gpmi-nand.c 46.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * Freescale GPMI NAND Flash Driver
 *
 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */
21 22 23

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

24 25 26
#include <linux/clk.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
27
#include <linux/module.h>
28
#include <linux/mtd/partitions.h>
29
#include <linux/pinctrl/consumer.h>
30 31
#include <linux/of.h>
#include <linux/of_device.h>
32
#include <linux/of_mtd.h>
33 34
#include "gpmi-nand.h"

35 36 37 38 39 40
/* Resource names for the GPMI NAND driver. */
#define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME  "gpmi-nand"
#define GPMI_NAND_BCH_REGS_ADDR_RES_NAME   "bch"
#define GPMI_NAND_BCH_INTERRUPT_RES_NAME   "bch"
#define GPMI_NAND_DMA_INTERRUPT_RES_NAME   "gpmi-dma"

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
/* add our owner bbt descriptor */
static uint8_t scan_ff_pattern[] = { 0xff };
static struct nand_bbt_descr gpmi_bbt_descr = {
	.options	= 0,
	.offs		= 0,
	.len		= 1,
	.pattern	= scan_ff_pattern
};

/*  We will use all the (page + OOB). */
static struct nand_ecclayout gpmi_hw_ecclayout = {
	.eccbytes = 0,
	.eccpos = { 0, },
	.oobfree = { {.offset = 0, .length = 0} }
};

static irqreturn_t bch_irq(int irq, void *cookie)
{
	struct gpmi_nand_data *this = cookie;

	gpmi_clear_bch(this);
	complete(&this->bch_done);
	return IRQ_HANDLED;
}

/*
 *  Calculate the ECC strength by hand:
 *	E : The ECC strength.
 *	G : the length of Galois Field.
 *	N : The chunk count of per page.
 *	O : the oobsize of the NAND chip.
 *	M : the metasize of per page.
 *
 *	The formula is :
 *		E * G * N
 *	      ------------ <= (O - M)
 *                  8
 *
 *      So, we get E by:
 *                    (O - M) * 8
 *              E <= -------------
 *                       G * N
 */
static inline int get_ecc_strength(struct gpmi_nand_data *this)
{
	struct bch_geometry *geo = &this->bch_geometry;
	struct mtd_info	*mtd = &this->mtd;
	int ecc_strength;

	ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
			/ (geo->gf_len * geo->ecc_chunk_count);

	/* We need the minor even number. */
	return round_down(ecc_strength, 2);
}

int common_nfc_set_geometry(struct gpmi_nand_data *this)
{
	struct bch_geometry *geo = &this->bch_geometry;
	struct mtd_info *mtd = &this->mtd;
	unsigned int metadata_size;
	unsigned int status_size;
	unsigned int block_mark_bit_offset;

	/*
	 * The size of the metadata can be changed, though we set it to 10
	 * bytes now. But it can't be too large, because we have to save
	 * enough space for BCH.
	 */
	geo->metadata_size = 10;

	/* The default for the length of Galois Field. */
	geo->gf_len = 13;

	/* The default for chunk size. There is no oobsize greater then 512. */
	geo->ecc_chunk_size = 512;
	while (geo->ecc_chunk_size < mtd->oobsize)
		geo->ecc_chunk_size *= 2; /* keep C >= O */

	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;

	/* We use the same ECC strength for all chunks. */
	geo->ecc_strength = get_ecc_strength(this);
	if (!geo->ecc_strength) {
125
		pr_err("wrong ECC strength.\n");
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
		return -EINVAL;
	}

	geo->page_size = mtd->writesize + mtd->oobsize;
	geo->payload_size = mtd->writesize;

	/*
	 * The auxiliary buffer contains the metadata and the ECC status. The
	 * metadata is padded to the nearest 32-bit boundary. The ECC status
	 * contains one byte for every ECC chunk, and is also padded to the
	 * nearest 32-bit boundary.
	 */
	metadata_size = ALIGN(geo->metadata_size, 4);
	status_size   = ALIGN(geo->ecc_chunk_count, 4);

	geo->auxiliary_size = metadata_size + status_size;
	geo->auxiliary_status_offset = metadata_size;

	if (!this->swap_block_mark)
		return 0;

	/*
	 * We need to compute the byte and bit offsets of
	 * the physical block mark within the ECC-based view of the page.
	 *
	 * NAND chip with 2K page shows below:
	 *                                             (Block Mark)
	 *                                                   |      |
	 *                                                   |  D   |
	 *                                                   |<---->|
	 *                                                   V      V
	 *    +---+----------+-+----------+-+----------+-+----------+-+
	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|
	 *    +---+----------+-+----------+-+----------+-+----------+-+
	 *
	 * The position of block mark moves forward in the ECC-based view
	 * of page, and the delta is:
	 *
	 *                   E * G * (N - 1)
	 *             D = (---------------- + M)
	 *                          8
	 *
	 * With the formula to compute the ECC strength, and the condition
	 *       : C >= O         (C is the ecc chunk size)
	 *
	 * It's easy to deduce to the following result:
	 *
	 *         E * G       (O - M)      C - M         C - M
	 *      ----------- <= ------- <=  --------  <  ---------
	 *           8            N           N          (N - 1)
	 *
	 *  So, we get:
	 *
	 *                   E * G * (N - 1)
	 *             D = (---------------- + M) < C
	 *                          8
	 *
	 *  The above inequality means the position of block mark
	 *  within the ECC-based view of the page is still in the data chunk,
	 *  and it's NOT in the ECC bits of the chunk.
	 *
	 *  Use the following to compute the bit position of the
	 *  physical block mark within the ECC-based view of the page:
	 *          (page_size - D) * 8
	 *
	 *  --Huang Shijie
	 */
	block_mark_bit_offset = mtd->writesize * 8 -
		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
				+ geo->metadata_size * 8);

	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
	return 0;
}

struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
{
	int chipnr = this->current_chip;

	return this->dma_chans[chipnr];
}

/* Can we use the upper's buffer directly for DMA? */
void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr)
{
	struct scatterlist *sgl = &this->data_sgl;
	int ret;

	this->direct_dma_map_ok = true;

	/* first try to map the upper buffer directly */
	sg_init_one(sgl, this->upper_buf, this->upper_len);
	ret = dma_map_sg(this->dev, sgl, 1, dr);
	if (ret == 0) {
		/* We have to use our own DMA buffer. */
		sg_init_one(sgl, this->data_buffer_dma, PAGE_SIZE);

		if (dr == DMA_TO_DEVICE)
			memcpy(this->data_buffer_dma, this->upper_buf,
				this->upper_len);

		ret = dma_map_sg(this->dev, sgl, 1, dr);
		if (ret == 0)
230
			pr_err("DMA mapping failed.\n");
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

		this->direct_dma_map_ok = false;
	}
}

/* This will be called after the DMA operation is finished. */
static void dma_irq_callback(void *param)
{
	struct gpmi_nand_data *this = param;
	struct completion *dma_c = &this->dma_done;

	complete(dma_c);

	switch (this->dma_type) {
	case DMA_FOR_COMMAND:
		dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE);
		break;

	case DMA_FOR_READ_DATA:
		dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE);
		if (this->direct_dma_map_ok == false)
			memcpy(this->upper_buf, this->data_buffer_dma,
				this->upper_len);
		break;

	case DMA_FOR_WRITE_DATA:
		dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE);
		break;

	case DMA_FOR_READ_ECC_PAGE:
	case DMA_FOR_WRITE_ECC_PAGE:
		/* We have to wait the BCH interrupt to finish. */
		break;

	default:
		pr_err("in wrong DMA operation.\n");
	}
}

int start_dma_without_bch_irq(struct gpmi_nand_data *this,
				struct dma_async_tx_descriptor *desc)
{
	struct completion *dma_c = &this->dma_done;
	int err;

	init_completion(dma_c);

	desc->callback		= dma_irq_callback;
	desc->callback_param	= this;
	dmaengine_submit(desc);
281
	dma_async_issue_pending(get_dma_chan(this));
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321

	/* Wait for the interrupt from the DMA block. */
	err = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000));
	if (!err) {
		pr_err("DMA timeout, last DMA :%d\n", this->last_dma_type);
		gpmi_dump_info(this);
		return -ETIMEDOUT;
	}
	return 0;
}

/*
 * This function is used in BCH reading or BCH writing pages.
 * It will wait for the BCH interrupt as long as ONE second.
 * Actually, we must wait for two interrupts :
 *	[1] firstly the DMA interrupt and
 *	[2] secondly the BCH interrupt.
 */
int start_dma_with_bch_irq(struct gpmi_nand_data *this,
			struct dma_async_tx_descriptor *desc)
{
	struct completion *bch_c = &this->bch_done;
	int err;

	/* Prepare to receive an interrupt from the BCH block. */
	init_completion(bch_c);

	/* start the DMA */
	start_dma_without_bch_irq(this, desc);

	/* Wait for the interrupt from the BCH block. */
	err = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000));
	if (!err) {
		pr_err("BCH timeout, last DMA :%d\n", this->last_dma_type);
		gpmi_dump_info(this);
		return -ETIMEDOUT;
	}
	return 0;
}

B
Bill Pemberton 已提交
322
static int
323 324 325 326 327
acquire_register_block(struct gpmi_nand_data *this, const char *res_name)
{
	struct platform_device *pdev = this->pdev;
	struct resources *res = &this->resources;
	struct resource *r;
328
	void __iomem *p;
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362

	r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
	if (!r) {
		pr_err("Can't get resource for %s\n", res_name);
		return -ENXIO;
	}

	p = ioremap(r->start, resource_size(r));
	if (!p) {
		pr_err("Can't remap %s\n", res_name);
		return -ENOMEM;
	}

	if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
		res->gpmi_regs = p;
	else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
		res->bch_regs = p;
	else
		pr_err("unknown resource name : %s\n", res_name);

	return 0;
}

static void release_register_block(struct gpmi_nand_data *this)
{
	struct resources *res = &this->resources;
	if (res->gpmi_regs)
		iounmap(res->gpmi_regs);
	if (res->bch_regs)
		iounmap(res->bch_regs);
	res->gpmi_regs = NULL;
	res->bch_regs = NULL;
}

B
Bill Pemberton 已提交
363
static int
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
{
	struct platform_device *pdev = this->pdev;
	struct resources *res = &this->resources;
	const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
	struct resource *r;
	int err;

	r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
	if (!r) {
		pr_err("Can't get resource for %s\n", res_name);
		return -ENXIO;
	}

	err = request_irq(r->start, irq_h, 0, res_name, this);
	if (err) {
		pr_err("Can't own %s\n", res_name);
		return err;
	}

	res->bch_low_interrupt = r->start;
	res->bch_high_interrupt = r->end;
	return 0;
}

static void release_bch_irq(struct gpmi_nand_data *this)
{
	struct resources *res = &this->resources;
	int i = res->bch_low_interrupt;

	for (; i <= res->bch_high_interrupt; i++)
		free_irq(i, this);
}

static bool gpmi_dma_filter(struct dma_chan *chan, void *param)
{
	struct gpmi_nand_data *this = param;
401
	int dma_channel = (int)this->private;
402 403 404 405 406 407 408 409 410 411 412

	if (!mxs_dma_is_apbh(chan))
		return false;
	/*
	 * only catch the GPMI dma channels :
	 *	for mx23 :	MX23_DMA_GPMI0 ~ MX23_DMA_GPMI3
	 *		(These four channels share the same IRQ!)
	 *
	 *	for mx28 :	MX28_DMA_GPMI0 ~ MX28_DMA_GPMI7
	 *		(These eight channels share the same IRQ!)
	 */
413
	if (dma_channel == chan->chan_id) {
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
		chan->private = &this->dma_data;
		return true;
	}
	return false;
}

static void release_dma_channels(struct gpmi_nand_data *this)
{
	unsigned int i;
	for (i = 0; i < DMA_CHANS; i++)
		if (this->dma_chans[i]) {
			dma_release_channel(this->dma_chans[i]);
			this->dma_chans[i] = NULL;
		}
}

B
Bill Pemberton 已提交
430
static int acquire_dma_channels(struct gpmi_nand_data *this)
431 432
{
	struct platform_device *pdev = this->pdev;
433 434
	struct resource *r_dma;
	struct device_node *dn;
435 436
	u32 dma_channel;
	int ret;
437 438 439 440 441 442 443 444 445 446 447
	struct dma_chan *dma_chan;
	dma_cap_mask_t mask;

	/* dma channel, we only use the first one. */
	dn = pdev->dev.of_node;
	ret = of_property_read_u32(dn, "fsl,gpmi-dma-channel", &dma_channel);
	if (ret) {
		pr_err("unable to get DMA channel from dt.\n");
		goto acquire_err;
	}
	this->private = (void *)dma_channel;
448

449
	/* gpmi dma interrupt */
450 451
	r_dma = platform_get_resource_byname(pdev, IORESOURCE_IRQ,
					GPMI_NAND_DMA_INTERRUPT_RES_NAME);
452
	if (!r_dma) {
453
		pr_err("Can't get resource for DMA\n");
454
		goto acquire_err;
455
	}
456
	this->dma_data.chan_irq = r_dma->start;
457

458 459 460
	/* request dma channel */
	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);
461

462 463
	dma_chan = dma_request_channel(mask, gpmi_dma_filter, this);
	if (!dma_chan) {
464
		pr_err("Failed to request DMA channel.\n");
465
		goto acquire_err;
466 467
	}

468
	this->dma_chans[0] = dma_chan;
469 470 471 472 473 474 475
	return 0;

acquire_err:
	release_dma_channels(this);
	return -EINVAL;
}

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
static void gpmi_put_clks(struct gpmi_nand_data *this)
{
	struct resources *r = &this->resources;
	struct clk *clk;
	int i;

	for (i = 0; i < GPMI_CLK_MAX; i++) {
		clk = r->clock[i];
		if (clk) {
			clk_put(clk);
			r->clock[i] = NULL;
		}
	}
}

static char *extra_clks_for_mx6q[GPMI_CLK_MAX] = {
	"gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
};

B
Bill Pemberton 已提交
495
static int gpmi_get_clks(struct gpmi_nand_data *this)
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
{
	struct resources *r = &this->resources;
	char **extra_clks = NULL;
	struct clk *clk;
	int i;

	/* The main clock is stored in the first. */
	r->clock[0] = clk_get(this->dev, "gpmi_io");
	if (IS_ERR(r->clock[0]))
		goto err_clock;

	/* Get extra clocks */
	if (GPMI_IS_MX6Q(this))
		extra_clks = extra_clks_for_mx6q;
	if (!extra_clks)
		return 0;

	for (i = 1; i < GPMI_CLK_MAX; i++) {
		if (extra_clks[i - 1] == NULL)
			break;

		clk = clk_get(this->dev, extra_clks[i - 1]);
		if (IS_ERR(clk))
			goto err_clock;

		r->clock[i] = clk;
	}

524
	if (GPMI_IS_MX6Q(this))
525
		/*
526
		 * Set the default value for the gpmi clock in mx6q:
527
		 *
528 529
		 * If you want to use the ONFI nand which is in the
		 * Synchronous Mode, you should change the clock as you need.
530 531
		 */
		clk_set_rate(r->clock[0], 22000000);
532

533 534 535 536 537 538 539 540
	return 0;

err_clock:
	dev_dbg(this->dev, "failed in finding the clocks.\n");
	gpmi_put_clks(this);
	return -ENOMEM;
}

B
Bill Pemberton 已提交
541
static int acquire_resources(struct gpmi_nand_data *this)
542
{
543
	struct pinctrl *pinctrl;
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
	int ret;

	ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
	if (ret)
		goto exit_regs;

	ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
	if (ret)
		goto exit_regs;

	ret = acquire_bch_irq(this, bch_irq);
	if (ret)
		goto exit_regs;

	ret = acquire_dma_channels(this);
	if (ret)
		goto exit_dma_channels;

562
	pinctrl = devm_pinctrl_get_select_default(&this->pdev->dev);
563 564 565 566 567
	if (IS_ERR(pinctrl)) {
		ret = PTR_ERR(pinctrl);
		goto exit_pin;
	}

568 569
	ret = gpmi_get_clks(this);
	if (ret)
570 571 572 573
		goto exit_clock;
	return 0;

exit_clock:
574
exit_pin:
575 576 577 578 579 580 581 582 583 584
	release_dma_channels(this);
exit_dma_channels:
	release_bch_irq(this);
exit_regs:
	release_register_block(this);
	return ret;
}

static void release_resources(struct gpmi_nand_data *this)
{
585
	gpmi_put_clks(this);
586 587 588 589 590
	release_register_block(this);
	release_bch_irq(this);
	release_dma_channels(this);
}

B
Bill Pemberton 已提交
591
static int init_hardware(struct gpmi_nand_data *this)
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
{
	int ret;

	/*
	 * This structure contains the "safe" GPMI timing that should succeed
	 * with any NAND Flash device
	 * (although, with less-than-optimal performance).
	 */
	struct nand_timing  safe_timing = {
		.data_setup_in_ns        = 80,
		.data_hold_in_ns         = 60,
		.address_setup_in_ns     = 25,
		.gpmi_sample_delay_in_ns =  6,
		.tREA_in_ns              = -1,
		.tRLOH_in_ns             = -1,
		.tRHOH_in_ns             = -1,
	};

	/* Initialize the hardwares. */
	ret = gpmi_init(this);
	if (ret)
		return ret;

	this->timing = safe_timing;
	return 0;
}

static int read_page_prepare(struct gpmi_nand_data *this,
			void *destination, unsigned length,
			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
			void **use_virt, dma_addr_t *use_phys)
{
	struct device *dev = this->dev;

	if (virt_addr_valid(destination)) {
		dma_addr_t dest_phys;

		dest_phys = dma_map_single(dev, destination,
						length, DMA_FROM_DEVICE);
		if (dma_mapping_error(dev, dest_phys)) {
			if (alt_size < length) {
633 634
				pr_err("%s, Alternate buffer is too small\n",
					__func__);
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
				return -ENOMEM;
			}
			goto map_failed;
		}
		*use_virt = destination;
		*use_phys = dest_phys;
		this->direct_dma_map_ok = true;
		return 0;
	}

map_failed:
	*use_virt = alt_virt;
	*use_phys = alt_phys;
	this->direct_dma_map_ok = false;
	return 0;
}

static inline void read_page_end(struct gpmi_nand_data *this,
			void *destination, unsigned length,
			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
			void *used_virt, dma_addr_t used_phys)
{
	if (this->direct_dma_map_ok)
		dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE);
}

static inline void read_page_swap_end(struct gpmi_nand_data *this,
			void *destination, unsigned length,
			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
			void *used_virt, dma_addr_t used_phys)
{
	if (!this->direct_dma_map_ok)
		memcpy(destination, alt_virt, length);
}

static int send_page_prepare(struct gpmi_nand_data *this,
			const void *source, unsigned length,
			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
			const void **use_virt, dma_addr_t *use_phys)
{
	struct device *dev = this->dev;

	if (virt_addr_valid(source)) {
		dma_addr_t source_phys;

		source_phys = dma_map_single(dev, (void *)source, length,
						DMA_TO_DEVICE);
		if (dma_mapping_error(dev, source_phys)) {
			if (alt_size < length) {
684 685
				pr_err("%s, Alternate buffer is too small\n",
					__func__);
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
				return -ENOMEM;
			}
			goto map_failed;
		}
		*use_virt = source;
		*use_phys = source_phys;
		return 0;
	}
map_failed:
	/*
	 * Copy the content of the source buffer into the alternate
	 * buffer and set up the return values accordingly.
	 */
	memcpy(alt_virt, source, length);

	*use_virt = alt_virt;
	*use_phys = alt_phys;
	return 0;
}

static void send_page_end(struct gpmi_nand_data *this,
			const void *source, unsigned length,
			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
			const void *used_virt, dma_addr_t used_phys)
{
	struct device *dev = this->dev;
	if (used_virt == source)
		dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
}

static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
{
	struct device *dev = this->dev;

	if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt))
		dma_free_coherent(dev, this->page_buffer_size,
					this->page_buffer_virt,
					this->page_buffer_phys);
	kfree(this->cmd_buffer);
	kfree(this->data_buffer_dma);

	this->cmd_buffer	= NULL;
	this->data_buffer_dma	= NULL;
	this->page_buffer_virt	= NULL;
	this->page_buffer_size	=  0;
}

/* Allocate the DMA buffers */
static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
{
	struct bch_geometry *geo = &this->bch_geometry;
	struct device *dev = this->dev;

	/* [1] Allocate a command buffer. PAGE_SIZE is enough. */
740
	this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
741 742 743 744
	if (this->cmd_buffer == NULL)
		goto error_alloc;

	/* [2] Allocate a read/write data buffer. PAGE_SIZE is enough. */
745
	this->data_buffer_dma = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
	if (this->data_buffer_dma == NULL)
		goto error_alloc;

	/*
	 * [3] Allocate the page buffer.
	 *
	 * Both the payload buffer and the auxiliary buffer must appear on
	 * 32-bit boundaries. We presume the size of the payload buffer is a
	 * power of two and is much larger than four, which guarantees the
	 * auxiliary buffer will appear on a 32-bit boundary.
	 */
	this->page_buffer_size = geo->payload_size + geo->auxiliary_size;
	this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size,
					&this->page_buffer_phys, GFP_DMA);
	if (!this->page_buffer_virt)
		goto error_alloc;


	/* Slice up the page buffer. */
	this->payload_virt = this->page_buffer_virt;
	this->payload_phys = this->page_buffer_phys;
	this->auxiliary_virt = this->payload_virt + geo->payload_size;
	this->auxiliary_phys = this->payload_phys + geo->payload_size;
	return 0;

error_alloc:
	gpmi_free_dma_buffer(this);
773
	pr_err("Error allocating DMA buffers!\n");
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
	return -ENOMEM;
}

static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
{
	struct nand_chip *chip = mtd->priv;
	struct gpmi_nand_data *this = chip->priv;
	int ret;

	/*
	 * Every operation begins with a command byte and a series of zero or
	 * more address bytes. These are distinguished by either the Address
	 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
	 * asserted. When MTD is ready to execute the command, it will deassert
	 * both latch enables.
	 *
	 * Rather than run a separate DMA operation for every single byte, we
	 * queue them up and run a single DMA operation for the entire series
	 * of command and data bytes. NAND_CMD_NONE means the END of the queue.
	 */
	if ((ctrl & (NAND_ALE | NAND_CLE))) {
		if (data != NAND_CMD_NONE)
			this->cmd_buffer[this->command_length++] = data;
		return;
	}

	if (!this->command_length)
		return;

	ret = gpmi_send_command(this);
	if (ret)
		pr_err("Chip: %u, Error %d\n", this->current_chip, ret);

	this->command_length = 0;
}

static int gpmi_dev_ready(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd->priv;
	struct gpmi_nand_data *this = chip->priv;

	return gpmi_is_ready(this, this->current_chip);
}

static void gpmi_select_chip(struct mtd_info *mtd, int chipnr)
{
	struct nand_chip *chip = mtd->priv;
	struct gpmi_nand_data *this = chip->priv;

	if ((this->current_chip < 0) && (chipnr >= 0))
		gpmi_begin(this);
	else if ((this->current_chip >= 0) && (chipnr < 0))
		gpmi_end(this);

	this->current_chip = chipnr;
}

static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
	struct nand_chip *chip = mtd->priv;
	struct gpmi_nand_data *this = chip->priv;

	pr_debug("len is %d\n", len);
	this->upper_buf	= buf;
	this->upper_len	= len;

	gpmi_read_data(this);
}

static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
	struct nand_chip *chip = mtd->priv;
	struct gpmi_nand_data *this = chip->priv;

	pr_debug("len is %d\n", len);
	this->upper_buf	= (uint8_t *)buf;
	this->upper_len	= len;

	gpmi_send_data(this);
}

static uint8_t gpmi_read_byte(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd->priv;
	struct gpmi_nand_data *this = chip->priv;
	uint8_t *buf = this->data_buffer_dma;

	gpmi_read_buf(mtd, buf, 1);
	return buf[0];
}

/*
 * Handles block mark swapping.
 * It can be called in swapping the block mark, or swapping it back,
 * because the the operations are the same.
 */
static void block_mark_swapping(struct gpmi_nand_data *this,
				void *payload, void *auxiliary)
{
	struct bch_geometry *nfc_geo = &this->bch_geometry;
	unsigned char *p;
	unsigned char *a;
	unsigned int  bit;
	unsigned char mask;
	unsigned char from_data;
	unsigned char from_oob;

	if (!this->swap_block_mark)
		return;

	/*
	 * If control arrives here, we're swapping. Make some convenience
	 * variables.
	 */
	bit = nfc_geo->block_mark_bit_offset;
	p   = payload + nfc_geo->block_mark_byte_offset;
	a   = auxiliary;

	/*
	 * Get the byte from the data area that overlays the block mark. Since
	 * the ECC engine applies its own view to the bits in the page, the
	 * physical block mark won't (in general) appear on a byte boundary in
	 * the data.
	 */
	from_data = (p[0] >> bit) | (p[1] << (8 - bit));

	/* Get the byte from the OOB. */
	from_oob = a[0];

	/* Swap them. */
	a[0] = from_data;

	mask = (0x1 << bit) - 1;
	p[0] = (p[0] & mask) | (from_oob << bit);

	mask = ~0 << bit;
	p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
}

static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
914
				uint8_t *buf, int oob_required, int page)
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
{
	struct gpmi_nand_data *this = chip->priv;
	struct bch_geometry *nfc_geo = &this->bch_geometry;
	void          *payload_virt;
	dma_addr_t    payload_phys;
	void          *auxiliary_virt;
	dma_addr_t    auxiliary_phys;
	unsigned int  i;
	unsigned char *status;
	unsigned int  failed;
	unsigned int  corrected;
	int           ret;

	pr_debug("page number is : %d\n", page);
	ret = read_page_prepare(this, buf, mtd->writesize,
					this->payload_virt, this->payload_phys,
					nfc_geo->payload_size,
					&payload_virt, &payload_phys);
	if (ret) {
		pr_err("Inadequate DMA buffer\n");
		ret = -ENOMEM;
		return ret;
	}
	auxiliary_virt = this->auxiliary_virt;
	auxiliary_phys = this->auxiliary_phys;

	/* go! */
	ret = gpmi_read_page(this, payload_phys, auxiliary_phys);
	read_page_end(this, buf, mtd->writesize,
			this->payload_virt, this->payload_phys,
			nfc_geo->payload_size,
			payload_virt, payload_phys);
	if (ret) {
		pr_err("Error in ECC-based read: %d\n", ret);
		goto exit_nfc;
	}

	/* handle the block mark swapping */
	block_mark_swapping(this, payload_virt, auxiliary_virt);

	/* Loop over status bytes, accumulating ECC status. */
	failed		= 0;
	corrected	= 0;
	status		= auxiliary_virt + nfc_geo->auxiliary_status_offset;

	for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
		if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
			continue;

		if (*status == STATUS_UNCORRECTABLE) {
			failed++;
			continue;
		}
		corrected += *status;
	}

	/*
	 * Propagate ECC status to the owning MTD only when failed or
	 * corrected times nearly reaches our ECC correction threshold.
	 */
	if (failed || corrected >= (nfc_geo->ecc_strength - 1)) {
		mtd->ecc_stats.failed    += failed;
		mtd->ecc_stats.corrected += corrected;
	}

980 981 982 983 984 985 986 987 988 989 990 991 992 993
	if (oob_required) {
		/*
		 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
		 * for details about our policy for delivering the OOB.
		 *
		 * We fill the caller's buffer with set bits, and then copy the
		 * block mark to th caller's buffer. Note that, if block mark
		 * swapping was necessary, it has already been done, so we can
		 * rely on the first byte of the auxiliary buffer to contain
		 * the block mark.
		 */
		memset(chip->oob_poi, ~0, mtd->oobsize);
		chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0];
	}
994 995 996 997 998

	read_page_swap_end(this, buf, mtd->writesize,
			this->payload_virt, this->payload_phys,
			nfc_geo->payload_size,
			payload_virt, payload_phys);
999 1000 1001 1002
exit_nfc:
	return ret;
}

1003
static int gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1004
				const uint8_t *buf, int oob_required)
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
{
	struct gpmi_nand_data *this = chip->priv;
	struct bch_geometry *nfc_geo = &this->bch_geometry;
	const void *payload_virt;
	dma_addr_t payload_phys;
	const void *auxiliary_virt;
	dma_addr_t auxiliary_phys;
	int        ret;

	pr_debug("ecc write page.\n");
	if (this->swap_block_mark) {
		/*
		 * If control arrives here, we're doing block mark swapping.
		 * Since we can't modify the caller's buffers, we must copy them
		 * into our own.
		 */
		memcpy(this->payload_virt, buf, mtd->writesize);
		payload_virt = this->payload_virt;
		payload_phys = this->payload_phys;

		memcpy(this->auxiliary_virt, chip->oob_poi,
				nfc_geo->auxiliary_size);
		auxiliary_virt = this->auxiliary_virt;
		auxiliary_phys = this->auxiliary_phys;

		/* Handle block mark swapping. */
		block_mark_swapping(this,
				(void *) payload_virt, (void *) auxiliary_virt);
	} else {
		/*
		 * If control arrives here, we're not doing block mark swapping,
		 * so we can to try and use the caller's buffers.
		 */
		ret = send_page_prepare(this,
				buf, mtd->writesize,
				this->payload_virt, this->payload_phys,
				nfc_geo->payload_size,
				&payload_virt, &payload_phys);
		if (ret) {
			pr_err("Inadequate payload DMA buffer\n");
1045
			return 0;
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
		}

		ret = send_page_prepare(this,
				chip->oob_poi, mtd->oobsize,
				this->auxiliary_virt, this->auxiliary_phys,
				nfc_geo->auxiliary_size,
				&auxiliary_virt, &auxiliary_phys);
		if (ret) {
			pr_err("Inadequate auxiliary DMA buffer\n");
			goto exit_auxiliary;
		}
	}

	/* Ask the NFC. */
	ret = gpmi_send_page(this, payload_phys, auxiliary_phys);
	if (ret)
		pr_err("Error in ECC-based write: %d\n", ret);

	if (!this->swap_block_mark) {
		send_page_end(this, chip->oob_poi, mtd->oobsize,
				this->auxiliary_virt, this->auxiliary_phys,
				nfc_geo->auxiliary_size,
				auxiliary_virt, auxiliary_phys);
exit_auxiliary:
		send_page_end(this, buf, mtd->writesize,
				this->payload_virt, this->payload_phys,
				nfc_geo->payload_size,
				payload_virt, payload_phys);
	}
1075 1076

	return 0;
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
}

/*
 * There are several places in this driver where we have to handle the OOB and
 * block marks. This is the function where things are the most complicated, so
 * this is where we try to explain it all. All the other places refer back to
 * here.
 *
 * These are the rules, in order of decreasing importance:
 *
 * 1) Nothing the caller does can be allowed to imperil the block mark.
 *
 * 2) In read operations, the first byte of the OOB we return must reflect the
 *    true state of the block mark, no matter where that block mark appears in
 *    the physical page.
 *
 * 3) ECC-based read operations return an OOB full of set bits (since we never
 *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
 *    return).
 *
 * 4) "Raw" read operations return a direct view of the physical bytes in the
 *    page, using the conventional definition of which bytes are data and which
 *    are OOB. This gives the caller a way to see the actual, physical bytes
 *    in the page, without the distortions applied by our ECC engine.
 *
 *
 * What we do for this specific read operation depends on two questions:
 *
 * 1) Are we doing a "raw" read, or an ECC-based read?
 *
 * 2) Are we using block mark swapping or transcription?
 *
 * There are four cases, illustrated by the following Karnaugh map:
 *
 *                    |           Raw           |         ECC-based       |
 *       -------------+-------------------------+-------------------------+
 *                    | Read the conventional   |                         |
 *                    | OOB at the end of the   |                         |
 *       Swapping     | page and return it. It  |                         |
 *                    | contains exactly what   |                         |
 *                    | we want.                | Read the block mark and |
 *       -------------+-------------------------+ return it in a buffer   |
 *                    | Read the conventional   | full of set bits.       |
 *                    | OOB at the end of the   |                         |
 *                    | page and also the block |                         |
 *       Transcribing | mark in the metadata.   |                         |
 *                    | Copy the block mark     |                         |
 *                    | into the first byte of  |                         |
 *                    | the OOB.                |                         |
 *       -------------+-------------------------+-------------------------+
 *
 * Note that we break rule #4 in the Transcribing/Raw case because we're not
 * giving an accurate view of the actual, physical bytes in the page (we're
 * overwriting the block mark). That's OK because it's more important to follow
 * rule #2.
 *
 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
 * easy. When reading a page, for example, the NAND Flash MTD code calls our
 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
 * ECC-based or raw view of the page is implicit in which function it calls
 * (there is a similar pair of ECC-based/raw functions for writing).
 *
1139 1140 1141
 * FIXME: The following paragraph is incorrect, now that there exist
 * ecc.read_oob_raw and ecc.write_oob_raw functions.
 *
1142 1143 1144 1145 1146 1147
 * Since MTD assumes the OOB is not covered by ECC, there is no pair of
 * ECC-based/raw functions for reading or or writing the OOB. The fact that the
 * caller wants an ECC-based or raw view of the page is not propagated down to
 * this driver.
 */
static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1148
				int page)
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
{
	struct gpmi_nand_data *this = chip->priv;

	pr_debug("page number is %d\n", page);
	/* clear the OOB buffer */
	memset(chip->oob_poi, ~0, mtd->oobsize);

	/* Read out the conventional OOB. */
	chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);

	/*
	 * Now, we want to make sure the block mark is correct. In the
	 * Swapping/Raw case, we already have it. Otherwise, we need to
	 * explicitly read it.
	 */
	if (!this->swap_block_mark) {
		/* Read the block mark into the first byte of the OOB buffer. */
		chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
		chip->oob_poi[0] = chip->read_byte(mtd);
	}

1171
	return 0;
1172 1173 1174 1175 1176 1177 1178 1179 1180
}

static int
gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page)
{
	/*
	 * The BCH will use all the (page + oob).
	 * Our gpmi_hw_ecclayout can only prohibit the JFFS2 to write the oob.
	 * But it can not stop some ioctls such MEMWRITEOOB which uses
1181
	 * MTD_OPS_PLACE_OOB. So We have to implement this function to prohibit
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
	 * these ioctls too.
	 */
	return -EPERM;
}

static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
	struct nand_chip *chip = mtd->priv;
	struct gpmi_nand_data *this = chip->priv;
	int block, ret = 0;
	uint8_t *block_mark;
	int column, page, status, chipnr;

	/* Get block number */
	block = (int)(ofs >> chip->bbt_erase_shift);
	if (chip->bbt)
		chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);

	/* Do we have a flash based bad block table ? */
1201
	if (chip->bbt_options & NAND_BBT_USE_FLASH)
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
		ret = nand_update_bbt(mtd, ofs);
	else {
		chipnr = (int)(ofs >> chip->chip_shift);
		chip->select_chip(mtd, chipnr);

		column = this->swap_block_mark ? mtd->writesize : 0;

		/* Write the block mark. */
		block_mark = this->data_buffer_dma;
		block_mark[0] = 0; /* bad block marker */

		/* Shift to get page */
		page = (int)(ofs >> chip->page_shift);

		chip->cmdfunc(mtd, NAND_CMD_SEQIN, column, page);
		chip->write_buf(mtd, block_mark, 1);
		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);

		status = chip->waitfunc(mtd, chip);
		if (status & NAND_STATUS_FAIL)
			ret = -EIO;

		chip->select_chip(mtd, -1);
	}
	if (!ret)
		mtd->ecc_stats.badblocks++;

	return ret;
}

1232
static int nand_boot_set_geometry(struct gpmi_nand_data *this)
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
{
	struct boot_rom_geometry *geometry = &this->rom_geometry;

	/*
	 * Set the boot block stride size.
	 *
	 * In principle, we should be reading this from the OTP bits, since
	 * that's where the ROM is going to get it. In fact, we don't have any
	 * way to read the OTP bits, so we go with the default and hope for the
	 * best.
	 */
	geometry->stride_size_in_pages = 64;

	/*
	 * Set the search area stride exponent.
	 *
	 * In principle, we should be reading this from the OTP bits, since
	 * that's where the ROM is going to get it. In fact, we don't have any
	 * way to read the OTP bits, so we go with the default and hope for the
	 * best.
	 */
	geometry->search_area_stride_exponent = 2;
	return 0;
}

static const char  *fingerprint = "STMP";
1259
static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
{
	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
	struct device *dev = this->dev;
	struct mtd_info *mtd = &this->mtd;
	struct nand_chip *chip = &this->nand;
	unsigned int search_area_size_in_strides;
	unsigned int stride;
	unsigned int page;
	uint8_t *buffer = chip->buffers->databuf;
	int saved_chip_number;
	int found_an_ncb_fingerprint = false;

	/* Compute the number of strides in a search area. */
	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;

	saved_chip_number = this->current_chip;
	chip->select_chip(mtd, 0);

	/*
	 * Loop through the first search area, looking for the NCB fingerprint.
	 */
	dev_dbg(dev, "Scanning for an NCB fingerprint...\n");

	for (stride = 0; stride < search_area_size_in_strides; stride++) {
1284
		/* Compute the page addresses. */
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
		page = stride * rom_geo->stride_size_in_pages;

		dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);

		/*
		 * Read the NCB fingerprint. The fingerprint is four bytes long
		 * and starts in the 12th byte of the page.
		 */
		chip->cmdfunc(mtd, NAND_CMD_READ0, 12, page);
		chip->read_buf(mtd, buffer, strlen(fingerprint));

		/* Look for the fingerprint. */
		if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
			found_an_ncb_fingerprint = true;
			break;
		}

	}

	chip->select_chip(mtd, saved_chip_number);

	if (found_an_ncb_fingerprint)
		dev_dbg(dev, "\tFound a fingerprint\n");
	else
		dev_dbg(dev, "\tNo fingerprint found\n");
	return found_an_ncb_fingerprint;
}

/* Writes a transcription stamp. */
1314
static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
{
	struct device *dev = this->dev;
	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
	struct mtd_info *mtd = &this->mtd;
	struct nand_chip *chip = &this->nand;
	unsigned int block_size_in_pages;
	unsigned int search_area_size_in_strides;
	unsigned int search_area_size_in_pages;
	unsigned int search_area_size_in_blocks;
	unsigned int block;
	unsigned int stride;
	unsigned int page;
	uint8_t      *buffer = chip->buffers->databuf;
	int saved_chip_number;
	int status;

	/* Compute the search area geometry. */
	block_size_in_pages = mtd->erasesize / mtd->writesize;
	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
	search_area_size_in_pages = search_area_size_in_strides *
					rom_geo->stride_size_in_pages;
	search_area_size_in_blocks =
		  (search_area_size_in_pages + (block_size_in_pages - 1)) /
				    block_size_in_pages;

	dev_dbg(dev, "Search Area Geometry :\n");
	dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
	dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
	dev_dbg(dev, "\tin Pages  : %u\n", search_area_size_in_pages);

	/* Select chip 0. */
	saved_chip_number = this->current_chip;
	chip->select_chip(mtd, 0);

	/* Loop over blocks in the first search area, erasing them. */
	dev_dbg(dev, "Erasing the search area...\n");

	for (block = 0; block < search_area_size_in_blocks; block++) {
		/* Compute the page address. */
		page = block * block_size_in_pages;

		/* Erase this block. */
		dev_dbg(dev, "\tErasing block 0x%x\n", block);
		chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
		chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);

		/* Wait for the erase to finish. */
		status = chip->waitfunc(mtd, chip);
		if (status & NAND_STATUS_FAIL)
			dev_err(dev, "[%s] Erase failed.\n", __func__);
	}

	/* Write the NCB fingerprint into the page buffer. */
	memset(buffer, ~0, mtd->writesize);
	memset(chip->oob_poi, ~0, mtd->oobsize);
	memcpy(buffer + 12, fingerprint, strlen(fingerprint));

	/* Loop through the first search area, writing NCB fingerprints. */
	dev_dbg(dev, "Writing NCB fingerprints...\n");
	for (stride = 0; stride < search_area_size_in_strides; stride++) {
1375
		/* Compute the page addresses. */
1376 1377 1378 1379 1380
		page = stride * rom_geo->stride_size_in_pages;

		/* Write the first page of the current stride. */
		dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
		chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1381
		chip->ecc.write_page_raw(mtd, chip, buffer, 0);
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);

		/* Wait for the write to finish. */
		status = chip->waitfunc(mtd, chip);
		if (status & NAND_STATUS_FAIL)
			dev_err(dev, "[%s] Write failed.\n", __func__);
	}

	/* Deselect chip 0. */
	chip->select_chip(mtd, saved_chip_number);
	return 0;
}

1395
static int mx23_boot_init(struct gpmi_nand_data  *this)
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
{
	struct device *dev = this->dev;
	struct nand_chip *chip = &this->nand;
	struct mtd_info *mtd = &this->mtd;
	unsigned int block_count;
	unsigned int block;
	int     chipnr;
	int     page;
	loff_t  byte;
	uint8_t block_mark;
	int     ret = 0;

	/*
	 * If control arrives here, we can't use block mark swapping, which
	 * means we're forced to use transcription. First, scan for the
	 * transcription stamp. If we find it, then we don't have to do
	 * anything -- the block marks are already transcribed.
	 */
	if (mx23_check_transcription_stamp(this))
		return 0;

	/*
	 * If control arrives here, we couldn't find a transcription stamp, so
	 * so we presume the block marks are in the conventional location.
	 */
	dev_dbg(dev, "Transcribing bad block marks...\n");

	/* Compute the number of blocks in the entire medium. */
	block_count = chip->chipsize >> chip->phys_erase_shift;

	/*
	 * Loop over all the blocks in the medium, transcribing block marks as
	 * we go.
	 */
	for (block = 0; block < block_count; block++) {
		/*
		 * Compute the chip, page and byte addresses for this block's
		 * conventional mark.
		 */
		chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
		page = block << (chip->phys_erase_shift - chip->page_shift);
		byte = block <<  chip->phys_erase_shift;

		/* Send the command to read the conventional block mark. */
		chip->select_chip(mtd, chipnr);
		chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
		block_mark = chip->read_byte(mtd);
		chip->select_chip(mtd, -1);

		/*
		 * Check if the block is marked bad. If so, we need to mark it
		 * again, but this time the result will be a mark in the
		 * location where we transcribe block marks.
		 */
		if (block_mark != 0xff) {
			dev_dbg(dev, "Transcribing mark in block %u\n", block);
			ret = chip->block_markbad(mtd, byte);
			if (ret)
				dev_err(dev, "Failed to mark block bad with "
							"ret %d\n", ret);
		}
	}

	/* Write the stamp that indicates we've transcribed the block marks. */
	mx23_write_transcription_stamp(this);
	return 0;
}

1464
static int nand_boot_init(struct gpmi_nand_data  *this)
1465 1466 1467 1468 1469 1470 1471 1472 1473
{
	nand_boot_set_geometry(this);

	/* This is ROM arch-specific initilization before the BBT scanning. */
	if (GPMI_IS_MX23(this))
		return mx23_boot_init(this);
	return 0;
}

1474
static int gpmi_set_geometry(struct gpmi_nand_data *this)
1475 1476 1477 1478 1479 1480 1481 1482 1483
{
	int ret;

	/* Free the temporary DMA memory for reading ID. */
	gpmi_free_dma_buffer(this);

	/* Set up the NFC geometry which is used by BCH. */
	ret = bch_set_geometry(this);
	if (ret) {
1484
		pr_err("Error setting BCH geometry : %d\n", ret);
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
		return ret;
	}

	/* Alloc the new DMA buffers according to the pagesize and oobsize */
	return gpmi_alloc_dma_buffer(this);
}

static int gpmi_pre_bbt_scan(struct gpmi_nand_data  *this)
{
	int ret;

	/* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
	if (GPMI_IS_MX23(this))
		this->swap_block_mark = false;
	else
		this->swap_block_mark = true;

	/* Set up the medium geometry */
	ret = gpmi_set_geometry(this);
	if (ret)
		return ret;

1507 1508 1509
	/* Adjust the ECC strength according to the chip. */
	this->nand.ecc.strength = this->bch_geometry.ecc_strength;
	this->mtd.ecc_strength = this->bch_geometry.ecc_strength;
1510
	this->mtd.bitflip_threshold = this->bch_geometry.ecc_strength;
1511

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
	/* NAND boot init, depends on the gpmi_set_geometry(). */
	return nand_boot_init(this);
}

static int gpmi_scan_bbt(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd->priv;
	struct gpmi_nand_data *this = chip->priv;
	int ret;

	/* Prepare for the BBT scan. */
	ret = gpmi_pre_bbt_scan(this);
	if (ret)
		return ret;

1527 1528 1529 1530 1531 1532 1533 1534
	/*
	 * Can we enable the extra features? such as EDO or Sync mode.
	 *
	 * We do not check the return value now. That's means if we fail in
	 * enable the extra features, we still can run in the normal way.
	 */
	gpmi_extra_init(this);

1535 1536 1537 1538
	/* use the default BBT implementation */
	return nand_default_bbt(mtd);
}

1539
static void gpmi_nfc_exit(struct gpmi_nand_data *this)
1540 1541 1542 1543 1544
{
	nand_release(&this->mtd);
	gpmi_free_dma_buffer(this);
}

B
Bill Pemberton 已提交
1545
static int gpmi_nfc_init(struct gpmi_nand_data *this)
1546 1547 1548
{
	struct mtd_info  *mtd = &this->mtd;
	struct nand_chip *chip = &this->nand;
1549
	struct mtd_part_parser_data ppdata = {};
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
	int ret;

	/* init current chip */
	this->current_chip	= -1;

	/* init the MTD data structures */
	mtd->priv		= chip;
	mtd->name		= "gpmi-nand";
	mtd->owner		= THIS_MODULE;

	/* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
	chip->priv		= this;
	chip->select_chip	= gpmi_select_chip;
	chip->cmd_ctrl		= gpmi_cmd_ctrl;
	chip->dev_ready		= gpmi_dev_ready;
	chip->read_byte		= gpmi_read_byte;
	chip->read_buf		= gpmi_read_buf;
	chip->write_buf		= gpmi_write_buf;
	chip->ecc.read_page	= gpmi_ecc_read_page;
	chip->ecc.write_page	= gpmi_ecc_write_page;
	chip->ecc.read_oob	= gpmi_ecc_read_oob;
	chip->ecc.write_oob	= gpmi_ecc_write_oob;
	chip->scan_bbt		= gpmi_scan_bbt;
	chip->badblock_pattern	= &gpmi_bbt_descr;
	chip->block_markbad	= gpmi_block_markbad;
	chip->options		|= NAND_NO_SUBPAGE_WRITE;
	chip->ecc.mode		= NAND_ECC_HW;
	chip->ecc.size		= 1;
1578
	chip->ecc.strength	= 8;
1579
	chip->ecc.layout	= &gpmi_hw_ecclayout;
1580 1581
	if (of_get_nand_on_flash_bbt(this->dev->of_node))
		chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
1582 1583 1584 1585 1586 1587 1588 1589

	/* Allocate a temporary DMA buffer for reading ID in the nand_scan() */
	this->bch_geometry.payload_size = 1024;
	this->bch_geometry.auxiliary_size = 128;
	ret = gpmi_alloc_dma_buffer(this);
	if (ret)
		goto err_out;

1590
	ret = nand_scan(mtd, 1);
1591 1592 1593 1594 1595
	if (ret) {
		pr_err("Chip scan failed\n");
		goto err_out;
	}

1596 1597
	ppdata.of_node = this->pdev->dev.of_node;
	ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
1598 1599 1600 1601 1602 1603 1604 1605 1606
	if (ret)
		goto err_out;
	return 0;

err_out:
	gpmi_nfc_exit(this);
	return ret;
}

1607 1608 1609
static const struct platform_device_id gpmi_ids[] = {
	{ .name = "imx23-gpmi-nand", .driver_data = IS_MX23, },
	{ .name = "imx28-gpmi-nand", .driver_data = IS_MX28, },
1610
	{ .name = "imx6q-gpmi-nand", .driver_data = IS_MX6Q, },
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
	{},
};

static const struct of_device_id gpmi_nand_id_table[] = {
	{
		.compatible = "fsl,imx23-gpmi-nand",
		.data = (void *)&gpmi_ids[IS_MX23]
	}, {
		.compatible = "fsl,imx28-gpmi-nand",
		.data = (void *)&gpmi_ids[IS_MX28]
1621 1622 1623
	}, {
		.compatible = "fsl,imx6q-gpmi-nand",
		.data = (void *)&gpmi_ids[IS_MX6Q]
1624 1625 1626 1627
	}, {}
};
MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);

B
Bill Pemberton 已提交
1628
static int gpmi_nand_probe(struct platform_device *pdev)
1629 1630
{
	struct gpmi_nand_data *this;
1631
	const struct of_device_id *of_id;
1632 1633
	int ret;

1634 1635 1636 1637 1638 1639 1640 1641
	of_id = of_match_device(gpmi_nand_id_table, &pdev->dev);
	if (of_id) {
		pdev->id_entry = of_id->data;
	} else {
		pr_err("Failed to find the right device id.\n");
		return -ENOMEM;
	}

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
	this = kzalloc(sizeof(*this), GFP_KERNEL);
	if (!this) {
		pr_err("Failed to allocate per-device memory\n");
		return -ENOMEM;
	}

	platform_set_drvdata(pdev, this);
	this->pdev  = pdev;
	this->dev   = &pdev->dev;

	ret = acquire_resources(this);
	if (ret)
		goto exit_acquire_resources;

	ret = init_hardware(this);
	if (ret)
		goto exit_nfc_init;

	ret = gpmi_nfc_init(this);
	if (ret)
		goto exit_nfc_init;

1664 1665
	dev_info(this->dev, "driver registered.\n");

1666 1667 1668 1669 1670 1671 1672
	return 0;

exit_nfc_init:
	release_resources(this);
exit_acquire_resources:
	platform_set_drvdata(pdev, NULL);
	kfree(this);
1673 1674
	dev_err(this->dev, "driver registration failed: %d\n", ret);

1675 1676 1677
	return ret;
}

1678
static int __devexit gpmi_nand_remove(struct platform_device *pdev)
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
{
	struct gpmi_nand_data *this = platform_get_drvdata(pdev);

	gpmi_nfc_exit(this);
	release_resources(this);
	platform_set_drvdata(pdev, NULL);
	kfree(this);
	return 0;
}

static struct platform_driver gpmi_nand_driver = {
	.driver = {
		.name = "gpmi-nand",
1692
		.of_match_table = gpmi_nand_id_table,
1693 1694
	},
	.probe   = gpmi_nand_probe,
B
Bill Pemberton 已提交
1695
	.remove  = gpmi_nand_remove,
1696 1697
	.id_table = gpmi_ids,
};
1698
module_platform_driver(gpmi_nand_driver);
1699 1700 1701 1702

MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
MODULE_LICENSE("GPL");