gpmi-nand.c 61.5 KB
Newer Older
1 2 3
/*
 * Freescale GPMI NAND Flash Driver
 *
4
 * Copyright (C) 2010-2015 Freescale Semiconductor, Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */
#include <linux/clk.h>
#include <linux/slab.h>
23
#include <linux/sched/task_stack.h>
24
#include <linux/interrupt.h>
25
#include <linux/module.h>
26
#include <linux/mtd/partitions.h>
27 28
#include <linux/of.h>
#include <linux/of_device.h>
29
#include "gpmi-nand.h"
30
#include "bch-regs.h"
31

32 33 34 35 36
/* Resource names for the GPMI NAND driver. */
#define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME  "gpmi-nand"
#define GPMI_NAND_BCH_REGS_ADDR_RES_NAME   "bch"
#define GPMI_NAND_BCH_INTERRUPT_RES_NAME   "bch"

37 38 39 40 41 42 43 44 45
/* add our owner bbt descriptor */
static uint8_t scan_ff_pattern[] = { 0xff };
static struct nand_bbt_descr gpmi_bbt_descr = {
	.options	= 0,
	.offs		= 0,
	.len		= 1,
	.pattern	= scan_ff_pattern
};

46 47 48 49
/*
 * We may change the layout if we can get the ECC info from the datasheet,
 * else we will use all the (page + OOB).
 */
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section,
			      struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct gpmi_nand_data *this = nand_get_controller_data(chip);
	struct bch_geometry *geo = &this->bch_geometry;

	if (section)
		return -ERANGE;

	oobregion->offset = 0;
	oobregion->length = geo->page_size - mtd->writesize;

	return 0;
}

static int gpmi_ooblayout_free(struct mtd_info *mtd, int section,
			       struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct gpmi_nand_data *this = nand_get_controller_data(chip);
	struct bch_geometry *geo = &this->bch_geometry;

	if (section)
		return -ERANGE;

	/* The available oob size we have. */
	if (geo->page_size < mtd->writesize + mtd->oobsize) {
		oobregion->offset = geo->page_size - mtd->writesize;
		oobregion->length = mtd->oobsize - oobregion->offset;
	}

	return 0;
}

85 86 87 88
static const char * const gpmi_clks_for_mx2x[] = {
	"gpmi_io",
};

89 90 91
static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
	.ecc = gpmi_ooblayout_ecc,
	.free = gpmi_ooblayout_free,
92 93
};

94 95 96 97
static const struct gpmi_devdata gpmi_devdata_imx23 = {
	.type = IS_MX23,
	.bch_max_ecc_strength = 20,
	.max_chain_delay = 16,
98 99
	.clks = gpmi_clks_for_mx2x,
	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
100 101 102 103 104 105
};

static const struct gpmi_devdata gpmi_devdata_imx28 = {
	.type = IS_MX28,
	.bch_max_ecc_strength = 20,
	.max_chain_delay = 16,
106 107 108 109 110 111
	.clks = gpmi_clks_for_mx2x,
	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
};

static const char * const gpmi_clks_for_mx6[] = {
	"gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
112 113 114 115 116 117
};

static const struct gpmi_devdata gpmi_devdata_imx6q = {
	.type = IS_MX6Q,
	.bch_max_ecc_strength = 40,
	.max_chain_delay = 12,
118 119
	.clks = gpmi_clks_for_mx6,
	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
120 121
};

122 123 124 125
static const struct gpmi_devdata gpmi_devdata_imx6sx = {
	.type = IS_MX6SX,
	.bch_max_ecc_strength = 62,
	.max_chain_delay = 12,
126 127
	.clks = gpmi_clks_for_mx6,
	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
128 129
};

130 131 132 133 134 135 136 137 138 139 140 141
static const char * const gpmi_clks_for_mx7d[] = {
	"gpmi_io", "gpmi_bch_apb",
};

static const struct gpmi_devdata gpmi_devdata_imx7d = {
	.type = IS_MX7D,
	.bch_max_ecc_strength = 62,
	.max_chain_delay = 12,
	.clks = gpmi_clks_for_mx7d,
	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
};

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
static irqreturn_t bch_irq(int irq, void *cookie)
{
	struct gpmi_nand_data *this = cookie;

	gpmi_clear_bch(this);
	complete(&this->bch_done);
	return IRQ_HANDLED;
}

/*
 *  Calculate the ECC strength by hand:
 *	E : The ECC strength.
 *	G : the length of Galois Field.
 *	N : The chunk count of per page.
 *	O : the oobsize of the NAND chip.
 *	M : the metasize of per page.
 *
 *	The formula is :
 *		E * G * N
 *	      ------------ <= (O - M)
 *                  8
 *
 *      So, we get E by:
 *                    (O - M) * 8
 *              E <= -------------
 *                       G * N
 */
static inline int get_ecc_strength(struct gpmi_nand_data *this)
{
	struct bch_geometry *geo = &this->bch_geometry;
172
	struct mtd_info	*mtd = nand_to_mtd(&this->nand);
173 174 175 176 177 178 179 180 181
	int ecc_strength;

	ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
			/ (geo->gf_len * geo->ecc_chunk_count);

	/* We need the minor even number. */
	return round_down(ecc_strength, 2);
}

182 183 184 185 186 187 188 189 190 191
static inline bool gpmi_check_ecc(struct gpmi_nand_data *this)
{
	struct bch_geometry *geo = &this->bch_geometry;

	/* Do the sanity check. */
	if (GPMI_IS_MX23(this) || GPMI_IS_MX28(this)) {
		/* The mx23/mx28 only support the GF13. */
		if (geo->gf_len == 14)
			return false;
	}
192
	return geo->ecc_strength <= this->devdata->bch_max_ecc_strength;
193 194
}

195 196 197 198 199 200
/*
 * If we can get the ECC information from the nand chip, we do not
 * need to calculate them ourselves.
 *
 * We may have available oob space in this case.
 */
201
static int set_geometry_by_ecc_info(struct gpmi_nand_data *this)
202 203
{
	struct bch_geometry *geo = &this->bch_geometry;
204 205
	struct nand_chip *chip = &this->nand;
	struct mtd_info *mtd = nand_to_mtd(chip);
206 207 208
	unsigned int block_mark_bit_offset;

	if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0))
209
		return -EINVAL;
210 211 212 213 214 215 216 217 218 219 220 221

	switch (chip->ecc_step_ds) {
	case SZ_512:
		geo->gf_len = 13;
		break;
	case SZ_1K:
		geo->gf_len = 14;
		break;
	default:
		dev_err(this->dev,
			"unsupported nand chip. ecc bits : %d, ecc size : %d\n",
			chip->ecc_strength_ds, chip->ecc_step_ds);
222
		return -EINVAL;
223 224 225 226
	}
	geo->ecc_chunk_size = chip->ecc_step_ds;
	geo->ecc_strength = round_up(chip->ecc_strength_ds, 2);
	if (!gpmi_check_ecc(this))
227
		return -EINVAL;
228 229 230 231 232 233

	/* Keep the C >= O */
	if (geo->ecc_chunk_size < mtd->oobsize) {
		dev_err(this->dev,
			"unsupported nand chip. ecc size: %d, oob size : %d\n",
			chip->ecc_step_ds, mtd->oobsize);
234
		return -EINVAL;
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
	}

	/* The default value, see comment in the legacy_set_geometry(). */
	geo->metadata_size = 10;

	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;

	/*
	 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
	 *
	 *    |                          P                            |
	 *    |<----------------------------------------------------->|
	 *    |                                                       |
	 *    |                                        (Block Mark)   |
	 *    |                      P'                      |      | |     |
	 *    |<-------------------------------------------->|  D   | |  O' |
	 *    |                                              |<---->| |<--->|
	 *    V                                              V      V V     V
	 *    +---+----------+-+----------+-+----------+-+----------+-+-----+
	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|     |
	 *    +---+----------+-+----------+-+----------+-+----------+-+-----+
	 *                                                   ^              ^
	 *                                                   |      O       |
	 *                                                   |<------------>|
	 *                                                   |              |
	 *
	 *	P : the page size for BCH module.
	 *	E : The ECC strength.
	 *	G : the length of Galois Field.
	 *	N : The chunk count of per page.
	 *	M : the metasize of per page.
	 *	C : the ecc chunk size, aka the "data" above.
	 *	P': the nand chip's page size.
	 *	O : the nand chip's oob size.
	 *	O': the free oob.
	 *
	 *	The formula for P is :
	 *
	 *	            E * G * N
	 *	       P = ------------ + P' + M
	 *                      8
	 *
	 * The position of block mark moves forward in the ECC-based view
	 * of page, and the delta is:
	 *
	 *                   E * G * (N - 1)
	 *             D = (---------------- + M)
	 *                          8
	 *
	 * Please see the comment in legacy_set_geometry().
	 * With the condition C >= O , we still can get same result.
	 * So the bit position of the physical block mark within the ECC-based
	 * view of the page is :
	 *             (P' - D) * 8
	 */
	geo->page_size = mtd->writesize + geo->metadata_size +
		(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;

	geo->payload_size = mtd->writesize;

	geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
	geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
				+ ALIGN(geo->ecc_chunk_count, 4);

	if (!this->swap_block_mark)
300
		return 0;
301 302 303 304 305 306 307 308

	/* For bit swap. */
	block_mark_bit_offset = mtd->writesize * 8 -
		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
				+ geo->metadata_size * 8);

	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
309
	return 0;
310 311 312
}

static int legacy_set_geometry(struct gpmi_nand_data *this)
313 314
{
	struct bch_geometry *geo = &this->bch_geometry;
315
	struct mtd_info *mtd = nand_to_mtd(&this->nand);
316 317 318 319 320 321 322 323 324 325 326 327 328 329
	unsigned int metadata_size;
	unsigned int status_size;
	unsigned int block_mark_bit_offset;

	/*
	 * The size of the metadata can be changed, though we set it to 10
	 * bytes now. But it can't be too large, because we have to save
	 * enough space for BCH.
	 */
	geo->metadata_size = 10;

	/* The default for the length of Galois Field. */
	geo->gf_len = 13;

330
	/* The default for chunk size. */
331
	geo->ecc_chunk_size = 512;
332
	while (geo->ecc_chunk_size < mtd->oobsize) {
333
		geo->ecc_chunk_size *= 2; /* keep C >= O */
334 335
		geo->gf_len = 14;
	}
336 337 338 339 340

	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;

	/* We use the same ECC strength for all chunks. */
	geo->ecc_strength = get_ecc_strength(this);
341 342
	if (!gpmi_check_ecc(this)) {
		dev_err(this->dev,
343 344
			"ecc strength: %d cannot be supported by the controller (%d)\n"
			"try to use minimum ecc strength that NAND chip required\n",
345
			geo->ecc_strength,
346
			this->devdata->bch_max_ecc_strength);
347 348 349
		return -EINVAL;
	}

350 351
	geo->page_size = mtd->writesize + geo->metadata_size +
		(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
	geo->payload_size = mtd->writesize;

	/*
	 * The auxiliary buffer contains the metadata and the ECC status. The
	 * metadata is padded to the nearest 32-bit boundary. The ECC status
	 * contains one byte for every ECC chunk, and is also padded to the
	 * nearest 32-bit boundary.
	 */
	metadata_size = ALIGN(geo->metadata_size, 4);
	status_size   = ALIGN(geo->ecc_chunk_count, 4);

	geo->auxiliary_size = metadata_size + status_size;
	geo->auxiliary_status_offset = metadata_size;

	if (!this->swap_block_mark)
		return 0;

	/*
	 * We need to compute the byte and bit offsets of
	 * the physical block mark within the ECC-based view of the page.
	 *
	 * NAND chip with 2K page shows below:
	 *                                             (Block Mark)
	 *                                                   |      |
	 *                                                   |  D   |
	 *                                                   |<---->|
	 *                                                   V      V
	 *    +---+----------+-+----------+-+----------+-+----------+-+
	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|
	 *    +---+----------+-+----------+-+----------+-+----------+-+
	 *
	 * The position of block mark moves forward in the ECC-based view
	 * of page, and the delta is:
	 *
	 *                   E * G * (N - 1)
	 *             D = (---------------- + M)
	 *                          8
	 *
	 * With the formula to compute the ECC strength, and the condition
	 *       : C >= O         (C is the ecc chunk size)
	 *
	 * It's easy to deduce to the following result:
	 *
	 *         E * G       (O - M)      C - M         C - M
	 *      ----------- <= ------- <=  --------  <  ---------
	 *           8            N           N          (N - 1)
	 *
	 *  So, we get:
	 *
	 *                   E * G * (N - 1)
	 *             D = (---------------- + M) < C
	 *                          8
	 *
	 *  The above inequality means the position of block mark
	 *  within the ECC-based view of the page is still in the data chunk,
	 *  and it's NOT in the ECC bits of the chunk.
	 *
	 *  Use the following to compute the bit position of the
	 *  physical block mark within the ECC-based view of the page:
	 *          (page_size - D) * 8
	 *
	 *  --Huang Shijie
	 */
	block_mark_bit_offset = mtd->writesize * 8 -
		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
				+ geo->metadata_size * 8);

	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
	return 0;
}

424 425
int common_nfc_set_geometry(struct gpmi_nand_data *this)
{
426 427 428 429 430
	if ((of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc"))
				|| legacy_set_geometry(this))
		return set_geometry_by_ecc_info(this);

	return 0;
431 432
}

433 434
struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
{
435 436
	/* We use the DMA channel 0 to access all the nand chips. */
	return this->dma_chans[0];
437 438 439 440 441 442 443 444 445
}

/* Can we use the upper's buffer directly for DMA? */
void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr)
{
	struct scatterlist *sgl = &this->data_sgl;
	int ret;

	/* first try to map the upper buffer directly */
446 447 448
	if (virt_addr_valid(this->upper_buf) &&
		!object_is_on_stack(this->upper_buf)) {
		sg_init_one(sgl, this->upper_buf, this->upper_len);
449 450
		ret = dma_map_sg(this->dev, sgl, 1, dr);
		if (ret == 0)
451
			goto map_fail;
452

453 454
		this->direct_dma_map_ok = true;
		return;
455
	}
456 457 458 459 460 461 462 463 464 465 466

map_fail:
	/* We have to use our own DMA buffer. */
	sg_init_one(sgl, this->data_buffer_dma, this->upper_len);

	if (dr == DMA_TO_DEVICE)
		memcpy(this->data_buffer_dma, this->upper_buf, this->upper_len);

	dma_map_sg(this->dev, sgl, 1, dr);

	this->direct_dma_map_ok = false;
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
}

/* This will be called after the DMA operation is finished. */
static void dma_irq_callback(void *param)
{
	struct gpmi_nand_data *this = param;
	struct completion *dma_c = &this->dma_done;

	switch (this->dma_type) {
	case DMA_FOR_COMMAND:
		dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE);
		break;

	case DMA_FOR_READ_DATA:
		dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE);
		if (this->direct_dma_map_ok == false)
			memcpy(this->upper_buf, this->data_buffer_dma,
				this->upper_len);
		break;

	case DMA_FOR_WRITE_DATA:
		dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE);
		break;

	case DMA_FOR_READ_ECC_PAGE:
	case DMA_FOR_WRITE_ECC_PAGE:
		/* We have to wait the BCH interrupt to finish. */
		break;

	default:
497
		dev_err(this->dev, "in wrong DMA operation.\n");
498
	}
499 500

	complete(dma_c);
501 502 503 504 505 506
}

int start_dma_without_bch_irq(struct gpmi_nand_data *this,
				struct dma_async_tx_descriptor *desc)
{
	struct completion *dma_c = &this->dma_done;
507
	unsigned long timeout;
508 509 510 511 512 513

	init_completion(dma_c);

	desc->callback		= dma_irq_callback;
	desc->callback_param	= this;
	dmaengine_submit(desc);
514
	dma_async_issue_pending(get_dma_chan(this));
515 516

	/* Wait for the interrupt from the DMA block. */
517 518
	timeout = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000));
	if (!timeout) {
519 520
		dev_err(this->dev, "DMA timeout, last DMA :%d\n",
			this->last_dma_type);
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
		gpmi_dump_info(this);
		return -ETIMEDOUT;
	}
	return 0;
}

/*
 * This function is used in BCH reading or BCH writing pages.
 * It will wait for the BCH interrupt as long as ONE second.
 * Actually, we must wait for two interrupts :
 *	[1] firstly the DMA interrupt and
 *	[2] secondly the BCH interrupt.
 */
int start_dma_with_bch_irq(struct gpmi_nand_data *this,
			struct dma_async_tx_descriptor *desc)
{
	struct completion *bch_c = &this->bch_done;
538
	unsigned long timeout;
539 540 541 542 543 544 545 546

	/* Prepare to receive an interrupt from the BCH block. */
	init_completion(bch_c);

	/* start the DMA */
	start_dma_without_bch_irq(this, desc);

	/* Wait for the interrupt from the BCH block. */
547 548
	timeout = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000));
	if (!timeout) {
549 550
		dev_err(this->dev, "BCH timeout, last DMA :%d\n",
			this->last_dma_type);
551 552 553 554 555 556
		gpmi_dump_info(this);
		return -ETIMEDOUT;
	}
	return 0;
}

557 558
static int acquire_register_block(struct gpmi_nand_data *this,
				  const char *res_name)
559 560 561 562
{
	struct platform_device *pdev = this->pdev;
	struct resources *res = &this->resources;
	struct resource *r;
563
	void __iomem *p;
564 565

	r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
566 567 568
	p = devm_ioremap_resource(&pdev->dev, r);
	if (IS_ERR(p))
		return PTR_ERR(p);
569 570 571 572 573 574

	if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
		res->gpmi_regs = p;
	else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
		res->bch_regs = p;
	else
575
		dev_err(this->dev, "unknown resource name : %s\n", res_name);
576 577 578 579

	return 0;
}

580
static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
581 582 583 584 585 586 587 588
{
	struct platform_device *pdev = this->pdev;
	const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
	struct resource *r;
	int err;

	r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
	if (!r) {
589
		dev_err(this->dev, "Can't get resource for %s\n", res_name);
590
		return -ENODEV;
591 592
	}

H
Huang Shijie 已提交
593 594 595
	err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this);
	if (err)
		dev_err(this->dev, "error requesting BCH IRQ\n");
596

H
Huang Shijie 已提交
597
	return err;
598 599 600 601 602 603 604 605 606 607 608 609
}

static void release_dma_channels(struct gpmi_nand_data *this)
{
	unsigned int i;
	for (i = 0; i < DMA_CHANS; i++)
		if (this->dma_chans[i]) {
			dma_release_channel(this->dma_chans[i]);
			this->dma_chans[i] = NULL;
		}
}

B
Bill Pemberton 已提交
610
static int acquire_dma_channels(struct gpmi_nand_data *this)
611 612
{
	struct platform_device *pdev = this->pdev;
613
	struct dma_chan *dma_chan;
614

615
	/* request dma channel */
616
	dma_chan = dma_request_slave_channel(&pdev->dev, "rx-tx");
617
	if (!dma_chan) {
618
		dev_err(this->dev, "Failed to request DMA channel.\n");
619
		goto acquire_err;
620 621
	}

622
	this->dma_chans[0] = dma_chan;
623 624 625 626 627 628 629
	return 0;

acquire_err:
	release_dma_channels(this);
	return -EINVAL;
}

B
Bill Pemberton 已提交
630
static int gpmi_get_clks(struct gpmi_nand_data *this)
631 632 633
{
	struct resources *r = &this->resources;
	struct clk *clk;
634
	int err, i;
635

636 637
	for (i = 0; i < this->devdata->clks_count; i++) {
		clk = devm_clk_get(this->dev, this->devdata->clks[i]);
638 639
		if (IS_ERR(clk)) {
			err = PTR_ERR(clk);
640
			goto err_clock;
641
		}
642 643 644 645

		r->clock[i] = clk;
	}

646
	if (GPMI_IS_MX6(this))
647
		/*
648
		 * Set the default value for the gpmi clock.
649
		 *
650 651
		 * If you want to use the ONFI nand which is in the
		 * Synchronous Mode, you should change the clock as you need.
652 653
		 */
		clk_set_rate(r->clock[0], 22000000);
654

655 656 657 658
	return 0;

err_clock:
	dev_dbg(this->dev, "failed in finding the clocks.\n");
659
	return err;
660 661
}

B
Bill Pemberton 已提交
662
static int acquire_resources(struct gpmi_nand_data *this)
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
{
	int ret;

	ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
	if (ret)
		goto exit_regs;

	ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
	if (ret)
		goto exit_regs;

	ret = acquire_bch_irq(this, bch_irq);
	if (ret)
		goto exit_regs;

	ret = acquire_dma_channels(this);
	if (ret)
H
Huang Shijie 已提交
680
		goto exit_regs;
681

682 683
	ret = gpmi_get_clks(this);
	if (ret)
684 685 686 687 688 689 690 691 692 693 694 695 696 697
		goto exit_clock;
	return 0;

exit_clock:
	release_dma_channels(this);
exit_regs:
	return ret;
}

static void release_resources(struct gpmi_nand_data *this)
{
	release_dma_channels(this);
}

B
Bill Pemberton 已提交
698
static int init_hardware(struct gpmi_nand_data *this)
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
{
	int ret;

	/*
	 * This structure contains the "safe" GPMI timing that should succeed
	 * with any NAND Flash device
	 * (although, with less-than-optimal performance).
	 */
	struct nand_timing  safe_timing = {
		.data_setup_in_ns        = 80,
		.data_hold_in_ns         = 60,
		.address_setup_in_ns     = 25,
		.gpmi_sample_delay_in_ns =  6,
		.tREA_in_ns              = -1,
		.tRLOH_in_ns             = -1,
		.tRHOH_in_ns             = -1,
	};

	/* Initialize the hardwares. */
	ret = gpmi_init(this);
	if (ret)
		return ret;

	this->timing = safe_timing;
	return 0;
}

static int read_page_prepare(struct gpmi_nand_data *this,
			void *destination, unsigned length,
			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
			void **use_virt, dma_addr_t *use_phys)
{
	struct device *dev = this->dev;

	if (virt_addr_valid(destination)) {
		dma_addr_t dest_phys;

		dest_phys = dma_map_single(dev, destination,
						length, DMA_FROM_DEVICE);
		if (dma_mapping_error(dev, dest_phys)) {
			if (alt_size < length) {
740
				dev_err(dev, "Alternate buffer is too small\n");
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
				return -ENOMEM;
			}
			goto map_failed;
		}
		*use_virt = destination;
		*use_phys = dest_phys;
		this->direct_dma_map_ok = true;
		return 0;
	}

map_failed:
	*use_virt = alt_virt;
	*use_phys = alt_phys;
	this->direct_dma_map_ok = false;
	return 0;
}

static inline void read_page_end(struct gpmi_nand_data *this,
			void *destination, unsigned length,
			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
			void *used_virt, dma_addr_t used_phys)
{
	if (this->direct_dma_map_ok)
		dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE);
}

static inline void read_page_swap_end(struct gpmi_nand_data *this,
			void *destination, unsigned length,
			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
			void *used_virt, dma_addr_t used_phys)
{
	if (!this->direct_dma_map_ok)
		memcpy(destination, alt_virt, length);
}

static int send_page_prepare(struct gpmi_nand_data *this,
			const void *source, unsigned length,
			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
			const void **use_virt, dma_addr_t *use_phys)
{
	struct device *dev = this->dev;

	if (virt_addr_valid(source)) {
		dma_addr_t source_phys;

		source_phys = dma_map_single(dev, (void *)source, length,
						DMA_TO_DEVICE);
		if (dma_mapping_error(dev, source_phys)) {
			if (alt_size < length) {
790
				dev_err(dev, "Alternate buffer is too small\n");
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
				return -ENOMEM;
			}
			goto map_failed;
		}
		*use_virt = source;
		*use_phys = source_phys;
		return 0;
	}
map_failed:
	/*
	 * Copy the content of the source buffer into the alternate
	 * buffer and set up the return values accordingly.
	 */
	memcpy(alt_virt, source, length);

	*use_virt = alt_virt;
	*use_phys = alt_phys;
	return 0;
}

static void send_page_end(struct gpmi_nand_data *this,
			const void *source, unsigned length,
			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
			const void *used_virt, dma_addr_t used_phys)
{
	struct device *dev = this->dev;
	if (used_virt == source)
		dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
}

static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
{
	struct device *dev = this->dev;

	if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt))
		dma_free_coherent(dev, this->page_buffer_size,
					this->page_buffer_virt,
					this->page_buffer_phys);
	kfree(this->cmd_buffer);
	kfree(this->data_buffer_dma);
831
	kfree(this->raw_buffer);
832 833 834

	this->cmd_buffer	= NULL;
	this->data_buffer_dma	= NULL;
835
	this->raw_buffer	= NULL;
836 837 838 839 840 841 842 843 844
	this->page_buffer_virt	= NULL;
	this->page_buffer_size	=  0;
}

/* Allocate the DMA buffers */
static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
{
	struct bch_geometry *geo = &this->bch_geometry;
	struct device *dev = this->dev;
845
	struct mtd_info *mtd = nand_to_mtd(&this->nand);
846 847

	/* [1] Allocate a command buffer. PAGE_SIZE is enough. */
848
	this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
849 850 851
	if (this->cmd_buffer == NULL)
		goto error_alloc;

852 853 854 855 856 857 858 859 860 861
	/*
	 * [2] Allocate a read/write data buffer.
	 *     The gpmi_alloc_dma_buffer can be called twice.
	 *     We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer
	 *     is called before the nand_scan_ident; and we allocate a buffer
	 *     of the real NAND page size when the gpmi_alloc_dma_buffer is
	 *     called after the nand_scan_ident.
	 */
	this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE,
					GFP_DMA | GFP_KERNEL);
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
	if (this->data_buffer_dma == NULL)
		goto error_alloc;

	/*
	 * [3] Allocate the page buffer.
	 *
	 * Both the payload buffer and the auxiliary buffer must appear on
	 * 32-bit boundaries. We presume the size of the payload buffer is a
	 * power of two and is much larger than four, which guarantees the
	 * auxiliary buffer will appear on a 32-bit boundary.
	 */
	this->page_buffer_size = geo->payload_size + geo->auxiliary_size;
	this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size,
					&this->page_buffer_phys, GFP_DMA);
	if (!this->page_buffer_virt)
		goto error_alloc;

879 880 881
	this->raw_buffer = kzalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
	if (!this->raw_buffer)
		goto error_alloc;
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896

	/* Slice up the page buffer. */
	this->payload_virt = this->page_buffer_virt;
	this->payload_phys = this->page_buffer_phys;
	this->auxiliary_virt = this->payload_virt + geo->payload_size;
	this->auxiliary_phys = this->payload_phys + geo->payload_size;
	return 0;

error_alloc:
	gpmi_free_dma_buffer(this);
	return -ENOMEM;
}

static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
{
897
	struct nand_chip *chip = mtd_to_nand(mtd);
898
	struct gpmi_nand_data *this = nand_get_controller_data(chip);
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
	int ret;

	/*
	 * Every operation begins with a command byte and a series of zero or
	 * more address bytes. These are distinguished by either the Address
	 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
	 * asserted. When MTD is ready to execute the command, it will deassert
	 * both latch enables.
	 *
	 * Rather than run a separate DMA operation for every single byte, we
	 * queue them up and run a single DMA operation for the entire series
	 * of command and data bytes. NAND_CMD_NONE means the END of the queue.
	 */
	if ((ctrl & (NAND_ALE | NAND_CLE))) {
		if (data != NAND_CMD_NONE)
			this->cmd_buffer[this->command_length++] = data;
		return;
	}

	if (!this->command_length)
		return;

	ret = gpmi_send_command(this);
	if (ret)
923 924
		dev_err(this->dev, "Chip: %u, Error %d\n",
			this->current_chip, ret);
925 926 927 928 929 930

	this->command_length = 0;
}

static int gpmi_dev_ready(struct mtd_info *mtd)
{
931
	struct nand_chip *chip = mtd_to_nand(mtd);
932
	struct gpmi_nand_data *this = nand_get_controller_data(chip);
933 934 935 936 937 938

	return gpmi_is_ready(this, this->current_chip);
}

static void gpmi_select_chip(struct mtd_info *mtd, int chipnr)
{
939
	struct nand_chip *chip = mtd_to_nand(mtd);
940
	struct gpmi_nand_data *this = nand_get_controller_data(chip);
941 942 943 944 945 946 947 948 949 950 951

	if ((this->current_chip < 0) && (chipnr >= 0))
		gpmi_begin(this);
	else if ((this->current_chip >= 0) && (chipnr < 0))
		gpmi_end(this);

	this->current_chip = chipnr;
}

static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
952
	struct nand_chip *chip = mtd_to_nand(mtd);
953
	struct gpmi_nand_data *this = nand_get_controller_data(chip);
954

955
	dev_dbg(this->dev, "len is %d\n", len);
956 957 958 959 960 961 962 963
	this->upper_buf	= buf;
	this->upper_len	= len;

	gpmi_read_data(this);
}

static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
964
	struct nand_chip *chip = mtd_to_nand(mtd);
965
	struct gpmi_nand_data *this = nand_get_controller_data(chip);
966

967
	dev_dbg(this->dev, "len is %d\n", len);
968 969 970 971 972 973 974 975
	this->upper_buf	= (uint8_t *)buf;
	this->upper_len	= len;

	gpmi_send_data(this);
}

static uint8_t gpmi_read_byte(struct mtd_info *mtd)
{
976
	struct nand_chip *chip = mtd_to_nand(mtd);
977
	struct gpmi_nand_data *this = nand_get_controller_data(chip);
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	uint8_t *buf = this->data_buffer_dma;

	gpmi_read_buf(mtd, buf, 1);
	return buf[0];
}

/*
 * Handles block mark swapping.
 * It can be called in swapping the block mark, or swapping it back,
 * because the the operations are the same.
 */
static void block_mark_swapping(struct gpmi_nand_data *this,
				void *payload, void *auxiliary)
{
	struct bch_geometry *nfc_geo = &this->bch_geometry;
	unsigned char *p;
	unsigned char *a;
	unsigned int  bit;
	unsigned char mask;
	unsigned char from_data;
	unsigned char from_oob;

	if (!this->swap_block_mark)
		return;

	/*
	 * If control arrives here, we're swapping. Make some convenience
	 * variables.
	 */
	bit = nfc_geo->block_mark_bit_offset;
	p   = payload + nfc_geo->block_mark_byte_offset;
	a   = auxiliary;

	/*
	 * Get the byte from the data area that overlays the block mark. Since
	 * the ECC engine applies its own view to the bits in the page, the
	 * physical block mark won't (in general) appear on a byte boundary in
	 * the data.
	 */
	from_data = (p[0] >> bit) | (p[1] << (8 - bit));

	/* Get the byte from the OOB. */
	from_oob = a[0];

	/* Swap them. */
	a[0] = from_data;

	mask = (0x1 << bit) - 1;
	p[0] = (p[0] & mask) | (from_oob << bit);

	mask = ~0 << bit;
	p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
}

static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1033
				uint8_t *buf, int oob_required, int page)
1034
{
1035
	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1036 1037 1038 1039 1040 1041 1042
	struct bch_geometry *nfc_geo = &this->bch_geometry;
	void          *payload_virt;
	dma_addr_t    payload_phys;
	void          *auxiliary_virt;
	dma_addr_t    auxiliary_phys;
	unsigned int  i;
	unsigned char *status;
1043
	unsigned int  max_bitflips = 0;
1044 1045
	int           ret;

1046 1047
	nand_read_page_op(chip, page, 0, NULL, 0);

1048
	dev_dbg(this->dev, "page number is : %d\n", page);
1049
	ret = read_page_prepare(this, buf, nfc_geo->payload_size,
1050 1051 1052 1053
					this->payload_virt, this->payload_phys,
					nfc_geo->payload_size,
					&payload_virt, &payload_phys);
	if (ret) {
1054
		dev_err(this->dev, "Inadequate DMA buffer\n");
1055 1056 1057 1058 1059 1060 1061 1062
		ret = -ENOMEM;
		return ret;
	}
	auxiliary_virt = this->auxiliary_virt;
	auxiliary_phys = this->auxiliary_phys;

	/* go! */
	ret = gpmi_read_page(this, payload_phys, auxiliary_phys);
1063
	read_page_end(this, buf, nfc_geo->payload_size,
1064 1065 1066 1067
			this->payload_virt, this->payload_phys,
			nfc_geo->payload_size,
			payload_virt, payload_phys);
	if (ret) {
1068
		dev_err(this->dev, "Error in ECC-based read: %d\n", ret);
1069
		return ret;
1070 1071 1072 1073 1074 1075
	}

	/* handle the block mark swapping */
	block_mark_swapping(this, payload_virt, auxiliary_virt);

	/* Loop over status bytes, accumulating ECC status. */
1076
	status = auxiliary_virt + nfc_geo->auxiliary_status_offset;
1077

1078 1079 1080 1081 1082
	read_page_swap_end(this, buf, nfc_geo->payload_size,
			   this->payload_virt, this->payload_phys,
			   nfc_geo->payload_size,
			   payload_virt, payload_phys);

1083 1084 1085 1086 1087
	for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
		if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
			continue;

		if (*status == STATUS_UNCORRECTABLE) {
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
			int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
			u8 *eccbuf = this->raw_buffer;
			int offset, bitoffset;
			int eccbytes;
			int flips;

			/* Read ECC bytes into our internal raw_buffer */
			offset = nfc_geo->metadata_size * 8;
			offset += ((8 * nfc_geo->ecc_chunk_size) + eccbits) * (i + 1);
			offset -= eccbits;
			bitoffset = offset % 8;
			eccbytes = DIV_ROUND_UP(offset + eccbits, 8);
			offset /= 8;
			eccbytes -= offset;
1102 1103
			nand_change_read_column_op(chip, offset, eccbuf,
						   eccbytes, false);
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154

			/*
			 * ECC data are not byte aligned and we may have
			 * in-band data in the first and last byte of
			 * eccbuf. Set non-eccbits to one so that
			 * nand_check_erased_ecc_chunk() does not count them
			 * as bitflips.
			 */
			if (bitoffset)
				eccbuf[0] |= GENMASK(bitoffset - 1, 0);

			bitoffset = (bitoffset + eccbits) % 8;
			if (bitoffset)
				eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset);

			/*
			 * The ECC hardware has an uncorrectable ECC status
			 * code in case we have bitflips in an erased page. As
			 * nothing was written into this subpage the ECC is
			 * obviously wrong and we can not trust it. We assume
			 * at this point that we are reading an erased page and
			 * try to correct the bitflips in buffer up to
			 * ecc_strength bitflips. If this is a page with random
			 * data, we exceed this number of bitflips and have a
			 * ECC failure. Otherwise we use the corrected buffer.
			 */
			if (i == 0) {
				/* The first block includes metadata */
				flips = nand_check_erased_ecc_chunk(
						buf + i * nfc_geo->ecc_chunk_size,
						nfc_geo->ecc_chunk_size,
						eccbuf, eccbytes,
						auxiliary_virt,
						nfc_geo->metadata_size,
						nfc_geo->ecc_strength);
			} else {
				flips = nand_check_erased_ecc_chunk(
						buf + i * nfc_geo->ecc_chunk_size,
						nfc_geo->ecc_chunk_size,
						eccbuf, eccbytes,
						NULL, 0,
						nfc_geo->ecc_strength);
			}

			if (flips > 0) {
				max_bitflips = max_t(unsigned int, max_bitflips,
						     flips);
				mtd->ecc_stats.corrected += flips;
				continue;
			}

1155
			mtd->ecc_stats.failed++;
1156 1157
			continue;
		}
1158

1159 1160
		mtd->ecc_stats.corrected += *status;
		max_bitflips = max_t(unsigned int, max_bitflips, *status);
1161 1162
	}

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
	if (oob_required) {
		/*
		 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
		 * for details about our policy for delivering the OOB.
		 *
		 * We fill the caller's buffer with set bits, and then copy the
		 * block mark to th caller's buffer. Note that, if block mark
		 * swapping was necessary, it has already been done, so we can
		 * rely on the first byte of the auxiliary buffer to contain
		 * the block mark.
		 */
		memset(chip->oob_poi, ~0, mtd->oobsize);
		chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0];
	}
1177

1178
	return max_bitflips;
1179 1180
}

1181 1182 1183 1184
/* Fake a virtual small page for the subpage read */
static int gpmi_ecc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
			uint32_t offs, uint32_t len, uint8_t *buf, int page)
{
1185
	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	void __iomem *bch_regs = this->resources.bch_regs;
	struct bch_geometry old_geo = this->bch_geometry;
	struct bch_geometry *geo = &this->bch_geometry;
	int size = chip->ecc.size; /* ECC chunk size */
	int meta, n, page_size;
	u32 r1_old, r2_old, r1_new, r2_new;
	unsigned int max_bitflips;
	int first, last, marker_pos;
	int ecc_parity_size;
	int col = 0;
1196
	int old_swap_block_mark = this->swap_block_mark;
1197 1198 1199 1200 1201 1202 1203 1204

	/* The size of ECC parity */
	ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;

	/* Align it with the chunk size */
	first = offs / size;
	last = (offs + len - 1) / size;

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	if (this->swap_block_mark) {
		/*
		 * Find the chunk which contains the Block Marker.
		 * If this chunk is in the range of [first, last],
		 * we have to read out the whole page.
		 * Why? since we had swapped the data at the position of Block
		 * Marker to the metadata which is bound with the chunk 0.
		 */
		marker_pos = geo->block_mark_byte_offset / size;
		if (last >= marker_pos && first <= marker_pos) {
			dev_dbg(this->dev,
				"page:%d, first:%d, last:%d, marker at:%d\n",
1217
				page, first, last, marker_pos);
1218 1219
			return gpmi_ecc_read_page(mtd, chip, buf, 0, page);
		}
1220 1221 1222 1223 1224 1225 1226 1227 1228
	}

	meta = geo->metadata_size;
	if (first) {
		col = meta + (size + ecc_parity_size) * first;
		meta = 0;
		buf = buf + first * size;
	}

1229 1230
	nand_read_page_op(chip, page, col, NULL, 0);

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
	/* Save the old environment */
	r1_old = r1_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT0);
	r2_old = r2_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT1);

	/* change the BCH registers and bch_geometry{} */
	n = last - first + 1;
	page_size = meta + (size + ecc_parity_size) * n;

	r1_new &= ~(BM_BCH_FLASH0LAYOUT0_NBLOCKS |
			BM_BCH_FLASH0LAYOUT0_META_SIZE);
	r1_new |= BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1)
			| BF_BCH_FLASH0LAYOUT0_META_SIZE(meta);
	writel(r1_new, bch_regs + HW_BCH_FLASH0LAYOUT0);

	r2_new &= ~BM_BCH_FLASH0LAYOUT1_PAGE_SIZE;
	r2_new |= BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size);
	writel(r2_new, bch_regs + HW_BCH_FLASH0LAYOUT1);

	geo->ecc_chunk_count = n;
	geo->payload_size = n * size;
	geo->page_size = page_size;
	geo->auxiliary_status_offset = ALIGN(meta, 4);

	dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
		page, offs, len, col, first, n, page_size);

	/* Read the subpage now */
	this->swap_block_mark = false;
	max_bitflips = gpmi_ecc_read_page(mtd, chip, buf, 0, page);

	/* Restore */
	writel(r1_old, bch_regs + HW_BCH_FLASH0LAYOUT0);
	writel(r2_old, bch_regs + HW_BCH_FLASH0LAYOUT1);
	this->bch_geometry = old_geo;
1265
	this->swap_block_mark = old_swap_block_mark;
1266 1267 1268 1269

	return max_bitflips;
}

1270
static int gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1271
				const uint8_t *buf, int oob_required, int page)
1272
{
1273
	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1274 1275 1276 1277 1278 1279 1280
	struct bch_geometry *nfc_geo = &this->bch_geometry;
	const void *payload_virt;
	dma_addr_t payload_phys;
	const void *auxiliary_virt;
	dma_addr_t auxiliary_phys;
	int        ret;

1281
	dev_dbg(this->dev, "ecc write page.\n");
1282 1283 1284

	nand_prog_page_begin_op(chip, page, 0, NULL, 0);

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
	if (this->swap_block_mark) {
		/*
		 * If control arrives here, we're doing block mark swapping.
		 * Since we can't modify the caller's buffers, we must copy them
		 * into our own.
		 */
		memcpy(this->payload_virt, buf, mtd->writesize);
		payload_virt = this->payload_virt;
		payload_phys = this->payload_phys;

		memcpy(this->auxiliary_virt, chip->oob_poi,
				nfc_geo->auxiliary_size);
		auxiliary_virt = this->auxiliary_virt;
		auxiliary_phys = this->auxiliary_phys;

		/* Handle block mark swapping. */
		block_mark_swapping(this,
1302
				(void *)payload_virt, (void *)auxiliary_virt);
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
	} else {
		/*
		 * If control arrives here, we're not doing block mark swapping,
		 * so we can to try and use the caller's buffers.
		 */
		ret = send_page_prepare(this,
				buf, mtd->writesize,
				this->payload_virt, this->payload_phys,
				nfc_geo->payload_size,
				&payload_virt, &payload_phys);
		if (ret) {
1314
			dev_err(this->dev, "Inadequate payload DMA buffer\n");
1315
			return 0;
1316 1317 1318 1319 1320 1321 1322 1323
		}

		ret = send_page_prepare(this,
				chip->oob_poi, mtd->oobsize,
				this->auxiliary_virt, this->auxiliary_phys,
				nfc_geo->auxiliary_size,
				&auxiliary_virt, &auxiliary_phys);
		if (ret) {
1324
			dev_err(this->dev, "Inadequate auxiliary DMA buffer\n");
1325 1326 1327 1328 1329 1330 1331
			goto exit_auxiliary;
		}
	}

	/* Ask the NFC. */
	ret = gpmi_send_page(this, payload_phys, auxiliary_phys);
	if (ret)
1332
		dev_err(this->dev, "Error in ECC-based write: %d\n", ret);
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344

	if (!this->swap_block_mark) {
		send_page_end(this, chip->oob_poi, mtd->oobsize,
				this->auxiliary_virt, this->auxiliary_phys,
				nfc_geo->auxiliary_size,
				auxiliary_virt, auxiliary_phys);
exit_auxiliary:
		send_page_end(this, buf, mtd->writesize,
				this->payload_virt, this->payload_phys,
				nfc_geo->payload_size,
				payload_virt, payload_phys);
	}
1345

1346 1347 1348 1349
	if (ret)
		return ret;

	return nand_prog_page_end_op(chip);
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
}

/*
 * There are several places in this driver where we have to handle the OOB and
 * block marks. This is the function where things are the most complicated, so
 * this is where we try to explain it all. All the other places refer back to
 * here.
 *
 * These are the rules, in order of decreasing importance:
 *
 * 1) Nothing the caller does can be allowed to imperil the block mark.
 *
 * 2) In read operations, the first byte of the OOB we return must reflect the
 *    true state of the block mark, no matter where that block mark appears in
 *    the physical page.
 *
 * 3) ECC-based read operations return an OOB full of set bits (since we never
 *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
 *    return).
 *
 * 4) "Raw" read operations return a direct view of the physical bytes in the
 *    page, using the conventional definition of which bytes are data and which
 *    are OOB. This gives the caller a way to see the actual, physical bytes
 *    in the page, without the distortions applied by our ECC engine.
 *
 *
 * What we do for this specific read operation depends on two questions:
 *
 * 1) Are we doing a "raw" read, or an ECC-based read?
 *
 * 2) Are we using block mark swapping or transcription?
 *
 * There are four cases, illustrated by the following Karnaugh map:
 *
 *                    |           Raw           |         ECC-based       |
 *       -------------+-------------------------+-------------------------+
 *                    | Read the conventional   |                         |
 *                    | OOB at the end of the   |                         |
 *       Swapping     | page and return it. It  |                         |
 *                    | contains exactly what   |                         |
 *                    | we want.                | Read the block mark and |
 *       -------------+-------------------------+ return it in a buffer   |
 *                    | Read the conventional   | full of set bits.       |
 *                    | OOB at the end of the   |                         |
 *                    | page and also the block |                         |
 *       Transcribing | mark in the metadata.   |                         |
 *                    | Copy the block mark     |                         |
 *                    | into the first byte of  |                         |
 *                    | the OOB.                |                         |
 *       -------------+-------------------------+-------------------------+
 *
 * Note that we break rule #4 in the Transcribing/Raw case because we're not
 * giving an accurate view of the actual, physical bytes in the page (we're
 * overwriting the block mark). That's OK because it's more important to follow
 * rule #2.
 *
 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
 * easy. When reading a page, for example, the NAND Flash MTD code calls our
 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
 * ECC-based or raw view of the page is implicit in which function it calls
 * (there is a similar pair of ECC-based/raw functions for writing).
 */
static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1413
				int page)
1414
{
1415
	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1416

1417
	dev_dbg(this->dev, "page number is %d\n", page);
1418 1419 1420 1421
	/* clear the OOB buffer */
	memset(chip->oob_poi, ~0, mtd->oobsize);

	/* Read out the conventional OOB. */
1422
	nand_read_page_op(chip, page, mtd->writesize, NULL, 0);
1423 1424 1425 1426
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);

	/*
	 * Now, we want to make sure the block mark is correct. In the
1427 1428
	 * non-transcribing case (!GPMI_IS_MX23()), we already have it.
	 * Otherwise, we need to explicitly read it.
1429
	 */
1430
	if (GPMI_IS_MX23(this)) {
1431
		/* Read the block mark into the first byte of the OOB buffer. */
1432
		nand_read_page_op(chip, page, 0, NULL, 0);
1433 1434 1435
		chip->oob_poi[0] = chip->read_byte(mtd);
	}

1436
	return 0;
1437 1438 1439 1440 1441
}

static int
gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page)
{
1442
	struct mtd_oob_region of = { };
1443 1444

	/* Do we have available oob area? */
1445 1446
	mtd_ooblayout_free(mtd, 0, &of);
	if (!of.length)
1447 1448 1449 1450 1451
		return -EPERM;

	if (!nand_is_slc(chip))
		return -EPERM;

1452 1453
	return nand_prog_page_op(chip, page, mtd->writesize + of.offset,
				 chip->oob_poi + of.offset, of.length);
1454 1455
}

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
/*
 * This function reads a NAND page without involving the ECC engine (no HW
 * ECC correction).
 * The tricky part in the GPMI/BCH controller is that it stores ECC bits
 * inline (interleaved with payload DATA), and do not align data chunk on
 * byte boundaries.
 * We thus need to take care moving the payload data and ECC bits stored in the
 * page into the provided buffers, which is why we're using gpmi_copy_bits.
 *
 * See set_geometry_by_ecc_info inline comments to have a full description
 * of the layout used by the GPMI controller.
 */
static int gpmi_ecc_read_page_raw(struct mtd_info *mtd,
				  struct nand_chip *chip, uint8_t *buf,
				  int oob_required, int page)
{
1472
	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
	struct bch_geometry *nfc_geo = &this->bch_geometry;
	int eccsize = nfc_geo->ecc_chunk_size;
	int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
	u8 *tmp_buf = this->raw_buffer;
	size_t src_bit_off;
	size_t oob_bit_off;
	size_t oob_byte_off;
	uint8_t *oob = chip->oob_poi;
	int step;

1483 1484
	nand_read_page_op(chip, page, 0, tmp_buf,
			  mtd->writesize + mtd->oobsize);
1485 1486 1487 1488 1489 1490 1491 1492

	/*
	 * If required, swap the bad block marker and the data stored in the
	 * metadata section, so that we don't wrongly consider a block as bad.
	 *
	 * See the layout description for a detailed explanation on why this
	 * is needed.
	 */
1493 1494
	if (this->swap_block_mark)
		swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554

	/*
	 * Copy the metadata section into the oob buffer (this section is
	 * guaranteed to be aligned on a byte boundary).
	 */
	if (oob_required)
		memcpy(oob, tmp_buf, nfc_geo->metadata_size);

	oob_bit_off = nfc_geo->metadata_size * 8;
	src_bit_off = oob_bit_off;

	/* Extract interleaved payload data and ECC bits */
	for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
		if (buf)
			gpmi_copy_bits(buf, step * eccsize * 8,
				       tmp_buf, src_bit_off,
				       eccsize * 8);
		src_bit_off += eccsize * 8;

		/* Align last ECC block to align a byte boundary */
		if (step == nfc_geo->ecc_chunk_count - 1 &&
		    (oob_bit_off + eccbits) % 8)
			eccbits += 8 - ((oob_bit_off + eccbits) % 8);

		if (oob_required)
			gpmi_copy_bits(oob, oob_bit_off,
				       tmp_buf, src_bit_off,
				       eccbits);

		src_bit_off += eccbits;
		oob_bit_off += eccbits;
	}

	if (oob_required) {
		oob_byte_off = oob_bit_off / 8;

		if (oob_byte_off < mtd->oobsize)
			memcpy(oob + oob_byte_off,
			       tmp_buf + mtd->writesize + oob_byte_off,
			       mtd->oobsize - oob_byte_off);
	}

	return 0;
}

/*
 * This function writes a NAND page without involving the ECC engine (no HW
 * ECC generation).
 * The tricky part in the GPMI/BCH controller is that it stores ECC bits
 * inline (interleaved with payload DATA), and do not align data chunk on
 * byte boundaries.
 * We thus need to take care moving the OOB area at the right place in the
 * final page, which is why we're using gpmi_copy_bits.
 *
 * See set_geometry_by_ecc_info inline comments to have a full description
 * of the layout used by the GPMI controller.
 */
static int gpmi_ecc_write_page_raw(struct mtd_info *mtd,
				   struct nand_chip *chip,
				   const uint8_t *buf,
1555
				   int oob_required, int page)
1556
{
1557
	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
	struct bch_geometry *nfc_geo = &this->bch_geometry;
	int eccsize = nfc_geo->ecc_chunk_size;
	int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
	u8 *tmp_buf = this->raw_buffer;
	uint8_t *oob = chip->oob_poi;
	size_t dst_bit_off;
	size_t oob_bit_off;
	size_t oob_byte_off;
	int step;

	/*
	 * Initialize all bits to 1 in case we don't have a buffer for the
	 * payload or oob data in order to leave unspecified bits of data
	 * to their initial state.
	 */
	if (!buf || !oob_required)
		memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize);

	/*
	 * First copy the metadata section (stored in oob buffer) at the
	 * beginning of the page, as imposed by the GPMI layout.
	 */
	memcpy(tmp_buf, oob, nfc_geo->metadata_size);
	oob_bit_off = nfc_geo->metadata_size * 8;
	dst_bit_off = oob_bit_off;

	/* Interleave payload data and ECC bits */
	for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
		if (buf)
			gpmi_copy_bits(tmp_buf, dst_bit_off,
				       buf, step * eccsize * 8, eccsize * 8);
		dst_bit_off += eccsize * 8;

		/* Align last ECC block to align a byte boundary */
		if (step == nfc_geo->ecc_chunk_count - 1 &&
		    (oob_bit_off + eccbits) % 8)
			eccbits += 8 - ((oob_bit_off + eccbits) % 8);

		if (oob_required)
			gpmi_copy_bits(tmp_buf, dst_bit_off,
				       oob, oob_bit_off, eccbits);

		dst_bit_off += eccbits;
		oob_bit_off += eccbits;
	}

	oob_byte_off = oob_bit_off / 8;

	if (oob_required && oob_byte_off < mtd->oobsize)
		memcpy(tmp_buf + mtd->writesize + oob_byte_off,
		       oob + oob_byte_off, mtd->oobsize - oob_byte_off);

	/*
	 * If required, swap the bad block marker and the first byte of the
	 * metadata section, so that we don't modify the bad block marker.
	 *
	 * See the layout description for a detailed explanation on why this
	 * is needed.
	 */
1617 1618
	if (this->swap_block_mark)
		swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1619

1620 1621
	return nand_prog_page_op(chip, page, 0, tmp_buf,
				 mtd->writesize + mtd->oobsize);
1622 1623
}

1624 1625 1626 1627 1628 1629 1630 1631 1632
static int gpmi_ecc_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
				 int page)
{
	return gpmi_ecc_read_page_raw(mtd, chip, NULL, 1, page);
}

static int gpmi_ecc_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
				 int page)
{
1633
	return gpmi_ecc_write_page_raw(mtd, chip, NULL, 1, page);
1634 1635
}

1636 1637
static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
1638
	struct nand_chip *chip = mtd_to_nand(mtd);
1639
	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1640
	int ret = 0;
1641
	uint8_t *block_mark;
1642
	int column, page, chipnr;
1643

1644 1645
	chipnr = (int)(ofs >> chip->chip_shift);
	chip->select_chip(mtd, chipnr);
1646

1647
	column = !GPMI_IS_MX23(this) ? mtd->writesize : 0;
1648

1649 1650 1651
	/* Write the block mark. */
	block_mark = this->data_buffer_dma;
	block_mark[0] = 0; /* bad block marker */
1652

1653 1654
	/* Shift to get page */
	page = (int)(ofs >> chip->page_shift);
1655

1656
	ret = nand_prog_page_op(chip, page, column, block_mark, 1);
1657

1658
	chip->select_chip(mtd, -1);
1659 1660 1661 1662

	return ret;
}

1663
static int nand_boot_set_geometry(struct gpmi_nand_data *this)
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
{
	struct boot_rom_geometry *geometry = &this->rom_geometry;

	/*
	 * Set the boot block stride size.
	 *
	 * In principle, we should be reading this from the OTP bits, since
	 * that's where the ROM is going to get it. In fact, we don't have any
	 * way to read the OTP bits, so we go with the default and hope for the
	 * best.
	 */
	geometry->stride_size_in_pages = 64;

	/*
	 * Set the search area stride exponent.
	 *
	 * In principle, we should be reading this from the OTP bits, since
	 * that's where the ROM is going to get it. In fact, we don't have any
	 * way to read the OTP bits, so we go with the default and hope for the
	 * best.
	 */
	geometry->search_area_stride_exponent = 2;
	return 0;
}

static const char  *fingerprint = "STMP";
1690
static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
1691 1692 1693 1694
{
	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
	struct device *dev = this->dev;
	struct nand_chip *chip = &this->nand;
1695
	struct mtd_info *mtd = nand_to_mtd(chip);
1696 1697 1698
	unsigned int search_area_size_in_strides;
	unsigned int stride;
	unsigned int page;
1699
	uint8_t *buffer = chip->data_buf;
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
	int saved_chip_number;
	int found_an_ncb_fingerprint = false;

	/* Compute the number of strides in a search area. */
	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;

	saved_chip_number = this->current_chip;
	chip->select_chip(mtd, 0);

	/*
	 * Loop through the first search area, looking for the NCB fingerprint.
	 */
	dev_dbg(dev, "Scanning for an NCB fingerprint...\n");

	for (stride = 0; stride < search_area_size_in_strides; stride++) {
1715
		/* Compute the page addresses. */
1716 1717 1718 1719 1720 1721 1722 1723
		page = stride * rom_geo->stride_size_in_pages;

		dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);

		/*
		 * Read the NCB fingerprint. The fingerprint is four bytes long
		 * and starts in the 12th byte of the page.
		 */
1724
		nand_read_page_op(chip, page, 12, NULL, 0);
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
		chip->read_buf(mtd, buffer, strlen(fingerprint));

		/* Look for the fingerprint. */
		if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
			found_an_ncb_fingerprint = true;
			break;
		}

	}

	chip->select_chip(mtd, saved_chip_number);

	if (found_an_ncb_fingerprint)
		dev_dbg(dev, "\tFound a fingerprint\n");
	else
		dev_dbg(dev, "\tNo fingerprint found\n");
	return found_an_ncb_fingerprint;
}

/* Writes a transcription stamp. */
1745
static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
1746 1747 1748 1749
{
	struct device *dev = this->dev;
	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
	struct nand_chip *chip = &this->nand;
1750
	struct mtd_info *mtd = nand_to_mtd(chip);
1751 1752 1753 1754 1755 1756 1757
	unsigned int block_size_in_pages;
	unsigned int search_area_size_in_strides;
	unsigned int search_area_size_in_pages;
	unsigned int search_area_size_in_blocks;
	unsigned int block;
	unsigned int stride;
	unsigned int page;
1758
	uint8_t      *buffer = chip->data_buf;
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
	int saved_chip_number;
	int status;

	/* Compute the search area geometry. */
	block_size_in_pages = mtd->erasesize / mtd->writesize;
	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
	search_area_size_in_pages = search_area_size_in_strides *
					rom_geo->stride_size_in_pages;
	search_area_size_in_blocks =
		  (search_area_size_in_pages + (block_size_in_pages - 1)) /
				    block_size_in_pages;

	dev_dbg(dev, "Search Area Geometry :\n");
	dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
	dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
	dev_dbg(dev, "\tin Pages  : %u\n", search_area_size_in_pages);

	/* Select chip 0. */
	saved_chip_number = this->current_chip;
	chip->select_chip(mtd, 0);

	/* Loop over blocks in the first search area, erasing them. */
	dev_dbg(dev, "Erasing the search area...\n");

	for (block = 0; block < search_area_size_in_blocks; block++) {
		/* Erase this block. */
		dev_dbg(dev, "\tErasing block 0x%x\n", block);
1786 1787
		status = nand_erase_op(chip, block);
		if (status)
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
			dev_err(dev, "[%s] Erase failed.\n", __func__);
	}

	/* Write the NCB fingerprint into the page buffer. */
	memset(buffer, ~0, mtd->writesize);
	memcpy(buffer + 12, fingerprint, strlen(fingerprint));

	/* Loop through the first search area, writing NCB fingerprints. */
	dev_dbg(dev, "Writing NCB fingerprints...\n");
	for (stride = 0; stride < search_area_size_in_strides; stride++) {
1798
		/* Compute the page addresses. */
1799 1800 1801 1802 1803
		page = stride * rom_geo->stride_size_in_pages;

		/* Write the first page of the current stride. */
		dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);

1804
		status = chip->ecc.write_page_raw(mtd, chip, buffer, 0, page);
1805
		if (status)
1806 1807 1808 1809 1810 1811 1812 1813
			dev_err(dev, "[%s] Write failed.\n", __func__);
	}

	/* Deselect chip 0. */
	chip->select_chip(mtd, saved_chip_number);
	return 0;
}

1814
static int mx23_boot_init(struct gpmi_nand_data  *this)
1815 1816 1817
{
	struct device *dev = this->dev;
	struct nand_chip *chip = &this->nand;
1818
	struct mtd_info *mtd = nand_to_mtd(chip);
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
	unsigned int block_count;
	unsigned int block;
	int     chipnr;
	int     page;
	loff_t  byte;
	uint8_t block_mark;
	int     ret = 0;

	/*
	 * If control arrives here, we can't use block mark swapping, which
	 * means we're forced to use transcription. First, scan for the
	 * transcription stamp. If we find it, then we don't have to do
	 * anything -- the block marks are already transcribed.
	 */
	if (mx23_check_transcription_stamp(this))
		return 0;

	/*
	 * If control arrives here, we couldn't find a transcription stamp, so
	 * so we presume the block marks are in the conventional location.
	 */
	dev_dbg(dev, "Transcribing bad block marks...\n");

	/* Compute the number of blocks in the entire medium. */
	block_count = chip->chipsize >> chip->phys_erase_shift;

	/*
	 * Loop over all the blocks in the medium, transcribing block marks as
	 * we go.
	 */
	for (block = 0; block < block_count; block++) {
		/*
		 * Compute the chip, page and byte addresses for this block's
		 * conventional mark.
		 */
		chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
		page = block << (chip->phys_erase_shift - chip->page_shift);
		byte = block <<  chip->phys_erase_shift;

		/* Send the command to read the conventional block mark. */
		chip->select_chip(mtd, chipnr);
1860
		nand_read_page_op(chip, page, mtd->writesize, NULL, 0);
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
		block_mark = chip->read_byte(mtd);
		chip->select_chip(mtd, -1);

		/*
		 * Check if the block is marked bad. If so, we need to mark it
		 * again, but this time the result will be a mark in the
		 * location where we transcribe block marks.
		 */
		if (block_mark != 0xff) {
			dev_dbg(dev, "Transcribing mark in block %u\n", block);
			ret = chip->block_markbad(mtd, byte);
			if (ret)
1873 1874 1875
				dev_err(dev,
					"Failed to mark block bad with ret %d\n",
					ret);
1876 1877 1878 1879 1880 1881 1882 1883
		}
	}

	/* Write the stamp that indicates we've transcribed the block marks. */
	mx23_write_transcription_stamp(this);
	return 0;
}

1884
static int nand_boot_init(struct gpmi_nand_data  *this)
1885 1886 1887 1888 1889 1890 1891 1892 1893
{
	nand_boot_set_geometry(this);

	/* This is ROM arch-specific initilization before the BBT scanning. */
	if (GPMI_IS_MX23(this))
		return mx23_boot_init(this);
	return 0;
}

1894
static int gpmi_set_geometry(struct gpmi_nand_data *this)
1895 1896 1897 1898 1899 1900 1901 1902 1903
{
	int ret;

	/* Free the temporary DMA memory for reading ID. */
	gpmi_free_dma_buffer(this);

	/* Set up the NFC geometry which is used by BCH. */
	ret = bch_set_geometry(this);
	if (ret) {
1904
		dev_err(this->dev, "Error setting BCH geometry : %d\n", ret);
1905 1906 1907 1908 1909 1910 1911
		return ret;
	}

	/* Alloc the new DMA buffers according to the pagesize and oobsize */
	return gpmi_alloc_dma_buffer(this);
}

H
Huang Shijie 已提交
1912
static int gpmi_init_last(struct gpmi_nand_data *this)
1913
{
1914
	struct nand_chip *chip = &this->nand;
1915
	struct mtd_info *mtd = nand_to_mtd(chip);
H
Huang Shijie 已提交
1916 1917
	struct nand_ecc_ctrl *ecc = &chip->ecc;
	struct bch_geometry *bch_geo = &this->bch_geometry;
1918 1919
	int ret;

1920 1921
	/* Set up the medium geometry */
	ret = gpmi_set_geometry(this);
1922 1923 1924
	if (ret)
		return ret;

H
Huang Shijie 已提交
1925 1926 1927 1928 1929
	/* Init the nand_ecc_ctrl{} */
	ecc->read_page	= gpmi_ecc_read_page;
	ecc->write_page	= gpmi_ecc_write_page;
	ecc->read_oob	= gpmi_ecc_read_oob;
	ecc->write_oob	= gpmi_ecc_write_oob;
1930 1931
	ecc->read_page_raw = gpmi_ecc_read_page_raw;
	ecc->write_page_raw = gpmi_ecc_write_page_raw;
1932 1933
	ecc->read_oob_raw = gpmi_ecc_read_oob_raw;
	ecc->write_oob_raw = gpmi_ecc_write_oob_raw;
H
Huang Shijie 已提交
1934 1935 1936
	ecc->mode	= NAND_ECC_HW;
	ecc->size	= bch_geo->ecc_chunk_size;
	ecc->strength	= bch_geo->ecc_strength;
1937
	mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops);
H
Huang Shijie 已提交
1938

1939 1940 1941 1942 1943
	/*
	 * We only enable the subpage read when:
	 *  (1) the chip is imx6, and
	 *  (2) the size of the ECC parity is byte aligned.
	 */
1944
	if (GPMI_IS_MX6(this) &&
1945 1946 1947 1948 1949
		((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) {
		ecc->read_subpage = gpmi_ecc_read_subpage;
		chip->options |= NAND_SUBPAGE_READ;
	}

1950 1951 1952 1953 1954 1955 1956 1957
	/*
	 * Can we enable the extra features? such as EDO or Sync mode.
	 *
	 * We do not check the return value now. That's means if we fail in
	 * enable the extra features, we still can run in the normal way.
	 */
	gpmi_extra_init(this);

H
Huang Shijie 已提交
1958
	return 0;
1959 1960
}

1961
static int gpmi_nand_init(struct gpmi_nand_data *this)
1962 1963
{
	struct nand_chip *chip = &this->nand;
1964
	struct mtd_info  *mtd = nand_to_mtd(chip);
1965 1966 1967 1968 1969 1970 1971
	int ret;

	/* init current chip */
	this->current_chip	= -1;

	/* init the MTD data structures */
	mtd->name		= "gpmi-nand";
1972
	mtd->dev.parent		= this->dev;
1973 1974

	/* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
1975
	nand_set_controller_data(chip, this);
1976
	nand_set_flash_node(chip, this->pdev->dev.of_node);
1977 1978 1979 1980 1981 1982 1983 1984 1985
	chip->select_chip	= gpmi_select_chip;
	chip->cmd_ctrl		= gpmi_cmd_ctrl;
	chip->dev_ready		= gpmi_dev_ready;
	chip->read_byte		= gpmi_read_byte;
	chip->read_buf		= gpmi_read_buf;
	chip->write_buf		= gpmi_write_buf;
	chip->badblock_pattern	= &gpmi_bbt_descr;
	chip->block_markbad	= gpmi_block_markbad;
	chip->options		|= NAND_NO_SUBPAGE_WRITE;
1986 1987 1988 1989

	/* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
	this->swap_block_mark = !GPMI_IS_MX23(this);

H
Huang Shijie 已提交
1990 1991 1992 1993
	/*
	 * Allocate a temporary DMA buffer for reading ID in the
	 * nand_scan_ident().
	 */
1994 1995 1996 1997 1998 1999
	this->bch_geometry.payload_size = 1024;
	this->bch_geometry.auxiliary_size = 128;
	ret = gpmi_alloc_dma_buffer(this);
	if (ret)
		goto err_out;

2000
	ret = nand_scan_ident(mtd, GPMI_IS_MX6(this) ? 2 : 1, NULL);
H
Huang Shijie 已提交
2001 2002 2003
	if (ret)
		goto err_out;

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
	if (chip->bbt_options & NAND_BBT_USE_FLASH) {
		chip->bbt_options |= NAND_BBT_NO_OOB;

		if (of_property_read_bool(this->dev->of_node,
						"fsl,no-blockmark-swap"))
			this->swap_block_mark = false;
	}
	dev_dbg(this->dev, "Blockmark swapping %sabled\n",
		this->swap_block_mark ? "en" : "dis");

H
Huang Shijie 已提交
2014 2015 2016 2017
	ret = gpmi_init_last(this);
	if (ret)
		goto err_out;

H
Huang Shijie 已提交
2018
	chip->options |= NAND_SKIP_BBTSCAN;
H
Huang Shijie 已提交
2019 2020
	ret = nand_scan_tail(mtd);
	if (ret)
2021 2022
		goto err_out;

H
Huang Shijie 已提交
2023 2024
	ret = nand_boot_init(this);
	if (ret)
2025
		goto err_nand_cleanup;
2026 2027
	ret = chip->scan_bbt(mtd);
	if (ret)
2028
		goto err_nand_cleanup;
H
Huang Shijie 已提交
2029

2030
	ret = mtd_device_register(mtd, NULL, 0);
2031
	if (ret)
2032
		goto err_nand_cleanup;
2033 2034
	return 0;

2035 2036
err_nand_cleanup:
	nand_cleanup(chip);
2037
err_out:
2038
	gpmi_free_dma_buffer(this);
2039 2040 2041
	return ret;
}

2042 2043 2044
static const struct of_device_id gpmi_nand_id_table[] = {
	{
		.compatible = "fsl,imx23-gpmi-nand",
2045
		.data = &gpmi_devdata_imx23,
2046 2047
	}, {
		.compatible = "fsl,imx28-gpmi-nand",
2048
		.data = &gpmi_devdata_imx28,
2049 2050
	}, {
		.compatible = "fsl,imx6q-gpmi-nand",
2051
		.data = &gpmi_devdata_imx6q,
2052 2053
	}, {
		.compatible = "fsl,imx6sx-gpmi-nand",
2054
		.data = &gpmi_devdata_imx6sx,
2055 2056 2057
	}, {
		.compatible = "fsl,imx7d-gpmi-nand",
		.data = &gpmi_devdata_imx7d,
2058 2059 2060 2061
	}, {}
};
MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);

B
Bill Pemberton 已提交
2062
static int gpmi_nand_probe(struct platform_device *pdev)
2063 2064
{
	struct gpmi_nand_data *this;
2065
	const struct of_device_id *of_id;
2066 2067
	int ret;

2068 2069 2070 2071
	this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
	if (!this)
		return -ENOMEM;

2072 2073
	of_id = of_match_device(gpmi_nand_id_table, &pdev->dev);
	if (of_id) {
2074
		this->devdata = of_id->data;
2075
	} else {
2076
		dev_err(&pdev->dev, "Failed to find the right device id.\n");
2077
		return -ENODEV;
2078 2079
	}

2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
	platform_set_drvdata(pdev, this);
	this->pdev  = pdev;
	this->dev   = &pdev->dev;

	ret = acquire_resources(this);
	if (ret)
		goto exit_acquire_resources;

	ret = init_hardware(this);
	if (ret)
		goto exit_nfc_init;

2092
	ret = gpmi_nand_init(this);
2093 2094 2095
	if (ret)
		goto exit_nfc_init;

2096 2097
	dev_info(this->dev, "driver registered.\n");

2098 2099 2100 2101 2102
	return 0;

exit_nfc_init:
	release_resources(this);
exit_acquire_resources:
2103

2104 2105 2106
	return ret;
}

B
Bill Pemberton 已提交
2107
static int gpmi_nand_remove(struct platform_device *pdev)
2108 2109 2110
{
	struct gpmi_nand_data *this = platform_get_drvdata(pdev);

2111 2112
	nand_release(nand_to_mtd(&this->nand));
	gpmi_free_dma_buffer(this);
2113 2114 2115 2116
	release_resources(this);
	return 0;
}

2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
#ifdef CONFIG_PM_SLEEP
static int gpmi_pm_suspend(struct device *dev)
{
	struct gpmi_nand_data *this = dev_get_drvdata(dev);

	release_dma_channels(this);
	return 0;
}

static int gpmi_pm_resume(struct device *dev)
{
	struct gpmi_nand_data *this = dev_get_drvdata(dev);
	int ret;

	ret = acquire_dma_channels(this);
	if (ret < 0)
		return ret;

	/* re-init the GPMI registers */
	this->flags &= ~GPMI_TIMING_INIT_OK;
	ret = gpmi_init(this);
	if (ret) {
		dev_err(this->dev, "Error setting GPMI : %d\n", ret);
		return ret;
	}

	/* re-init the BCH registers */
	ret = bch_set_geometry(this);
	if (ret) {
		dev_err(this->dev, "Error setting BCH : %d\n", ret);
		return ret;
	}

	/* re-init others */
	gpmi_extra_init(this);

	return 0;
}
#endif /* CONFIG_PM_SLEEP */

static const struct dev_pm_ops gpmi_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume)
};

2161 2162 2163
static struct platform_driver gpmi_nand_driver = {
	.driver = {
		.name = "gpmi-nand",
2164
		.pm = &gpmi_pm_ops,
2165
		.of_match_table = gpmi_nand_id_table,
2166 2167
	},
	.probe   = gpmi_nand_probe,
B
Bill Pemberton 已提交
2168
	.remove  = gpmi_nand_remove,
2169
};
2170
module_platform_driver(gpmi_nand_driver);
2171 2172 2173 2174

MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
MODULE_LICENSE("GPL");