intel_engine_cs.c 44.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27
#include "i915_drv.h"
28
#include "i915_reset.h"
29 30 31
#include "intel_ringbuffer.h"
#include "intel_lrc.h"

32 33 34 35 36 37 38 39 40
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

41
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
42 43
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
44
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
45
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
46 47 48

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

49
struct engine_class_info {
50
	const char *name;
51 52
	int (*init_legacy)(struct intel_engine_cs *engine);
	int (*init_execlists)(struct intel_engine_cs *engine);
53 54

	u8 uabi_class;
55 56 57 58 59 60 61
};

static const struct engine_class_info intel_engine_classes[] = {
	[RENDER_CLASS] = {
		.name = "rcs",
		.init_execlists = logical_render_ring_init,
		.init_legacy = intel_init_render_ring_buffer,
62
		.uabi_class = I915_ENGINE_CLASS_RENDER,
63 64 65 66 67
	},
	[COPY_ENGINE_CLASS] = {
		.name = "bcs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_blt_ring_buffer,
68
		.uabi_class = I915_ENGINE_CLASS_COPY,
69 70 71 72 73
	},
	[VIDEO_DECODE_CLASS] = {
		.name = "vcs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_bsd_ring_buffer,
74
		.uabi_class = I915_ENGINE_CLASS_VIDEO,
75 76 77 78 79
	},
	[VIDEO_ENHANCEMENT_CLASS] = {
		.name = "vecs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_vebox_ring_buffer,
80
		.uabi_class = I915_ENGINE_CLASS_VIDEO_ENHANCE,
81 82 83
	},
};

84
#define MAX_MMIO_BASES 3
85
struct engine_info {
86
	unsigned int hw_id;
87 88
	u8 class;
	u8 instance;
89 90 91 92 93
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
94 95 96
};

static const struct engine_info intel_engines[] = {
97
	[RCS] = {
98
		.hw_id = RCS_HW,
99 100
		.class = RENDER_CLASS,
		.instance = 0,
101 102 103
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
104 105
	},
	[BCS] = {
106
		.hw_id = BCS_HW,
107 108
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
109 110 111
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
112 113
	},
	[VCS] = {
114
		.hw_id = VCS_HW,
115 116
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
117 118 119 120 121
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
122 123
	},
	[VCS2] = {
124
		.hw_id = VCS2_HW,
125 126
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
127 128 129 130
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
131
	},
132 133 134 135
	[VCS3] = {
		.hw_id = VCS3_HW,
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
136 137 138
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
139 140 141 142 143
	},
	[VCS4] = {
		.hw_id = VCS4_HW,
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
144 145 146
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
147
	},
148
	[VECS] = {
149
		.hw_id = VECS_HW,
150 151
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
152 153 154 155
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
156
	},
157 158 159 160
	[VECS2] = {
		.hw_id = VECS2_HW,
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
161 162 163
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
164
	},
165 166
};

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
/**
 * ___intel_engine_context_size() - return the size of the context for an engine
 * @dev_priv: i915 device private
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
static u32
__intel_engine_context_size(struct drm_i915_private *dev_priv, u8 class)
{
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
		switch (INTEL_GEN(dev_priv)) {
		default:
			MISSING_CASE(INTEL_GEN(dev_priv));
193
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
194 195
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
196
		case 10:
O
Oscar Mateo 已提交
197
			return GEN10_LR_CONTEXT_RENDER_SIZE;
198 199 200
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
201
			return GEN8_LR_CONTEXT_RENDER_SIZE;
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
		case 7:
			if (IS_HASWELL(dev_priv))
				return HSW_CXT_TOTAL_SIZE;

			cxt_size = I915_READ(GEN7_CXT_SIZE);
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
			cxt_size = I915_READ(CXT_SIZE);
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
		case 4:
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
224
		/* fall through */
225 226 227 228 229 230 231 232 233
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
		if (INTEL_GEN(dev_priv) < 8)
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

249 250 251 252 253 254 255
static void __sprint_engine_name(char *name, const struct engine_info *info)
{
	WARN_ON(snprintf(name, INTEL_ENGINE_CS_MAX_NAME, "%s%u",
			 intel_engine_classes[info->class].name,
			 info->instance) >= INTEL_ENGINE_CS_MAX_NAME);
}

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	struct drm_i915_private *dev_priv = engine->i915;
	i915_reg_t hwstam;

	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
	if (INTEL_GEN(dev_priv) < 6 && engine->class != RENDER_CLASS)
		return;

	hwstam = RING_HWSTAM(engine->mmio_base);
	if (INTEL_GEN(dev_priv) >= 3)
		I915_WRITE(hwstam, mask);
	else
		I915_WRITE16(hwstam, mask);
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

281
static int
282 283 284 285
intel_engine_setup(struct drm_i915_private *dev_priv,
		   enum intel_engine_id id)
{
	const struct engine_info *info = &intel_engines[id];
286 287
	struct intel_engine_cs *engine;

288 289
	GEM_BUG_ON(info->class >= ARRAY_SIZE(intel_engine_classes));

290 291 292
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

293
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
294 295
		return -EINVAL;

296
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
297 298
		return -EINVAL;

299
	if (GEM_DEBUG_WARN_ON(dev_priv->engine_class[info->class][info->instance]))
300 301
		return -EINVAL;

302 303 304 305
	GEM_BUG_ON(dev_priv->engine[id]);
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
306 307 308

	engine->id = id;
	engine->i915 = dev_priv;
309
	__sprint_engine_name(engine->name, info);
310
	engine->hw_id = engine->guc_id = info->hw_id;
311
	engine->mmio_base = __engine_mmio_base(dev_priv, info->mmio_bases);
312 313
	engine->class = info->class;
	engine->instance = info->instance;
314

315
	engine->uabi_class = intel_engine_classes[info->class].uabi_class;
316

317 318 319 320
	engine->context_size = __intel_engine_context_size(dev_priv,
							   engine->class);
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
321 322
	if (engine->context_size)
		DRIVER_CAPS(dev_priv)->has_logical_contexts = true;
323

324 325 326
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

327
	seqlock_init(&engine->stats.lock);
328

329 330
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

331 332 333
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

334
	dev_priv->engine_class[info->class][info->instance] = engine;
335 336
	dev_priv->engine[id] = engine;
	return 0;
337 338 339
}

/**
340
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
341
 * @dev_priv: i915 device private
342 343 344
 *
 * Return: non-zero if the initialization failed.
 */
345
int intel_engines_init_mmio(struct drm_i915_private *dev_priv)
346
{
347
	struct intel_device_info *device_info = mkwrite_device_info(dev_priv);
348
	const unsigned int ring_mask = INTEL_INFO(dev_priv)->ring_mask;
349 350
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
351
	unsigned int mask = 0;
352
	unsigned int i;
353
	int err;
354

355 356
	WARN_ON(ring_mask == 0);
	WARN_ON(ring_mask &
357
		GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
358

359 360 361
	if (i915_inject_load_failure())
		return -ENODEV;

362 363 364 365
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
		if (!HAS_ENGINE(dev_priv, i))
			continue;

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
		err = intel_engine_setup(dev_priv, i);
		if (err)
			goto cleanup;

		mask |= ENGINE_MASK(i);
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
	if (WARN_ON(mask != ring_mask))
		device_info->ring_mask = mask;

381 382 383 384 385 386
	/* We always presume we have at least RCS available for later probing */
	if (WARN_ON(!HAS_ENGINE(dev_priv, RCS))) {
		err = -ENODEV;
		goto cleanup;
	}

387
	RUNTIME_INFO(dev_priv)->num_rings = hweight32(mask);
388

389 390
	i915_check_and_clear_faults(dev_priv);

391 392 393 394 395 396 397 398 399
	return 0;

cleanup:
	for_each_engine(engine, dev_priv, id)
		kfree(engine);
	return err;
}

/**
400
 * intel_engines_init() - init the Engine Command Streamers
401 402 403 404 405 406 407 408
 * @dev_priv: i915 device private
 *
 * Return: non-zero if the initialization failed.
 */
int intel_engines_init(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id, err_id;
409
	int err;
410 411

	for_each_engine(engine, dev_priv, id) {
412 413
		const struct engine_class_info *class_info =
			&intel_engine_classes[engine->class];
414 415
		int (*init)(struct intel_engine_cs *engine);

416
		if (HAS_EXECLISTS(dev_priv))
417
			init = class_info->init_execlists;
418
		else
419
			init = class_info->init_legacy;
420 421 422 423

		err = -EINVAL;
		err_id = id;

424
		if (GEM_DEBUG_WARN_ON(!init))
425
			goto cleanup;
426

427
		err = init(engine);
428
		if (err)
429 430
			goto cleanup;

431
		GEM_BUG_ON(!engine->submit_request);
432 433 434 435 436
	}

	return 0;

cleanup:
437
	for_each_engine(engine, dev_priv, id) {
438
		if (id >= err_id) {
439
			kfree(engine);
440 441
			dev_priv->engine[id] = NULL;
		} else {
442
			dev_priv->gt.cleanup_engine(engine);
443
		}
444
	}
445
	return err;
446 447
}

448 449 450 451 452
static void intel_engine_init_batch_pool(struct intel_engine_cs *engine)
{
	i915_gem_batch_pool_init(&engine->batch_pool, engine);
}

453 454 455 456
static void intel_engine_init_execlist(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

457
	execlists->port_mask = 1;
458
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
459 460
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

461
	execlists->queue_priority_hint = INT_MIN;
462
	execlists->queue = RB_ROOT_CACHED;
463 464
}

465
static void cleanup_status_page(struct intel_engine_cs *engine)
466
{
467 468
	struct i915_vma *vma;

469 470 471
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

472 473 474
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
475

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
	__i915_gem_object_release_unless_active(vma->obj);
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
				struct i915_vma *vma)
{
	unsigned int flags;

	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
		flags |= PIN_MAPPABLE;
	else
		flags |= PIN_HIGH;
504

505
	return i915_vma_pin(vma, 0, 0, flags);
506 507 508 509 510 511 512 513 514
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	void *vaddr;
	int ret;

515 516 517 518 519 520 521
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
522 523 524 525 526 527 528 529 530 531
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}

	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
	if (ret)
		goto err;

532
	vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
533 534 535 536 537 538 539 540
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
541
		goto err;
542 543
	}

544
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
545
	engine->status_page.vma = vma;
546 547 548 549 550 551 552

	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
		ret = pin_ggtt_status_page(engine, vma);
		if (ret)
			goto err_unpin;
	}

553 554 555
	return 0;

err_unpin:
556
	i915_gem_object_unpin_map(obj);
557 558 559 560 561
err:
	i915_gem_object_put(obj);
	return ret;
}

562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
/**
 * intel_engines_setup_common - setup engine state not requiring hw access
 * @engine: Engine to setup.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do not require hardware access.
 *
 * Typically done early in the submission mode specific engine setup stage.
 */
int intel_engine_setup_common(struct intel_engine_cs *engine)
{
	int err;

	err = init_status_page(engine);
	if (err)
		return err;

	err = i915_timeline_init(engine->i915,
				 &engine->timeline,
				 engine->name,
				 engine->status_page.vma);
	if (err)
		goto err_hwsp;

	i915_timeline_set_subclass(&engine->timeline, TIMELINE_ENGINE);

588
	intel_engine_init_breadcrumbs(engine);
589 590 591 592 593 594 595 596 597 598 599 600
	intel_engine_init_execlist(engine);
	intel_engine_init_hangcheck(engine);
	intel_engine_init_batch_pool(engine);
	intel_engine_init_cmd_parser(engine);

	return 0;

err_hwsp:
	cleanup_status_page(engine);
	return err;
}

601 602 603 604 605 606 607 608
void intel_engines_set_scheduler_caps(struct drm_i915_private *i915)
{
	static const struct {
		u8 engine;
		u8 sched;
	} map[] = {
#define MAP(x, y) { ilog2(I915_ENGINE_HAS_##x), ilog2(I915_SCHEDULER_CAP_##y) }
		MAP(PREEMPTION, PREEMPTION),
609
		MAP(SEMAPHORES, SEMAPHORES),
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
#undef MAP
	};
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	u32 enabled, disabled;

	enabled = 0;
	disabled = 0;
	for_each_engine(engine, i915, id) { /* all engines must agree! */
		int i;

		if (engine->schedule)
			enabled |= (I915_SCHEDULER_CAP_ENABLED |
				    I915_SCHEDULER_CAP_PRIORITY);
		else
			disabled |= (I915_SCHEDULER_CAP_ENABLED |
				     I915_SCHEDULER_CAP_PRIORITY);

		for (i = 0; i < ARRAY_SIZE(map); i++) {
			if (engine->flags & BIT(map[i].engine))
				enabled |= BIT(map[i].sched);
			else
				disabled |= BIT(map[i].sched);
		}
	}

	i915->caps.scheduler = enabled & ~disabled;
	if (!(i915->caps.scheduler & I915_SCHEDULER_CAP_ENABLED))
		i915->caps.scheduler = 0;
}

641 642 643 644 645 646
static void __intel_context_unpin(struct i915_gem_context *ctx,
				  struct intel_engine_cs *engine)
{
	intel_context_unpin(to_intel_context(ctx, engine));
}

647 648 649 650 651 652 653
struct measure_breadcrumb {
	struct i915_request rq;
	struct i915_timeline timeline;
	struct intel_ring ring;
	u32 cs[1024];
};

654
static int measure_breadcrumb_dw(struct intel_engine_cs *engine)
655 656
{
	struct measure_breadcrumb *frame;
657
	int dw = -ENOMEM;
658 659 660 661 662 663 664

	GEM_BUG_ON(!engine->i915->gt.scratch);

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

665 666 667 668
	if (i915_timeline_init(engine->i915,
			       &frame->timeline, "measure",
			       engine->status_page.vma))
		goto out_frame;
669 670 671 672 673 674 675 676 677 678 679 680 681

	INIT_LIST_HEAD(&frame->ring.request_list);
	frame->ring.timeline = &frame->timeline;
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);

	frame->rq.i915 = engine->i915;
	frame->rq.engine = engine;
	frame->rq.ring = &frame->ring;
	frame->rq.timeline = &frame->timeline;

682 683 684 685
	dw = i915_timeline_pin(&frame->timeline);
	if (dw < 0)
		goto out_timeline;

686
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
687

688
	i915_timeline_unpin(&frame->timeline);
689

690 691
out_timeline:
	i915_timeline_fini(&frame->timeline);
692 693
out_frame:
	kfree(frame);
694 695 696
	return dw;
}

697 698 699 700 701 702 703 704 705 706 707 708 709
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_init_common(struct intel_engine_cs *engine)
{
710 711
	struct drm_i915_private *i915 = engine->i915;
	struct intel_context *ce;
712 713
	int ret;

714 715
	engine->set_default_submission(engine);

716 717 718 719 720 721 722
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
723 724 725
	ce = intel_context_pin(i915->kernel_context, engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);
726

727 728 729 730
	/*
	 * Similarly the preempt context must always be available so that
	 * we can interrupt the engine at any time.
	 */
731 732 733 734
	if (i915->preempt_context) {
		ce = intel_context_pin(i915->preempt_context, engine);
		if (IS_ERR(ce)) {
			ret = PTR_ERR(ce);
735 736 737 738
			goto err_unpin_kernel;
		}
	}

739
	ret = measure_breadcrumb_dw(engine);
740
	if (ret < 0)
741
		goto err_unpin_preempt;
742

743
	engine->emit_fini_breadcrumb_dw = ret;
744

745
	return 0;
746

747
err_unpin_preempt:
748 749 750
	if (i915->preempt_context)
		__intel_context_unpin(i915->preempt_context, engine);

751
err_unpin_kernel:
752
	__intel_context_unpin(i915->kernel_context, engine);
753
	return ret;
754
}
755 756 757 758 759 760 761 762 763 764

/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
765 766
	struct drm_i915_private *i915 = engine->i915;

767
	cleanup_status_page(engine);
768

769
	intel_engine_fini_breadcrumbs(engine);
770
	intel_engine_cleanup_cmd_parser(engine);
771
	i915_gem_batch_pool_fini(&engine->batch_pool);
772

773 774 775
	if (engine->default_state)
		i915_gem_object_put(engine->default_state);

776 777 778
	if (i915->preempt_context)
		__intel_context_unpin(i915->preempt_context, engine);
	__intel_context_unpin(i915->kernel_context, engine);
779 780

	i915_timeline_fini(&engine->timeline);
781

782
	intel_wa_list_free(&engine->ctx_wa_list);
783
	intel_wa_list_free(&engine->wa_list);
784
	intel_wa_list_free(&engine->whitelist);
785
}
786

787
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
{
	struct drm_i915_private *dev_priv = engine->i915;
	u64 acthd;

	if (INTEL_GEN(dev_priv) >= 8)
		acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
					 RING_ACTHD_UDW(engine->mmio_base));
	else if (INTEL_GEN(dev_priv) >= 4)
		acthd = I915_READ(RING_ACTHD(engine->mmio_base));
	else
		acthd = I915_READ(ACTHD);

	return acthd;
}

803
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
804 805 806 807 808 809 810 811 812 813 814 815
{
	struct drm_i915_private *dev_priv = engine->i915;
	u64 bbaddr;

	if (INTEL_GEN(dev_priv) >= 8)
		bbaddr = I915_READ64_2x32(RING_BBADDR(engine->mmio_base),
					  RING_BBADDR_UDW(engine->mmio_base));
	else
		bbaddr = I915_READ(RING_BBADDR(engine->mmio_base));

	return bbaddr;
}
816

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	const u32 base = engine->mmio_base;
	const i915_reg_t mode = RING_MI_MODE(base);
	int err;

	if (INTEL_GEN(dev_priv) < 3)
		return -ENODEV;

	GEM_TRACE("%s\n", engine->name);

	I915_WRITE_FW(mode, _MASKED_BIT_ENABLE(STOP_RING));

	err = 0;
	if (__intel_wait_for_register_fw(dev_priv,
					 mode, MODE_IDLE, MODE_IDLE,
					 1000, 0,
					 NULL)) {
		GEM_TRACE("%s: timed out on STOP_RING -> IDLE\n", engine->name);
		err = -ETIMEDOUT;
	}

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
	POSTING_READ_FW(mode);

	return err;
}

846 847 848 849 850 851 852 853 854 855
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	GEM_TRACE("%s\n", engine->name);

	I915_WRITE_FW(RING_MI_MODE(engine->mmio_base),
		      _MASKED_BIT_DISABLE(STOP_RING));
}

856 857 858 859 860 861 862 863 864 865 866
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

867 868
u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv)
{
869
	const struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
870 871 872 873
	u32 mcr_s_ss_select;
	u32 slice = fls(sseu->slice_mask);
	u32 subslice = fls(sseu->subslice_mask[slice]);

874
	if (IS_GEN(dev_priv, 10))
875 876
		mcr_s_ss_select = GEN8_MCR_SLICE(slice) |
				  GEN8_MCR_SUBSLICE(subslice);
877 878 879
	else if (INTEL_GEN(dev_priv) >= 11)
		mcr_s_ss_select = GEN11_MCR_SLICE(slice) |
				  GEN11_MCR_SUBSLICE(subslice);
880 881 882 883 884 885
	else
		mcr_s_ss_select = 0;

	return mcr_s_ss_select;
}

886
static inline u32
887 888 889
read_subslice_reg(struct drm_i915_private *dev_priv, int slice,
		  int subslice, i915_reg_t reg)
{
890 891 892 893 894
	u32 mcr_slice_subslice_mask;
	u32 mcr_slice_subslice_select;
	u32 default_mcr_s_ss_select;
	u32 mcr;
	u32 ret;
895 896
	enum forcewake_domains fw_domains;

897 898 899 900 901 902 903 904 905 906 907 908
	if (INTEL_GEN(dev_priv) >= 11) {
		mcr_slice_subslice_mask = GEN11_MCR_SLICE_MASK |
					  GEN11_MCR_SUBSLICE_MASK;
		mcr_slice_subslice_select = GEN11_MCR_SLICE(slice) |
					    GEN11_MCR_SUBSLICE(subslice);
	} else {
		mcr_slice_subslice_mask = GEN8_MCR_SLICE_MASK |
					  GEN8_MCR_SUBSLICE_MASK;
		mcr_slice_subslice_select = GEN8_MCR_SLICE(slice) |
					    GEN8_MCR_SUBSLICE(subslice);
	}

909 910
	default_mcr_s_ss_select = intel_calculate_mcr_s_ss_select(dev_priv);

911 912 913 914 915 916 917 918 919 920
	fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg,
						    FW_REG_READ);
	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

	spin_lock_irq(&dev_priv->uncore.lock);
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);

	mcr = I915_READ_FW(GEN8_MCR_SELECTOR);
921 922 923 924

	WARN_ON_ONCE((mcr & mcr_slice_subslice_mask) !=
		     default_mcr_s_ss_select);

925 926
	mcr &= ~mcr_slice_subslice_mask;
	mcr |= mcr_slice_subslice_select;
927 928 929 930
	I915_WRITE_FW(GEN8_MCR_SELECTOR, mcr);

	ret = I915_READ_FW(reg);

931
	mcr &= ~mcr_slice_subslice_mask;
932 933
	mcr |= default_mcr_s_ss_select;

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
	I915_WRITE_FW(GEN8_MCR_SELECTOR, mcr);

	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
	spin_unlock_irq(&dev_priv->uncore.lock);

	return ret;
}

/* NB: please notice the memset */
void intel_engine_get_instdone(struct intel_engine_cs *engine,
			       struct intel_instdone *instdone)
{
	struct drm_i915_private *dev_priv = engine->i915;
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

	switch (INTEL_GEN(dev_priv)) {
	default:
		instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));

		if (engine->id != RCS)
			break;

		instdone->slice_common = I915_READ(GEN7_SC_INSTDONE);
		for_each_instdone_slice_subslice(dev_priv, slice, subslice) {
			instdone->sampler[slice][subslice] =
				read_subslice_reg(dev_priv, slice, subslice,
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
				read_subslice_reg(dev_priv, slice, subslice,
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
		instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));

		if (engine->id != RCS)
			break;

		instdone->slice_common = I915_READ(GEN7_SC_INSTDONE);
		instdone->sampler[0][0] = I915_READ(GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] = I915_READ(GEN7_ROW_INSTDONE);

		break;
	case 6:
	case 5:
	case 4:
		instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));

		if (engine->id == RCS)
			/* HACK: Using the wrong struct member */
			instdone->slice_common = I915_READ(GEN4_INSTDONE1);
		break;
	case 3:
	case 2:
		instdone->instdone = I915_READ(GEN2_INSTDONE);
		break;
	}
}
996

997 998 999
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
1000
	intel_wakeref_t wakeref;
1001 1002
	bool idle = true;

1003 1004 1005
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1006
	/* If the whole device is asleep, the engine must be idle */
1007 1008
	wakeref = intel_runtime_pm_get_if_in_use(dev_priv);
	if (!wakeref)
1009
		return true;
1010

1011 1012 1013 1014
	/* First check that no commands are left in the ring */
	if ((I915_READ_HEAD(engine) & HEAD_ADDR) !=
	    (I915_READ_TAIL(engine) & TAIL_ADDR))
		idle = false;
1015

1016 1017
	/* No bit for gen2, so assume the CS parser is idle */
	if (INTEL_GEN(dev_priv) > 2 && !(I915_READ_MODE(engine) & MODE_IDLE))
1018 1019
		idle = false;

1020
	intel_runtime_pm_put(dev_priv, wakeref);
1021 1022 1023 1024

	return idle;
}

1025 1026 1027 1028 1029 1030 1031 1032 1033
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1034
	/* More white lies, if wedged, hw state is inconsistent */
1035
	if (i915_reset_failed(engine->i915))
1036 1037
		return true;

1038
	/* Waiting to drain ELSP? */
1039
	if (READ_ONCE(engine->execlists.active)) {
1040
		struct tasklet_struct *t = &engine->execlists.tasklet;
1041

1042
		local_bh_disable();
1043 1044 1045 1046 1047
		if (tasklet_trylock(t)) {
			/* Must wait for any GPU reset in progress. */
			if (__tasklet_is_enabled(t))
				t->func(t->data);
			tasklet_unlock(t);
1048
		}
1049
		local_bh_enable();
1050

1051 1052 1053
		/* Otherwise flush the tasklet if it was on another cpu */
		tasklet_unlock_wait(t);

1054
		if (READ_ONCE(engine->execlists.active))
1055 1056
			return false;
	}
1057

1058
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1059
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1060 1061
		return false;

1062
	/* Ring stopped? */
1063
	return ring_is_idle(engine);
1064 1065
}

1066
bool intel_engines_are_idle(struct drm_i915_private *i915)
1067 1068 1069 1070
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1071 1072
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1073 1074
	 * report that it is still busy, even though we have stopped using it.
	 */
1075
	if (i915_reset_failed(i915))
1076 1077
		return true;

1078 1079 1080 1081 1082
	/* Already parked (and passed an idleness test); must still be idle */
	if (!READ_ONCE(i915->gt.awake))
		return true;

	for_each_engine(engine, i915, id) {
1083 1084 1085 1086 1087 1088 1089
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1090 1091 1092 1093 1094 1095 1096 1097
/**
 * intel_engine_has_kernel_context:
 * @engine: the engine
 *
 * Returns true if the last context to be executed on this engine, or has been
 * executed if the engine is already idle, is the kernel context
 * (#i915.kernel_context).
 */
1098 1099
bool intel_engine_has_kernel_context(const struct intel_engine_cs *engine)
{
1100 1101
	const struct intel_context *kernel_context =
		to_intel_context(engine->i915->kernel_context, engine);
1102
	struct i915_request *rq;
1103 1104 1105 1106 1107 1108 1109 1110

	lockdep_assert_held(&engine->i915->drm.struct_mutex);

	/*
	 * Check the last context seen by the engine. If active, it will be
	 * the last request that remains in the timeline. When idle, it is
	 * the last executed context as tracked by retirement.
	 */
1111
	rq = __i915_active_request_peek(&engine->timeline.last_request);
1112
	if (rq)
1113
		return rq->hw_context == kernel_context;
1114 1115
	else
		return engine->last_retired_context == kernel_context;
1116 1117
}

1118 1119 1120 1121 1122 1123 1124 1125 1126
void intel_engines_reset_default_submission(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id)
		engine->set_default_submission(engine);
}

1127 1128 1129 1130 1131 1132 1133 1134
static bool reset_engines(struct drm_i915_private *i915)
{
	if (INTEL_INFO(i915)->gpu_reset_clobbers_display)
		return false;

	return intel_gpu_reset(i915, ALL_ENGINES) == 0;
}

1135 1136 1137
/**
 * intel_engines_sanitize: called after the GPU has lost power
 * @i915: the i915 device
1138
 * @force: ignore a failed reset and sanitize engine state anyway
1139 1140 1141 1142 1143 1144
 *
 * Anytime we reset the GPU, either with an explicit GPU reset or through a
 * PCI power cycle, the GPU loses state and we must reset our state tracking
 * to match. Note that calling intel_engines_sanitize() if the GPU has not
 * been reset results in much confusion!
 */
1145
void intel_engines_sanitize(struct drm_i915_private *i915, bool force)
1146 1147 1148 1149 1150 1151
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	GEM_TRACE("\n");

1152 1153 1154
	if (!reset_engines(i915) && !force)
		return;

1155 1156
	for_each_engine(engine, i915, id)
		intel_engine_reset(engine, false);
1157 1158
}

1159 1160 1161 1162 1163 1164 1165 1166 1167
/**
 * intel_engines_park: called when the GT is transitioning from busy->idle
 * @i915: the i915 device
 *
 * The GT is now idle and about to go to sleep (maybe never to wake again?).
 * Time for us to tidy and put away our toys (release resources back to the
 * system).
 */
void intel_engines_park(struct drm_i915_private *i915)
1168 1169 1170 1171 1172
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id) {
1173 1174
		/* Flush the residual irq tasklets first. */
		intel_engine_disarm_breadcrumbs(engine);
1175
		tasklet_kill(&engine->execlists.tasklet);
1176

1177 1178 1179 1180 1181
		/*
		 * We are committed now to parking the engines, make sure there
		 * will be no more interrupts arriving later and the engines
		 * are truly idle.
		 */
1182
		if (wait_for(intel_engine_is_idle(engine), 10)) {
1183 1184
			struct drm_printer p = drm_debug_printer(__func__);

1185 1186 1187
			dev_err(i915->drm.dev,
				"%s is not idle before parking\n",
				engine->name);
1188
			intel_engine_dump(engine, &p, NULL);
1189 1190
		}

1191
		/* Must be reset upon idling, or we may miss the busy wakeup. */
1192
		GEM_BUG_ON(engine->execlists.queue_priority_hint != INT_MIN);
1193

1194 1195 1196
		if (engine->park)
			engine->park(engine);

1197 1198 1199 1200 1201
		if (engine->pinned_default_state) {
			i915_gem_object_unpin_map(engine->default_state);
			engine->pinned_default_state = NULL;
		}

1202
		i915_gem_batch_pool_fini(&engine->batch_pool);
1203
		engine->execlists.no_priolist = false;
1204 1205 1206
	}
}

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
/**
 * intel_engines_unpark: called when the GT is transitioning from idle->busy
 * @i915: the i915 device
 *
 * The GT was idle and now about to fire up with some new user requests.
 */
void intel_engines_unpark(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id) {
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
		void *map;

		/* Pin the default state for fast resets from atomic context. */
		map = NULL;
		if (engine->default_state)
			map = i915_gem_object_pin_map(engine->default_state,
						      I915_MAP_WB);
		if (!IS_ERR_OR_NULL(map))
			engine->pinned_default_state = map;

1229 1230
		if (engine->unpark)
			engine->unpark(engine);
1231 1232

		intel_engine_init_hangcheck(engine);
1233 1234 1235
	}
}

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
/**
 * intel_engine_lost_context: called when the GPU is reset into unknown state
 * @engine: the engine
 *
 * We have either reset the GPU or otherwise about to lose state tracking of
 * the current GPU logical state (e.g. suspend). On next use, it is therefore
 * imperative that we make no presumptions about the current state and load
 * from scratch.
 */
void intel_engine_lost_context(struct intel_engine_cs *engine)
{
1247
	struct intel_context *ce;
1248 1249 1250

	lockdep_assert_held(&engine->i915->drm.struct_mutex);

1251 1252 1253
	ce = fetch_and_zero(&engine->last_retired_context);
	if (ce)
		intel_context_unpin(ce);
1254 1255
}

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	unsigned int which;

	which = 0;
	for_each_engine(engine, i915, id)
		if (engine->default_state)
			which |= BIT(engine->uabi_class);

	return which;
}

1285 1286 1287
static int print_sched_attr(struct drm_i915_private *i915,
			    const struct i915_sched_attr *attr,
			    char *buf, int x, int len)
1288 1289
{
	if (attr->priority == I915_PRIORITY_INVALID)
1290 1291 1292 1293
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);
1294

1295
	return x;
1296 1297
}

1298
static void print_request(struct drm_printer *m,
1299
			  struct i915_request *rq,
1300 1301
			  const char *prefix)
{
1302
	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1303
	char buf[80] = "";
1304 1305 1306
	int x = 0;

	x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1307

1308
	drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1309
		   prefix,
1310
		   rq->fence.context, rq->fence.seqno,
1311 1312 1313
		   i915_request_completed(rq) ? "!" :
		   i915_request_started(rq) ? "*" :
		   "",
1314 1315
		   test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
			    &rq->fence.flags) ?  "+" : "",
1316
		   buf,
1317
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1318
		   name);
1319 1320
}

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1343
		drm_printf(m, "[%04zx] %s\n", pos, line);
1344 1345 1346 1347 1348 1349

		prev = buf + pos;
		skip = false;
	}
}

1350 1351
static void intel_engine_print_registers(const struct intel_engine_cs *engine,
					 struct drm_printer *m)
1352 1353
{
	struct drm_i915_private *dev_priv = engine->i915;
1354 1355
	const struct intel_engine_execlists * const execlists =
		&engine->execlists;
1356 1357
	u64 addr;

1358
	if (engine->id == RCS && IS_GEN_RANGE(dev_priv, 4, 7))
1359
		drm_printf(m, "\tCCID: 0x%08x\n", I915_READ(CCID));
1360 1361 1362 1363 1364 1365
	drm_printf(m, "\tRING_START: 0x%08x\n",
		   I915_READ(RING_START(engine->mmio_base)));
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
		   I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR);
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
		   I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR);
1366
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1367
		   I915_READ(RING_CTL(engine->mmio_base)),
1368 1369 1370 1371 1372 1373
		   I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
			   I915_READ(RING_MI_MODE(engine->mmio_base)),
			   I915_READ(RING_MI_MODE(engine->mmio_base)) & (MODE_IDLE) ? " [idle]" : "");
	}
1374 1375 1376 1377 1378

	if (INTEL_GEN(dev_priv) >= 6) {
		drm_printf(m, "\tRING_IMR: %08x\n", I915_READ_IMR(engine));
	}

1379 1380 1381 1382 1383 1384
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
	if (INTEL_GEN(dev_priv) >= 8)
		addr = I915_READ64_2x32(RING_DMA_FADD(engine->mmio_base),
					RING_DMA_FADD_UDW(engine->mmio_base));
	else if (INTEL_GEN(dev_priv) >= 4)
		addr = I915_READ(RING_DMA_FADD(engine->mmio_base));
	else
		addr = I915_READ(DMA_FADD_I8XX);
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
			   I915_READ(RING_IPEIR(engine->mmio_base)));
		drm_printf(m, "\tIPEHR: 0x%08x\n",
			   I915_READ(RING_IPEHR(engine->mmio_base)));
	} else {
		drm_printf(m, "\tIPEIR: 0x%08x\n", I915_READ(IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", I915_READ(IPEHR));
	}
1403

1404
	if (HAS_EXECLISTS(dev_priv)) {
1405 1406
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1407
		unsigned int idx;
1408
		u8 read, write;
1409 1410 1411 1412 1413

		drm_printf(m, "\tExeclist status: 0x%08x %08x\n",
			   I915_READ(RING_EXECLIST_STATUS_LO(engine)),
			   I915_READ(RING_EXECLIST_STATUS_HI(engine)));

1414 1415 1416 1417 1418 1419
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

		drm_printf(m, "\tExeclist CSB read %d, write %d [mmio:%d], tasklet queued? %s (%s)\n",
			   read, write,
			   GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine))),
1420 1421 1422
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)));
1423 1424 1425 1426 1427 1428 1429 1430
		if (read >= GEN8_CSB_ENTRIES)
			read = 0;
		if (write >= GEN8_CSB_ENTRIES)
			write = 0;
		if (read > write)
			write += GEN8_CSB_ENTRIES;
		while (read < write) {
			idx = ++read % GEN8_CSB_ENTRIES;
1431
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x [mmio:0x%08x], context: %d [mmio:%d]\n",
1432 1433
				   idx,
				   hws[idx * 2],
1434 1435 1436
				   I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)),
				   hws[idx * 2 + 1],
				   I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)));
1437 1438 1439 1440
		}

		rcu_read_lock();
		for (idx = 0; idx < execlists_num_ports(execlists); idx++) {
1441
			struct i915_request *rq;
1442 1443 1444 1445
			unsigned int count;

			rq = port_unpack(&execlists->port[idx], &count);
			if (rq) {
1446 1447
				char hdr[80];

1448
				snprintf(hdr, sizeof(hdr),
1449
					 "\t\tELSP[%d] count=%d, ring:{start:%08x, hwsp:%08x, seqno:%08x}, rq: ",
1450
					 idx, count,
1451
					 i915_ggtt_offset(rq->ring->vma),
1452 1453
					 rq->timeline->hwsp_offset,
					 hwsp_seqno(rq));
1454
				print_request(m, rq, hdr);
1455
			} else {
1456
				drm_printf(m, "\t\tELSP[%d] idle\n", idx);
1457 1458
			}
		}
1459
		drm_printf(m, "\t\tHW active? 0x%x\n", execlists->active);
1460 1461 1462 1463 1464 1465 1466 1467 1468
		rcu_read_unlock();
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
			   I915_READ(RING_PP_DIR_BASE(engine)));
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
			   I915_READ(RING_PP_DIR_BASE_READ(engine)));
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
			   I915_READ(RING_PP_DIR_DCLV(engine)));
	}
1469 1470
}

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1504 1505 1506 1507 1508
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1509
	struct i915_request *rq;
1510
	intel_wakeref_t wakeref;
1511 1512 1513 1514 1515 1516 1517 1518 1519

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1520
	if (i915_reset_failed(engine->i915))
1521 1522
		drm_printf(m, "*** WEDGED ***\n");

1523
	drm_printf(m, "\tHangcheck %x:%x [%d ms]\n",
1524 1525
		   engine->hangcheck.last_seqno,
		   engine->hangcheck.next_seqno,
1526
		   jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp));
1527 1528 1529 1530 1531 1532 1533 1534
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));

	rcu_read_lock();

	drm_printf(m, "\tRequests:\n");

1535
	rq = list_first_entry(&engine->timeline.requests,
1536
			      struct i915_request, link);
1537
	if (&rq->link != &engine->timeline.requests)
1538 1539
		print_request(m, rq, "\t\tfirst  ");

1540
	rq = list_last_entry(&engine->timeline.requests,
1541
			     struct i915_request, link);
1542
	if (&rq->link != &engine->timeline.requests)
1543 1544 1545 1546 1547
		print_request(m, rq, "\t\tlast   ");

	rq = i915_gem_find_active_request(engine);
	if (rq) {
		print_request(m, rq, "\t\tactive ");
1548

1549
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1550
			   i915_ggtt_offset(rq->ring->vma));
1551
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1552
			   rq->ring->head);
1553
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1554
			   rq->ring->tail);
1555 1556 1557 1558
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1559 1560
		drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
			   rq->timeline->hwsp_offset);
1561 1562

		print_request_ring(m, rq);
1563 1564 1565 1566
	}

	rcu_read_unlock();

1567 1568
	wakeref = intel_runtime_pm_get_if_in_use(engine->i915);
	if (wakeref) {
1569
		intel_engine_print_registers(engine, m);
1570
		intel_runtime_pm_put(engine->i915, wakeref);
1571 1572 1573
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1574

1575
	intel_execlists_show_requests(engine, m, print_request, 8);
1576

1577
	drm_printf(m, "HWSP:\n");
1578
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1579

1580
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1581 1582

	intel_engine_print_breadcrumbs(engine, m);
1583 1584
}

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
static u8 user_class_map[] = {
	[I915_ENGINE_CLASS_RENDER] = RENDER_CLASS,
	[I915_ENGINE_CLASS_COPY] = COPY_ENGINE_CLASS,
	[I915_ENGINE_CLASS_VIDEO] = VIDEO_DECODE_CLASS,
	[I915_ENGINE_CLASS_VIDEO_ENHANCE] = VIDEO_ENHANCEMENT_CLASS,
};

struct intel_engine_cs *
intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance)
{
	if (class >= ARRAY_SIZE(user_class_map))
		return NULL;

	class = user_class_map[class];

	GEM_BUG_ON(class > MAX_ENGINE_CLASS);

	if (instance > MAX_ENGINE_INSTANCE)
		return NULL;

	return i915->engine_class[class][instance];
}

1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
/**
 * intel_enable_engine_stats() - Enable engine busy tracking on engine
 * @engine: engine to enable stats collection
 *
 * Start collecting the engine busyness data for @engine.
 *
 * Returns 0 on success or a negative error code.
 */
int intel_enable_engine_stats(struct intel_engine_cs *engine)
{
1618
	struct intel_engine_execlists *execlists = &engine->execlists;
1619
	unsigned long flags;
1620
	int err = 0;
1621

1622
	if (!intel_engine_supports_stats(engine))
1623 1624
		return -ENODEV;

1625 1626
	spin_lock_irqsave(&engine->timeline.lock, flags);
	write_seqlock(&engine->stats.lock);
1627 1628 1629 1630 1631 1632

	if (unlikely(engine->stats.enabled == ~0)) {
		err = -EBUSY;
		goto unlock;
	}

1633 1634 1635 1636
	if (engine->stats.enabled++ == 0) {
		const struct execlist_port *port = execlists->port;
		unsigned int num_ports = execlists_num_ports(execlists);

1637
		engine->stats.enabled_at = ktime_get();
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647

		/* XXX submission method oblivious? */
		while (num_ports-- && port_isset(port)) {
			engine->stats.active++;
			port++;
		}

		if (engine->stats.active)
			engine->stats.start = engine->stats.enabled_at;
	}
1648

1649
unlock:
1650 1651
	write_sequnlock(&engine->stats.lock);
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1652

1653
	return err;
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
}

static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
	if (engine->stats.active)
		total = ktime_add(total,
				  ktime_sub(ktime_get(), engine->stats.start));

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
1679
	unsigned int seq;
1680 1681
	ktime_t total;

1682 1683 1684 1685
	do {
		seq = read_seqbegin(&engine->stats.lock);
		total = __intel_engine_get_busy_time(engine);
	} while (read_seqretry(&engine->stats.lock, seq));
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699

	return total;
}

/**
 * intel_disable_engine_stats() - Disable engine busy tracking on engine
 * @engine: engine to disable stats collection
 *
 * Stops collecting the engine busyness data for @engine.
 */
void intel_disable_engine_stats(struct intel_engine_cs *engine)
{
	unsigned long flags;

1700
	if (!intel_engine_supports_stats(engine))
1701 1702
		return;

1703
	write_seqlock_irqsave(&engine->stats.lock, flags);
1704 1705 1706 1707 1708
	WARN_ON_ONCE(engine->stats.enabled == 0);
	if (--engine->stats.enabled == 0) {
		engine->stats.total = __intel_engine_get_busy_time(engine);
		engine->stats.active = 0;
	}
1709
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1710 1711
}

1712 1713
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_engine.c"
1714
#include "selftests/intel_engine_cs.c"
1715
#endif