raid56.c 73.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
D
David Woodhouse 已提交
2 3 4 5
/*
 * Copyright (C) 2012 Fusion-io  All rights reserved.
 * Copyright (C) 2012 Intel Corp. All rights reserved.
 */
6

D
David Woodhouse 已提交
7 8 9 10 11 12 13 14
#include <linux/sched.h>
#include <linux/bio.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/raid/pq.h>
#include <linux/hash.h>
#include <linux/list_sort.h>
#include <linux/raid/xor.h>
15
#include <linux/mm.h>
16
#include "misc.h"
D
David Woodhouse 已提交
17 18 19 20 21 22 23 24 25
#include "ctree.h"
#include "disk-io.h"
#include "volumes.h"
#include "raid56.h"
#include "async-thread.h"

/* set when additional merges to this rbio are not allowed */
#define RBIO_RMW_LOCKED_BIT	1

26 27 28 29 30 31 32 33 34 35 36 37 38
/*
 * set when this rbio is sitting in the hash, but it is just a cache
 * of past RMW
 */
#define RBIO_CACHE_BIT		2

/*
 * set when it is safe to trust the stripe_pages for caching
 */
#define RBIO_CACHE_READY_BIT	3

#define RBIO_CACHE_SIZE 1024

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
#define BTRFS_STRIPE_HASH_TABLE_BITS				11

/* Used by the raid56 code to lock stripes for read/modify/write */
struct btrfs_stripe_hash {
	struct list_head hash_list;
	spinlock_t lock;
};

/* Used by the raid56 code to lock stripes for read/modify/write */
struct btrfs_stripe_hash_table {
	struct list_head stripe_cache;
	spinlock_t cache_lock;
	int cache_size;
	struct btrfs_stripe_hash table[];
};

55 56 57 58 59 60 61
/*
 * A bvec like structure to present a sector inside a page.
 *
 * Unlike bvec we don't need bvlen, as it's fixed to sectorsize.
 */
struct sector_ptr {
	struct page *page;
62 63
	unsigned int pgoff:24;
	unsigned int uptodate:8;
64 65
};

66
enum btrfs_rbio_ops {
67 68 69 70
	BTRFS_RBIO_WRITE,
	BTRFS_RBIO_READ_REBUILD,
	BTRFS_RBIO_PARITY_SCRUB,
	BTRFS_RBIO_REBUILD_MISSING,
71 72
};

D
David Woodhouse 已提交
73
struct btrfs_raid_bio {
74
	struct btrfs_io_context *bioc;
D
David Woodhouse 已提交
75 76 77 78 79 80 81 82

	/* while we're doing rmw on a stripe
	 * we put it into a hash table so we can
	 * lock the stripe and merge more rbios
	 * into it.
	 */
	struct list_head hash_list;

83 84 85 86 87
	/*
	 * LRU list for the stripe cache
	 */
	struct list_head stripe_cache;

D
David Woodhouse 已提交
88 89 90
	/*
	 * for scheduling work in the helper threads
	 */
91
	struct work_struct work;
D
David Woodhouse 已提交
92 93 94 95 96 97 98 99 100

	/*
	 * bio list and bio_list_lock are used
	 * to add more bios into the stripe
	 * in hopes of avoiding the full rmw
	 */
	struct bio_list bio_list;
	spinlock_t bio_list_lock;

101 102 103 104
	/* also protected by the bio_list_lock, the
	 * plug list is used by the plugging code
	 * to collect partial bios while plugged.  The
	 * stripe locking code also uses it to hand off
D
David Woodhouse 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
	 * the stripe lock to the next pending IO
	 */
	struct list_head plug_list;

	/*
	 * flags that tell us if it is safe to
	 * merge with this bio
	 */
	unsigned long flags;

	/*
	 * set if we're doing a parity rebuild
	 * for a read from higher up, which is handled
	 * differently from a parity rebuild as part of
	 * rmw
	 */
121
	enum btrfs_rbio_ops operation;
D
David Woodhouse 已提交
122

123 124
	/* Size of each individual stripe on disk */
	u32 stripe_len;
D
David Woodhouse 已提交
125

126 127
	/* How many pages there are for the full stripe including P/Q */
	u16 nr_pages;
D
David Woodhouse 已提交
128

129 130 131
	/* How many sectors there are for the full stripe including P/Q */
	u16 nr_sectors;

132 133 134
	/* Number of data stripes (no p/q) */
	u8 nr_data;

D
David Sterba 已提交
135
	/* Number of all stripes (including P/Q) */
136 137 138 139 140
	u8 real_stripes;

	/* How many pages there are for each stripe */
	u8 stripe_npages;

141 142 143
	/* How many sectors there are for each stripe */
	u8 stripe_nsectors;

144 145 146 147 148 149 150 151
	/* First bad stripe, -1 means no corruption */
	s8 faila;

	/* Second bad stripe (for RAID6 use) */
	s8 failb;

	/* Stripe number that we're scrubbing  */
	u8 scrubp;
D
David Woodhouse 已提交
152 153 154 155 156 157 158 159

	/*
	 * size of all the bios in the bio_list.  This
	 * helps us decide if the rbio maps to a full
	 * stripe or not
	 */
	int bio_list_bytes;

160 161
	int generic_bio_cnt;

162
	refcount_t refs;
D
David Woodhouse 已提交
163

164 165 166
	atomic_t stripes_pending;

	atomic_t error;
167 168 169 170 171 172 173

	/* Bitmap to record which horizontal stripe has data */
	unsigned long dbitmap;

	/* Allocated with stripe_nsectors-many bits for finish_*() calls */
	unsigned long finish_pbitmap;

D
David Woodhouse 已提交
174 175 176 177 178 179 180 181 182 183 184
	/*
	 * these are two arrays of pointers.  We allocate the
	 * rbio big enough to hold them both and setup their
	 * locations when the rbio is allocated
	 */

	/* pointers to pages that we allocated for
	 * reading/writing stripes directly from the disk (including P/Q)
	 */
	struct page **stripe_pages;

185 186 187
	/* Pointers to the sectors in the bio_list, for faster lookup */
	struct sector_ptr *bio_sectors;

188
	/*
189 190
	 * For subpage support, we need to map each sector to above
	 * stripe_pages.
191
	 */
192 193
	struct sector_ptr *stripe_sectors;

K
Kees Cook 已提交
194 195
	/* allocated with real_stripes-many pointers for finish_*() calls */
	void **finish_pointers;
D
David Woodhouse 已提交
196 197 198 199
};

static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
200 201
static void rmw_work(struct work_struct *work);
static void read_rebuild_work(struct work_struct *work);
D
David Woodhouse 已提交
202 203 204 205 206 207
static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
static void __free_raid_bio(struct btrfs_raid_bio *rbio);
static void index_rbio_pages(struct btrfs_raid_bio *rbio);
static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);

208 209
static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
					 int need_check);
210
static void scrub_parity_work(struct work_struct *work);
211

212
static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func)
213
{
214 215
	INIT_WORK(&rbio->work, work_func);
	queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
216 217
}

D
David Woodhouse 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
/*
 * the stripe hash table is used for locking, and to collect
 * bios in hopes of making a full stripe
 */
int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
{
	struct btrfs_stripe_hash_table *table;
	struct btrfs_stripe_hash_table *x;
	struct btrfs_stripe_hash *cur;
	struct btrfs_stripe_hash *h;
	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
	int i;

	if (info->stripe_hash_table)
		return 0;

234 235 236 237 238 239 240
	/*
	 * The table is large, starting with order 4 and can go as high as
	 * order 7 in case lock debugging is turned on.
	 *
	 * Try harder to allocate and fallback to vmalloc to lower the chance
	 * of a failing mount.
	 */
241
	table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
242 243
	if (!table)
		return -ENOMEM;
D
David Woodhouse 已提交
244

245 246 247
	spin_lock_init(&table->cache_lock);
	INIT_LIST_HEAD(&table->stripe_cache);

D
David Woodhouse 已提交
248 249 250 251 252 253 254 255 256
	h = table->table;

	for (i = 0; i < num_entries; i++) {
		cur = h + i;
		INIT_LIST_HEAD(&cur->hash_list);
		spin_lock_init(&cur->lock);
	}

	x = cmpxchg(&info->stripe_hash_table, NULL, table);
257
	kvfree(x);
D
David Woodhouse 已提交
258 259 260
	return 0;
}

261 262
/*
 * caching an rbio means to copy anything from the
263
 * bio_sectors array into the stripe_pages array.  We
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
 * use the page uptodate bit in the stripe cache array
 * to indicate if it has valid data
 *
 * once the caching is done, we set the cache ready
 * bit.
 */
static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
{
	int i;
	int ret;

	ret = alloc_rbio_pages(rbio);
	if (ret)
		return;

279 280 281 282 283 284 285 286 287 288 289 290 291
	for (i = 0; i < rbio->nr_sectors; i++) {
		/* Some range not covered by bio (partial write), skip it */
		if (!rbio->bio_sectors[i].page)
			continue;

		ASSERT(rbio->stripe_sectors[i].page);
		memcpy_page(rbio->stripe_sectors[i].page,
			    rbio->stripe_sectors[i].pgoff,
			    rbio->bio_sectors[i].page,
			    rbio->bio_sectors[i].pgoff,
			    rbio->bioc->fs_info->sectorsize);
		rbio->stripe_sectors[i].uptodate = 1;
	}
292 293 294
	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
}

D
David Woodhouse 已提交
295 296 297 298 299
/*
 * we hash on the first logical address of the stripe
 */
static int rbio_bucket(struct btrfs_raid_bio *rbio)
{
300
	u64 num = rbio->bioc->raid_map[0];
D
David Woodhouse 已提交
301 302 303 304 305 306 307 308 309 310 311 312

	/*
	 * we shift down quite a bit.  We're using byte
	 * addressing, and most of the lower bits are zeros.
	 * This tends to upset hash_64, and it consistently
	 * returns just one or two different values.
	 *
	 * shifting off the lower bits fixes things.
	 */
	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
}

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio,
				       unsigned int page_nr)
{
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
	int i;

	ASSERT(page_nr < rbio->nr_pages);

	for (i = sectors_per_page * page_nr;
	     i < sectors_per_page * page_nr + sectors_per_page;
	     i++) {
		if (!rbio->stripe_sectors[i].uptodate)
			return false;
	}
	return true;
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
/*
 * Update the stripe_sectors[] array to use correct page and pgoff
 *
 * Should be called every time any page pointer in stripes_pages[] got modified.
 */
static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
{
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
	u32 offset;
	int i;

	for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) {
		int page_index = offset >> PAGE_SHIFT;

		ASSERT(page_index < rbio->nr_pages);
		rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index];
		rbio->stripe_sectors[i].pgoff = offset_in_page(offset);
	}
}

351
/*
352 353 354 355 356
 * Stealing an rbio means taking all the uptodate pages from the stripe array
 * in the source rbio and putting them into the destination rbio.
 *
 * This will also update the involved stripe_sectors[] which are referring to
 * the old pages.
357 358 359 360 361 362 363 364 365 366 367 368
 */
static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
{
	int i;
	struct page *s;
	struct page *d;

	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
		return;

	for (i = 0; i < dest->nr_pages; i++) {
		s = src->stripe_pages[i];
369
		if (!s || !full_page_sectors_uptodate(src, i))
370 371 372 373 374 375 376 377 378
			continue;

		d = dest->stripe_pages[i];
		if (d)
			__free_page(d);

		dest->stripe_pages[i] = s;
		src->stripe_pages[i] = NULL;
	}
379 380
	index_stripe_sectors(dest);
	index_stripe_sectors(src);
381 382
}

D
David Woodhouse 已提交
383 384 385 386 387 388 389 390 391 392 393 394
/*
 * merging means we take the bio_list from the victim and
 * splice it into the destination.  The victim should
 * be discarded afterwards.
 *
 * must be called with dest->rbio_list_lock held
 */
static void merge_rbio(struct btrfs_raid_bio *dest,
		       struct btrfs_raid_bio *victim)
{
	bio_list_merge(&dest->bio_list, &victim->bio_list);
	dest->bio_list_bytes += victim->bio_list_bytes;
395 396 397
	/* Also inherit the bitmaps from @victim. */
	bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap,
		  dest->stripe_nsectors);
398
	dest->generic_bio_cnt += victim->generic_bio_cnt;
D
David Woodhouse 已提交
399 400 401 402
	bio_list_init(&victim->bio_list);
}

/*
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
 * used to prune items that are in the cache.  The caller
 * must hold the hash table lock.
 */
static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
{
	int bucket = rbio_bucket(rbio);
	struct btrfs_stripe_hash_table *table;
	struct btrfs_stripe_hash *h;
	int freeit = 0;

	/*
	 * check the bit again under the hash table lock.
	 */
	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
		return;

419
	table = rbio->bioc->fs_info->stripe_hash_table;
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
	h = table->table + bucket;

	/* hold the lock for the bucket because we may be
	 * removing it from the hash table
	 */
	spin_lock(&h->lock);

	/*
	 * hold the lock for the bio list because we need
	 * to make sure the bio list is empty
	 */
	spin_lock(&rbio->bio_list_lock);

	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
		list_del_init(&rbio->stripe_cache);
		table->cache_size -= 1;
		freeit = 1;

		/* if the bio list isn't empty, this rbio is
		 * still involved in an IO.  We take it out
		 * of the cache list, and drop the ref that
		 * was held for the list.
		 *
		 * If the bio_list was empty, we also remove
		 * the rbio from the hash_table, and drop
		 * the corresponding ref
		 */
		if (bio_list_empty(&rbio->bio_list)) {
			if (!list_empty(&rbio->hash_list)) {
				list_del_init(&rbio->hash_list);
450
				refcount_dec(&rbio->refs);
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
				BUG_ON(!list_empty(&rbio->plug_list));
			}
		}
	}

	spin_unlock(&rbio->bio_list_lock);
	spin_unlock(&h->lock);

	if (freeit)
		__free_raid_bio(rbio);
}

/*
 * prune a given rbio from the cache
 */
static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
{
	struct btrfs_stripe_hash_table *table;
	unsigned long flags;

	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
		return;

474
	table = rbio->bioc->fs_info->stripe_hash_table;
475 476 477 478 479 480 481 482 483

	spin_lock_irqsave(&table->cache_lock, flags);
	__remove_rbio_from_cache(rbio);
	spin_unlock_irqrestore(&table->cache_lock, flags);
}

/*
 * remove everything in the cache
 */
484
static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
{
	struct btrfs_stripe_hash_table *table;
	unsigned long flags;
	struct btrfs_raid_bio *rbio;

	table = info->stripe_hash_table;

	spin_lock_irqsave(&table->cache_lock, flags);
	while (!list_empty(&table->stripe_cache)) {
		rbio = list_entry(table->stripe_cache.next,
				  struct btrfs_raid_bio,
				  stripe_cache);
		__remove_rbio_from_cache(rbio);
	}
	spin_unlock_irqrestore(&table->cache_lock, flags);
}

/*
 * remove all cached entries and free the hash table
 * used by unmount
D
David Woodhouse 已提交
505 506 507 508 509
 */
void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
{
	if (!info->stripe_hash_table)
		return;
510
	btrfs_clear_rbio_cache(info);
W
Wang Shilong 已提交
511
	kvfree(info->stripe_hash_table);
D
David Woodhouse 已提交
512 513 514
	info->stripe_hash_table = NULL;
}

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
/*
 * insert an rbio into the stripe cache.  It
 * must have already been prepared by calling
 * cache_rbio_pages
 *
 * If this rbio was already cached, it gets
 * moved to the front of the lru.
 *
 * If the size of the rbio cache is too big, we
 * prune an item.
 */
static void cache_rbio(struct btrfs_raid_bio *rbio)
{
	struct btrfs_stripe_hash_table *table;
	unsigned long flags;

	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
		return;

534
	table = rbio->bioc->fs_info->stripe_hash_table;
535 536 537 538 539 540

	spin_lock_irqsave(&table->cache_lock, flags);
	spin_lock(&rbio->bio_list_lock);

	/* bump our ref if we were not in the list before */
	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
541
		refcount_inc(&rbio->refs);
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565

	if (!list_empty(&rbio->stripe_cache)){
		list_move(&rbio->stripe_cache, &table->stripe_cache);
	} else {
		list_add(&rbio->stripe_cache, &table->stripe_cache);
		table->cache_size += 1;
	}

	spin_unlock(&rbio->bio_list_lock);

	if (table->cache_size > RBIO_CACHE_SIZE) {
		struct btrfs_raid_bio *found;

		found = list_entry(table->stripe_cache.prev,
				  struct btrfs_raid_bio,
				  stripe_cache);

		if (found != rbio)
			__remove_rbio_from_cache(found);
	}

	spin_unlock_irqrestore(&table->cache_lock, flags);
}

D
David Woodhouse 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
/*
 * helper function to run the xor_blocks api.  It is only
 * able to do MAX_XOR_BLOCKS at a time, so we need to
 * loop through.
 */
static void run_xor(void **pages, int src_cnt, ssize_t len)
{
	int src_off = 0;
	int xor_src_cnt = 0;
	void *dest = pages[src_cnt];

	while(src_cnt > 0) {
		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
		xor_blocks(xor_src_cnt, len, dest, pages + src_off);

		src_cnt -= xor_src_cnt;
		src_off += xor_src_cnt;
	}
}

/*
587 588
 * Returns true if the bio list inside this rbio covers an entire stripe (no
 * rmw required).
D
David Woodhouse 已提交
589
 */
590
static int rbio_is_full(struct btrfs_raid_bio *rbio)
D
David Woodhouse 已提交
591
{
592
	unsigned long flags;
D
David Woodhouse 已提交
593 594 595
	unsigned long size = rbio->bio_list_bytes;
	int ret = 1;

596
	spin_lock_irqsave(&rbio->bio_list_lock, flags);
D
David Woodhouse 已提交
597 598 599 600
	if (size != rbio->nr_data * rbio->stripe_len)
		ret = 0;
	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
601

D
David Woodhouse 已提交
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
	return ret;
}

/*
 * returns 1 if it is safe to merge two rbios together.
 * The merging is safe if the two rbios correspond to
 * the same stripe and if they are both going in the same
 * direction (read vs write), and if neither one is
 * locked for final IO
 *
 * The caller is responsible for locking such that
 * rmw_locked is safe to test
 */
static int rbio_can_merge(struct btrfs_raid_bio *last,
			  struct btrfs_raid_bio *cur)
{
	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
		return 0;

622 623 624 625
	/*
	 * we can't merge with cached rbios, since the
	 * idea is that when we merge the destination
	 * rbio is going to run our IO for us.  We can
626
	 * steal from cached rbios though, other functions
627 628 629 630 631 632
	 * handle that.
	 */
	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
	    test_bit(RBIO_CACHE_BIT, &cur->flags))
		return 0;

633
	if (last->bioc->raid_map[0] != cur->bioc->raid_map[0])
D
David Woodhouse 已提交
634 635
		return 0;

636 637 638 639 640 641 642 643 644 645 646
	/* we can't merge with different operations */
	if (last->operation != cur->operation)
		return 0;
	/*
	 * We've need read the full stripe from the drive.
	 * check and repair the parity and write the new results.
	 *
	 * We're not allowed to add any new bios to the
	 * bio list here, anyone else that wants to
	 * change this stripe needs to do their own rmw.
	 */
647
	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
D
David Woodhouse 已提交
648 649
		return 0;

650
	if (last->operation == BTRFS_RBIO_REBUILD_MISSING)
651 652
		return 0;

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
	if (last->operation == BTRFS_RBIO_READ_REBUILD) {
		int fa = last->faila;
		int fb = last->failb;
		int cur_fa = cur->faila;
		int cur_fb = cur->failb;

		if (last->faila >= last->failb) {
			fa = last->failb;
			fb = last->faila;
		}

		if (cur->faila >= cur->failb) {
			cur_fa = cur->failb;
			cur_fb = cur->faila;
		}

		if (fa != cur_fa || fb != cur_fb)
			return 0;
	}
D
David Woodhouse 已提交
672 673 674
	return 1;
}

675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio,
					     unsigned int stripe_nr,
					     unsigned int sector_nr)
{
	ASSERT(stripe_nr < rbio->real_stripes);
	ASSERT(sector_nr < rbio->stripe_nsectors);

	return stripe_nr * rbio->stripe_nsectors + sector_nr;
}

/* Return a sector from rbio->stripe_sectors, not from the bio list */
static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio,
					     unsigned int stripe_nr,
					     unsigned int sector_nr)
{
	return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr,
							      sector_nr)];
}

694 695 696
/* Grab a sector inside P stripe */
static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio,
					      unsigned int sector_nr)
697
{
698
	return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr);
699 700
}

701 702 703
/* Grab a sector inside Q stripe, return NULL if not RAID6 */
static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio,
					      unsigned int sector_nr)
D
David Woodhouse 已提交
704
{
705 706 707
	if (rbio->nr_data + 1 == rbio->real_stripes)
		return NULL;
	return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr);
D
David Woodhouse 已提交
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
}

/*
 * The first stripe in the table for a logical address
 * has the lock.  rbios are added in one of three ways:
 *
 * 1) Nobody has the stripe locked yet.  The rbio is given
 * the lock and 0 is returned.  The caller must start the IO
 * themselves.
 *
 * 2) Someone has the stripe locked, but we're able to merge
 * with the lock owner.  The rbio is freed and the IO will
 * start automatically along with the existing rbio.  1 is returned.
 *
 * 3) Someone has the stripe locked, but we're not able to merge.
 * The rbio is added to the lock owner's plug list, or merged into
 * an rbio already on the plug list.  When the lock owner unlocks,
 * the next rbio on the list is run and the IO is started automatically.
 * 1 is returned
 *
 * If we return 0, the caller still owns the rbio and must continue with
 * IO submission.  If we return 1, the caller must assume the rbio has
 * already been freed.
 */
static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
{
734
	struct btrfs_stripe_hash *h;
D
David Woodhouse 已提交
735 736 737 738
	struct btrfs_raid_bio *cur;
	struct btrfs_raid_bio *pending;
	unsigned long flags;
	struct btrfs_raid_bio *freeit = NULL;
739
	struct btrfs_raid_bio *cache_drop = NULL;
D
David Woodhouse 已提交
740 741
	int ret = 0;

742
	h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
743

D
David Woodhouse 已提交
744 745
	spin_lock_irqsave(&h->lock, flags);
	list_for_each_entry(cur, &h->hash_list, hash_list) {
746
		if (cur->bioc->raid_map[0] != rbio->bioc->raid_map[0])
747
			continue;
748

749
		spin_lock(&cur->bio_list_lock);
750

751 752 753 754 755 756 757
		/* Can we steal this cached rbio's pages? */
		if (bio_list_empty(&cur->bio_list) &&
		    list_empty(&cur->plug_list) &&
		    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
		    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
			list_del_init(&cur->hash_list);
			refcount_dec(&cur->refs);
D
David Woodhouse 已提交
758

759 760 761
			steal_rbio(cur, rbio);
			cache_drop = cur;
			spin_unlock(&cur->bio_list_lock);
762

763 764
			goto lockit;
		}
D
David Woodhouse 已提交
765

766 767 768
		/* Can we merge into the lock owner? */
		if (rbio_can_merge(cur, rbio)) {
			merge_rbio(cur, rbio);
D
David Woodhouse 已提交
769
			spin_unlock(&cur->bio_list_lock);
770
			freeit = rbio;
D
David Woodhouse 已提交
771 772 773
			ret = 1;
			goto out;
		}
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798


		/*
		 * We couldn't merge with the running rbio, see if we can merge
		 * with the pending ones.  We don't have to check for rmw_locked
		 * because there is no way they are inside finish_rmw right now
		 */
		list_for_each_entry(pending, &cur->plug_list, plug_list) {
			if (rbio_can_merge(pending, rbio)) {
				merge_rbio(pending, rbio);
				spin_unlock(&cur->bio_list_lock);
				freeit = rbio;
				ret = 1;
				goto out;
			}
		}

		/*
		 * No merging, put us on the tail of the plug list, our rbio
		 * will be started with the currently running rbio unlocks
		 */
		list_add_tail(&rbio->plug_list, &cur->plug_list);
		spin_unlock(&cur->bio_list_lock);
		ret = 1;
		goto out;
D
David Woodhouse 已提交
799
	}
800
lockit:
801
	refcount_inc(&rbio->refs);
D
David Woodhouse 已提交
802 803 804
	list_add(&rbio->hash_list, &h->hash_list);
out:
	spin_unlock_irqrestore(&h->lock, flags);
805 806
	if (cache_drop)
		remove_rbio_from_cache(cache_drop);
D
David Woodhouse 已提交
807 808 809 810 811 812 813 814 815 816 817 818 819 820
	if (freeit)
		__free_raid_bio(freeit);
	return ret;
}

/*
 * called as rmw or parity rebuild is completed.  If the plug list has more
 * rbios waiting for this stripe, the next one on the list will be started
 */
static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
{
	int bucket;
	struct btrfs_stripe_hash *h;
	unsigned long flags;
821
	int keep_cache = 0;
D
David Woodhouse 已提交
822 823

	bucket = rbio_bucket(rbio);
824
	h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
D
David Woodhouse 已提交
825

826 827 828
	if (list_empty(&rbio->plug_list))
		cache_rbio(rbio);

D
David Woodhouse 已提交
829 830 831 832
	spin_lock_irqsave(&h->lock, flags);
	spin_lock(&rbio->bio_list_lock);

	if (!list_empty(&rbio->hash_list)) {
833 834 835 836 837 838 839 840 841 842 843 844
		/*
		 * if we're still cached and there is no other IO
		 * to perform, just leave this rbio here for others
		 * to steal from later
		 */
		if (list_empty(&rbio->plug_list) &&
		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
			keep_cache = 1;
			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
			BUG_ON(!bio_list_empty(&rbio->bio_list));
			goto done;
		}
D
David Woodhouse 已提交
845 846

		list_del_init(&rbio->hash_list);
847
		refcount_dec(&rbio->refs);
D
David Woodhouse 已提交
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863

		/*
		 * we use the plug list to hold all the rbios
		 * waiting for the chance to lock this stripe.
		 * hand the lock over to one of them.
		 */
		if (!list_empty(&rbio->plug_list)) {
			struct btrfs_raid_bio *next;
			struct list_head *head = rbio->plug_list.next;

			next = list_entry(head, struct btrfs_raid_bio,
					  plug_list);

			list_del_init(&rbio->plug_list);

			list_add(&next->hash_list, &h->hash_list);
864
			refcount_inc(&next->refs);
D
David Woodhouse 已提交
865 866 867
			spin_unlock(&rbio->bio_list_lock);
			spin_unlock_irqrestore(&h->lock, flags);

868
			if (next->operation == BTRFS_RBIO_READ_REBUILD)
869
				start_async_work(next, read_rebuild_work);
870 871
			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
				steal_rbio(rbio, next);
872
				start_async_work(next, read_rebuild_work);
873
			} else if (next->operation == BTRFS_RBIO_WRITE) {
874
				steal_rbio(rbio, next);
875
				start_async_work(next, rmw_work);
876 877
			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
				steal_rbio(rbio, next);
878
				start_async_work(next, scrub_parity_work);
879
			}
D
David Woodhouse 已提交
880 881 882 883

			goto done_nolock;
		}
	}
884
done:
D
David Woodhouse 已提交
885 886 887 888
	spin_unlock(&rbio->bio_list_lock);
	spin_unlock_irqrestore(&h->lock, flags);

done_nolock:
889 890
	if (!keep_cache)
		remove_rbio_from_cache(rbio);
D
David Woodhouse 已提交
891 892 893 894 895 896
}

static void __free_raid_bio(struct btrfs_raid_bio *rbio)
{
	int i;

897
	if (!refcount_dec_and_test(&rbio->refs))
D
David Woodhouse 已提交
898 899
		return;

900
	WARN_ON(!list_empty(&rbio->stripe_cache));
D
David Woodhouse 已提交
901 902 903 904 905 906 907 908 909
	WARN_ON(!list_empty(&rbio->hash_list));
	WARN_ON(!bio_list_empty(&rbio->bio_list));

	for (i = 0; i < rbio->nr_pages; i++) {
		if (rbio->stripe_pages[i]) {
			__free_page(rbio->stripe_pages[i]);
			rbio->stripe_pages[i] = NULL;
		}
	}
910

911
	btrfs_put_bioc(rbio->bioc);
D
David Woodhouse 已提交
912 913 914
	kfree(rbio);
}

915
static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
D
David Woodhouse 已提交
916
{
917 918 919 920 921 922 923 924 925
	struct bio *next;

	while (cur) {
		next = cur->bi_next;
		cur->bi_next = NULL;
		cur->bi_status = err;
		bio_endio(cur);
		cur = next;
	}
D
David Woodhouse 已提交
926 927 928 929 930 931
}

/*
 * this frees the rbio and runs through all the bios in the
 * bio_list and calls end_io on them
 */
932
static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
D
David Woodhouse 已提交
933 934
{
	struct bio *cur = bio_list_get(&rbio->bio_list);
935
	struct bio *extra;
936 937

	if (rbio->generic_bio_cnt)
938
		btrfs_bio_counter_sub(rbio->bioc->fs_info, rbio->generic_bio_cnt);
939 940 941 942 943 944
	/*
	 * Clear the data bitmap, as the rbio may be cached for later usage.
	 * do this before before unlock_stripe() so there will be no new bio
	 * for this bio.
	 */
	bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors);
945

946 947 948 949 950 951 952 953 954 955 956
	/*
	 * At this moment, rbio->bio_list is empty, however since rbio does not
	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
	 * hash list, rbio may be merged with others so that rbio->bio_list
	 * becomes non-empty.
	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
	 * more and we can call bio_endio() on all queued bios.
	 */
	unlock_stripe(rbio);
	extra = bio_list_get(&rbio->bio_list);
	__free_raid_bio(rbio);
D
David Woodhouse 已提交
957

958 959 960
	rbio_endio_bio_list(cur, err);
	if (extra)
		rbio_endio_bio_list(extra, err);
D
David Woodhouse 已提交
961 962 963 964 965 966
}

/*
 * end io function used by finish_rmw.  When we finally
 * get here, we've written a full stripe
 */
967
static void raid_write_end_io(struct bio *bio)
D
David Woodhouse 已提交
968 969
{
	struct btrfs_raid_bio *rbio = bio->bi_private;
970
	blk_status_t err = bio->bi_status;
971
	int max_errors;
D
David Woodhouse 已提交
972 973 974 975 976 977

	if (err)
		fail_bio_stripe(rbio, bio);

	bio_put(bio);

978
	if (!atomic_dec_and_test(&rbio->stripes_pending))
D
David Woodhouse 已提交
979 980
		return;

981
	err = BLK_STS_OK;
D
David Woodhouse 已提交
982 983

	/* OK, we have read all the stripes we need to. */
984
	max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
985
		     0 : rbio->bioc->max_errors;
986
	if (atomic_read(&rbio->error) > max_errors)
987
		err = BLK_STS_IOERR;
D
David Woodhouse 已提交
988

989
	rbio_orig_end_io(rbio, err);
D
David Woodhouse 已提交
990 991
}

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
/**
 * Get a sector pointer specified by its @stripe_nr and @sector_nr
 *
 * @rbio:               The raid bio
 * @stripe_nr:          Stripe number, valid range [0, real_stripe)
 * @sector_nr:		Sector number inside the stripe,
 *			valid range [0, stripe_nsectors)
 * @bio_list_only:      Whether to use sectors inside the bio list only.
 *
 * The read/modify/write code wants to reuse the original bio page as much
 * as possible, and only use stripe_sectors as fallback.
 */
static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio,
					 int stripe_nr, int sector_nr,
					 bool bio_list_only)
{
	struct sector_ptr *sector;
	int index;

	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->real_stripes);
	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);

	index = stripe_nr * rbio->stripe_nsectors + sector_nr;
	ASSERT(index >= 0 && index < rbio->nr_sectors);

	spin_lock_irq(&rbio->bio_list_lock);
	sector = &rbio->bio_sectors[index];
	if (sector->page || bio_list_only) {
		/* Don't return sector without a valid page pointer */
		if (!sector->page)
			sector = NULL;
		spin_unlock_irq(&rbio->bio_list_lock);
		return sector;
	}
	spin_unlock_irq(&rbio->bio_list_lock);

	return &rbio->stripe_sectors[index];
}

D
David Woodhouse 已提交
1031 1032 1033 1034
/*
 * allocation and initial setup for the btrfs_raid_bio.  Not
 * this does not allocate any pages for rbio->pages.
 */
1035
static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
1036
					 struct btrfs_io_context *bioc,
1037
					 u32 stripe_len)
D
David Woodhouse 已提交
1038
{
1039 1040 1041
	const unsigned int real_stripes = bioc->num_stripes - bioc->num_tgtdevs;
	const unsigned int stripe_npages = stripe_len >> PAGE_SHIFT;
	const unsigned int num_pages = stripe_npages * real_stripes;
1042 1043
	const unsigned int stripe_nsectors = stripe_len >> fs_info->sectorsize_bits;
	const unsigned int num_sectors = stripe_nsectors * real_stripes;
D
David Woodhouse 已提交
1044 1045 1046 1047
	struct btrfs_raid_bio *rbio;
	int nr_data = 0;
	void *p;

1048
	ASSERT(IS_ALIGNED(stripe_len, PAGE_SIZE));
1049 1050
	/* PAGE_SIZE must also be aligned to sectorsize for subpage support */
	ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize));
1051 1052 1053 1054 1055
	/*
	 * Our current stripe len should be fixed to 64k thus stripe_nsectors
	 * (at most 16) should be no larger than BITS_PER_LONG.
	 */
	ASSERT(stripe_nsectors <= BITS_PER_LONG);
1056

K
Kees Cook 已提交
1057 1058
	rbio = kzalloc(sizeof(*rbio) +
		       sizeof(*rbio->stripe_pages) * num_pages +
1059
		       sizeof(*rbio->bio_sectors) * num_sectors +
1060
		       sizeof(*rbio->stripe_sectors) * num_sectors +
1061
		       sizeof(*rbio->finish_pointers) * real_stripes,
K
Kees Cook 已提交
1062
		       GFP_NOFS);
1063
	if (!rbio)
D
David Woodhouse 已提交
1064 1065 1066 1067 1068
		return ERR_PTR(-ENOMEM);

	bio_list_init(&rbio->bio_list);
	INIT_LIST_HEAD(&rbio->plug_list);
	spin_lock_init(&rbio->bio_list_lock);
1069
	INIT_LIST_HEAD(&rbio->stripe_cache);
D
David Woodhouse 已提交
1070
	INIT_LIST_HEAD(&rbio->hash_list);
1071
	rbio->bioc = bioc;
D
David Woodhouse 已提交
1072 1073
	rbio->stripe_len = stripe_len;
	rbio->nr_pages = num_pages;
1074
	rbio->nr_sectors = num_sectors;
1075
	rbio->real_stripes = real_stripes;
1076
	rbio->stripe_npages = stripe_npages;
1077
	rbio->stripe_nsectors = stripe_nsectors;
D
David Woodhouse 已提交
1078 1079
	rbio->faila = -1;
	rbio->failb = -1;
1080
	refcount_set(&rbio->refs, 1);
1081 1082
	atomic_set(&rbio->error, 0);
	atomic_set(&rbio->stripes_pending, 0);
D
David Woodhouse 已提交
1083 1084

	/*
1085 1086
	 * The stripe_pages, bio_sectors, etc arrays point to the extra memory
	 * we allocated past the end of the rbio.
D
David Woodhouse 已提交
1087 1088
	 */
	p = rbio + 1;
K
Kees Cook 已提交
1089 1090 1091 1092 1093
#define CONSUME_ALLOC(ptr, count)	do {				\
		ptr = p;						\
		p = (unsigned char *)p + sizeof(*(ptr)) * (count);	\
	} while (0)
	CONSUME_ALLOC(rbio->stripe_pages, num_pages);
1094
	CONSUME_ALLOC(rbio->bio_sectors, num_sectors);
1095
	CONSUME_ALLOC(rbio->stripe_sectors, num_sectors);
K
Kees Cook 已提交
1096 1097
	CONSUME_ALLOC(rbio->finish_pointers, real_stripes);
#undef  CONSUME_ALLOC
D
David Woodhouse 已提交
1098

1099
	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5)
Z
Zhao Lei 已提交
1100
		nr_data = real_stripes - 1;
1101
	else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6)
1102
		nr_data = real_stripes - 2;
D
David Woodhouse 已提交
1103
	else
Z
Zhao Lei 已提交
1104
		BUG();
D
David Woodhouse 已提交
1105 1106 1107 1108 1109 1110 1111 1112

	rbio->nr_data = nr_data;
	return rbio;
}

/* allocate pages for all the stripes in the bio, including parity */
static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
{
1113 1114 1115 1116 1117 1118 1119 1120
	int ret;

	ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages);
	if (ret < 0)
		return ret;
	/* Mapping all sectors */
	index_stripe_sectors(rbio);
	return 0;
D
David Woodhouse 已提交
1121 1122
}

1123
/* only allocate pages for p/q stripes */
D
David Woodhouse 已提交
1124 1125
static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
{
1126
	const int data_pages = rbio->nr_data * rbio->stripe_npages;
1127
	int ret;
D
David Woodhouse 已提交
1128

1129 1130 1131 1132 1133 1134 1135
	ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages,
				     rbio->stripe_pages + data_pages);
	if (ret < 0)
		return ret;

	index_stripe_sectors(rbio);
	return 0;
D
David Woodhouse 已提交
1136 1137 1138
}

/*
1139 1140 1141 1142
 * Add a single sector @sector into our list of bios for IO.
 *
 * Return 0 if everything went well.
 * Return <0 for error.
D
David Woodhouse 已提交
1143
 */
1144 1145 1146 1147 1148 1149 1150
static int rbio_add_io_sector(struct btrfs_raid_bio *rbio,
			      struct bio_list *bio_list,
			      struct sector_ptr *sector,
			      unsigned int stripe_nr,
			      unsigned int sector_nr,
			      unsigned long bio_max_len,
			      unsigned int opf)
D
David Woodhouse 已提交
1151
{
1152
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
D
David Woodhouse 已提交
1153 1154 1155
	struct bio *last = bio_list->tail;
	int ret;
	struct bio *bio;
1156
	struct btrfs_io_stripe *stripe;
D
David Woodhouse 已提交
1157 1158
	u64 disk_start;

1159 1160 1161 1162 1163 1164 1165 1166 1167
	/*
	 * Note: here stripe_nr has taken device replace into consideration,
	 * thus it can be larger than rbio->real_stripe.
	 * So here we check against bioc->num_stripes, not rbio->real_stripes.
	 */
	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes);
	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
	ASSERT(sector->page);

1168
	stripe = &rbio->bioc->stripes[stripe_nr];
1169
	disk_start = stripe->physical + sector_nr * sectorsize;
D
David Woodhouse 已提交
1170 1171 1172 1173 1174 1175 1176

	/* if the device is missing, just fail this stripe */
	if (!stripe->dev->bdev)
		return fail_rbio_index(rbio, stripe_nr);

	/* see if we can add this page onto our existing bio */
	if (last) {
D
David Sterba 已提交
1177
		u64 last_end = last->bi_iter.bi_sector << 9;
1178
		last_end += last->bi_iter.bi_size;
D
David Woodhouse 已提交
1179 1180 1181 1182 1183

		/*
		 * we can't merge these if they are from different
		 * devices or if they are not contiguous
		 */
1184
		if (last_end == disk_start && !last->bi_status &&
1185
		    last->bi_bdev == stripe->dev->bdev) {
1186 1187 1188
			ret = bio_add_page(last, sector->page, sectorsize,
					   sector->pgoff);
			if (ret == sectorsize)
D
David Woodhouse 已提交
1189 1190 1191 1192 1193
				return 0;
		}
	}

	/* put a new bio on the list */
1194 1195
	bio = bio_alloc(stripe->dev->bdev, max(bio_max_len >> PAGE_SHIFT, 1UL),
			opf, GFP_NOFS);
1196
	bio->bi_iter.bi_sector = disk_start >> 9;
1197
	bio->bi_private = rbio;
D
David Woodhouse 已提交
1198

1199
	bio_add_page(bio, sector->page, sectorsize, sector->pgoff);
D
David Woodhouse 已提交
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	bio_list_add(bio_list, bio);
	return 0;
}

/*
 * while we're doing the read/modify/write cycle, we could
 * have errors in reading pages off the disk.  This checks
 * for errors and if we're not able to read the page it'll
 * trigger parity reconstruction.  The rmw will be finished
 * after we've reconstructed the failed stripes
 */
static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
{
	if (rbio->faila >= 0 || rbio->failb >= 0) {
1214
		BUG_ON(rbio->faila == rbio->real_stripes - 1);
D
David Woodhouse 已提交
1215 1216 1217 1218 1219 1220
		__raid56_parity_recover(rbio);
	} else {
		finish_rmw(rbio);
	}
}

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio)
{
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
	struct bio_vec bvec;
	struct bvec_iter iter;
	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
		     rbio->bioc->raid_map[0];

	if (bio_flagged(bio, BIO_CLONED))
		bio->bi_iter = btrfs_bio(bio)->iter;

	bio_for_each_segment(bvec, bio, iter) {
		u32 bvec_offset;

		for (bvec_offset = 0; bvec_offset < bvec.bv_len;
		     bvec_offset += sectorsize, offset += sectorsize) {
			int index = offset / sectorsize;
			struct sector_ptr *sector = &rbio->bio_sectors[index];

			sector->page = bvec.bv_page;
			sector->pgoff = bvec.bv_offset + bvec_offset;
			ASSERT(sector->pgoff < PAGE_SIZE);
		}
	}
}

D
David Woodhouse 已提交
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
/*
 * helper function to walk our bio list and populate the bio_pages array with
 * the result.  This seems expensive, but it is faster than constantly
 * searching through the bio list as we setup the IO in finish_rmw or stripe
 * reconstruction.
 *
 * This must be called before you trust the answers from page_in_rbio
 */
static void index_rbio_pages(struct btrfs_raid_bio *rbio)
{
	struct bio *bio;

	spin_lock_irq(&rbio->bio_list_lock);
1260 1261 1262
	bio_list_for_each(bio, &rbio->bio_list)
		index_one_bio(rbio, bio);

D
David Woodhouse 已提交
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
	spin_unlock_irq(&rbio->bio_list_lock);
}

/*
 * this is called from one of two situations.  We either
 * have a full stripe from the higher layers, or we've read all
 * the missing bits off disk.
 *
 * This will calculate the parity and then send down any
 * changed blocks.
 */
static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
{
1276
	struct btrfs_io_context *bioc = rbio->bioc;
1277
	const u32 sectorsize = bioc->fs_info->sectorsize;
K
Kees Cook 已提交
1278
	void **pointers = rbio->finish_pointers;
D
David Woodhouse 已提交
1279 1280
	int nr_data = rbio->nr_data;
	int stripe;
1281
	int sectornr;
1282
	bool has_qstripe;
D
David Woodhouse 已提交
1283 1284 1285 1286 1287 1288
	struct bio_list bio_list;
	struct bio *bio;
	int ret;

	bio_list_init(&bio_list);

1289 1290 1291 1292 1293
	if (rbio->real_stripes - rbio->nr_data == 1)
		has_qstripe = false;
	else if (rbio->real_stripes - rbio->nr_data == 2)
		has_qstripe = true;
	else
D
David Woodhouse 已提交
1294 1295
		BUG();

1296 1297 1298
	/* We should have at least one data sector. */
	ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors));

D
David Woodhouse 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
	/* at this point we either have a full stripe,
	 * or we've read the full stripe from the drive.
	 * recalculate the parity and write the new results.
	 *
	 * We're not allowed to add any new bios to the
	 * bio list here, anyone else that wants to
	 * change this stripe needs to do their own rmw.
	 */
	spin_lock_irq(&rbio->bio_list_lock);
	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
	spin_unlock_irq(&rbio->bio_list_lock);

1311
	atomic_set(&rbio->error, 0);
D
David Woodhouse 已提交
1312 1313 1314 1315

	/*
	 * now that we've set rmw_locked, run through the
	 * bio list one last time and map the page pointers
1316 1317 1318 1319 1320
	 *
	 * We don't cache full rbios because we're assuming
	 * the higher layers are unlikely to use this area of
	 * the disk again soon.  If they do use it again,
	 * hopefully they will send another full bio.
D
David Woodhouse 已提交
1321 1322
	 */
	index_rbio_pages(rbio);
1323 1324 1325 1326
	if (!rbio_is_full(rbio))
		cache_rbio_pages(rbio);
	else
		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
D
David Woodhouse 已提交
1327

1328
	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
1329 1330 1331
		struct sector_ptr *sector;

		/* First collect one sector from each data stripe */
D
David Woodhouse 已提交
1332
		for (stripe = 0; stripe < nr_data; stripe++) {
1333 1334 1335
			sector = sector_in_rbio(rbio, stripe, sectornr, 0);
			pointers[stripe] = kmap_local_page(sector->page) +
					   sector->pgoff;
D
David Woodhouse 已提交
1336 1337
		}

1338 1339 1340 1341
		/* Then add the parity stripe */
		sector = rbio_pstripe_sector(rbio, sectornr);
		sector->uptodate = 1;
		pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff;
D
David Woodhouse 已提交
1342

1343
		if (has_qstripe) {
D
David Woodhouse 已提交
1344
			/*
1345 1346
			 * RAID6, add the qstripe and call the library function
			 * to fill in our p/q
D
David Woodhouse 已提交
1347
			 */
1348 1349 1350 1351
			sector = rbio_qstripe_sector(rbio, sectornr);
			sector->uptodate = 1;
			pointers[stripe++] = kmap_local_page(sector->page) +
					     sector->pgoff;
D
David Woodhouse 已提交
1352

1353
			raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
D
David Woodhouse 已提交
1354 1355 1356
						pointers);
		} else {
			/* raid5 */
1357 1358
			memcpy(pointers[nr_data], pointers[0], sectorsize);
			run_xor(pointers + 1, nr_data - 1, sectorsize);
D
David Woodhouse 已提交
1359
		}
1360 1361
		for (stripe = stripe - 1; stripe >= 0; stripe--)
			kunmap_local(pointers[stripe]);
D
David Woodhouse 已提交
1362 1363 1364 1365 1366 1367 1368
	}

	/*
	 * time to start writing.  Make bios for everything from the
	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
	 * everything else.
	 */
1369
	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1370 1371 1372
		for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
			struct sector_ptr *sector;

1373 1374 1375 1376
			/* This vertical stripe has no data, skip it. */
			if (!test_bit(sectornr, &rbio->dbitmap))
				continue;

D
David Woodhouse 已提交
1377
			if (stripe < rbio->nr_data) {
1378 1379
				sector = sector_in_rbio(rbio, stripe, sectornr, 1);
				if (!sector)
D
David Woodhouse 已提交
1380 1381
					continue;
			} else {
1382
				sector = rbio_stripe_sector(rbio, stripe, sectornr);
D
David Woodhouse 已提交
1383 1384
			}

1385 1386 1387
			ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
						 sectornr, rbio->stripe_len,
						 REQ_OP_WRITE);
D
David Woodhouse 已提交
1388 1389 1390 1391 1392
			if (ret)
				goto cleanup;
		}
	}

1393
	if (likely(!bioc->num_tgtdevs))
1394 1395 1396
		goto write_data;

	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1397
		if (!bioc->tgtdev_map[stripe])
1398 1399
			continue;

1400 1401 1402
		for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
			struct sector_ptr *sector;

1403 1404 1405 1406
			/* This vertical stripe has no data, skip it. */
			if (!test_bit(sectornr, &rbio->dbitmap))
				continue;

1407
			if (stripe < rbio->nr_data) {
1408 1409
				sector = sector_in_rbio(rbio, stripe, sectornr, 1);
				if (!sector)
1410 1411
					continue;
			} else {
1412
				sector = rbio_stripe_sector(rbio, stripe, sectornr);
1413 1414
			}

1415
			ret = rbio_add_io_sector(rbio, &bio_list, sector,
1416
					       rbio->bioc->tgtdev_map[stripe],
1417
					       sectornr, rbio->stripe_len,
1418
					       REQ_OP_WRITE);
1419 1420 1421 1422 1423 1424
			if (ret)
				goto cleanup;
		}
	}

write_data:
1425 1426
	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
D
David Woodhouse 已提交
1427

1428
	while ((bio = bio_list_pop(&bio_list))) {
D
David Woodhouse 已提交
1429
		bio->bi_end_io = raid_write_end_io;
1430 1431

		submit_bio(bio);
D
David Woodhouse 已提交
1432 1433 1434 1435
	}
	return;

cleanup:
1436
	rbio_orig_end_io(rbio, BLK_STS_IOERR);
L
Liu Bo 已提交
1437 1438 1439

	while ((bio = bio_list_pop(&bio_list)))
		bio_put(bio);
D
David Woodhouse 已提交
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
}

/*
 * helper to find the stripe number for a given bio.  Used to figure out which
 * stripe has failed.  This expects the bio to correspond to a physical disk,
 * so it looks up based on physical sector numbers.
 */
static int find_bio_stripe(struct btrfs_raid_bio *rbio,
			   struct bio *bio)
{
1450
	u64 physical = bio->bi_iter.bi_sector;
D
David Woodhouse 已提交
1451
	int i;
1452
	struct btrfs_io_stripe *stripe;
D
David Woodhouse 已提交
1453 1454 1455

	physical <<= 9;

1456 1457
	for (i = 0; i < rbio->bioc->num_stripes; i++) {
		stripe = &rbio->bioc->stripes[i];
1458
		if (in_range(physical, stripe->physical, rbio->stripe_len) &&
1459
		    stripe->dev->bdev && bio->bi_bdev == stripe->dev->bdev) {
D
David Woodhouse 已提交
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
			return i;
		}
	}
	return -1;
}

/*
 * helper to find the stripe number for a given
 * bio (before mapping).  Used to figure out which stripe has
 * failed.  This looks up based on logical block numbers.
 */
static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
				   struct bio *bio)
{
D
David Sterba 已提交
1474
	u64 logical = bio->bi_iter.bi_sector << 9;
D
David Woodhouse 已提交
1475 1476 1477
	int i;

	for (i = 0; i < rbio->nr_data; i++) {
1478
		u64 stripe_start = rbio->bioc->raid_map[i];
1479 1480

		if (in_range(logical, stripe_start, rbio->stripe_len))
D
David Woodhouse 已提交
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
			return i;
	}
	return -1;
}

/*
 * returns -EIO if we had too many failures
 */
static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
{
	unsigned long flags;
	int ret = 0;

	spin_lock_irqsave(&rbio->bio_list_lock, flags);

	/* we already know this stripe is bad, move on */
	if (rbio->faila == failed || rbio->failb == failed)
		goto out;

	if (rbio->faila == -1) {
		/* first failure on this rbio */
		rbio->faila = failed;
1503
		atomic_inc(&rbio->error);
D
David Woodhouse 已提交
1504 1505 1506
	} else if (rbio->failb == -1) {
		/* second failure on this rbio */
		rbio->failb = failed;
1507
		atomic_inc(&rbio->error);
D
David Woodhouse 已提交
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
	} else {
		ret = -EIO;
	}
out:
	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);

	return ret;
}

/*
 * helper to fail a stripe based on a physical disk
 * bio.
 */
static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
			   struct bio *bio)
{
	int failed = find_bio_stripe(rbio, bio);

	if (failed < 0)
		return -EIO;

	return fail_rbio_index(rbio, failed);
}

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
/*
 * For subpage case, we can no longer set page Uptodate directly for
 * stripe_pages[], thus we need to locate the sector.
 */
static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio,
					     struct page *page,
					     unsigned int pgoff)
{
	int i;

	for (i = 0; i < rbio->nr_sectors; i++) {
		struct sector_ptr *sector = &rbio->stripe_sectors[i];

		if (sector->page == page && sector->pgoff == pgoff)
			return sector;
	}
	return NULL;
}

D
David Woodhouse 已提交
1551 1552 1553 1554
/*
 * this sets each page in the bio uptodate.  It should only be used on private
 * rbio pages, nothing that comes in from the higher layers
 */
1555
static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio)
D
David Woodhouse 已提交
1556
{
1557
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1558
	struct bio_vec *bvec;
1559
	struct bvec_iter_all iter_all;
1560

1561
	ASSERT(!bio_flagged(bio, BIO_CLONED));
D
David Woodhouse 已提交
1562

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
	bio_for_each_segment_all(bvec, bio, iter_all) {
		struct sector_ptr *sector;
		int pgoff;

		for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len;
		     pgoff += sectorsize) {
			sector = find_stripe_sector(rbio, bvec->bv_page, pgoff);
			ASSERT(sector);
			if (sector)
				sector->uptodate = 1;
		}
	}
D
David Woodhouse 已提交
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
}

/*
 * end io for the read phase of the rmw cycle.  All the bios here are physical
 * stripe bios we've read from the disk so we can recalculate the parity of the
 * stripe.
 *
 * This will usually kick off finish_rmw once all the bios are read in, but it
 * may trigger parity reconstruction if we had any errors along the way
 */
1585
static void raid_rmw_end_io(struct bio *bio)
D
David Woodhouse 已提交
1586 1587 1588
{
	struct btrfs_raid_bio *rbio = bio->bi_private;

1589
	if (bio->bi_status)
D
David Woodhouse 已提交
1590 1591
		fail_bio_stripe(rbio, bio);
	else
1592
		set_bio_pages_uptodate(rbio, bio);
D
David Woodhouse 已提交
1593 1594 1595

	bio_put(bio);

1596
	if (!atomic_dec_and_test(&rbio->stripes_pending))
D
David Woodhouse 已提交
1597 1598
		return;

1599
	if (atomic_read(&rbio->error) > rbio->bioc->max_errors)
D
David Woodhouse 已提交
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
		goto cleanup;

	/*
	 * this will normally call finish_rmw to start our write
	 * but if there are any failed stripes we'll reconstruct
	 * from parity first
	 */
	validate_rbio_for_rmw(rbio);
	return;

cleanup:

1612
	rbio_orig_end_io(rbio, BLK_STS_IOERR);
D
David Woodhouse 已提交
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
}

/*
 * the stripe must be locked by the caller.  It will
 * unlock after all the writes are done
 */
static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
{
	int bios_to_read = 0;
	struct bio_list bio_list;
	int ret;
1624
	int sectornr;
D
David Woodhouse 已提交
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
	int stripe;
	struct bio *bio;

	bio_list_init(&bio_list);

	ret = alloc_rbio_pages(rbio);
	if (ret)
		goto cleanup;

	index_rbio_pages(rbio);

1636
	atomic_set(&rbio->error, 0);
D
David Woodhouse 已提交
1637 1638 1639 1640 1641
	/*
	 * build a list of bios to read all the missing parts of this
	 * stripe
	 */
	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1642 1643 1644
		for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
			struct sector_ptr *sector;

D
David Woodhouse 已提交
1645
			/*
1646 1647 1648 1649
			 * We want to find all the sectors missing from the
			 * rbio and read them from the disk.  If * sector_in_rbio()
			 * finds a page in the bio list we don't need to read
			 * it off the stripe.
D
David Woodhouse 已提交
1650
			 */
1651 1652
			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
			if (sector)
D
David Woodhouse 已提交
1653 1654
				continue;

1655
			sector = rbio_stripe_sector(rbio, stripe, sectornr);
1656
			/*
1657 1658
			 * The bio cache may have handed us an uptodate page.
			 * If so, be happy and use it.
1659
			 */
1660
			if (sector->uptodate)
1661 1662
				continue;

1663 1664
			ret = rbio_add_io_sector(rbio, &bio_list, sector,
				       stripe, sectornr, rbio->stripe_len,
1665
				       REQ_OP_READ);
D
David Woodhouse 已提交
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
			if (ret)
				goto cleanup;
		}
	}

	bios_to_read = bio_list_size(&bio_list);
	if (!bios_to_read) {
		/*
		 * this can happen if others have merged with
		 * us, it means there is nothing left to read.
		 * But if there are missing devices it may not be
		 * safe to do the full stripe write yet.
		 */
		goto finish;
	}

	/*
1683 1684
	 * The bioc may be freed once we submit the last bio. Make sure not to
	 * touch it after that.
D
David Woodhouse 已提交
1685
	 */
1686
	atomic_set(&rbio->stripes_pending, bios_to_read);
1687
	while ((bio = bio_list_pop(&bio_list))) {
D
David Woodhouse 已提交
1688 1689
		bio->bi_end_io = raid_rmw_end_io;

1690
		btrfs_bio_wq_end_io(rbio->bioc->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
D
David Woodhouse 已提交
1691

1692
		submit_bio(bio);
D
David Woodhouse 已提交
1693 1694 1695 1696 1697
	}
	/* the actual write will happen once the reads are done */
	return 0;

cleanup:
1698
	rbio_orig_end_io(rbio, BLK_STS_IOERR);
L
Liu Bo 已提交
1699 1700 1701 1702

	while ((bio = bio_list_pop(&bio_list)))
		bio_put(bio);

D
David Woodhouse 已提交
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
	return -EIO;

finish:
	validate_rbio_for_rmw(rbio);
	return 0;
}

/*
 * if the upper layers pass in a full stripe, we thank them by only allocating
 * enough pages to hold the parity, and sending it all down quickly.
 */
static int full_stripe_write(struct btrfs_raid_bio *rbio)
{
	int ret;

	ret = alloc_rbio_parity_pages(rbio);
1719 1720
	if (ret) {
		__free_raid_bio(rbio);
D
David Woodhouse 已提交
1721
		return ret;
1722
	}
D
David Woodhouse 已提交
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740

	ret = lock_stripe_add(rbio);
	if (ret == 0)
		finish_rmw(rbio);
	return 0;
}

/*
 * partial stripe writes get handed over to async helpers.
 * We're really hoping to merge a few more writes into this
 * rbio before calculating new parity
 */
static int partial_stripe_write(struct btrfs_raid_bio *rbio)
{
	int ret;

	ret = lock_stripe_add(rbio);
	if (ret == 0)
1741
		start_async_work(rbio, rmw_work);
D
David Woodhouse 已提交
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
	return 0;
}

/*
 * sometimes while we were reading from the drive to
 * recalculate parity, enough new bios come into create
 * a full stripe.  So we do a check here to see if we can
 * go directly to finish_rmw
 */
static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
{
	/* head off into rmw land if we don't have a full stripe */
	if (!rbio_is_full(rbio))
		return partial_stripe_write(rbio);
	return full_stripe_write(rbio);
}

1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
/*
 * We use plugging call backs to collect full stripes.
 * Any time we get a partial stripe write while plugged
 * we collect it into a list.  When the unplug comes down,
 * we sort the list by logical block number and merge
 * everything we can into the same rbios
 */
struct btrfs_plug_cb {
	struct blk_plug_cb cb;
	struct btrfs_fs_info *info;
	struct list_head rbio_list;
1770
	struct work_struct work;
1771 1772 1773 1774 1775
};

/*
 * rbios on the plug list are sorted for easier merging.
 */
1776 1777
static int plug_cmp(void *priv, const struct list_head *a,
		    const struct list_head *b)
1778
{
1779 1780 1781 1782
	const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
						       plug_list);
	const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
						       plug_list);
1783 1784
	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809

	if (a_sector < b_sector)
		return -1;
	if (a_sector > b_sector)
		return 1;
	return 0;
}

static void run_plug(struct btrfs_plug_cb *plug)
{
	struct btrfs_raid_bio *cur;
	struct btrfs_raid_bio *last = NULL;

	/*
	 * sort our plug list then try to merge
	 * everything we can in hopes of creating full
	 * stripes.
	 */
	list_sort(NULL, &plug->rbio_list, plug_cmp);
	while (!list_empty(&plug->rbio_list)) {
		cur = list_entry(plug->rbio_list.next,
				 struct btrfs_raid_bio, plug_list);
		list_del_init(&cur->plug_list);

		if (rbio_is_full(cur)) {
1810 1811
			int ret;

1812
			/* we have a full stripe, send it down */
1813 1814
			ret = full_stripe_write(cur);
			BUG_ON(ret);
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
			continue;
		}
		if (last) {
			if (rbio_can_merge(last, cur)) {
				merge_rbio(last, cur);
				__free_raid_bio(cur);
				continue;

			}
			__raid56_parity_write(last);
		}
		last = cur;
	}
	if (last) {
		__raid56_parity_write(last);
	}
	kfree(plug);
}

/*
 * if the unplug comes from schedule, we have to push the
 * work off to a helper thread
 */
1838
static void unplug_work(struct work_struct *work)
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
{
	struct btrfs_plug_cb *plug;
	plug = container_of(work, struct btrfs_plug_cb, work);
	run_plug(plug);
}

static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
{
	struct btrfs_plug_cb *plug;
	plug = container_of(cb, struct btrfs_plug_cb, cb);

	if (from_schedule) {
1851 1852
		INIT_WORK(&plug->work, unplug_work);
		queue_work(plug->info->rmw_workers, &plug->work);
1853 1854 1855 1856 1857
		return;
	}
	run_plug(plug);
}

1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
/* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
{
	const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
	const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
	const u64 full_stripe_start = rbio->bioc->raid_map[0];
	const u32 orig_len = orig_bio->bi_iter.bi_size;
	const u32 sectorsize = fs_info->sectorsize;
	u64 cur_logical;

	ASSERT(orig_logical >= full_stripe_start &&
	       orig_logical + orig_len <= full_stripe_start +
	       rbio->nr_data * rbio->stripe_len);

	bio_list_add(&rbio->bio_list, orig_bio);
	rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;

	/* Update the dbitmap. */
	for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
	     cur_logical += sectorsize) {
		int bit = ((u32)(cur_logical - full_stripe_start) >>
			   fs_info->sectorsize_bits) % rbio->stripe_nsectors;

		set_bit(bit, &rbio->dbitmap);
	}
}

D
David Woodhouse 已提交
1885 1886 1887
/*
 * our main entry point for writes from the rest of the FS.
 */
1888
int raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc, u32 stripe_len)
D
David Woodhouse 已提交
1889
{
1890
	struct btrfs_fs_info *fs_info = bioc->fs_info;
D
David Woodhouse 已提交
1891
	struct btrfs_raid_bio *rbio;
1892 1893
	struct btrfs_plug_cb *plug = NULL;
	struct blk_plug_cb *cb;
1894
	int ret;
D
David Woodhouse 已提交
1895

1896
	rbio = alloc_rbio(fs_info, bioc, stripe_len);
1897
	if (IS_ERR(rbio)) {
1898
		btrfs_put_bioc(bioc);
D
David Woodhouse 已提交
1899
		return PTR_ERR(rbio);
1900
	}
1901
	rbio->operation = BTRFS_RBIO_WRITE;
1902
	rbio_add_bio(rbio, bio);
1903

1904
	btrfs_bio_counter_inc_noblocked(fs_info);
1905 1906
	rbio->generic_bio_cnt = 1;

1907 1908 1909 1910
	/*
	 * don't plug on full rbios, just get them out the door
	 * as quickly as we can
	 */
1911 1912 1913
	if (rbio_is_full(rbio)) {
		ret = full_stripe_write(rbio);
		if (ret)
1914
			btrfs_bio_counter_dec(fs_info);
1915 1916
		return ret;
	}
1917

1918
	cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1919 1920 1921
	if (cb) {
		plug = container_of(cb, struct btrfs_plug_cb, cb);
		if (!plug->info) {
1922
			plug->info = fs_info;
1923 1924 1925
			INIT_LIST_HEAD(&plug->rbio_list);
		}
		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1926
		ret = 0;
1927
	} else {
1928 1929
		ret = __raid56_parity_write(rbio);
		if (ret)
1930
			btrfs_bio_counter_dec(fs_info);
1931
	}
1932
	return ret;
D
David Woodhouse 已提交
1933 1934 1935 1936 1937 1938 1939 1940 1941
}

/*
 * all parity reconstruction happens here.  We've read in everything
 * we can find from the drives and this does the heavy lifting of
 * sorting the good from the bad.
 */
static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
{
1942 1943
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
	int sectornr, stripe;
D
David Woodhouse 已提交
1944
	void **pointers;
1945
	void **unmap_array;
D
David Woodhouse 已提交
1946
	int faila = -1, failb = -1;
1947
	blk_status_t err;
D
David Woodhouse 已提交
1948 1949
	int i;

1950 1951 1952 1953
	/*
	 * This array stores the pointer for each sector, thus it has the extra
	 * pgoff value added from each sector
	 */
1954
	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
D
David Woodhouse 已提交
1955
	if (!pointers) {
1956
		err = BLK_STS_RESOURCE;
D
David Woodhouse 已提交
1957 1958 1959
		goto cleanup_io;
	}

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
	/*
	 * Store copy of pointers that does not get reordered during
	 * reconstruction so that kunmap_local works.
	 */
	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
	if (!unmap_array) {
		err = BLK_STS_RESOURCE;
		goto cleanup_pointers;
	}

D
David Woodhouse 已提交
1970 1971 1972
	faila = rbio->faila;
	failb = rbio->failb;

1973 1974
	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
D
David Woodhouse 已提交
1975 1976 1977 1978 1979 1980 1981
		spin_lock_irq(&rbio->bio_list_lock);
		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
		spin_unlock_irq(&rbio->bio_list_lock);
	}

	index_rbio_pages(rbio);

1982 1983 1984
	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
		struct sector_ptr *sector;

1985 1986 1987 1988 1989
		/*
		 * Now we just use bitmap to mark the horizontal stripes in
		 * which we have data when doing parity scrub.
		 */
		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1990
		    !test_bit(sectornr, &rbio->dbitmap))
1991 1992
			continue;

1993
		/*
1994
		 * Setup our array of pointers with sectors from each stripe
1995 1996 1997
		 *
		 * NOTE: store a duplicate array of pointers to preserve the
		 * pointer order
D
David Woodhouse 已提交
1998
		 */
1999
		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
D
David Woodhouse 已提交
2000
			/*
2001
			 * If we're rebuilding a read, we have to use
D
David Woodhouse 已提交
2002 2003
			 * pages from the bio list
			 */
2004 2005
			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
D
David Woodhouse 已提交
2006
			    (stripe == faila || stripe == failb)) {
2007
				sector = sector_in_rbio(rbio, stripe, sectornr, 0);
D
David Woodhouse 已提交
2008
			} else {
2009
				sector = rbio_stripe_sector(rbio, stripe, sectornr);
D
David Woodhouse 已提交
2010
			}
2011 2012 2013
			ASSERT(sector->page);
			pointers[stripe] = kmap_local_page(sector->page) +
					   sector->pgoff;
2014
			unmap_array[stripe] = pointers[stripe];
D
David Woodhouse 已提交
2015 2016
		}

2017
		/* All raid6 handling here */
2018
		if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
2019
			/* Single failure, rebuild from parity raid5 style */
D
David Woodhouse 已提交
2020 2021 2022 2023 2024 2025 2026
			if (failb < 0) {
				if (faila == rbio->nr_data) {
					/*
					 * Just the P stripe has failed, without
					 * a bad data or Q stripe.
					 * TODO, we should redo the xor here.
					 */
2027
					err = BLK_STS_IOERR;
D
David Woodhouse 已提交
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
					goto cleanup;
				}
				/*
				 * a single failure in raid6 is rebuilt
				 * in the pstripe code below
				 */
				goto pstripe;
			}

			/* make sure our ps and qs are in order */
2038 2039
			if (faila > failb)
				swap(faila, failb);
D
David Woodhouse 已提交
2040 2041 2042 2043 2044 2045 2046

			/* if the q stripe is failed, do a pstripe reconstruction
			 * from the xors.
			 * If both the q stripe and the P stripe are failed, we're
			 * here due to a crc mismatch and we can't give them the
			 * data they want
			 */
2047 2048
			if (rbio->bioc->raid_map[failb] == RAID6_Q_STRIPE) {
				if (rbio->bioc->raid_map[faila] ==
2049
				    RAID5_P_STRIPE) {
2050
					err = BLK_STS_IOERR;
D
David Woodhouse 已提交
2051 2052 2053 2054 2055 2056 2057 2058 2059
					goto cleanup;
				}
				/*
				 * otherwise we have one bad data stripe and
				 * a good P stripe.  raid5!
				 */
				goto pstripe;
			}

2060
			if (rbio->bioc->raid_map[failb] == RAID5_P_STRIPE) {
2061
				raid6_datap_recov(rbio->real_stripes,
2062
						  sectorsize, faila, pointers);
D
David Woodhouse 已提交
2063
			} else {
2064
				raid6_2data_recov(rbio->real_stripes,
2065
						  sectorsize, faila, failb,
D
David Woodhouse 已提交
2066 2067 2068 2069 2070 2071 2072 2073 2074
						  pointers);
			}
		} else {
			void *p;

			/* rebuild from P stripe here (raid5 or raid6) */
			BUG_ON(failb != -1);
pstripe:
			/* Copy parity block into failed block to start with */
2075
			memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize);
D
David Woodhouse 已提交
2076 2077 2078 2079 2080 2081 2082 2083

			/* rearrange the pointer array */
			p = pointers[faila];
			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
				pointers[stripe] = pointers[stripe + 1];
			pointers[rbio->nr_data - 1] = p;

			/* xor in the rest */
2084
			run_xor(pointers, rbio->nr_data - 1, sectorsize);
D
David Woodhouse 已提交
2085 2086 2087 2088 2089 2090 2091
		}
		/* if we're doing this rebuild as part of an rmw, go through
		 * and set all of our private rbio pages in the
		 * failed stripes as uptodate.  This way finish_rmw will
		 * know they can be trusted.  If this was a read reconstruction,
		 * other endio functions will fiddle the uptodate bits
		 */
2092
		if (rbio->operation == BTRFS_RBIO_WRITE) {
2093
			for (i = 0;  i < rbio->stripe_nsectors; i++) {
D
David Woodhouse 已提交
2094
				if (faila != -1) {
2095 2096
					sector = rbio_stripe_sector(rbio, faila, i);
					sector->uptodate = 1;
D
David Woodhouse 已提交
2097 2098
				}
				if (failb != -1) {
2099 2100
					sector = rbio_stripe_sector(rbio, failb, i);
					sector->uptodate = 1;
D
David Woodhouse 已提交
2101 2102 2103
				}
			}
		}
2104 2105
		for (stripe = rbio->real_stripes - 1; stripe >= 0; stripe--)
			kunmap_local(unmap_array[stripe]);
D
David Woodhouse 已提交
2106 2107
	}

2108
	err = BLK_STS_OK;
D
David Woodhouse 已提交
2109
cleanup:
2110 2111
	kfree(unmap_array);
cleanup_pointers:
D
David Woodhouse 已提交
2112 2113 2114
	kfree(pointers);

cleanup_io:
2115 2116 2117 2118 2119 2120 2121
	/*
	 * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a
	 * valid rbio which is consistent with ondisk content, thus such a
	 * valid rbio can be cached to avoid further disk reads.
	 */
	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
		/*
		 * - In case of two failures, where rbio->failb != -1:
		 *
		 *   Do not cache this rbio since the above read reconstruction
		 *   (raid6_datap_recov() or raid6_2data_recov()) may have
		 *   changed some content of stripes which are not identical to
		 *   on-disk content any more, otherwise, a later write/recover
		 *   may steal stripe_pages from this rbio and end up with
		 *   corruptions or rebuild failures.
		 *
		 * - In case of single failure, where rbio->failb == -1:
		 *
		 *   Cache this rbio iff the above read reconstruction is
2135
		 *   executed without problems.
2136 2137
		 */
		if (err == BLK_STS_OK && rbio->failb < 0)
2138 2139 2140 2141
			cache_rbio_pages(rbio);
		else
			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);

2142
		rbio_orig_end_io(rbio, err);
2143
	} else if (err == BLK_STS_OK) {
D
David Woodhouse 已提交
2144 2145
		rbio->faila = -1;
		rbio->failb = -1;
2146 2147 2148 2149 2150 2151 2152

		if (rbio->operation == BTRFS_RBIO_WRITE)
			finish_rmw(rbio);
		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
			finish_parity_scrub(rbio, 0);
		else
			BUG();
D
David Woodhouse 已提交
2153
	} else {
2154
		rbio_orig_end_io(rbio, err);
D
David Woodhouse 已提交
2155 2156 2157 2158 2159 2160 2161
	}
}

/*
 * This is called only for stripes we've read from disk to
 * reconstruct the parity.
 */
2162
static void raid_recover_end_io(struct bio *bio)
D
David Woodhouse 已提交
2163 2164 2165 2166 2167 2168 2169
{
	struct btrfs_raid_bio *rbio = bio->bi_private;

	/*
	 * we only read stripe pages off the disk, set them
	 * up to date if there were no errors
	 */
2170
	if (bio->bi_status)
D
David Woodhouse 已提交
2171 2172
		fail_bio_stripe(rbio, bio);
	else
2173
		set_bio_pages_uptodate(rbio, bio);
D
David Woodhouse 已提交
2174 2175
	bio_put(bio);

2176
	if (!atomic_dec_and_test(&rbio->stripes_pending))
D
David Woodhouse 已提交
2177 2178
		return;

2179
	if (atomic_read(&rbio->error) > rbio->bioc->max_errors)
2180
		rbio_orig_end_io(rbio, BLK_STS_IOERR);
D
David Woodhouse 已提交
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
	else
		__raid_recover_end_io(rbio);
}

/*
 * reads everything we need off the disk to reconstruct
 * the parity. endio handlers trigger final reconstruction
 * when the IO is done.
 *
 * This is used both for reads from the higher layers and for
 * parity construction required to finish a rmw cycle.
 */
static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
{
	int bios_to_read = 0;
	struct bio_list bio_list;
	int ret;
2198
	int sectornr;
D
David Woodhouse 已提交
2199 2200 2201 2202 2203 2204 2205 2206 2207
	int stripe;
	struct bio *bio;

	bio_list_init(&bio_list);

	ret = alloc_rbio_pages(rbio);
	if (ret)
		goto cleanup;

2208
	atomic_set(&rbio->error, 0);
D
David Woodhouse 已提交
2209 2210

	/*
2211 2212 2213
	 * read everything that hasn't failed.  Thanks to the
	 * stripe cache, it is possible that some or all of these
	 * pages are going to be uptodate.
D
David Woodhouse 已提交
2214
	 */
2215
	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2216
		if (rbio->faila == stripe || rbio->failb == stripe) {
2217
			atomic_inc(&rbio->error);
D
David Woodhouse 已提交
2218
			continue;
2219
		}
D
David Woodhouse 已提交
2220

2221 2222
		for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
			struct sector_ptr *sector;
D
David Woodhouse 已提交
2223 2224 2225 2226 2227

			/*
			 * the rmw code may have already read this
			 * page in
			 */
2228 2229
			sector = rbio_stripe_sector(rbio, stripe, sectornr);
			if (sector->uptodate)
D
David Woodhouse 已提交
2230 2231
				continue;

2232 2233 2234
			ret = rbio_add_io_sector(rbio, &bio_list, sector,
						 stripe, sectornr, rbio->stripe_len,
						 REQ_OP_READ);
D
David Woodhouse 已提交
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
			if (ret < 0)
				goto cleanup;
		}
	}

	bios_to_read = bio_list_size(&bio_list);
	if (!bios_to_read) {
		/*
		 * we might have no bios to read just because the pages
		 * were up to date, or we might have no bios to read because
		 * the devices were gone.
		 */
2247
		if (atomic_read(&rbio->error) <= rbio->bioc->max_errors) {
D
David Woodhouse 已提交
2248
			__raid_recover_end_io(rbio);
2249
			return 0;
D
David Woodhouse 已提交
2250 2251 2252 2253 2254 2255
		} else {
			goto cleanup;
		}
	}

	/*
2256 2257
	 * The bioc may be freed once we submit the last bio. Make sure not to
	 * touch it after that.
D
David Woodhouse 已提交
2258
	 */
2259
	atomic_set(&rbio->stripes_pending, bios_to_read);
2260
	while ((bio = bio_list_pop(&bio_list))) {
D
David Woodhouse 已提交
2261 2262
		bio->bi_end_io = raid_recover_end_io;

2263
		btrfs_bio_wq_end_io(rbio->bioc->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
D
David Woodhouse 已提交
2264

2265
		submit_bio(bio);
D
David Woodhouse 已提交
2266
	}
2267

D
David Woodhouse 已提交
2268 2269 2270
	return 0;

cleanup:
2271 2272
	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2273
		rbio_orig_end_io(rbio, BLK_STS_IOERR);
L
Liu Bo 已提交
2274 2275 2276 2277

	while ((bio = bio_list_pop(&bio_list)))
		bio_put(bio);

D
David Woodhouse 已提交
2278 2279 2280 2281 2282 2283 2284 2285 2286
	return -EIO;
}

/*
 * the main entry point for reads from the higher layers.  This
 * is really only called when the normal read path had a failure,
 * so we assume the bio they send down corresponds to a failed part
 * of the drive.
 */
2287
int raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
2288
			  u32 stripe_len, int mirror_num, int generic_io)
D
David Woodhouse 已提交
2289
{
2290
	struct btrfs_fs_info *fs_info = bioc->fs_info;
D
David Woodhouse 已提交
2291 2292 2293
	struct btrfs_raid_bio *rbio;
	int ret;

2294
	if (generic_io) {
2295
		ASSERT(bioc->mirror_num == mirror_num);
2296
		btrfs_bio(bio)->mirror_num = mirror_num;
2297 2298
	}

2299
	rbio = alloc_rbio(fs_info, bioc, stripe_len);
2300
	if (IS_ERR(rbio)) {
2301
		if (generic_io)
2302
			btrfs_put_bioc(bioc);
D
David Woodhouse 已提交
2303
		return PTR_ERR(rbio);
2304
	}
D
David Woodhouse 已提交
2305

2306
	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2307
	rbio_add_bio(rbio, bio);
D
David Woodhouse 已提交
2308 2309 2310

	rbio->faila = find_logical_bio_stripe(rbio, bio);
	if (rbio->faila == -1) {
2311
		btrfs_warn(fs_info,
2312
"%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bioc has map_type %llu)",
D
David Sterba 已提交
2313
			   __func__, bio->bi_iter.bi_sector << 9,
2314
			   (u64)bio->bi_iter.bi_size, bioc->map_type);
2315
		if (generic_io)
2316
			btrfs_put_bioc(bioc);
D
David Woodhouse 已提交
2317 2318 2319 2320
		kfree(rbio);
		return -EIO;
	}

2321
	if (generic_io) {
2322
		btrfs_bio_counter_inc_noblocked(fs_info);
2323 2324
		rbio->generic_bio_cnt = 1;
	} else {
2325
		btrfs_get_bioc(bioc);
2326 2327
	}

D
David Woodhouse 已提交
2328
	/*
L
Liu Bo 已提交
2329 2330 2331
	 * Loop retry:
	 * for 'mirror == 2', reconstruct from all other stripes.
	 * for 'mirror_num > 2', select a stripe to fail on every retry.
D
David Woodhouse 已提交
2332
	 */
L
Liu Bo 已提交
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
	if (mirror_num > 2) {
		/*
		 * 'mirror == 3' is to fail the p stripe and
		 * reconstruct from the q stripe.  'mirror > 3' is to
		 * fail a data stripe and reconstruct from p+q stripe.
		 */
		rbio->failb = rbio->real_stripes - (mirror_num - 1);
		ASSERT(rbio->failb > 0);
		if (rbio->failb <= rbio->faila)
			rbio->failb--;
	}
D
David Woodhouse 已提交
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364

	ret = lock_stripe_add(rbio);

	/*
	 * __raid56_parity_recover will end the bio with
	 * any errors it hits.  We don't want to return
	 * its error value up the stack because our caller
	 * will end up calling bio_endio with any nonzero
	 * return
	 */
	if (ret == 0)
		__raid56_parity_recover(rbio);
	/*
	 * our rbio has been added to the list of
	 * rbios that will be handled after the
	 * currently lock owner is done
	 */
	return 0;

}

2365
static void rmw_work(struct work_struct *work)
D
David Woodhouse 已提交
2366 2367 2368 2369 2370 2371 2372
{
	struct btrfs_raid_bio *rbio;

	rbio = container_of(work, struct btrfs_raid_bio, work);
	raid56_rmw_stripe(rbio);
}

2373
static void read_rebuild_work(struct work_struct *work)
D
David Woodhouse 已提交
2374 2375 2376 2377 2378 2379
{
	struct btrfs_raid_bio *rbio;

	rbio = container_of(work, struct btrfs_raid_bio, work);
	__raid56_parity_recover(rbio);
}
2380 2381 2382 2383

/*
 * The following code is used to scrub/replace the parity stripe
 *
2384
 * Caller must have already increased bio_counter for getting @bioc.
2385
 *
2386 2387 2388 2389 2390
 * Note: We need make sure all the pages that add into the scrub/replace
 * raid bio are correct and not be changed during the scrub/replace. That
 * is those pages just hold metadata or file data with checksum.
 */

2391 2392
struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
				struct btrfs_io_context *bioc,
2393
				u32 stripe_len, struct btrfs_device *scrub_dev,
2394
				unsigned long *dbitmap, int stripe_nsectors)
2395
{
2396
	struct btrfs_fs_info *fs_info = bioc->fs_info;
2397 2398 2399
	struct btrfs_raid_bio *rbio;
	int i;

2400
	rbio = alloc_rbio(fs_info, bioc, stripe_len);
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
	if (IS_ERR(rbio))
		return NULL;
	bio_list_add(&rbio->bio_list, bio);
	/*
	 * This is a special bio which is used to hold the completion handler
	 * and make the scrub rbio is similar to the other types
	 */
	ASSERT(!bio->bi_iter.bi_size);
	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;

L
Liu Bo 已提交
2411
	/*
2412
	 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
L
Liu Bo 已提交
2413 2414 2415 2416
	 * to the end position, so this search can start from the first parity
	 * stripe.
	 */
	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2417
		if (bioc->stripes[i].dev == scrub_dev) {
2418 2419 2420 2421
			rbio->scrubp = i;
			break;
		}
	}
L
Liu Bo 已提交
2422
	ASSERT(i < rbio->real_stripes);
2423

2424
	bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors);
2425

2426
	/*
2427
	 * We have already increased bio_counter when getting bioc, record it
2428 2429 2430 2431
	 * so we can free it at rbio_orig_end_io().
	 */
	rbio->generic_bio_cnt = 1;

2432 2433 2434
	return rbio;
}

2435 2436
/* Used for both parity scrub and missing. */
void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2437
			    unsigned int pgoff, u64 logical)
2438
{
2439
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2440 2441 2442
	int stripe_offset;
	int index;

2443
	ASSERT(logical >= rbio->bioc->raid_map[0]);
2444
	ASSERT(logical + sectorsize <= rbio->bioc->raid_map[0] +
2445
				rbio->stripe_len * rbio->nr_data);
2446
	stripe_offset = (int)(logical - rbio->bioc->raid_map[0]);
2447 2448 2449
	index = stripe_offset / sectorsize;
	rbio->bio_sectors[index].page = page;
	rbio->bio_sectors[index].pgoff = pgoff;
2450 2451 2452 2453 2454 2455 2456 2457
}

/*
 * We just scrub the parity that we have correct data on the same horizontal,
 * so we needn't allocate all pages for all the stripes.
 */
static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
{
2458 2459 2460 2461
	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
	int stripe;
	int sectornr;

2462
	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2463 2464 2465 2466
		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
			struct page *page;
			int index = (stripe * rbio->stripe_nsectors + sectornr) *
				    sectorsize >> PAGE_SHIFT;
2467 2468 2469 2470

			if (rbio->stripe_pages[index])
				continue;

2471
			page = alloc_page(GFP_NOFS);
2472 2473 2474 2475 2476
			if (!page)
				return -ENOMEM;
			rbio->stripe_pages[index] = page;
		}
	}
2477
	index_stripe_sectors(rbio);
2478 2479 2480 2481 2482 2483
	return 0;
}

static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
					 int need_check)
{
2484
	struct btrfs_io_context *bioc = rbio->bioc;
2485
	const u32 sectorsize = bioc->fs_info->sectorsize;
K
Kees Cook 已提交
2486
	void **pointers = rbio->finish_pointers;
2487
	unsigned long *pbitmap = &rbio->finish_pbitmap;
2488 2489
	int nr_data = rbio->nr_data;
	int stripe;
2490
	int sectornr;
2491
	bool has_qstripe;
2492 2493
	struct sector_ptr p_sector = { 0 };
	struct sector_ptr q_sector = { 0 };
2494 2495
	struct bio_list bio_list;
	struct bio *bio;
2496
	int is_replace = 0;
2497 2498 2499 2500
	int ret;

	bio_list_init(&bio_list);

2501 2502 2503 2504 2505
	if (rbio->real_stripes - rbio->nr_data == 1)
		has_qstripe = false;
	else if (rbio->real_stripes - rbio->nr_data == 2)
		has_qstripe = true;
	else
2506 2507
		BUG();

2508
	if (bioc->num_tgtdevs && bioc->tgtdev_map[rbio->scrubp]) {
2509
		is_replace = 1;
2510
		bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors);
2511 2512
	}

2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
	/*
	 * Because the higher layers(scrubber) are unlikely to
	 * use this area of the disk again soon, so don't cache
	 * it.
	 */
	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);

	if (!need_check)
		goto writeback;

2523 2524
	p_sector.page = alloc_page(GFP_NOFS);
	if (!p_sector.page)
2525
		goto cleanup;
2526 2527
	p_sector.pgoff = 0;
	p_sector.uptodate = 1;
2528

2529
	if (has_qstripe) {
I
Ira Weiny 已提交
2530
		/* RAID6, allocate and map temp space for the Q stripe */
2531 2532 2533 2534
		q_sector.page = alloc_page(GFP_NOFS);
		if (!q_sector.page) {
			__free_page(p_sector.page);
			p_sector.page = NULL;
2535 2536
			goto cleanup;
		}
2537 2538 2539
		q_sector.pgoff = 0;
		q_sector.uptodate = 1;
		pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page);
2540 2541 2542 2543
	}

	atomic_set(&rbio->error, 0);

I
Ira Weiny 已提交
2544
	/* Map the parity stripe just once */
2545
	pointers[nr_data] = kmap_local_page(p_sector.page);
I
Ira Weiny 已提交
2546

2547
	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2548
		struct sector_ptr *sector;
2549
		void *parity;
2550

2551 2552
		/* first collect one page from each data stripe */
		for (stripe = 0; stripe < nr_data; stripe++) {
2553 2554 2555
			sector = sector_in_rbio(rbio, stripe, sectornr, 0);
			pointers[stripe] = kmap_local_page(sector->page) +
					   sector->pgoff;
2556 2557
		}

2558
		if (has_qstripe) {
I
Ira Weiny 已提交
2559
			/* RAID6, call the library function to fill in our P/Q */
2560
			raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
2561 2562 2563
						pointers);
		} else {
			/* raid5 */
2564 2565
			memcpy(pointers[nr_data], pointers[0], sectorsize);
			run_xor(pointers + 1, nr_data - 1, sectorsize);
2566 2567
		}

2568
		/* Check scrubbing parity and repair it */
2569 2570 2571 2572
		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
		parity = kmap_local_page(sector->page) + sector->pgoff;
		if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0)
			memcpy(parity, pointers[rbio->scrubp], sectorsize);
2573 2574
		else
			/* Parity is right, needn't writeback */
2575
			bitmap_clear(&rbio->dbitmap, sectornr, 1);
2576
		kunmap_local(parity);
2577

2578 2579
		for (stripe = nr_data - 1; stripe >= 0; stripe--)
			kunmap_local(pointers[stripe]);
2580 2581
	}

2582
	kunmap_local(pointers[nr_data]);
2583 2584 2585
	__free_page(p_sector.page);
	p_sector.page = NULL;
	if (q_sector.page) {
2586
		kunmap_local(pointers[rbio->real_stripes - 1]);
2587 2588
		__free_page(q_sector.page);
		q_sector.page = NULL;
I
Ira Weiny 已提交
2589
	}
2590 2591 2592 2593 2594 2595 2596

writeback:
	/*
	 * time to start writing.  Make bios for everything from the
	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
	 * everything else.
	 */
2597
	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2598
		struct sector_ptr *sector;
2599

2600 2601 2602
		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
		ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp,
					 sectornr, rbio->stripe_len, REQ_OP_WRITE);
2603 2604 2605 2606
		if (ret)
			goto cleanup;
	}

2607 2608 2609
	if (!is_replace)
		goto submit_write;

2610 2611
	for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) {
		struct sector_ptr *sector;
2612

2613 2614
		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
		ret = rbio_add_io_sector(rbio, &bio_list, sector,
2615
				       bioc->tgtdev_map[rbio->scrubp],
2616
				       sectornr, rbio->stripe_len, REQ_OP_WRITE);
2617 2618 2619 2620 2621
		if (ret)
			goto cleanup;
	}

submit_write:
2622 2623 2624
	nr_data = bio_list_size(&bio_list);
	if (!nr_data) {
		/* Every parity is right */
2625
		rbio_orig_end_io(rbio, BLK_STS_OK);
2626 2627 2628 2629 2630
		return;
	}

	atomic_set(&rbio->stripes_pending, nr_data);

2631
	while ((bio = bio_list_pop(&bio_list))) {
2632
		bio->bi_end_io = raid_write_end_io;
2633 2634

		submit_bio(bio);
2635 2636 2637 2638
	}
	return;

cleanup:
2639
	rbio_orig_end_io(rbio, BLK_STS_IOERR);
L
Liu Bo 已提交
2640 2641 2642

	while ((bio = bio_list_pop(&bio_list)))
		bio_put(bio);
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
}

static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
{
	if (stripe >= 0 && stripe < rbio->nr_data)
		return 1;
	return 0;
}

/*
 * While we're doing the parity check and repair, we could have errors
 * in reading pages off the disk.  This checks for errors and if we're
 * not able to read the page it'll trigger parity reconstruction.  The
 * parity scrub will be finished after we've reconstructed the failed
 * stripes
 */
static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
{
2661
	if (atomic_read(&rbio->error) > rbio->bioc->max_errors)
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
		goto cleanup;

	if (rbio->faila >= 0 || rbio->failb >= 0) {
		int dfail = 0, failp = -1;

		if (is_data_stripe(rbio, rbio->faila))
			dfail++;
		else if (is_parity_stripe(rbio->faila))
			failp = rbio->faila;

		if (is_data_stripe(rbio, rbio->failb))
			dfail++;
		else if (is_parity_stripe(rbio->failb))
			failp = rbio->failb;

		/*
		 * Because we can not use a scrubbing parity to repair
		 * the data, so the capability of the repair is declined.
		 * (In the case of RAID5, we can not repair anything)
		 */
2682
		if (dfail > rbio->bioc->max_errors - 1)
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
			goto cleanup;

		/*
		 * If all data is good, only parity is correctly, just
		 * repair the parity.
		 */
		if (dfail == 0) {
			finish_parity_scrub(rbio, 0);
			return;
		}

		/*
		 * Here means we got one corrupted data stripe and one
		 * corrupted parity on RAID6, if the corrupted parity
2697
		 * is scrubbing parity, luckily, use the other one to repair
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
		 * the data, or we can not repair the data stripe.
		 */
		if (failp != rbio->scrubp)
			goto cleanup;

		__raid_recover_end_io(rbio);
	} else {
		finish_parity_scrub(rbio, 1);
	}
	return;

cleanup:
2710
	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
}

/*
 * end io for the read phase of the rmw cycle.  All the bios here are physical
 * stripe bios we've read from the disk so we can recalculate the parity of the
 * stripe.
 *
 * This will usually kick off finish_rmw once all the bios are read in, but it
 * may trigger parity reconstruction if we had any errors along the way
 */
2721
static void raid56_parity_scrub_end_io(struct bio *bio)
2722 2723 2724
{
	struct btrfs_raid_bio *rbio = bio->bi_private;

2725
	if (bio->bi_status)
2726 2727
		fail_bio_stripe(rbio, bio);
	else
2728
		set_bio_pages_uptodate(rbio, bio);
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747

	bio_put(bio);

	if (!atomic_dec_and_test(&rbio->stripes_pending))
		return;

	/*
	 * this will normally call finish_rmw to start our write
	 * but if there are any failed stripes we'll reconstruct
	 * from parity first
	 */
	validate_rbio_for_parity_scrub(rbio);
}

static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
{
	int bios_to_read = 0;
	struct bio_list bio_list;
	int ret;
2748
	int sectornr;
2749 2750 2751
	int stripe;
	struct bio *bio;

L
Liu Bo 已提交
2752 2753
	bio_list_init(&bio_list);

2754 2755 2756 2757 2758 2759 2760 2761 2762
	ret = alloc_rbio_essential_pages(rbio);
	if (ret)
		goto cleanup;

	atomic_set(&rbio->error, 0);
	/*
	 * build a list of bios to read all the missing parts of this
	 * stripe
	 */
2763
	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2764
		for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2765
			struct sector_ptr *sector;
2766
			/*
2767 2768 2769 2770
			 * We want to find all the sectors missing from the
			 * rbio and read them from the disk.  If * sector_in_rbio()
			 * finds a sector in the bio list we don't need to read
			 * it off the stripe.
2771
			 */
2772 2773
			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
			if (sector)
2774 2775
				continue;

2776
			sector = rbio_stripe_sector(rbio, stripe, sectornr);
2777
			/*
2778 2779
			 * The bio cache may have handed us an uptodate sector.
			 * If so, be happy and use it.
2780
			 */
2781
			if (sector->uptodate)
2782 2783
				continue;

2784 2785 2786
			ret = rbio_add_io_sector(rbio, &bio_list, sector,
						 stripe, sectornr, rbio->stripe_len,
						 REQ_OP_READ);
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
			if (ret)
				goto cleanup;
		}
	}

	bios_to_read = bio_list_size(&bio_list);
	if (!bios_to_read) {
		/*
		 * this can happen if others have merged with
		 * us, it means there is nothing left to read.
		 * But if there are missing devices it may not be
		 * safe to do the full stripe write yet.
		 */
		goto finish;
	}

	/*
2804 2805
	 * The bioc may be freed once we submit the last bio. Make sure not to
	 * touch it after that.
2806 2807
	 */
	atomic_set(&rbio->stripes_pending, bios_to_read);
2808
	while ((bio = bio_list_pop(&bio_list))) {
2809 2810
		bio->bi_end_io = raid56_parity_scrub_end_io;

2811
		btrfs_bio_wq_end_io(rbio->bioc->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2812

2813
		submit_bio(bio);
2814 2815 2816 2817 2818
	}
	/* the actual write will happen once the reads are done */
	return;

cleanup:
2819
	rbio_orig_end_io(rbio, BLK_STS_IOERR);
L
Liu Bo 已提交
2820 2821 2822 2823

	while ((bio = bio_list_pop(&bio_list)))
		bio_put(bio);

2824 2825 2826 2827 2828 2829
	return;

finish:
	validate_rbio_for_parity_scrub(rbio);
}

2830
static void scrub_parity_work(struct work_struct *work)
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
{
	struct btrfs_raid_bio *rbio;

	rbio = container_of(work, struct btrfs_raid_bio, work);
	raid56_parity_scrub_stripe(rbio);
}

void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
{
	if (!lock_stripe_add(rbio))
2841
		start_async_work(rbio, scrub_parity_work);
2842
}
2843 2844 2845 2846

/* The following code is used for dev replace of a missing RAID 5/6 device. */

struct btrfs_raid_bio *
2847 2848
raid56_alloc_missing_rbio(struct bio *bio, struct btrfs_io_context *bioc,
			  u64 length)
2849
{
2850
	struct btrfs_fs_info *fs_info = bioc->fs_info;
2851 2852
	struct btrfs_raid_bio *rbio;

2853
	rbio = alloc_rbio(fs_info, bioc, length);
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
	if (IS_ERR(rbio))
		return NULL;

	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
	bio_list_add(&rbio->bio_list, bio);
	/*
	 * This is a special bio which is used to hold the completion handler
	 * and make the scrub rbio is similar to the other types
	 */
	ASSERT(!bio->bi_iter.bi_size);

	rbio->faila = find_logical_bio_stripe(rbio, bio);
	if (rbio->faila == -1) {
		BUG();
		kfree(rbio);
		return NULL;
	}

2872
	/*
2873
	 * When we get bioc, we have already increased bio_counter, record it
2874 2875 2876 2877
	 * so we can free it at rbio_orig_end_io()
	 */
	rbio->generic_bio_cnt = 1;

2878 2879 2880 2881 2882 2883
	return rbio;
}

void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
{
	if (!lock_stripe_add(rbio))
2884
		start_async_work(rbio, read_rebuild_work);
2885
}