intel_engine_cs.c 44.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27 28 29 30
#include "i915_drv.h"
#include "intel_ringbuffer.h"
#include "intel_lrc.h"

31 32 33 34 35 36 37 38 39
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

40
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
41 42
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
43
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
44
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
45 46 47

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

48
struct engine_class_info {
49
	const char *name;
50 51
	int (*init_legacy)(struct intel_engine_cs *engine);
	int (*init_execlists)(struct intel_engine_cs *engine);
52 53

	u8 uabi_class;
54 55 56 57 58 59 60
};

static const struct engine_class_info intel_engine_classes[] = {
	[RENDER_CLASS] = {
		.name = "rcs",
		.init_execlists = logical_render_ring_init,
		.init_legacy = intel_init_render_ring_buffer,
61
		.uabi_class = I915_ENGINE_CLASS_RENDER,
62 63 64 65 66
	},
	[COPY_ENGINE_CLASS] = {
		.name = "bcs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_blt_ring_buffer,
67
		.uabi_class = I915_ENGINE_CLASS_COPY,
68 69 70 71 72
	},
	[VIDEO_DECODE_CLASS] = {
		.name = "vcs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_bsd_ring_buffer,
73
		.uabi_class = I915_ENGINE_CLASS_VIDEO,
74 75 76 77 78
	},
	[VIDEO_ENHANCEMENT_CLASS] = {
		.name = "vecs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_vebox_ring_buffer,
79
		.uabi_class = I915_ENGINE_CLASS_VIDEO_ENHANCE,
80 81 82
	},
};

83
#define MAX_MMIO_BASES 3
84
struct engine_info {
85
	unsigned int hw_id;
86
	unsigned int uabi_id;
87 88
	u8 class;
	u8 instance;
89 90 91 92 93
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
94 95 96
};

static const struct engine_info intel_engines[] = {
97
	[RCS] = {
98
		.hw_id = RCS_HW,
99
		.uabi_id = I915_EXEC_RENDER,
100 101
		.class = RENDER_CLASS,
		.instance = 0,
102 103 104
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
105 106
	},
	[BCS] = {
107
		.hw_id = BCS_HW,
108
		.uabi_id = I915_EXEC_BLT,
109 110
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
111 112 113
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
114 115
	},
	[VCS] = {
116
		.hw_id = VCS_HW,
117
		.uabi_id = I915_EXEC_BSD,
118 119
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
120 121 122 123 124
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
125 126
	},
	[VCS2] = {
127
		.hw_id = VCS2_HW,
128
		.uabi_id = I915_EXEC_BSD,
129 130
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
131 132 133 134
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
135
	},
136 137 138 139 140
	[VCS3] = {
		.hw_id = VCS3_HW,
		.uabi_id = I915_EXEC_BSD,
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
141 142 143
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
144 145 146 147 148 149
	},
	[VCS4] = {
		.hw_id = VCS4_HW,
		.uabi_id = I915_EXEC_BSD,
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
150 151 152
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
153
	},
154
	[VECS] = {
155
		.hw_id = VECS_HW,
156
		.uabi_id = I915_EXEC_VEBOX,
157 158
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
159 160 161 162
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
163
	},
164 165 166 167 168
	[VECS2] = {
		.hw_id = VECS2_HW,
		.uabi_id = I915_EXEC_VEBOX,
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
169 170 171
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
172
	},
173 174
};

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
/**
 * ___intel_engine_context_size() - return the size of the context for an engine
 * @dev_priv: i915 device private
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
static u32
__intel_engine_context_size(struct drm_i915_private *dev_priv, u8 class)
{
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
		switch (INTEL_GEN(dev_priv)) {
		default:
			MISSING_CASE(INTEL_GEN(dev_priv));
201
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
202 203
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
204
		case 10:
O
Oscar Mateo 已提交
205
			return GEN10_LR_CONTEXT_RENDER_SIZE;
206 207 208
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
209
			return GEN8_LR_CONTEXT_RENDER_SIZE;
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
		case 7:
			if (IS_HASWELL(dev_priv))
				return HSW_CXT_TOTAL_SIZE;

			cxt_size = I915_READ(GEN7_CXT_SIZE);
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
			cxt_size = I915_READ(CXT_SIZE);
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
		case 4:
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
232
		/* fall through */
233 234 235 236 237 238 239 240 241
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
		if (INTEL_GEN(dev_priv) < 8)
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

257 258 259 260 261 262 263
static void __sprint_engine_name(char *name, const struct engine_info *info)
{
	WARN_ON(snprintf(name, INTEL_ENGINE_CS_MAX_NAME, "%s%u",
			 intel_engine_classes[info->class].name,
			 info->instance) >= INTEL_ENGINE_CS_MAX_NAME);
}

264
static int
265 266 267 268
intel_engine_setup(struct drm_i915_private *dev_priv,
		   enum intel_engine_id id)
{
	const struct engine_info *info = &intel_engines[id];
269 270
	struct intel_engine_cs *engine;

271 272
	GEM_BUG_ON(info->class >= ARRAY_SIZE(intel_engine_classes));

273 274 275
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

276
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
277 278
		return -EINVAL;

279
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
280 281
		return -EINVAL;

282
	if (GEM_DEBUG_WARN_ON(dev_priv->engine_class[info->class][info->instance]))
283 284
		return -EINVAL;

285 286 287 288
	GEM_BUG_ON(dev_priv->engine[id]);
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
289 290 291

	engine->id = id;
	engine->i915 = dev_priv;
292
	__sprint_engine_name(engine->name, info);
293
	engine->hw_id = engine->guc_id = info->hw_id;
294
	engine->mmio_base = __engine_mmio_base(dev_priv, info->mmio_bases);
295 296
	engine->class = info->class;
	engine->instance = info->instance;
297

298
	engine->uabi_id = info->uabi_id;
299
	engine->uabi_class = intel_engine_classes[info->class].uabi_class;
300

301 302 303 304
	engine->context_size = __intel_engine_context_size(dev_priv,
							   engine->class);
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
305 306
	if (engine->context_size)
		DRIVER_CAPS(dev_priv)->has_logical_contexts = true;
307

308 309 310
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

311
	seqlock_init(&engine->stats.lock);
312

313 314
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

315
	dev_priv->engine_class[info->class][info->instance] = engine;
316 317
	dev_priv->engine[id] = engine;
	return 0;
318 319 320
}

/**
321
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
322
 * @dev_priv: i915 device private
323 324 325
 *
 * Return: non-zero if the initialization failed.
 */
326
int intel_engines_init_mmio(struct drm_i915_private *dev_priv)
327
{
328
	struct intel_device_info *device_info = mkwrite_device_info(dev_priv);
329
	const unsigned int ring_mask = INTEL_INFO(dev_priv)->ring_mask;
330 331
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
332
	unsigned int mask = 0;
333
	unsigned int i;
334
	int err;
335

336 337
	WARN_ON(ring_mask == 0);
	WARN_ON(ring_mask &
338
		GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
339

340 341 342
	if (i915_inject_load_failure())
		return -ENODEV;

343 344 345 346
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
		if (!HAS_ENGINE(dev_priv, i))
			continue;

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
		err = intel_engine_setup(dev_priv, i);
		if (err)
			goto cleanup;

		mask |= ENGINE_MASK(i);
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
	if (WARN_ON(mask != ring_mask))
		device_info->ring_mask = mask;

362 363 364 365 366 367
	/* We always presume we have at least RCS available for later probing */
	if (WARN_ON(!HAS_ENGINE(dev_priv, RCS))) {
		err = -ENODEV;
		goto cleanup;
	}

368 369
	device_info->num_rings = hweight32(mask);

370 371
	i915_check_and_clear_faults(dev_priv);

372 373 374 375 376 377 378 379 380
	return 0;

cleanup:
	for_each_engine(engine, dev_priv, id)
		kfree(engine);
	return err;
}

/**
381
 * intel_engines_init() - init the Engine Command Streamers
382 383 384 385 386 387 388 389
 * @dev_priv: i915 device private
 *
 * Return: non-zero if the initialization failed.
 */
int intel_engines_init(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id, err_id;
390
	int err;
391 392

	for_each_engine(engine, dev_priv, id) {
393 394
		const struct engine_class_info *class_info =
			&intel_engine_classes[engine->class];
395 396
		int (*init)(struct intel_engine_cs *engine);

397
		if (HAS_EXECLISTS(dev_priv))
398
			init = class_info->init_execlists;
399
		else
400
			init = class_info->init_legacy;
401 402 403 404

		err = -EINVAL;
		err_id = id;

405
		if (GEM_DEBUG_WARN_ON(!init))
406
			goto cleanup;
407

408
		err = init(engine);
409
		if (err)
410 411
			goto cleanup;

412
		GEM_BUG_ON(!engine->submit_request);
413 414 415 416 417
	}

	return 0;

cleanup:
418
	for_each_engine(engine, dev_priv, id) {
419
		if (id >= err_id) {
420
			kfree(engine);
421 422
			dev_priv->engine[id] = NULL;
		} else {
423
			dev_priv->gt.cleanup_engine(engine);
424
		}
425
	}
426
	return err;
427 428
}

429
void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno)
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
{
	struct drm_i915_private *dev_priv = engine->i915;

	/* Our semaphore implementation is strictly monotonic (i.e. we proceed
	 * so long as the semaphore value in the register/page is greater
	 * than the sync value), so whenever we reset the seqno,
	 * so long as we reset the tracking semaphore value to 0, it will
	 * always be before the next request's seqno. If we don't reset
	 * the semaphore value, then when the seqno moves backwards all
	 * future waits will complete instantly (causing rendering corruption).
	 */
	if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
		I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
		I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
		if (HAS_VEBOX(dev_priv))
			I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
	}

	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
449
	clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
450

451 452 453 454
	/* After manually advancing the seqno, fake the interrupt in case
	 * there are any waiters for that seqno.
	 */
	intel_engine_wakeup(engine);
455 456

	GEM_BUG_ON(intel_engine_get_seqno(engine) != seqno);
457 458
}

459 460 461 462 463
static void intel_engine_init_batch_pool(struct intel_engine_cs *engine)
{
	i915_gem_batch_pool_init(&engine->batch_pool, engine);
}

464 465 466 467
static void intel_engine_init_execlist(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

468
	execlists->port_mask = 1;
469
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
470 471
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

472
	execlists->queue_priority = INT_MIN;
473
	execlists->queue = RB_ROOT_CACHED;
474 475
}

476 477 478 479 480 481 482 483 484 485 486
/**
 * intel_engines_setup_common - setup engine state not requiring hw access
 * @engine: Engine to setup.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do not require hardware access.
 *
 * Typically done early in the submission mode specific engine setup stage.
 */
void intel_engine_setup_common(struct intel_engine_cs *engine)
{
487
	i915_timeline_init(engine->i915, &engine->timeline, engine->name);
488
	i915_timeline_set_subclass(&engine->timeline, TIMELINE_ENGINE);
489

490
	intel_engine_init_execlist(engine);
491
	intel_engine_init_hangcheck(engine);
492
	intel_engine_init_batch_pool(engine);
493
	intel_engine_init_cmd_parser(engine);
494 495
}

496
static void cleanup_status_page(struct intel_engine_cs *engine)
497
{
498 499
	if (HWS_NEEDS_PHYSICAL(engine->i915)) {
		void *addr = fetch_and_zero(&engine->status_page.page_addr);
500

501 502
		__free_page(virt_to_page(addr));
	}
503

504 505
	i915_vma_unpin_and_release(&engine->status_page.vma,
				   I915_VMA_RELEASE_MAP);
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	unsigned int flags;
	void *vaddr;
	int ret;

	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}

	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
	if (ret)
		goto err;

526
	vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/* On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
		flags |= PIN_MAPPABLE;
545 546
	else
		flags |= PIN_HIGH;
547
	ret = i915_vma_pin(vma, 0, 0, flags);
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
	if (ret)
		goto err;

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		goto err_unpin;
	}

	engine->status_page.vma = vma;
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
	engine->status_page.page_addr = memset(vaddr, 0, PAGE_SIZE);
	return 0;

err_unpin:
	i915_vma_unpin(vma);
err:
	i915_gem_object_put(obj);
	return ret;
}

static int init_phys_status_page(struct intel_engine_cs *engine)
{
571
	struct page *page;
572

573 574 575 576 577 578 579
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G.
	 */
	page = alloc_page(GFP_KERNEL | __GFP_DMA32 | __GFP_ZERO);
	if (!page)
580 581
		return -ENOMEM;

582
	engine->status_page.page_addr = page_address(page);
583 584 585 586

	return 0;
}

587 588 589 590 591 592
static void __intel_context_unpin(struct i915_gem_context *ctx,
				  struct intel_engine_cs *engine)
{
	intel_context_unpin(to_intel_context(ctx, engine));
}

593 594 595 596 597 598 599 600 601 602 603 604 605
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_init_common(struct intel_engine_cs *engine)
{
606 607
	struct drm_i915_private *i915 = engine->i915;
	struct intel_context *ce;
608 609
	int ret;

610 611
	engine->set_default_submission(engine);

612 613 614 615 616 617 618
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
619 620 621
	ce = intel_context_pin(i915->kernel_context, engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);
622

623 624 625 626
	/*
	 * Similarly the preempt context must always be available so that
	 * we can interrupt the engine at any time.
	 */
627 628 629 630
	if (i915->preempt_context) {
		ce = intel_context_pin(i915->preempt_context, engine);
		if (IS_ERR(ce)) {
			ret = PTR_ERR(ce);
631 632 633 634
			goto err_unpin_kernel;
		}
	}

635 636
	ret = intel_engine_init_breadcrumbs(engine);
	if (ret)
637
		goto err_unpin_preempt;
638

639
	if (HWS_NEEDS_PHYSICAL(i915))
640 641 642 643
		ret = init_phys_status_page(engine);
	else
		ret = init_status_page(engine);
	if (ret)
644
		goto err_breadcrumbs;
645

646
	return 0;
647

648 649
err_breadcrumbs:
	intel_engine_fini_breadcrumbs(engine);
650
err_unpin_preempt:
651 652 653
	if (i915->preempt_context)
		__intel_context_unpin(i915->preempt_context, engine);

654
err_unpin_kernel:
655
	__intel_context_unpin(i915->kernel_context, engine);
656
	return ret;
657
}
658 659 660 661 662 663 664 665 666 667

/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
668 669
	struct drm_i915_private *i915 = engine->i915;

670
	cleanup_status_page(engine);
671

672
	intel_engine_fini_breadcrumbs(engine);
673
	intel_engine_cleanup_cmd_parser(engine);
674
	i915_gem_batch_pool_fini(&engine->batch_pool);
675

676 677 678
	if (engine->default_state)
		i915_gem_object_put(engine->default_state);

679 680 681
	if (i915->preempt_context)
		__intel_context_unpin(i915->preempt_context, engine);
	__intel_context_unpin(i915->kernel_context, engine);
682 683

	i915_timeline_fini(&engine->timeline);
684

685
	intel_wa_list_free(&engine->ctx_wa_list);
686
	intel_wa_list_free(&engine->wa_list);
687
	intel_wa_list_free(&engine->whitelist);
688
}
689

690
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
{
	struct drm_i915_private *dev_priv = engine->i915;
	u64 acthd;

	if (INTEL_GEN(dev_priv) >= 8)
		acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
					 RING_ACTHD_UDW(engine->mmio_base));
	else if (INTEL_GEN(dev_priv) >= 4)
		acthd = I915_READ(RING_ACTHD(engine->mmio_base));
	else
		acthd = I915_READ(ACTHD);

	return acthd;
}

706
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
707 708 709 710 711 712 713 714 715 716 717 718
{
	struct drm_i915_private *dev_priv = engine->i915;
	u64 bbaddr;

	if (INTEL_GEN(dev_priv) >= 8)
		bbaddr = I915_READ64_2x32(RING_BBADDR(engine->mmio_base),
					  RING_BBADDR_UDW(engine->mmio_base));
	else
		bbaddr = I915_READ(RING_BBADDR(engine->mmio_base));

	return bbaddr;
}
719

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	const u32 base = engine->mmio_base;
	const i915_reg_t mode = RING_MI_MODE(base);
	int err;

	if (INTEL_GEN(dev_priv) < 3)
		return -ENODEV;

	GEM_TRACE("%s\n", engine->name);

	I915_WRITE_FW(mode, _MASKED_BIT_ENABLE(STOP_RING));

	err = 0;
	if (__intel_wait_for_register_fw(dev_priv,
					 mode, MODE_IDLE, MODE_IDLE,
					 1000, 0,
					 NULL)) {
		GEM_TRACE("%s: timed out on STOP_RING -> IDLE\n", engine->name);
		err = -ETIMEDOUT;
	}

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
	POSTING_READ_FW(mode);

	return err;
}

749 750 751 752 753 754 755 756 757 758
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	GEM_TRACE("%s\n", engine->name);

	I915_WRITE_FW(RING_MI_MODE(engine->mmio_base),
		      _MASKED_BIT_DISABLE(STOP_RING));
}

759 760 761 762 763 764 765 766 767 768 769
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

770 771 772 773 774 775 776
u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv)
{
	const struct sseu_dev_info *sseu = &(INTEL_INFO(dev_priv)->sseu);
	u32 mcr_s_ss_select;
	u32 slice = fls(sseu->slice_mask);
	u32 subslice = fls(sseu->subslice_mask[slice]);

777
	if (IS_GEN10(dev_priv))
778 779
		mcr_s_ss_select = GEN8_MCR_SLICE(slice) |
				  GEN8_MCR_SUBSLICE(subslice);
780 781 782
	else if (INTEL_GEN(dev_priv) >= 11)
		mcr_s_ss_select = GEN11_MCR_SLICE(slice) |
				  GEN11_MCR_SUBSLICE(subslice);
783 784 785 786 787 788
	else
		mcr_s_ss_select = 0;

	return mcr_s_ss_select;
}

789 790 791 792
static inline uint32_t
read_subslice_reg(struct drm_i915_private *dev_priv, int slice,
		  int subslice, i915_reg_t reg)
{
793 794
	uint32_t mcr_slice_subslice_mask;
	uint32_t mcr_slice_subslice_select;
795
	uint32_t default_mcr_s_ss_select;
796 797 798 799
	uint32_t mcr;
	uint32_t ret;
	enum forcewake_domains fw_domains;

800 801 802 803 804 805 806 807 808 809 810 811
	if (INTEL_GEN(dev_priv) >= 11) {
		mcr_slice_subslice_mask = GEN11_MCR_SLICE_MASK |
					  GEN11_MCR_SUBSLICE_MASK;
		mcr_slice_subslice_select = GEN11_MCR_SLICE(slice) |
					    GEN11_MCR_SUBSLICE(subslice);
	} else {
		mcr_slice_subslice_mask = GEN8_MCR_SLICE_MASK |
					  GEN8_MCR_SUBSLICE_MASK;
		mcr_slice_subslice_select = GEN8_MCR_SLICE(slice) |
					    GEN8_MCR_SUBSLICE(subslice);
	}

812 813
	default_mcr_s_ss_select = intel_calculate_mcr_s_ss_select(dev_priv);

814 815 816 817 818 819 820 821 822 823
	fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg,
						    FW_REG_READ);
	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

	spin_lock_irq(&dev_priv->uncore.lock);
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);

	mcr = I915_READ_FW(GEN8_MCR_SELECTOR);
824 825 826 827

	WARN_ON_ONCE((mcr & mcr_slice_subslice_mask) !=
		     default_mcr_s_ss_select);

828 829
	mcr &= ~mcr_slice_subslice_mask;
	mcr |= mcr_slice_subslice_select;
830 831 832 833
	I915_WRITE_FW(GEN8_MCR_SELECTOR, mcr);

	ret = I915_READ_FW(reg);

834
	mcr &= ~mcr_slice_subslice_mask;
835 836
	mcr |= default_mcr_s_ss_select;

837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
	I915_WRITE_FW(GEN8_MCR_SELECTOR, mcr);

	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
	spin_unlock_irq(&dev_priv->uncore.lock);

	return ret;
}

/* NB: please notice the memset */
void intel_engine_get_instdone(struct intel_engine_cs *engine,
			       struct intel_instdone *instdone)
{
	struct drm_i915_private *dev_priv = engine->i915;
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

	switch (INTEL_GEN(dev_priv)) {
	default:
		instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));

		if (engine->id != RCS)
			break;

		instdone->slice_common = I915_READ(GEN7_SC_INSTDONE);
		for_each_instdone_slice_subslice(dev_priv, slice, subslice) {
			instdone->sampler[slice][subslice] =
				read_subslice_reg(dev_priv, slice, subslice,
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
				read_subslice_reg(dev_priv, slice, subslice,
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
		instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));

		if (engine->id != RCS)
			break;

		instdone->slice_common = I915_READ(GEN7_SC_INSTDONE);
		instdone->sampler[0][0] = I915_READ(GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] = I915_READ(GEN7_ROW_INSTDONE);

		break;
	case 6:
	case 5:
	case 4:
		instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));

		if (engine->id == RCS)
			/* HACK: Using the wrong struct member */
			instdone->slice_common = I915_READ(GEN4_INSTDONE1);
		break;
	case 3:
	case 2:
		instdone->instdone = I915_READ(GEN2_INSTDONE);
		break;
	}
}
899

900 901 902 903 904
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	bool idle = true;

905 906 907
	/* If the whole device is asleep, the engine must be idle */
	if (!intel_runtime_pm_get_if_in_use(dev_priv))
		return true;
908

909 910 911 912 913
	/* First check that no commands are left in the ring */
	if ((I915_READ_HEAD(engine) & HEAD_ADDR) !=
	    (I915_READ_TAIL(engine) & TAIL_ADDR))
		idle = false;

914 915 916 917 918 919 920 921 922
	/* No bit for gen2, so assume the CS parser is idle */
	if (INTEL_GEN(dev_priv) > 2 && !(I915_READ_MODE(engine) & MODE_IDLE))
		idle = false;

	intel_runtime_pm_put(dev_priv);

	return idle;
}

923 924 925 926 927 928 929 930 931 932 933
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

934 935 936 937
	/* More white lies, if wedged, hw state is inconsistent */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return true;

938
	/* Any inflight/incomplete requests? */
939
	if (!intel_engine_signaled(engine, intel_engine_last_submit(engine)))
940 941
		return false;

942 943 944
	if (I915_SELFTEST_ONLY(engine->breadcrumbs.mock))
		return true;

945
	/* Waiting to drain ELSP? */
946
	if (READ_ONCE(engine->execlists.active)) {
947
		struct tasklet_struct *t = &engine->execlists.tasklet;
948

949
		local_bh_disable();
950 951 952 953 954
		if (tasklet_trylock(t)) {
			/* Must wait for any GPU reset in progress. */
			if (__tasklet_is_enabled(t))
				t->func(t->data);
			tasklet_unlock(t);
955
		}
956
		local_bh_enable();
957

958 959 960
		/* Otherwise flush the tasklet if it was on another cpu */
		tasklet_unlock_wait(t);

961
		if (READ_ONCE(engine->execlists.active))
962 963
			return false;
	}
964

965
	/* ELSP is empty, but there are ready requests? E.g. after reset */
966
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
967 968
		return false;

969
	/* Ring stopped? */
970
	if (!ring_is_idle(engine))
971 972 973 974 975
		return false;

	return true;
}

976 977 978 979 980
bool intel_engines_are_idle(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

981 982
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
983 984 985 986 987
	 * report that it is still busy, even though we have stopped using it.
	 */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return true;

988 989 990 991 992 993 994 995
	for_each_engine(engine, dev_priv, id) {
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

996 997 998 999 1000 1001 1002 1003
/**
 * intel_engine_has_kernel_context:
 * @engine: the engine
 *
 * Returns true if the last context to be executed on this engine, or has been
 * executed if the engine is already idle, is the kernel context
 * (#i915.kernel_context).
 */
1004 1005
bool intel_engine_has_kernel_context(const struct intel_engine_cs *engine)
{
1006 1007
	const struct intel_context *kernel_context =
		to_intel_context(engine->i915->kernel_context, engine);
1008
	struct i915_request *rq;
1009 1010 1011 1012 1013 1014 1015 1016

	lockdep_assert_held(&engine->i915->drm.struct_mutex);

	/*
	 * Check the last context seen by the engine. If active, it will be
	 * the last request that remains in the timeline. When idle, it is
	 * the last executed context as tracked by retirement.
	 */
1017
	rq = __i915_gem_active_peek(&engine->timeline.last_request);
1018
	if (rq)
1019
		return rq->hw_context == kernel_context;
1020 1021
	else
		return engine->last_retired_context == kernel_context;
1022 1023
}

1024 1025 1026 1027 1028 1029 1030 1031 1032
void intel_engines_reset_default_submission(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id)
		engine->set_default_submission(engine);
}

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
/**
 * intel_engines_sanitize: called after the GPU has lost power
 * @i915: the i915 device
 *
 * Anytime we reset the GPU, either with an explicit GPU reset or through a
 * PCI power cycle, the GPU loses state and we must reset our state tracking
 * to match. Note that calling intel_engines_sanitize() if the GPU has not
 * been reset results in much confusion!
 */
void intel_engines_sanitize(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	GEM_TRACE("\n");

	for_each_engine(engine, i915, id) {
		if (engine->reset.reset)
			engine->reset.reset(engine, NULL);
	}
}

1055 1056 1057 1058 1059 1060 1061 1062 1063
/**
 * intel_engines_park: called when the GT is transitioning from busy->idle
 * @i915: the i915 device
 *
 * The GT is now idle and about to go to sleep (maybe never to wake again?).
 * Time for us to tidy and put away our toys (release resources back to the
 * system).
 */
void intel_engines_park(struct drm_i915_private *i915)
1064 1065 1066 1067 1068
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id) {
1069 1070
		/* Flush the residual irq tasklets first. */
		intel_engine_disarm_breadcrumbs(engine);
1071
		tasklet_kill(&engine->execlists.tasklet);
1072

1073 1074 1075 1076 1077
		/*
		 * We are committed now to parking the engines, make sure there
		 * will be no more interrupts arriving later and the engines
		 * are truly idle.
		 */
1078
		if (wait_for(intel_engine_is_idle(engine), 10)) {
1079 1080
			struct drm_printer p = drm_debug_printer(__func__);

1081 1082 1083
			dev_err(i915->drm.dev,
				"%s is not idle before parking\n",
				engine->name);
1084
			intel_engine_dump(engine, &p, NULL);
1085 1086
		}

1087 1088 1089
		/* Must be reset upon idling, or we may miss the busy wakeup. */
		GEM_BUG_ON(engine->execlists.queue_priority != INT_MIN);

1090 1091 1092
		if (engine->park)
			engine->park(engine);

1093 1094 1095 1096 1097
		if (engine->pinned_default_state) {
			i915_gem_object_unpin_map(engine->default_state);
			engine->pinned_default_state = NULL;
		}

1098
		i915_gem_batch_pool_fini(&engine->batch_pool);
1099
		engine->execlists.no_priolist = false;
1100 1101 1102
	}
}

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
/**
 * intel_engines_unpark: called when the GT is transitioning from idle->busy
 * @i915: the i915 device
 *
 * The GT was idle and now about to fire up with some new user requests.
 */
void intel_engines_unpark(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id) {
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
		void *map;

		/* Pin the default state for fast resets from atomic context. */
		map = NULL;
		if (engine->default_state)
			map = i915_gem_object_pin_map(engine->default_state,
						      I915_MAP_WB);
		if (!IS_ERR_OR_NULL(map))
			engine->pinned_default_state = map;

1125 1126
		if (engine->unpark)
			engine->unpark(engine);
1127 1128

		intel_engine_init_hangcheck(engine);
1129 1130 1131
	}
}

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
/**
 * intel_engine_lost_context: called when the GPU is reset into unknown state
 * @engine: the engine
 *
 * We have either reset the GPU or otherwise about to lose state tracking of
 * the current GPU logical state (e.g. suspend). On next use, it is therefore
 * imperative that we make no presumptions about the current state and load
 * from scratch.
 */
void intel_engine_lost_context(struct intel_engine_cs *engine)
{
1143
	struct intel_context *ce;
1144 1145 1146

	lockdep_assert_held(&engine->i915->drm.struct_mutex);

1147 1148 1149
	ce = fetch_and_zero(&engine->last_retired_context);
	if (ce)
		intel_context_unpin(ce);
1150 1151
}

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	unsigned int which;

	which = 0;
	for_each_engine(engine, i915, id)
		if (engine->default_state)
			which |= BIT(engine->uabi_class);

	return which;
}

1181 1182 1183
static int print_sched_attr(struct drm_i915_private *i915,
			    const struct i915_sched_attr *attr,
			    char *buf, int x, int len)
1184 1185
{
	if (attr->priority == I915_PRIORITY_INVALID)
1186 1187 1188 1189
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);
1190

1191
	return x;
1192 1193
}

1194
static void print_request(struct drm_printer *m,
1195
			  struct i915_request *rq,
1196 1197
			  const char *prefix)
{
1198
	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1199
	char buf[80] = "";
1200 1201 1202
	int x = 0;

	x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1203

1204
	drm_printf(m, "%s%x%s [%llx:%x]%s @ %dms: %s\n",
1205
		   prefix,
1206
		   rq->global_seqno,
1207
		   i915_request_completed(rq) ? "!" : "",
1208 1209
		   rq->fence.context, rq->fence.seqno,
		   buf,
1210
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1211
		   name);
1212 1213
}

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1236
		drm_printf(m, "[%04zx] %s\n", pos, line);
1237 1238 1239 1240 1241 1242

		prev = buf + pos;
		skip = false;
	}
}

1243 1244
static void intel_engine_print_registers(const struct intel_engine_cs *engine,
					 struct drm_printer *m)
1245 1246
{
	struct drm_i915_private *dev_priv = engine->i915;
1247 1248
	const struct intel_engine_execlists * const execlists =
		&engine->execlists;
1249 1250
	u64 addr;

1251 1252
	if (engine->id == RCS && IS_GEN(dev_priv, 4, 7))
		drm_printf(m, "\tCCID: 0x%08x\n", I915_READ(CCID));
1253 1254 1255 1256 1257 1258
	drm_printf(m, "\tRING_START: 0x%08x\n",
		   I915_READ(RING_START(engine->mmio_base)));
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
		   I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR);
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
		   I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR);
1259
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1260
		   I915_READ(RING_CTL(engine->mmio_base)),
1261 1262 1263 1264 1265 1266
		   I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
			   I915_READ(RING_MI_MODE(engine->mmio_base)),
			   I915_READ(RING_MI_MODE(engine->mmio_base)) & (MODE_IDLE) ? " [idle]" : "");
	}
1267 1268 1269 1270 1271

	if (INTEL_GEN(dev_priv) >= 6) {
		drm_printf(m, "\tRING_IMR: %08x\n", I915_READ_IMR(engine));
	}

1272
	if (HAS_LEGACY_SEMAPHORES(dev_priv)) {
1273 1274 1275 1276 1277 1278 1279 1280
		drm_printf(m, "\tSYNC_0: 0x%08x\n",
			   I915_READ(RING_SYNC_0(engine->mmio_base)));
		drm_printf(m, "\tSYNC_1: 0x%08x\n",
			   I915_READ(RING_SYNC_1(engine->mmio_base)));
		if (HAS_VEBOX(dev_priv))
			drm_printf(m, "\tSYNC_2: 0x%08x\n",
				   I915_READ(RING_SYNC_2(engine->mmio_base)));
	}
1281 1282 1283 1284 1285 1286 1287

	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
	if (INTEL_GEN(dev_priv) >= 8)
		addr = I915_READ64_2x32(RING_DMA_FADD(engine->mmio_base),
					RING_DMA_FADD_UDW(engine->mmio_base));
	else if (INTEL_GEN(dev_priv) >= 4)
		addr = I915_READ(RING_DMA_FADD(engine->mmio_base));
	else
		addr = I915_READ(DMA_FADD_I8XX);
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
			   I915_READ(RING_IPEIR(engine->mmio_base)));
		drm_printf(m, "\tIPEHR: 0x%08x\n",
			   I915_READ(RING_IPEHR(engine->mmio_base)));
	} else {
		drm_printf(m, "\tIPEIR: 0x%08x\n", I915_READ(IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", I915_READ(IPEHR));
	}
1306

1307
	if (HAS_EXECLISTS(dev_priv)) {
1308 1309
		const u32 *hws = &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
		unsigned int idx;
1310
		u8 read, write;
1311 1312 1313 1314 1315

		drm_printf(m, "\tExeclist status: 0x%08x %08x\n",
			   I915_READ(RING_EXECLIST_STATUS_LO(engine)),
			   I915_READ(RING_EXECLIST_STATUS_HI(engine)));

1316 1317 1318 1319 1320 1321
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

		drm_printf(m, "\tExeclist CSB read %d, write %d [mmio:%d], tasklet queued? %s (%s)\n",
			   read, write,
			   GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine))),
1322 1323 1324
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)));
1325 1326 1327 1328 1329 1330 1331 1332
		if (read >= GEN8_CSB_ENTRIES)
			read = 0;
		if (write >= GEN8_CSB_ENTRIES)
			write = 0;
		if (read > write)
			write += GEN8_CSB_ENTRIES;
		while (read < write) {
			idx = ++read % GEN8_CSB_ENTRIES;
1333
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x [mmio:0x%08x], context: %d [mmio:%d]\n",
1334 1335
				   idx,
				   hws[idx * 2],
1336 1337 1338
				   I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)),
				   hws[idx * 2 + 1],
				   I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)));
1339 1340 1341 1342
		}

		rcu_read_lock();
		for (idx = 0; idx < execlists_num_ports(execlists); idx++) {
1343
			struct i915_request *rq;
1344 1345 1346 1347
			unsigned int count;

			rq = port_unpack(&execlists->port[idx], &count);
			if (rq) {
1348 1349
				char hdr[80];

1350
				snprintf(hdr, sizeof(hdr),
1351 1352 1353
					 "\t\tELSP[%d] count=%d, ring->start=%08x, rq: ",
					 idx, count,
					 i915_ggtt_offset(rq->ring->vma));
1354
				print_request(m, rq, hdr);
1355
			} else {
1356
				drm_printf(m, "\t\tELSP[%d] idle\n", idx);
1357 1358
			}
		}
1359
		drm_printf(m, "\t\tHW active? 0x%x\n", execlists->active);
1360 1361 1362 1363 1364 1365 1366 1367 1368
		rcu_read_unlock();
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
			   I915_READ(RING_PP_DIR_BASE(engine)));
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
			   I915_READ(RING_PP_DIR_BASE_READ(engine)));
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
			   I915_READ(RING_PP_DIR_DCLV(engine)));
	}
1369 1370
}

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1404 1405 1406 1407
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
1408
	const int MAX_REQUESTS_TO_SHOW = 8;
1409 1410 1411
	struct intel_breadcrumbs * const b = &engine->breadcrumbs;
	const struct intel_engine_execlists * const execlists = &engine->execlists;
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1412
	struct i915_request *rq, *last;
1413
	unsigned long flags;
1414
	struct rb_node *rb;
1415
	int count;
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

	if (i915_terminally_wedged(&engine->i915->gpu_error))
		drm_printf(m, "*** WEDGED ***\n");

1428
	drm_printf(m, "\tcurrent seqno %x, last %x, hangcheck %x [%d ms]\n",
1429 1430 1431
		   intel_engine_get_seqno(engine),
		   intel_engine_last_submit(engine),
		   engine->hangcheck.seqno,
1432
		   jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp));
1433 1434 1435 1436 1437 1438 1439 1440
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));

	rcu_read_lock();

	drm_printf(m, "\tRequests:\n");

1441
	rq = list_first_entry(&engine->timeline.requests,
1442
			      struct i915_request, link);
1443
	if (&rq->link != &engine->timeline.requests)
1444 1445
		print_request(m, rq, "\t\tfirst  ");

1446
	rq = list_last_entry(&engine->timeline.requests,
1447
			     struct i915_request, link);
1448
	if (&rq->link != &engine->timeline.requests)
1449 1450 1451 1452 1453
		print_request(m, rq, "\t\tlast   ");

	rq = i915_gem_find_active_request(engine);
	if (rq) {
		print_request(m, rq, "\t\tactive ");
1454

1455
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1456
			   i915_ggtt_offset(rq->ring->vma));
1457
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1458
			   rq->ring->head);
1459
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1460
			   rq->ring->tail);
1461 1462 1463 1464
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1465 1466

		print_request_ring(m, rq);
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
	}

	rcu_read_unlock();

	if (intel_runtime_pm_get_if_in_use(engine->i915)) {
		intel_engine_print_registers(engine, m);
		intel_runtime_pm_put(engine->i915);
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1477

1478 1479
	local_irq_save(flags);
	spin_lock(&engine->timeline.lock);
1480 1481 1482

	last = NULL;
	count = 0;
1483
	list_for_each_entry(rq, &engine->timeline.requests, link) {
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
		if (count++ < MAX_REQUESTS_TO_SHOW - 1)
			print_request(m, rq, "\t\tE ");
		else
			last = rq;
	}
	if (last) {
		if (count > MAX_REQUESTS_TO_SHOW) {
			drm_printf(m,
				   "\t\t...skipping %d executing requests...\n",
				   count - MAX_REQUESTS_TO_SHOW);
		}
		print_request(m, last, "\t\tE ");
	}

	last = NULL;
	count = 0;
1500
	drm_printf(m, "\t\tQueue priority: %d\n", execlists->queue_priority);
1501
	for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
1502 1503
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		int i;
1504

1505
		priolist_for_each_request(rq, p, i) {
1506 1507 1508 1509 1510
			if (count++ < MAX_REQUESTS_TO_SHOW - 1)
				print_request(m, rq, "\t\tQ ");
			else
				last = rq;
		}
1511
	}
1512 1513 1514 1515 1516 1517 1518 1519 1520
	if (last) {
		if (count > MAX_REQUESTS_TO_SHOW) {
			drm_printf(m,
				   "\t\t...skipping %d queued requests...\n",
				   count - MAX_REQUESTS_TO_SHOW);
		}
		print_request(m, last, "\t\tQ ");
	}

1521
	spin_unlock(&engine->timeline.lock);
1522

1523
	spin_lock(&b->rb_lock);
1524 1525 1526
	for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
		struct intel_wait *w = rb_entry(rb, typeof(*w), node);

1527 1528 1529 1530
		drm_printf(m, "\t%s [%d:%c] waiting for %x\n",
			   w->tsk->comm, w->tsk->pid,
			   task_state_to_char(w->tsk),
			   w->seqno);
1531
	}
1532 1533
	spin_unlock(&b->rb_lock);
	local_irq_restore(flags);
1534

C
Chris Wilson 已提交
1535
	drm_printf(m, "IRQ? 0x%lx (breadcrumbs? %s)\n",
1536 1537 1538
		   engine->irq_posted,
		   yesno(test_bit(ENGINE_IRQ_BREADCRUMB,
				  &engine->irq_posted)));
1539 1540 1541 1542

	drm_printf(m, "HWSP:\n");
	hexdump(m, engine->status_page.page_addr, PAGE_SIZE);

1543
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1544 1545
}

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
static u8 user_class_map[] = {
	[I915_ENGINE_CLASS_RENDER] = RENDER_CLASS,
	[I915_ENGINE_CLASS_COPY] = COPY_ENGINE_CLASS,
	[I915_ENGINE_CLASS_VIDEO] = VIDEO_DECODE_CLASS,
	[I915_ENGINE_CLASS_VIDEO_ENHANCE] = VIDEO_ENHANCEMENT_CLASS,
};

struct intel_engine_cs *
intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance)
{
	if (class >= ARRAY_SIZE(user_class_map))
		return NULL;

	class = user_class_map[class];

	GEM_BUG_ON(class > MAX_ENGINE_CLASS);

	if (instance > MAX_ENGINE_INSTANCE)
		return NULL;

	return i915->engine_class[class][instance];
}

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
/**
 * intel_enable_engine_stats() - Enable engine busy tracking on engine
 * @engine: engine to enable stats collection
 *
 * Start collecting the engine busyness data for @engine.
 *
 * Returns 0 on success or a negative error code.
 */
int intel_enable_engine_stats(struct intel_engine_cs *engine)
{
1579
	struct intel_engine_execlists *execlists = &engine->execlists;
1580
	unsigned long flags;
1581
	int err = 0;
1582

1583
	if (!intel_engine_supports_stats(engine))
1584 1585
		return -ENODEV;

1586 1587
	spin_lock_irqsave(&engine->timeline.lock, flags);
	write_seqlock(&engine->stats.lock);
1588 1589 1590 1591 1592 1593

	if (unlikely(engine->stats.enabled == ~0)) {
		err = -EBUSY;
		goto unlock;
	}

1594 1595 1596 1597
	if (engine->stats.enabled++ == 0) {
		const struct execlist_port *port = execlists->port;
		unsigned int num_ports = execlists_num_ports(execlists);

1598
		engine->stats.enabled_at = ktime_get();
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608

		/* XXX submission method oblivious? */
		while (num_ports-- && port_isset(port)) {
			engine->stats.active++;
			port++;
		}

		if (engine->stats.active)
			engine->stats.start = engine->stats.enabled_at;
	}
1609

1610
unlock:
1611 1612
	write_sequnlock(&engine->stats.lock);
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1613

1614
	return err;
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
}

static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
	if (engine->stats.active)
		total = ktime_add(total,
				  ktime_sub(ktime_get(), engine->stats.start));

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
1640
	unsigned int seq;
1641 1642
	ktime_t total;

1643 1644 1645 1646
	do {
		seq = read_seqbegin(&engine->stats.lock);
		total = __intel_engine_get_busy_time(engine);
	} while (read_seqretry(&engine->stats.lock, seq));
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660

	return total;
}

/**
 * intel_disable_engine_stats() - Disable engine busy tracking on engine
 * @engine: engine to disable stats collection
 *
 * Stops collecting the engine busyness data for @engine.
 */
void intel_disable_engine_stats(struct intel_engine_cs *engine)
{
	unsigned long flags;

1661
	if (!intel_engine_supports_stats(engine))
1662 1663
		return;

1664
	write_seqlock_irqsave(&engine->stats.lock, flags);
1665 1666 1667 1668 1669
	WARN_ON_ONCE(engine->stats.enabled == 0);
	if (--engine->stats.enabled == 0) {
		engine->stats.total = __intel_engine_get_busy_time(engine);
		engine->stats.active = 0;
	}
1670
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1671 1672
}

1673 1674
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_engine.c"
1675
#include "selftests/intel_engine_cs.c"
1676
#endif