier() in slab_alloc_node() */
	barrier();
2979

2980
	if (likely(page == c->page)) {
2981
		set_freepointer(s, tail_obj, c->freelist);
2982

2983
		if (unlikely(!this_cpu_cmpxchg_double(
2984 2985
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
2986
				head, next_tid(tid)))) {
2987 2988 2989 2990

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2991
		stat(s, FREE_FASTPATH);
2992
	} else
2993
		__slab_free(s, page, head, tail_obj, cnt, addr);
2994 2995 2996

}

2997 2998 2999 3000 3001
static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
				      void *head, void *tail, int cnt,
				      unsigned long addr)
{
	/*
3002 3003
	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
	 * to remove objects, whose reuse must be delayed.
3004
	 */
3005 3006
	if (slab_free_freelist_hook(s, &head, &tail))
		do_slab_free(s, page, head, tail, cnt, addr);
3007 3008
}

3009
#ifdef CONFIG_KASAN_GENERIC
3010 3011 3012 3013 3014 3015
void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
{
	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
}
#endif

C
Christoph Lameter 已提交
3016 3017
void kmem_cache_free(struct kmem_cache *s, void *x)
{
3018 3019
	s = cache_from_obj(s, x);
	if (!s)
3020
		return;
3021
	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3022
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
3023 3024 3025
}
EXPORT_SYMBOL(kmem_cache_free);

3026
struct detached_freelist {
3027
	struct page *page;
3028 3029 3030
	void *tail;
	void *freelist;
	int cnt;
3031
	struct kmem_cache *s;
3032
};
3033

3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
/*
 * This function progressively scans the array with free objects (with
 * a limited look ahead) and extract objects belonging to the same
 * page.  It builds a detached freelist directly within the given
 * page/objects.  This can happen without any need for
 * synchronization, because the objects are owned by running process.
 * The freelist is build up as a single linked list in the objects.
 * The idea is, that this detached freelist can then be bulk
 * transferred to the real freelist(s), but only requiring a single
 * synchronization primitive.  Look ahead in the array is limited due
 * to performance reasons.
 */
3046 3047 3048
static inline
int build_detached_freelist(struct kmem_cache *s, size_t size,
			    void **p, struct detached_freelist *df)
3049 3050 3051 3052
{
	size_t first_skipped_index = 0;
	int lookahead = 3;
	void *object;
3053
	struct page *page;
3054

3055 3056
	/* Always re-init detached_freelist */
	df->page = NULL;
3057

3058 3059
	do {
		object = p[--size];
3060
		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3061
	} while (!object && size);
3062

3063 3064
	if (!object)
		return 0;
3065

3066 3067 3068 3069 3070 3071
	page = virt_to_head_page(object);
	if (!s) {
		/* Handle kalloc'ed objects */
		if (unlikely(!PageSlab(page))) {
			BUG_ON(!PageCompound(page));
			kfree_hook(object);
3072
			__free_pages(page, compound_order(page));
3073 3074 3075 3076 3077 3078 3079 3080
			p[size] = NULL; /* mark object processed */
			return size;
		}
		/* Derive kmem_cache from object */
		df->s = page->slab_cache;
	} else {
		df->s = cache_from_obj(s, object); /* Support for memcg */
	}
3081

3082
	/* Start new detached freelist */
3083
	df->page = page;
3084
	set_freepointer(df->s, object, NULL);
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
	df->tail = object;
	df->freelist = object;
	p[size] = NULL; /* mark object processed */
	df->cnt = 1;

	while (size) {
		object = p[--size];
		if (!object)
			continue; /* Skip processed objects */

		/* df->page is always set at this point */
		if (df->page == virt_to_head_page(object)) {
			/* Opportunity build freelist */
3098
			set_freepointer(df->s, object, df->freelist);
3099 3100 3101 3102 3103
			df->freelist = object;
			df->cnt++;
			p[size] = NULL; /* mark object processed */

			continue;
3104
		}
3105 3106 3107 3108 3109 3110 3111

		/* Limit look ahead search */
		if (!--lookahead)
			break;

		if (!first_skipped_index)
			first_skipped_index = size + 1;
3112
	}
3113 3114 3115 3116 3117

	return first_skipped_index;
}

/* Note that interrupts must be enabled when calling this function. */
3118
void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3119 3120 3121 3122 3123 3124 3125 3126
{
	if (WARN_ON(!size))
		return;

	do {
		struct detached_freelist df;

		size = build_detached_freelist(s, size, p, &df);
A
Arnd Bergmann 已提交
3127
		if (!df.page)
3128 3129
			continue;

3130
		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3131
	} while (likely(size));
3132 3133 3134
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

3135
/* Note that interrupts must be enabled when calling this function. */
3136 3137
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
			  void **p)
3138
{
3139 3140 3141
	struct kmem_cache_cpu *c;
	int i;

3142 3143 3144 3145
	/* memcg and kmem_cache debug support */
	s = slab_pre_alloc_hook(s, flags);
	if (unlikely(!s))
		return false;
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
	/*
	 * Drain objects in the per cpu slab, while disabling local
	 * IRQs, which protects against PREEMPT and interrupts
	 * handlers invoking normal fastpath.
	 */
	local_irq_disable();
	c = this_cpu_ptr(s->cpu_slab);

	for (i = 0; i < size; i++) {
		void *object = c->freelist;

3157 3158 3159 3160 3161
		if (unlikely(!object)) {
			/*
			 * Invoking slow path likely have side-effect
			 * of re-populating per CPU c->freelist
			 */
3162
			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3163
					    _RET_IP_, c);
3164 3165 3166
			if (unlikely(!p[i]))
				goto error;

3167
			c = this_cpu_ptr(s->cpu_slab);
3168 3169
			maybe_wipe_obj_freeptr(s, p[i]);

3170 3171
			continue; /* goto for-loop */
		}
3172 3173
		c->freelist = get_freepointer(s, object);
		p[i] = object;
3174
		maybe_wipe_obj_freeptr(s, p[i]);
3175 3176 3177 3178 3179
	}
	c->tid = next_tid(c->tid);
	local_irq_enable();

	/* Clear memory outside IRQ disabled fastpath loop */
3180
	if (unlikely(slab_want_init_on_alloc(flags, s))) {
3181 3182 3183 3184 3185 3186
		int j;

		for (j = 0; j < i; j++)
			memset(p[j], 0, s->object_size);
	}

3187 3188
	/* memcg and kmem_cache debug support */
	slab_post_alloc_hook(s, flags, size, p);
3189
	return i;
3190 3191
error:
	local_irq_enable();
3192 3193
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
3194
	return 0;
3195 3196 3197 3198
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);


C
Christoph Lameter 已提交
3199
/*
C
Christoph Lameter 已提交
3200 3201 3202 3203
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
3204 3205 3206 3207
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
3208
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
3209 3210 3211 3212 3213 3214 3215 3216 3217
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
3218 3219 3220
static unsigned int slub_min_order;
static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
static unsigned int slub_min_objects;
C
Christoph Lameter 已提交
3221 3222 3223 3224

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
3225 3226 3227 3228
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
3229
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
3230 3231 3232 3233 3234 3235
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
3236
 *
C
Christoph Lameter 已提交
3237 3238 3239 3240
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
3241
 *
C
Christoph Lameter 已提交
3242 3243 3244 3245
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
3246
 */
3247 3248
static inline unsigned int slab_order(unsigned int size,
		unsigned int min_objects, unsigned int max_order,
3249
		unsigned int fract_leftover)
C
Christoph Lameter 已提交
3250
{
3251 3252
	unsigned int min_order = slub_min_order;
	unsigned int order;
C
Christoph Lameter 已提交
3253

3254
	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3255
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3256

3257
	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3258
			order <= max_order; order++) {
C
Christoph Lameter 已提交
3259

3260 3261
		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
		unsigned int rem;
C
Christoph Lameter 已提交
3262

3263
		rem = slab_size % size;
C
Christoph Lameter 已提交
3264

3265
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
3266 3267
			break;
	}
C
Christoph Lameter 已提交
3268

C
Christoph Lameter 已提交
3269 3270 3271
	return order;
}

3272
static inline int calculate_order(unsigned int size)
3273
{
3274 3275 3276
	unsigned int order;
	unsigned int min_objects;
	unsigned int max_objects;
3277 3278 3279 3280 3281 3282

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
3283
	 * First we increase the acceptable waste in a slab. Then
3284 3285 3286
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
3287 3288
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3289
	max_objects = order_objects(slub_max_order, size);
3290 3291
	min_objects = min(min_objects, max_objects);

3292
	while (min_objects > 1) {
3293 3294
		unsigned int fraction;

C
Christoph Lameter 已提交
3295
		fraction = 16;
3296 3297
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
3298
					slub_max_order, fraction);
3299 3300 3301 3302
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
3303
		min_objects--;
3304 3305 3306 3307 3308 3309
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
3310
	order = slab_order(size, 1, slub_max_order, 1);
3311 3312 3313 3314 3315 3316
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
3317
	order = slab_order(size, 1, MAX_ORDER, 1);
D
David Rientjes 已提交
3318
	if (order < MAX_ORDER)
3319 3320 3321 3322
		return order;
	return -ENOSYS;
}

3323
static void
3324
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3325 3326 3327 3328
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
3329
#ifdef CONFIG_SLUB_DEBUG
3330
	atomic_long_set(&n->nr_slabs, 0);
3331
	atomic_long_set(&n->total_objects, 0);
3332
	INIT_LIST_HEAD(&n->full);
3333
#endif
C
Christoph Lameter 已提交
3334 3335
}

3336
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3337
{
3338
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3339
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3340

3341
	/*
3342 3343
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
3344
	 */
3345 3346
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
3347 3348 3349 3350 3351

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
3352

3353
	return 1;
3354 3355
}

3356 3357
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
3358 3359 3360 3361 3362
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
Z
Zhi Yong Wu 已提交
3363 3364
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
3365
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
3366
 */
3367
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
3368 3369 3370 3371
{
	struct page *page;
	struct kmem_cache_node *n;

3372
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
3373

3374
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
3375 3376

	BUG_ON(!page);
3377
	if (page_to_nid(page) != node) {
3378 3379
		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3380 3381
	}

C
Christoph Lameter 已提交
3382 3383
	n = page->freelist;
	BUG_ON(!n);
3384
#ifdef CONFIG_SLUB_DEBUG
3385
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3386
	init_tracking(kmem_cache_node, n);
3387
#endif
3388
	n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3389
		      GFP_KERNEL);
3390 3391 3392 3393
	page->freelist = get_freepointer(kmem_cache_node, n);
	page->inuse = 1;
	page->frozen = 0;
	kmem_cache_node->node[node] = n;
3394
	init_kmem_cache_node(n);
3395
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
3396

3397
	/*
3398 3399
	 * No locks need to be taken here as it has just been
	 * initialized and there is no concurrent access.
3400
	 */
3401
	__add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
3402 3403 3404 3405 3406
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
3407
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3408

C
Christoph Lameter 已提交
3409
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3410
		s->node[node] = NULL;
3411
		kmem_cache_free(kmem_cache_node, n);
C
Christoph Lameter 已提交
3412 3413 3414
	}
}

3415 3416
void __kmem_cache_release(struct kmem_cache *s)
{
T
Thomas Garnier 已提交
3417
	cache_random_seq_destroy(s);
3418 3419 3420 3421
	free_percpu(s->cpu_slab);
	free_kmem_cache_nodes(s);
}

3422
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
3423 3424 3425
{
	int node;

C
Christoph Lameter 已提交
3426
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3427 3428
		struct kmem_cache_node *n;

3429
		if (slab_state == DOWN) {
3430
			early_kmem_cache_node_alloc(node);
3431 3432
			continue;
		}
3433
		n = kmem_cache_alloc_node(kmem_cache_node,
3434
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
3435

3436 3437 3438
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
3439
		}
3440

3441
		init_kmem_cache_node(n);
3442
		s->node[node] = n;
C
Christoph Lameter 已提交
3443 3444 3445 3446
	}
	return 1;
}

3447
static void set_min_partial(struct kmem_cache *s, unsigned long min)
3448 3449 3450 3451 3452 3453 3454 3455
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
static void set_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
	 * B) The number of objects in cpu partial slabs to extract from the
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
	 */
	if (!kmem_cache_has_cpu_partial(s))
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;
#endif
}

C
Christoph Lameter 已提交
3489 3490 3491 3492
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
3493
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
3494
{
3495
	slab_flags_t flags = s->flags;
3496
	unsigned int size = s->object_size;
3497
	unsigned int order;
C
Christoph Lameter 已提交
3498

3499 3500 3501 3502 3503 3504 3505 3506
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3507 3508 3509 3510 3511
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
3512
	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3513
			!s->ctor)
C
Christoph Lameter 已提交
3514 3515 3516 3517 3518 3519
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
3520
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
3521
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
3522
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
3523
	 */
3524
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
3525
		size += sizeof(void *);
C
Christoph Lameter 已提交
3526
#endif
C
Christoph Lameter 已提交
3527 3528

	/*
C
Christoph Lameter 已提交
3529 3530
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
3531 3532 3533
	 */
	s->inuse = size;

3534
	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3535
		s->ctor)) {
C
Christoph Lameter 已提交
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

3548
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3549 3550 3551 3552 3553 3554
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);
3555
#endif
C
Christoph Lameter 已提交
3556

3557 3558
	kasan_cache_create(s, &size, &s->flags);
#ifdef CONFIG_SLUB_DEBUG
J
Joonsoo Kim 已提交
3559
	if (flags & SLAB_RED_ZONE) {
C
Christoph Lameter 已提交
3560 3561 3562 3563
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3564
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3565 3566 3567
		 * of the object.
		 */
		size += sizeof(void *);
J
Joonsoo Kim 已提交
3568 3569 3570 3571 3572

		s->red_left_pad = sizeof(void *);
		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
		size += s->red_left_pad;
	}
C
Christoph Lameter 已提交
3573
#endif
C
Christoph Lameter 已提交
3574

C
Christoph Lameter 已提交
3575 3576 3577 3578 3579
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3580
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3581
	s->size = size;
3582 3583 3584
	if (forced_order >= 0)
		order = forced_order;
	else
3585
		order = calculate_order(size);
C
Christoph Lameter 已提交
3586

3587
	if ((int)order < 0)
C
Christoph Lameter 已提交
3588 3589
		return 0;

3590
	s->allocflags = 0;
3591
	if (order)
3592 3593 3594
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3595
		s->allocflags |= GFP_DMA;
3596

3597 3598 3599
	if (s->flags & SLAB_CACHE_DMA32)
		s->allocflags |= GFP_DMA32;

3600 3601 3602
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3603 3604 3605
	/*
	 * Determine the number of objects per slab
	 */
3606 3607
	s->oo = oo_make(order, size);
	s->min = oo_make(get_order(size), size);
3608 3609
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3610

3611
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3612 3613
}

3614
static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
C
Christoph Lameter 已提交
3615
{
3616
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3617 3618 3619
#ifdef CONFIG_SLAB_FREELIST_HARDENED
	s->random = get_random_long();
#endif
C
Christoph Lameter 已提交
3620

3621
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3622
		goto error;
3623 3624 3625 3626 3627
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3628
		if (get_order(s->size) > get_order(s->object_size)) {
3629 3630 3631 3632 3633 3634
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3635

3636 3637
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3638
	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3639 3640 3641 3642
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3643 3644 3645 3646
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3647 3648
	set_min_partial(s, ilog2(s->size) / 2);

3649
	set_cpu_partial(s);
3650

C
Christoph Lameter 已提交
3651
#ifdef CONFIG_NUMA
3652
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3653
#endif
T
Thomas Garnier 已提交
3654 3655 3656 3657 3658 3659 3660

	/* Initialize the pre-computed randomized freelist if slab is up */
	if (slab_state >= UP) {
		if (init_cache_random_seq(s))
			goto error;
	}

3661
	if (!init_kmem_cache_nodes(s))
3662
		goto error;
C
Christoph Lameter 已提交
3663

3664
	if (alloc_kmem_cache_cpus(s))
3665
		return 0;
3666

3667
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3668
error:
3669
	return -EINVAL;
C
Christoph Lameter 已提交
3670 3671
}

3672 3673 3674 3675 3676 3677
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
3678
	unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC);
E
Eric Dumazet 已提交
3679 3680
	if (!map)
		return;
3681
	slab_err(s, page, text, s->name);
3682 3683
	slab_lock(page);

3684
	get_map(s, page, map);
3685 3686 3687
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
3688
			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3689 3690 3691 3692
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
3693
	bitmap_free(map);
3694 3695 3696
#endif
}

C
Christoph Lameter 已提交
3697
/*
C
Christoph Lameter 已提交
3698
 * Attempt to free all partial slabs on a node.
3699 3700
 * This is called from __kmem_cache_shutdown(). We must take list_lock
 * because sysfs file might still access partial list after the shutdowning.
C
Christoph Lameter 已提交
3701
 */
C
Christoph Lameter 已提交
3702
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3703
{
3704
	LIST_HEAD(discard);
C
Christoph Lameter 已提交
3705 3706
	struct page *page, *h;

3707 3708
	BUG_ON(irqs_disabled());
	spin_lock_irq(&n->list_lock);
3709
	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
C
Christoph Lameter 已提交
3710
		if (!page->inuse) {
3711
			remove_partial(n, page);
3712
			list_add(&page->slab_list, &discard);
3713 3714
		} else {
			list_slab_objects(s, page,
3715
			"Objects remaining in %s on __kmem_cache_shutdown()");
C
Christoph Lameter 已提交
3716
		}
3717
	}
3718
	spin_unlock_irq(&n->list_lock);
3719

3720
	list_for_each_entry_safe(page, h, &discard, slab_list)
3721
		discard_slab(s, page);
C
Christoph Lameter 已提交
3722 3723
}

3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
bool __kmem_cache_empty(struct kmem_cache *s)
{
	int node;
	struct kmem_cache_node *n;

	for_each_kmem_cache_node(s, node, n)
		if (n->nr_partial || slabs_node(s, node))
			return false;
	return true;
}

C
Christoph Lameter 已提交
3735
/*
C
Christoph Lameter 已提交
3736
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3737
 */
3738
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3739 3740
{
	int node;
C
Christoph Lameter 已提交
3741
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3742 3743 3744

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3745
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3746 3747
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3748 3749
			return 1;
	}
3750
	sysfs_slab_remove(s);
C
Christoph Lameter 已提交
3751 3752 3753 3754 3755 3756 3757 3758 3759
	return 0;
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
3760
	get_option(&str, (int *)&slub_min_order);
C
Christoph Lameter 已提交
3761 3762 3763 3764 3765 3766 3767 3768

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
3769 3770
	get_option(&str, (int *)&slub_max_order);
	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
C
Christoph Lameter 已提交
3771 3772 3773 3774 3775 3776 3777 3778

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
3779
	get_option(&str, (int *)&slub_min_objects);
C
Christoph Lameter 已提交
3780 3781 3782 3783 3784 3785 3786 3787

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

void *__kmalloc(size_t size, gfp_t flags)
{
3788
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3789
	void *ret;
C
Christoph Lameter 已提交
3790

3791
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3792
		return kmalloc_large(size, flags);
3793

3794
	s = kmalloc_slab(size, flags);
3795 3796

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3797 3798
		return s;

3799
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3800

3801
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3802

3803
	ret = kasan_kmalloc(s, ret, size, flags);
3804

E
Eduard - Gabriel Munteanu 已提交
3805
	return ret;
C
Christoph Lameter 已提交
3806 3807 3808
}
EXPORT_SYMBOL(__kmalloc);

3809
#ifdef CONFIG_NUMA
3810 3811
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3812
	struct page *page;
3813
	void *ptr = NULL;
3814
	unsigned int order = get_order(size);
3815

3816
	flags |= __GFP_COMP;
3817 3818
	page = alloc_pages_node(node, flags, order);
	if (page) {
3819
		ptr = page_address(page);
3820 3821 3822
		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
				    1 << order);
	}
3823

3824
	return kmalloc_large_node_hook(ptr, size, flags);
3825 3826
}

C
Christoph Lameter 已提交
3827 3828
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3829
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3830
	void *ret;
C
Christoph Lameter 已提交
3831

3832
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3833 3834
		ret = kmalloc_large_node(size, flags, node);

3835 3836 3837
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3838 3839 3840

		return ret;
	}
3841

3842
	s = kmalloc_slab(size, flags);
3843 3844

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3845 3846
		return s;

3847
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3848

3849
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3850

3851
	ret = kasan_kmalloc(s, ret, size, flags);
3852

E
Eduard - Gabriel Munteanu 已提交
3853
	return ret;
C
Christoph Lameter 已提交
3854 3855
}
EXPORT_SYMBOL(__kmalloc_node);
3856
#endif	/* CONFIG_NUMA */
C
Christoph Lameter 已提交
3857

K
Kees Cook 已提交
3858 3859
#ifdef CONFIG_HARDENED_USERCOPY
/*
3860 3861 3862
 * Rejects incorrectly sized objects and objects that are to be copied
 * to/from userspace but do not fall entirely within the containing slab
 * cache's usercopy region.
K
Kees Cook 已提交
3863 3864 3865 3866
 *
 * Returns NULL if check passes, otherwise const char * to name of cache
 * to indicate an error.
 */
3867 3868
void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
			 bool to_user)
K
Kees Cook 已提交
3869 3870
{
	struct kmem_cache *s;
A
Alexey Dobriyan 已提交
3871
	unsigned int offset;
K
Kees Cook 已提交
3872 3873
	size_t object_size;

3874 3875
	ptr = kasan_reset_tag(ptr);

K
Kees Cook 已提交
3876 3877 3878 3879 3880
	/* Find object and usable object size. */
	s = page->slab_cache;

	/* Reject impossible pointers. */
	if (ptr < page_address(page))
3881 3882
		usercopy_abort("SLUB object not in SLUB page?!", NULL,
			       to_user, 0, n);
K
Kees Cook 已提交
3883 3884 3885 3886 3887 3888 3889

	/* Find offset within object. */
	offset = (ptr - page_address(page)) % s->size;

	/* Adjust for redzone and reject if within the redzone. */
	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
		if (offset < s->red_left_pad)
3890 3891
			usercopy_abort("SLUB object in left red zone",
				       s->name, to_user, offset, n);
K
Kees Cook 已提交
3892 3893 3894
		offset -= s->red_left_pad;
	}

3895 3896 3897 3898
	/* Allow address range falling entirely within usercopy region. */
	if (offset >= s->useroffset &&
	    offset - s->useroffset <= s->usersize &&
	    n <= s->useroffset - offset + s->usersize)
3899
		return;
K
Kees Cook 已提交
3900

3901 3902 3903 3904 3905 3906 3907
	/*
	 * If the copy is still within the allocated object, produce
	 * a warning instead of rejecting the copy. This is intended
	 * to be a temporary method to find any missing usercopy
	 * whitelists.
	 */
	object_size = slab_ksize(s);
3908 3909
	if (usercopy_fallback &&
	    offset <= object_size && n <= object_size - offset) {
3910 3911 3912
		usercopy_warn("SLUB object", s->name, to_user, offset, n);
		return;
	}
K
Kees Cook 已提交
3913

3914
	usercopy_abort("SLUB object", s->name, to_user, offset, n);
K
Kees Cook 已提交
3915 3916 3917
}
#endif /* CONFIG_HARDENED_USERCOPY */

3918
size_t __ksize(const void *object)
C
Christoph Lameter 已提交
3919
{
3920
	struct page *page;
C
Christoph Lameter 已提交
3921

3922
	if (unlikely(object == ZERO_SIZE_PTR))
3923 3924
		return 0;

3925 3926
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3927 3928
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3929
		return page_size(page);
P
Pekka Enberg 已提交
3930
	}
C
Christoph Lameter 已提交
3931

3932
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
3933
}
3934
EXPORT_SYMBOL(__ksize);
C
Christoph Lameter 已提交
3935 3936 3937 3938

void kfree(const void *x)
{
	struct page *page;
3939
	void *object = (void *)x;
C
Christoph Lameter 已提交
3940

3941 3942
	trace_kfree(_RET_IP_, x);

3943
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3944 3945
		return;

3946
	page = virt_to_head_page(x);
3947
	if (unlikely(!PageSlab(page))) {
3948 3949
		unsigned int order = compound_order(page);

3950
		BUG_ON(!PageCompound(page));
3951
		kfree_hook(object);
3952 3953 3954
		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
				    -(1 << order));
		__free_pages(page, order);
3955 3956
		return;
	}
3957
	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
C
Christoph Lameter 已提交
3958 3959 3960
}
EXPORT_SYMBOL(kfree);

3961 3962
#define SHRINK_PROMOTE_MAX 32

3963
/*
3964 3965 3966
 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
 * up most to the head of the partial lists. New allocations will then
 * fill those up and thus they can be removed from the partial lists.
C
Christoph Lameter 已提交
3967 3968 3969 3970
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3971
 */
3972
int __kmem_cache_shrink(struct kmem_cache *s)
3973 3974 3975 3976 3977 3978
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3979 3980
	struct list_head discard;
	struct list_head promote[SHRINK_PROMOTE_MAX];
3981
	unsigned long flags;
3982
	int ret = 0;
3983 3984

	flush_all(s);
C
Christoph Lameter 已提交
3985
	for_each_kmem_cache_node(s, node, n) {
3986 3987 3988
		INIT_LIST_HEAD(&discard);
		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
			INIT_LIST_HEAD(promote + i);
3989 3990 3991 3992

		spin_lock_irqsave(&n->list_lock, flags);

		/*
3993
		 * Build lists of slabs to discard or promote.
3994
		 *
C
Christoph Lameter 已提交
3995 3996
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3997
		 */
3998
		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
3999 4000 4001 4002 4003 4004 4005 4006 4007
			int free = page->objects - page->inuse;

			/* Do not reread page->inuse */
			barrier();

			/* We do not keep full slabs on the list */
			BUG_ON(free <= 0);

			if (free == page->objects) {
4008
				list_move(&page->slab_list, &discard);
4009
				n->nr_partial--;
4010
			} else if (free <= SHRINK_PROMOTE_MAX)
4011
				list_move(&page->slab_list, promote + free - 1);
4012 4013 4014
		}

		/*
4015 4016
		 * Promote the slabs filled up most to the head of the
		 * partial list.
4017
		 */
4018 4019
		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
			list_splice(promote + i, &n->partial);
4020 4021

		spin_unlock_irqrestore(&n->list_lock, flags);
4022 4023

		/* Release empty slabs */
4024
		list_for_each_entry_safe(page, t, &discard, slab_list)
4025
			discard_slab(s, page);
4026 4027 4028

		if (slabs_node(s, node))
			ret = 1;
4029 4030
	}

4031
	return ret;
4032 4033
}

4034
#ifdef CONFIG_MEMCG
4035
void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
4036
{
4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
	/*
	 * Called with all the locks held after a sched RCU grace period.
	 * Even if @s becomes empty after shrinking, we can't know that @s
	 * doesn't have allocations already in-flight and thus can't
	 * destroy @s until the associated memcg is released.
	 *
	 * However, let's remove the sysfs files for empty caches here.
	 * Each cache has a lot of interface files which aren't
	 * particularly useful for empty draining caches; otherwise, we can
	 * easily end up with millions of unnecessary sysfs files on
	 * systems which have a lot of memory and transient cgroups.
	 */
	if (!__kmem_cache_shrink(s))
		sysfs_slab_remove(s);
4051 4052
}

4053 4054 4055 4056 4057 4058
void __kmemcg_cache_deactivate(struct kmem_cache *s)
{
	/*
	 * Disable empty slabs caching. Used to avoid pinning offline
	 * memory cgroups by kmem pages that can be freed.
	 */
4059
	slub_set_cpu_partial(s, 0);
4060 4061
	s->min_partial = 0;
}
4062
#endif	/* CONFIG_MEMCG */
4063

4064 4065 4066 4067
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

4068
	mutex_lock(&slab_mutex);
4069
	list_for_each_entry(s, &slab_caches, list)
4070
		__kmem_cache_shrink(s);
4071
	mutex_unlock(&slab_mutex);
4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

4083
	offline_node = marg->status_change_nid_normal;
4084 4085 4086 4087 4088 4089 4090 4091

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

4092
	mutex_lock(&slab_mutex);
4093 4094 4095 4096 4097 4098
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
4099
			 * and offline_pages() function shouldn't call this
4100 4101
			 * callback. So, we must fail.
			 */
4102
			BUG_ON(slabs_node(s, offline_node));
4103 4104

			s->node[offline_node] = NULL;
4105
			kmem_cache_free(kmem_cache_node, n);
4106 4107
		}
	}
4108
	mutex_unlock(&slab_mutex);
4109 4110 4111 4112 4113 4114 4115
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
4116
	int nid = marg->status_change_nid_normal;
4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
4127
	 * We are bringing a node online. No memory is available yet. We must
4128 4129 4130
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
4131
	mutex_lock(&slab_mutex);
4132 4133 4134 4135 4136 4137
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
4138
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4139 4140 4141 4142
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
4143
		init_kmem_cache_node(n);
4144 4145 4146
		s->node[nid] = n;
	}
out:
4147
	mutex_unlock(&slab_mutex);
4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
4171 4172 4173 4174
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
4175 4176 4177
	return ret;
}

4178 4179 4180 4181
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
4182

C
Christoph Lameter 已提交
4183 4184 4185 4186
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

4187 4188
/*
 * Used for early kmem_cache structures that were allocated using
4189 4190
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
4191 4192
 */

4193
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4194 4195
{
	int node;
4196
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
C
Christoph Lameter 已提交
4197
	struct kmem_cache_node *n;
4198

4199
	memcpy(s, static_cache, kmem_cache->object_size);
4200

4201 4202 4203 4204 4205 4206
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
4207
	for_each_kmem_cache_node(s, node, n) {
4208 4209
		struct page *p;

4210
		list_for_each_entry(p, &n->partial, slab_list)
C
Christoph Lameter 已提交
4211
			p->slab_cache = s;
4212

L
Li Zefan 已提交
4213
#ifdef CONFIG_SLUB_DEBUG
4214
		list_for_each_entry(p, &n->full, slab_list)
C
Christoph Lameter 已提交
4215
			p->slab_cache = s;
4216 4217
#endif
	}
4218
	slab_init_memcg_params(s);
4219
	list_add(&s->list, &slab_caches);
4220
	memcg_link_cache(s, NULL);
4221
	return s;
4222 4223
}

C
Christoph Lameter 已提交
4224 4225
void __init kmem_cache_init(void)
{
4226 4227
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
4228

4229 4230 4231
	if (debug_guardpage_minorder())
		slub_max_order = 0;

4232 4233
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
4234

4235
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4236
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4237

4238
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
4239 4240 4241 4242

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

4243 4244 4245
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
4246
		       SLAB_HWCACHE_ALIGN, 0, 0);
4247

4248 4249
	kmem_cache = bootstrap(&boot_kmem_cache);
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4250 4251

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4252
	setup_kmalloc_cache_index_table();
4253
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
4254

T
Thomas Garnier 已提交
4255 4256 4257
	/* Setup random freelists for each cache */
	init_freelist_randomization();

4258 4259
	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
				  slub_cpu_dead);
C
Christoph Lameter 已提交
4260

4261
	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4262
		cache_line_size(),
C
Christoph Lameter 已提交
4263 4264 4265 4266
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

4267 4268 4269 4270
void __init kmem_cache_init_late(void)
{
}

4271
struct kmem_cache *
4272
__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4273
		   slab_flags_t flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
4274
{
4275
	struct kmem_cache *s, *c;
C
Christoph Lameter 已提交
4276

4277
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
4278 4279
	if (s) {
		s->refcount++;
4280

C
Christoph Lameter 已提交
4281 4282 4283 4284
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
4285
		s->object_size = max(s->object_size, size);
4286
		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
4287

4288
		for_each_memcg_cache(c, s) {
4289
			c->object_size = s->object_size;
4290
			c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4291 4292
		}

4293 4294
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
4295
			s = NULL;
4296
		}
4297
	}
C
Christoph Lameter 已提交
4298

4299 4300
	return s;
}
P
Pekka Enberg 已提交
4301

4302
int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4303
{
4304 4305 4306 4307 4308
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
4309

4310 4311 4312 4313
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

4314
	memcg_propagate_slab_attrs(s);
4315 4316
	err = sysfs_slab_add(s);
	if (err)
4317
		__kmem_cache_release(s);
4318

4319
	return err;
C
Christoph Lameter 已提交
4320 4321
}

4322
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
4323
{
4324
	struct kmem_cache *s;
4325
	void *ret;
4326

4327
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4328 4329
		return kmalloc_large(size, gfpflags);

4330
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
4331

4332
	if (unlikely(ZERO_OR_NULL_PTR(s)))
4333
		return s;
C
Christoph Lameter 已提交
4334

4335
	ret = slab_alloc(s, gfpflags, caller);
4336

L
Lucas De Marchi 已提交
4337
	/* Honor the call site pointer we received. */
4338
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4339 4340

	return ret;
C
Christoph Lameter 已提交
4341 4342
}

4343
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4344
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4345
					int node, unsigned long caller)
C
Christoph Lameter 已提交
4346
{
4347
	struct kmem_cache *s;
4348
	void *ret;
4349

4350
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4351 4352 4353 4354 4355 4356 4357 4358
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
4359

4360
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
4361

4362
	if (unlikely(ZERO_OR_NULL_PTR(s)))
4363
		return s;
C
Christoph Lameter 已提交
4364

4365
	ret = slab_alloc_node(s, gfpflags, node, caller);
4366

L
Lucas De Marchi 已提交
4367
	/* Honor the call site pointer we received. */
4368
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4369 4370

	return ret;
C
Christoph Lameter 已提交
4371
}
4372
#endif
C
Christoph Lameter 已提交
4373

4374
#ifdef CONFIG_SYSFS
4375 4376 4377 4378 4379 4380 4381 4382 4383
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
4384
#endif
4385

4386
#ifdef CONFIG_SLUB_DEBUG
Y
Yu Zhao 已提交
4387
static void validate_slab(struct kmem_cache *s, struct page *page,
4388
						unsigned long *map)
4389 4390
{
	void *p;
4391
	void *addr = page_address(page);
4392

Y
Yu Zhao 已提交
4393 4394
	if (!check_slab(s, page) || !on_freelist(s, page, NULL))
		return;
4395 4396

	/* Now we know that a valid freelist exists */
4397
	bitmap_zero(map, page->objects);
4398

4399 4400
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
Y
Yu Zhao 已提交
4401 4402
		u8 val = test_bit(slab_index(p, s, addr), map) ?
			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4403

Y
Yu Zhao 已提交
4404 4405 4406
		if (!check_object(s, page, p, val))
			break;
	}
4407 4408
}

4409 4410
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
4411
{
4412 4413 4414
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
4415 4416
}

4417 4418
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
4419 4420 4421 4422 4423 4424 4425
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

4426
	list_for_each_entry(page, &n->partial, slab_list) {
4427
		validate_slab_slab(s, page, map);
4428 4429 4430
		count++;
	}
	if (count != n->nr_partial)
4431 4432
		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
		       s->name, count, n->nr_partial);
4433 4434 4435 4436

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

4437
	list_for_each_entry(page, &n->full, slab_list) {
4438
		validate_slab_slab(s, page, map);
4439 4440 4441
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
4442 4443
		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
		       s->name, count, atomic_long_read(&n->nr_slabs));
4444 4445 4446 4447 4448 4449

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

4450
static long validate_slab_cache(struct kmem_cache *s)
4451 4452 4453
{
	int node;
	unsigned long count = 0;
C
Christoph Lameter 已提交
4454
	struct kmem_cache_node *n;
4455
	unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4456 4457 4458

	if (!map)
		return -ENOMEM;
4459 4460

	flush_all(s);
C
Christoph Lameter 已提交
4461
	for_each_kmem_cache_node(s, node, n)
4462
		count += validate_slab_node(s, n, map);
4463
	bitmap_free(map);
4464 4465
	return count;
}
4466
/*
C
Christoph Lameter 已提交
4467
 * Generate lists of code addresses where slabcache objects are allocated
4468 4469 4470 4471 4472
 * and freed.
 */

struct location {
	unsigned long count;
4473
	unsigned long addr;
4474 4475 4476 4477 4478
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
4479
	DECLARE_BITMAP(cpus, NR_CPUS);
4480
	nodemask_t nodes;
4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

4496
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4497 4498 4499 4500 4501 4502
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

4503
	l = (void *)__get_free_pages(flags, order);
4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4517
				const struct track *track)
4518 4519 4520
{
	long start, end, pos;
	struct location *l;
4521
	unsigned long caddr;
4522
	unsigned long age = jiffies - track->when;
4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4554 4555
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4556 4557
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4558 4559 4560
			return 1;
		}

4561
		if (track->addr < caddr)
4562 4563 4564 4565 4566 4567
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4568
	 * Not found. Insert new tracking element.
4569
	 */
4570
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4571 4572 4573 4574 4575 4576 4577 4578
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4579 4580 4581 4582 4583 4584
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4585 4586
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4587 4588
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4589 4590 4591 4592
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
E
Eric Dumazet 已提交
4593
		struct page *page, enum track_item alloc,
N
Namhyung Kim 已提交
4594
		unsigned long *map)
4595
{
4596
	void *addr = page_address(page);
4597 4598
	void *p;

4599
	bitmap_zero(map, page->objects);
4600
	get_map(s, page, map);
4601

4602
	for_each_object(p, s, addr, page->objects)
4603 4604
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4605 4606 4607 4608 4609
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4610
	int len = 0;
4611
	unsigned long i;
4612
	struct loc_track t = { 0, 0, NULL };
4613
	int node;
C
Christoph Lameter 已提交
4614
	struct kmem_cache_node *n;
4615
	unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4616

E
Eric Dumazet 已提交
4617
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4618
				     GFP_KERNEL)) {
4619
		bitmap_free(map);
4620
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4621
	}
4622 4623 4624
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4625
	for_each_kmem_cache_node(s, node, n) {
4626 4627 4628
		unsigned long flags;
		struct page *page;

4629
		if (!atomic_long_read(&n->nr_slabs))
4630 4631 4632
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
4633
		list_for_each_entry(page, &n->partial, slab_list)
E
Eric Dumazet 已提交
4634
			process_slab(&t, s, page, alloc, map);
4635
		list_for_each_entry(page, &n->full, slab_list)
E
Eric Dumazet 已提交
4636
			process_slab(&t, s, page, alloc, map);
4637 4638 4639 4640
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4641
		struct location *l = &t.loc[i];
4642

H
Hugh Dickins 已提交
4643
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4644
			break;
4645
		len += sprintf(buf + len, "%7ld ", l->count);
4646 4647

		if (l->addr)
J
Joe Perches 已提交
4648
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4649
		else
4650
			len += sprintf(buf + len, "<not-available>");
4651 4652

		if (l->sum_time != l->min_time) {
4653
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4654 4655 4656
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4657
		} else
4658
			len += sprintf(buf + len, " age=%ld",
4659 4660 4661
				l->min_time);

		if (l->min_pid != l->max_pid)
4662
			len += sprintf(buf + len, " pid=%ld-%ld",
4663 4664
				l->min_pid, l->max_pid);
		else
4665
			len += sprintf(buf + len, " pid=%ld",
4666 4667
				l->min_pid);

R
Rusty Russell 已提交
4668 4669
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4670 4671 4672 4673
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " cpus=%*pbl",
					 cpumask_pr_args(to_cpumask(l->cpus)));
4674

4675
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4676 4677 4678 4679
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " nodes=%*pbl",
					 nodemask_pr_args(&l->nodes));
4680

4681
		len += sprintf(buf + len, "\n");
4682 4683 4684
	}

	free_loc_track(&t);
4685
	bitmap_free(map);
4686
	if (!t.count)
4687 4688
		len += sprintf(buf, "No data\n");
	return len;
4689
}
4690
#endif	/* CONFIG_SLUB_DEBUG */
4691

4692
#ifdef SLUB_RESILIENCY_TEST
4693
static void __init resiliency_test(void)
4694 4695
{
	u8 *p;
4696
	int type = KMALLOC_NORMAL;
4697

4698
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4699

4700 4701 4702
	pr_err("SLUB resiliency testing\n");
	pr_err("-----------------------\n");
	pr_err("A. Corruption after allocation\n");
4703 4704 4705

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
4706 4707
	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
	       p + 16);
4708

4709
	validate_slab_cache(kmalloc_caches[type][4]);
4710 4711 4712 4713

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
4714 4715 4716
	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4717

4718
	validate_slab_cache(kmalloc_caches[type][5]);
4719 4720 4721
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
4722 4723 4724
	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4725
	validate_slab_cache(kmalloc_caches[type][6]);
4726

4727
	pr_err("\nB. Corruption after free\n");
4728 4729 4730
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
4731
	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4732
	validate_slab_cache(kmalloc_caches[type][7]);
4733 4734 4735 4736

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
4737
	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4738
	validate_slab_cache(kmalloc_caches[type][8]);
4739 4740 4741 4742

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
4743
	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4744
	validate_slab_cache(kmalloc_caches[type][9]);
4745 4746 4747 4748 4749
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
4750
#endif	/* SLUB_RESILIENCY_TEST */
4751

4752
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4753
enum slab_stat_type {
4754 4755 4756 4757 4758
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4759 4760
};

4761
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4762 4763 4764
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4765
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4766

4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782
#ifdef CONFIG_MEMCG
static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);

static int __init setup_slub_memcg_sysfs(char *str)
{
	int v;

	if (get_option(&str, &v) > 0)
		memcg_sysfs_enabled = v;

	return 1;
}

__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
#endif

4783 4784
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4785 4786 4787 4788 4789 4790
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

K
Kees Cook 已提交
4791
	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4792 4793
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4794

4795 4796
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4797

4798
		for_each_possible_cpu(cpu) {
4799 4800
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4801
			int node;
4802
			struct page *page;
4803

4804
			page = READ_ONCE(c->page);
4805 4806
			if (!page)
				continue;
4807

4808 4809 4810 4811 4812 4813 4814
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4815

4816 4817 4818
			total += x;
			nodes[node] += x;

4819
			page = slub_percpu_partial_read_once(c);
4820
			if (page) {
L
Li Zefan 已提交
4821 4822 4823 4824 4825 4826 4827
				node = page_to_nid(page);
				if (flags & SO_TOTAL)
					WARN_ON_ONCE(1);
				else if (flags & SO_OBJECTS)
					WARN_ON_ONCE(1);
				else
					x = page->pages;
4828 4829
				total += x;
				nodes[node] += x;
4830
			}
C
Christoph Lameter 已提交
4831 4832 4833
		}
	}

4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844
	/*
	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
	 * already held which will conflict with an existing lock order:
	 *
	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
	 *
	 * We don't really need mem_hotplug_lock (to hold off
	 * slab_mem_going_offline_callback) here because slab's memory hot
	 * unplug code doesn't destroy the kmem_cache->node[] data.
	 */

4845
#ifdef CONFIG_SLUB_DEBUG
4846
	if (flags & SO_ALL) {
C
Christoph Lameter 已提交
4847 4848 4849
		struct kmem_cache_node *n;

		for_each_kmem_cache_node(s, node, n) {
4850

4851 4852 4853 4854 4855
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
4856
			else
4857
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4858 4859 4860 4861
			total += x;
			nodes[node] += x;
		}

4862 4863 4864
	} else
#endif
	if (flags & SO_PARTIAL) {
C
Christoph Lameter 已提交
4865
		struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4866

C
Christoph Lameter 已提交
4867
		for_each_kmem_cache_node(s, node, n) {
4868 4869 4870 4871
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4872
			else
4873
				x = n->nr_partial;
C
Christoph Lameter 已提交
4874 4875 4876 4877 4878 4879
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4880
	for (node = 0; node < nr_node_ids; node++)
C
Christoph Lameter 已提交
4881 4882 4883 4884 4885 4886 4887 4888
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4889
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4890 4891 4892
static int any_slab_objects(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
4893
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4894

C
Christoph Lameter 已提交
4895
	for_each_kmem_cache_node(s, node, n)
4896
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4897
			return 1;
C
Christoph Lameter 已提交
4898

C
Christoph Lameter 已提交
4899 4900
	return 0;
}
4901
#endif
C
Christoph Lameter 已提交
4902 4903

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4904
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4905 4906 4907 4908 4909 4910 4911 4912

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4913 4914
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4915 4916 4917

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4918
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4919 4920 4921

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
A
Alexey Dobriyan 已提交
4922
	return sprintf(buf, "%u\n", s->size);
C
Christoph Lameter 已提交
4923 4924 4925 4926 4927
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
4928
	return sprintf(buf, "%u\n", s->align);
C
Christoph Lameter 已提交
4929 4930 4931 4932 4933
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4934
	return sprintf(buf, "%u\n", s->object_size);
C
Christoph Lameter 已提交
4935 4936 4937 4938 4939
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4940
	return sprintf(buf, "%u\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4941 4942 4943
}
SLAB_ATTR_RO(objs_per_slab);

4944 4945 4946
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4947
	unsigned int order;
4948 4949
	int err;

4950
	err = kstrtouint(buf, 10, &order);
4951 4952
	if (err)
		return err;
4953 4954 4955 4956 4957 4958 4959 4960

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4961 4962
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4963
	return sprintf(buf, "%u\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4964
}
4965
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4966

4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

4978
	err = kstrtoul(buf, 10, &min);
4979 4980 4981
	if (err)
		return err;

4982
	set_min_partial(s, min);
4983 4984 4985 4986
	return length;
}
SLAB_ATTR(min_partial);

4987 4988
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
4989
	return sprintf(buf, "%u\n", slub_cpu_partial(s));
4990 4991 4992 4993 4994
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
4995
	unsigned int objects;
4996 4997
	int err;

4998
	err = kstrtouint(buf, 10, &objects);
4999 5000
	if (err)
		return err;
5001
	if (objects && !kmem_cache_has_cpu_partial(s))
5002
		return -EINVAL;
5003

5004
	slub_set_cpu_partial(s, objects);
5005 5006 5007 5008 5009
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
5010 5011
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
5012 5013 5014
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
5015 5016 5017 5018 5019
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
5020
	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
C
Christoph Lameter 已提交
5021 5022 5023 5024 5025
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
5026
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
5027 5028 5029 5030 5031
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
5032
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
5033 5034 5035 5036 5037
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
5038
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
5039 5040 5041
}
SLAB_ATTR_RO(objects);

5042 5043 5044 5045 5046 5047
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

5048 5049 5050 5051 5052 5053 5054 5055
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
5056 5057 5058
		struct page *page;

		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
5070 5071 5072
		struct page *page;

		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5073 5074 5075 5076 5077 5078 5079 5080 5081 5082

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

5112 5113
static ssize_t usersize_show(struct kmem_cache *s, char *buf)
{
5114
	return sprintf(buf, "%u\n", s->usersize);
5115 5116 5117
}
SLAB_ATTR_RO(usersize);

5118 5119
static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
5120
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5121 5122 5123
}
SLAB_ATTR_RO(destroy_by_rcu);

5124
#ifdef CONFIG_SLUB_DEBUG
5125 5126 5127 5128 5129 5130
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

5131 5132 5133 5134 5135 5136
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
5137 5138
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
5139
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
C
Christoph Lameter 已提交
5140 5141 5142 5143 5144
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
5145
	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5146 5147
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
5148
		s->flags |= SLAB_CONSISTENCY_CHECKS;
5149
	}
C
Christoph Lameter 已提交
5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
5162 5163 5164 5165 5166 5167 5168 5169
	/*
	 * Tracing a merged cache is going to give confusing results
	 * as well as cause other issues like converting a mergeable
	 * cache into an umergeable one.
	 */
	if (s->refcount > 1)
		return -EINVAL;

C
Christoph Lameter 已提交
5170
	s->flags &= ~SLAB_TRACE;
5171 5172
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
5173
		s->flags |= SLAB_TRACE;
5174
	}
C
Christoph Lameter 已提交
5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
5191
	if (buf[0] == '1') {
C
Christoph Lameter 已提交
5192
		s->flags |= SLAB_RED_ZONE;
5193
	}
5194
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
5211
	if (buf[0] == '1') {
C
Christoph Lameter 已提交
5212
		s->flags |= SLAB_POISON;
5213
	}
5214
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
5231 5232
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
5233
		s->flags |= SLAB_STORE_USER;
5234
	}
5235
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
5236 5237 5238 5239
	return length;
}
SLAB_ATTR(store_user);

5240 5241 5242 5243 5244 5245 5246 5247
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
5248 5249 5250 5251 5252 5253 5254 5255
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
5256 5257
}
SLAB_ATTR(validate);
5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
5285 5286 5287
	if (s->refcount > 1)
		return -EINVAL;

5288 5289 5290 5291 5292 5293
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
5294
#endif
5295

5296 5297 5298 5299 5300 5301 5302 5303
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
5304
	if (buf[0] == '1')
5305
		kmem_cache_shrink_all(s);
5306
	else
5307 5308 5309 5310 5311
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
5312
#ifdef CONFIG_NUMA
5313
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
5314
{
5315
	return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
5316 5317
}

5318
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
5319 5320
				const char *buf, size_t length)
{
5321
	unsigned int ratio;
5322 5323
	int err;

5324
	err = kstrtouint(buf, 10, &ratio);
5325 5326
	if (err)
		return err;
5327 5328
	if (ratio > 100)
		return -ERANGE;
5329

5330
	s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
5331 5332 5333

	return length;
}
5334
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
5335 5336
#endif

5337 5338 5339 5340 5341 5342
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
5343
	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5344 5345 5346 5347 5348

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
5349
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5350 5351 5352 5353 5354 5355 5356

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

5357
#ifdef CONFIG_SMP
5358 5359
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
5360
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5361
	}
5362
#endif
5363 5364 5365 5366
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
5367 5368 5369 5370 5371
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
5372
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
5373 5374
}

5375 5376 5377 5378 5379
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
5380 5381 5382 5383 5384 5385 5386 5387 5388
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
5400
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5401 5402 5403 5404 5405 5406 5407
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5408
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5409
STAT_ATTR(ORDER_FALLBACK, order_fallback);
5410 5411
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5412 5413
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5414 5415
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5416
#endif	/* CONFIG_SLUB_STATS */
5417

P
Pekka Enberg 已提交
5418
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
5419 5420 5421 5422
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
5423
	&min_partial_attr.attr,
5424
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
5425
	&objects_attr.attr,
5426
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
5427 5428 5429 5430 5431 5432 5433 5434
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
5435
	&shrink_attr.attr,
5436
	&slabs_cpu_partial_attr.attr,
5437
#ifdef CONFIG_SLUB_DEBUG
5438 5439 5440 5441
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
5442 5443 5444
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
5445
	&validate_attr.attr,
5446 5447
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
5448
#endif
C
Christoph Lameter 已提交
5449 5450 5451 5452
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
5453
	&remote_node_defrag_ratio_attr.attr,
5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
5466
	&alloc_node_mismatch_attr.attr,
5467 5468 5469 5470 5471 5472 5473
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
5474
	&deactivate_bypass_attr.attr,
5475
	&order_fallback_attr.attr,
5476 5477
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
5478 5479
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
5480 5481
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
5482
#endif
5483 5484 5485
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif
5486
	&usersize_attr.attr,
5487

C
Christoph Lameter 已提交
5488 5489 5490
	NULL
};

5491
static const struct attribute_group slab_attr_group = {
C
Christoph Lameter 已提交
5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
5529
#ifdef CONFIG_MEMCG
5530
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5531
		struct kmem_cache *c;
C
Christoph Lameter 已提交
5532

5533 5534 5535 5536
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
5554 5555
		for_each_memcg_cache(c, s)
			attribute->store(c, buf, len);
5556 5557 5558
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
5559 5560 5561
	return err;
}

5562 5563
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
5564
#ifdef CONFIG_MEMCG
5565 5566
	int i;
	char *buffer = NULL;
5567
	struct kmem_cache *root_cache;
5568

5569
	if (is_root_cache(s))
5570 5571
		return;

5572
	root_cache = s->memcg_params.root_cache;
5573

5574 5575 5576 5577
	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
5578
	if (!root_cache->max_attr_size)
5579 5580 5581 5582 5583 5584
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5585
		ssize_t len;
5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
5601
		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5602 5603 5604 5605 5606 5607 5608 5609
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

5610 5611 5612
		len = attr->show(root_cache, buf);
		if (len > 0)
			attr->store(s, buf, len);
5613 5614 5615 5616
	}

	if (buffer)
		free_page((unsigned long)buffer);
5617
#endif	/* CONFIG_MEMCG */
5618 5619
}

5620 5621 5622 5623 5624
static void kmem_cache_release(struct kobject *k)
{
	slab_kmem_cache_release(to_slab(k));
}

5625
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5626 5627 5628 5629 5630 5631
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
5632
	.release = kmem_cache_release,
C
Christoph Lameter 已提交
5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5644
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5645 5646 5647
	.filter = uevent_filter,
};

5648
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5649

5650 5651
static inline struct kset *cache_kset(struct kmem_cache *s)
{
5652
#ifdef CONFIG_MEMCG
5653
	if (!is_root_cache(s))
5654
		return s->memcg_params.root_cache->memcg_kset;
5655 5656 5657 5658
#endif
	return slab_kset;
}

C
Christoph Lameter 已提交
5659 5660 5661
#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5662 5663
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
5682 5683
	if (s->flags & SLAB_CACHE_DMA32)
		*p++ = 'D';
C
Christoph Lameter 已提交
5684 5685
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
5686
	if (s->flags & SLAB_CONSISTENCY_CHECKS)
C
Christoph Lameter 已提交
5687
		*p++ = 'F';
V
Vladimir Davydov 已提交
5688 5689
	if (s->flags & SLAB_ACCOUNT)
		*p++ = 'A';
C
Christoph Lameter 已提交
5690 5691
	if (p != name + 1)
		*p++ = '-';
A
Alexey Dobriyan 已提交
5692
	p += sprintf(p, "%07u", s->size);
5693

C
Christoph Lameter 已提交
5694 5695 5696 5697
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709
static void sysfs_slab_remove_workfn(struct work_struct *work)
{
	struct kmem_cache *s =
		container_of(work, struct kmem_cache, kobj_remove_work);

	if (!s->kobj.state_in_sysfs)
		/*
		 * For a memcg cache, this may be called during
		 * deactivation and again on shutdown.  Remove only once.
		 * A cache is never shut down before deactivation is
		 * complete, so no need to worry about synchronization.
		 */
5710
		goto out;
5711 5712 5713 5714 5715

#ifdef CONFIG_MEMCG
	kset_unregister(s->memcg_kset);
#endif
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5716
out:
5717 5718 5719
	kobject_put(&s->kobj);
}

C
Christoph Lameter 已提交
5720 5721 5722 5723
static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5724
	struct kset *kset = cache_kset(s);
5725
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5726

5727 5728
	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);

5729 5730 5731 5732 5733
	if (!kset) {
		kobject_init(&s->kobj, &slab_ktype);
		return 0;
	}

5734 5735 5736 5737
	if (!unmergeable && disable_higher_order_debug &&
			(slub_debug & DEBUG_METADATA_FLAGS))
		unmergeable = 1;

C
Christoph Lameter 已提交
5738 5739 5740 5741 5742 5743
	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5744
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5745 5746 5747 5748 5749 5750 5751 5752 5753
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5754
	s->kobj.kset = kset;
5755
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5756
	if (err)
5757
		goto out;
C
Christoph Lameter 已提交
5758 5759

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5760 5761
	if (err)
		goto out_del_kobj;
5762

5763
#ifdef CONFIG_MEMCG
5764
	if (is_root_cache(s) && memcg_sysfs_enabled) {
5765 5766
		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
		if (!s->memcg_kset) {
5767 5768
			err = -ENOMEM;
			goto out_del_kobj;
5769 5770 5771 5772
		}
	}
#endif

C
Christoph Lameter 已提交
5773 5774 5775 5776 5777
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
	}
5778 5779 5780 5781 5782 5783 5784
out:
	if (!unmergeable)
		kfree(name);
	return err;
out_del_kobj:
	kobject_del(&s->kobj);
	goto out;
C
Christoph Lameter 已提交
5785 5786
}

5787
static void sysfs_slab_remove(struct kmem_cache *s)
C
Christoph Lameter 已提交
5788
{
5789
	if (slab_state < FULL)
5790 5791 5792 5793 5794 5795
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

5796 5797
	kobject_get(&s->kobj);
	schedule_work(&s->kobj_remove_work);
5798 5799
}

5800 5801 5802 5803 5804 5805
void sysfs_slab_unlink(struct kmem_cache *s)
{
	if (slab_state >= FULL)
		kobject_del(&s->kobj);
}

5806 5807 5808 5809
void sysfs_slab_release(struct kmem_cache *s)
{
	if (slab_state >= FULL)
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5810 5811 5812 5813
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5814
 * available lest we lose that information.
C
Christoph Lameter 已提交
5815 5816 5817 5818 5819 5820 5821
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5822
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5823 5824 5825 5826 5827

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5828
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5829 5830 5831
		/*
		 * If we have a leftover link then remove it.
		 */
5832 5833
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5849
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5850 5851
	int err;

5852
	mutex_lock(&slab_mutex);
5853

5854
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5855
	if (!slab_kset) {
5856
		mutex_unlock(&slab_mutex);
5857
		pr_err("Cannot register slab subsystem.\n");
C
Christoph Lameter 已提交
5858 5859 5860
		return -ENOSYS;
	}

5861
	slab_state = FULL;
5862

5863
	list_for_each_entry(s, &slab_caches, list) {
5864
		err = sysfs_slab_add(s);
5865
		if (err)
5866 5867
			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
			       s->name);
5868
	}
C
Christoph Lameter 已提交
5869 5870 5871 5872 5873 5874

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5875
		if (err)
5876 5877
			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
			       al->name);
C
Christoph Lameter 已提交
5878 5879 5880
		kfree(al);
	}

5881
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5882 5883 5884 5885 5886
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5887
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5888 5889 5890 5891

/*
 * The /proc/slabinfo ABI
 */
Y
Yang Shi 已提交
5892
#ifdef CONFIG_SLUB_DEBUG
5893
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5894 5895
{
	unsigned long nr_slabs = 0;
5896 5897
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5898
	int node;
C
Christoph Lameter 已提交
5899
	struct kmem_cache_node *n;
P
Pekka J Enberg 已提交
5900

C
Christoph Lameter 已提交
5901
	for_each_kmem_cache_node(s, node, n) {
5902 5903
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5904
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5905 5906
	}

5907 5908 5909 5910 5911 5912
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5913 5914
}

5915
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5916 5917 5918
{
}

5919 5920
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5921
{
5922
	return -EIO;
5923
}
Y
Yang Shi 已提交
5924
#endif /* CONFIG_SLUB_DEBUG */