cryptd.c 26.2 KB
Newer Older
1 2 3 4 5
/*
 * Software async crypto daemon.
 *
 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
 *
6 7 8 9 10 11 12
 * Added AEAD support to cryptd.
 *    Authors: Tadeusz Struk (tadeusz.struk@intel.com)
 *             Adrian Hoban <adrian.hoban@intel.com>
 *             Gabriele Paoloni <gabriele.paoloni@intel.com>
 *             Aidan O'Mahony (aidan.o.mahony@intel.com)
 *    Copyright (c) 2010, Intel Corporation.
 *
13 14 15 16 17 18 19 20
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 */

#include <crypto/algapi.h>
21
#include <crypto/internal/hash.h>
22
#include <crypto/internal/aead.h>
23
#include <crypto/cryptd.h>
24
#include <crypto/crypto_wq.h>
25 26 27 28 29 30 31 32 33
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/sched.h>
#include <linux/slab.h>

34
#define CRYPTD_MAX_CPU_QLEN 100
35

36
struct cryptd_cpu_queue {
37
	struct crypto_queue queue;
38 39 40 41
	struct work_struct work;
};

struct cryptd_queue {
42
	struct cryptd_cpu_queue __percpu *cpu_queue;
43 44 45 46
};

struct cryptd_instance_ctx {
	struct crypto_spawn spawn;
47
	struct cryptd_queue *queue;
48 49
};

50 51 52 53 54
struct hashd_instance_ctx {
	struct crypto_shash_spawn spawn;
	struct cryptd_queue *queue;
};

55 56 57 58 59
struct aead_instance_ctx {
	struct crypto_aead_spawn aead_spawn;
	struct cryptd_queue *queue;
};

60 61 62 63 64 65 66 67
struct cryptd_blkcipher_ctx {
	struct crypto_blkcipher *child;
};

struct cryptd_blkcipher_request_ctx {
	crypto_completion_t complete;
};

68
struct cryptd_hash_ctx {
69
	struct crypto_shash *child;
70 71 72 73
};

struct cryptd_hash_request_ctx {
	crypto_completion_t complete;
74
	struct shash_desc desc;
75
};
76

77 78 79 80 81 82 83 84
struct cryptd_aead_ctx {
	struct crypto_aead *child;
};

struct cryptd_aead_request_ctx {
	crypto_completion_t complete;
};

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
static void cryptd_queue_worker(struct work_struct *work);

static int cryptd_init_queue(struct cryptd_queue *queue,
			     unsigned int max_cpu_qlen)
{
	int cpu;
	struct cryptd_cpu_queue *cpu_queue;

	queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue);
	if (!queue->cpu_queue)
		return -ENOMEM;
	for_each_possible_cpu(cpu) {
		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
		crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
		INIT_WORK(&cpu_queue->work, cryptd_queue_worker);
	}
	return 0;
}

static void cryptd_fini_queue(struct cryptd_queue *queue)
{
	int cpu;
	struct cryptd_cpu_queue *cpu_queue;

	for_each_possible_cpu(cpu) {
		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
		BUG_ON(cpu_queue->queue.qlen);
	}
	free_percpu(queue->cpu_queue);
}

static int cryptd_enqueue_request(struct cryptd_queue *queue,
				  struct crypto_async_request *request)
{
	int cpu, err;
	struct cryptd_cpu_queue *cpu_queue;

	cpu = get_cpu();
123
	cpu_queue = this_cpu_ptr(queue->cpu_queue);
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
	err = crypto_enqueue_request(&cpu_queue->queue, request);
	queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
	put_cpu();

	return err;
}

/* Called in workqueue context, do one real cryption work (via
 * req->complete) and reschedule itself if there are more work to
 * do. */
static void cryptd_queue_worker(struct work_struct *work)
{
	struct cryptd_cpu_queue *cpu_queue;
	struct crypto_async_request *req, *backlog;

	cpu_queue = container_of(work, struct cryptd_cpu_queue, work);
140 141 142 143 144 145 146
	/*
	 * Only handle one request at a time to avoid hogging crypto workqueue.
	 * preempt_disable/enable is used to prevent being preempted by
	 * cryptd_enqueue_request(). local_bh_disable/enable is used to prevent
	 * cryptd_enqueue_request() being accessed from software interrupts.
	 */
	local_bh_disable();
147 148 149 150
	preempt_disable();
	backlog = crypto_get_backlog(&cpu_queue->queue);
	req = crypto_dequeue_request(&cpu_queue->queue);
	preempt_enable();
151
	local_bh_enable();
152 153 154 155 156 157 158 159 160 161 162 163 164

	if (!req)
		return;

	if (backlog)
		backlog->complete(backlog, -EINPROGRESS);
	req->complete(req, 0);

	if (cpu_queue->queue.qlen)
		queue_work(kcrypto_wq, &cpu_queue->work);
}

static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm)
165 166 167
{
	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
	struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
168
	return ictx->queue;
169 170
}

171 172 173 174 175 176 177 178
static inline void cryptd_check_internal(struct rtattr **tb, u32 *type,
					 u32 *mask)
{
	struct crypto_attr_type *algt;

	algt = crypto_get_attr_type(tb);
	if (IS_ERR(algt))
		return;
179 180 181

	*type |= algt->type & (CRYPTO_ALG_INTERNAL | CRYPTO_ALG_AEAD_NEW);
	*mask |= algt->mask & (CRYPTO_ALG_INTERNAL | CRYPTO_ALG_AEAD_NEW);
182 183
}

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
static int cryptd_blkcipher_setkey(struct crypto_ablkcipher *parent,
				   const u8 *key, unsigned int keylen)
{
	struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(parent);
	struct crypto_blkcipher *child = ctx->child;
	int err;

	crypto_blkcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
	crypto_blkcipher_set_flags(child, crypto_ablkcipher_get_flags(parent) &
					  CRYPTO_TFM_REQ_MASK);
	err = crypto_blkcipher_setkey(child, key, keylen);
	crypto_ablkcipher_set_flags(parent, crypto_blkcipher_get_flags(child) &
					    CRYPTO_TFM_RES_MASK);
	return err;
}

static void cryptd_blkcipher_crypt(struct ablkcipher_request *req,
				   struct crypto_blkcipher *child,
				   int err,
				   int (*crypt)(struct blkcipher_desc *desc,
						struct scatterlist *dst,
						struct scatterlist *src,
						unsigned int len))
{
	struct cryptd_blkcipher_request_ctx *rctx;
	struct blkcipher_desc desc;

	rctx = ablkcipher_request_ctx(req);

213 214
	if (unlikely(err == -EINPROGRESS))
		goto out;
215 216 217 218 219 220 221 222 223

	desc.tfm = child;
	desc.info = req->info;
	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;

	err = crypt(&desc, req->dst, req->src, req->nbytes);

	req->base.complete = rctx->complete;

224
out:
225
	local_bh_disable();
226
	rctx->complete(&req->base, err);
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
	local_bh_enable();
}

static void cryptd_blkcipher_encrypt(struct crypto_async_request *req, int err)
{
	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(req->tfm);
	struct crypto_blkcipher *child = ctx->child;

	cryptd_blkcipher_crypt(ablkcipher_request_cast(req), child, err,
			       crypto_blkcipher_crt(child)->encrypt);
}

static void cryptd_blkcipher_decrypt(struct crypto_async_request *req, int err)
{
	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(req->tfm);
	struct crypto_blkcipher *child = ctx->child;

	cryptd_blkcipher_crypt(ablkcipher_request_cast(req), child, err,
			       crypto_blkcipher_crt(child)->decrypt);
}

static int cryptd_blkcipher_enqueue(struct ablkcipher_request *req,
M
Mark Rustad 已提交
249
				    crypto_completion_t compl)
250 251 252
{
	struct cryptd_blkcipher_request_ctx *rctx = ablkcipher_request_ctx(req);
	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
253
	struct cryptd_queue *queue;
254

255
	queue = cryptd_get_queue(crypto_ablkcipher_tfm(tfm));
256
	rctx->complete = req->base.complete;
M
Mark Rustad 已提交
257
	req->base.complete = compl;
258

259
	return cryptd_enqueue_request(queue, &req->base);
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
}

static int cryptd_blkcipher_encrypt_enqueue(struct ablkcipher_request *req)
{
	return cryptd_blkcipher_enqueue(req, cryptd_blkcipher_encrypt);
}

static int cryptd_blkcipher_decrypt_enqueue(struct ablkcipher_request *req)
{
	return cryptd_blkcipher_enqueue(req, cryptd_blkcipher_decrypt);
}

static int cryptd_blkcipher_init_tfm(struct crypto_tfm *tfm)
{
	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
	struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
	struct crypto_spawn *spawn = &ictx->spawn;
	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(tfm);
	struct crypto_blkcipher *cipher;

	cipher = crypto_spawn_blkcipher(spawn);
	if (IS_ERR(cipher))
		return PTR_ERR(cipher);

	ctx->child = cipher;
	tfm->crt_ablkcipher.reqsize =
		sizeof(struct cryptd_blkcipher_request_ctx);
	return 0;
}

static void cryptd_blkcipher_exit_tfm(struct crypto_tfm *tfm)
{
	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(tfm);

	crypto_free_blkcipher(ctx->child);
}

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
static int cryptd_init_instance(struct crypto_instance *inst,
				struct crypto_alg *alg)
{
	if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
		     "cryptd(%s)",
		     alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
		return -ENAMETOOLONG;

	memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);

	inst->alg.cra_priority = alg->cra_priority + 50;
	inst->alg.cra_blocksize = alg->cra_blocksize;
	inst->alg.cra_alignmask = alg->cra_alignmask;

	return 0;
}

314 315
static void *cryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
				   unsigned int tail)
316
{
317
	char *p;
318 319 320
	struct crypto_instance *inst;
	int err;

321 322 323 324 325
	p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
	if (!p)
		return ERR_PTR(-ENOMEM);

	inst = (void *)(p + head);
326

327 328
	err = cryptd_init_instance(inst, alg);
	if (err)
329 330 331
		goto out_free_inst;

out:
332
	return p;
333 334

out_free_inst:
335 336
	kfree(p);
	p = ERR_PTR(err);
337 338 339
	goto out;
}

340 341 342
static int cryptd_create_blkcipher(struct crypto_template *tmpl,
				   struct rtattr **tb,
				   struct cryptd_queue *queue)
343
{
344
	struct cryptd_instance_ctx *ctx;
345 346
	struct crypto_instance *inst;
	struct crypto_alg *alg;
347 348
	u32 type = CRYPTO_ALG_TYPE_BLKCIPHER;
	u32 mask = CRYPTO_ALG_TYPE_MASK;
349
	int err;
350

351 352 353
	cryptd_check_internal(tb, &type, &mask);

	alg = crypto_get_attr_alg(tb, type, mask);
354
	if (IS_ERR(alg))
355
		return PTR_ERR(alg);
356

357
	inst = cryptd_alloc_instance(alg, 0, sizeof(*ctx));
358
	err = PTR_ERR(inst);
359 360 361
	if (IS_ERR(inst))
		goto out_put_alg;

362 363 364 365 366 367 368 369
	ctx = crypto_instance_ctx(inst);
	ctx->queue = queue;

	err = crypto_init_spawn(&ctx->spawn, alg, inst,
				CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_ASYNC);
	if (err)
		goto out_free_inst;

370 371 372 373
	type = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC;
	if (alg->cra_flags & CRYPTO_ALG_INTERNAL)
		type |= CRYPTO_ALG_INTERNAL;
	inst->alg.cra_flags = type;
374 375 376 377 378 379
	inst->alg.cra_type = &crypto_ablkcipher_type;

	inst->alg.cra_ablkcipher.ivsize = alg->cra_blkcipher.ivsize;
	inst->alg.cra_ablkcipher.min_keysize = alg->cra_blkcipher.min_keysize;
	inst->alg.cra_ablkcipher.max_keysize = alg->cra_blkcipher.max_keysize;

380 381
	inst->alg.cra_ablkcipher.geniv = alg->cra_blkcipher.geniv;

382 383 384 385 386 387 388 389 390
	inst->alg.cra_ctxsize = sizeof(struct cryptd_blkcipher_ctx);

	inst->alg.cra_init = cryptd_blkcipher_init_tfm;
	inst->alg.cra_exit = cryptd_blkcipher_exit_tfm;

	inst->alg.cra_ablkcipher.setkey = cryptd_blkcipher_setkey;
	inst->alg.cra_ablkcipher.encrypt = cryptd_blkcipher_encrypt_enqueue;
	inst->alg.cra_ablkcipher.decrypt = cryptd_blkcipher_decrypt_enqueue;

391 392 393 394 395 396 397
	err = crypto_register_instance(tmpl, inst);
	if (err) {
		crypto_drop_spawn(&ctx->spawn);
out_free_inst:
		kfree(inst);
	}

398 399
out_put_alg:
	crypto_mod_put(alg);
400
	return err;
401 402
}

403 404 405
static int cryptd_hash_init_tfm(struct crypto_tfm *tfm)
{
	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
406 407
	struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
	struct crypto_shash_spawn *spawn = &ictx->spawn;
408
	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
409
	struct crypto_shash *hash;
410

411 412 413
	hash = crypto_spawn_shash(spawn);
	if (IS_ERR(hash))
		return PTR_ERR(hash);
414

415
	ctx->child = hash;
416 417 418
	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
				 sizeof(struct cryptd_hash_request_ctx) +
				 crypto_shash_descsize(hash));
419 420 421 422 423 424 425
	return 0;
}

static void cryptd_hash_exit_tfm(struct crypto_tfm *tfm)
{
	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);

426
	crypto_free_shash(ctx->child);
427 428 429 430 431 432
}

static int cryptd_hash_setkey(struct crypto_ahash *parent,
				   const u8 *key, unsigned int keylen)
{
	struct cryptd_hash_ctx *ctx   = crypto_ahash_ctx(parent);
433
	struct crypto_shash *child = ctx->child;
434 435
	int err;

436 437 438 439 440 441
	crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
	crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
				      CRYPTO_TFM_REQ_MASK);
	err = crypto_shash_setkey(child, key, keylen);
	crypto_ahash_set_flags(parent, crypto_shash_get_flags(child) &
				       CRYPTO_TFM_RES_MASK);
442 443 444 445
	return err;
}

static int cryptd_hash_enqueue(struct ahash_request *req,
M
Mark Rustad 已提交
446
				crypto_completion_t compl)
447 448 449
{
	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
450 451
	struct cryptd_queue *queue =
		cryptd_get_queue(crypto_ahash_tfm(tfm));
452 453

	rctx->complete = req->base.complete;
M
Mark Rustad 已提交
454
	req->base.complete = compl;
455

456
	return cryptd_enqueue_request(queue, &req->base);
457 458 459 460
}

static void cryptd_hash_init(struct crypto_async_request *req_async, int err)
{
461 462 463 464 465
	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
	struct crypto_shash *child = ctx->child;
	struct ahash_request *req = ahash_request_cast(req_async);
	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
	struct shash_desc *desc = &rctx->desc;
466 467 468 469

	if (unlikely(err == -EINPROGRESS))
		goto out;

470 471
	desc->tfm = child;
	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
472

473
	err = crypto_shash_init(desc);
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489

	req->base.complete = rctx->complete;

out:
	local_bh_disable();
	rctx->complete(&req->base, err);
	local_bh_enable();
}

static int cryptd_hash_init_enqueue(struct ahash_request *req)
{
	return cryptd_hash_enqueue(req, cryptd_hash_init);
}

static void cryptd_hash_update(struct crypto_async_request *req_async, int err)
{
490
	struct ahash_request *req = ahash_request_cast(req_async);
491 492 493 494 495 496 497
	struct cryptd_hash_request_ctx *rctx;

	rctx = ahash_request_ctx(req);

	if (unlikely(err == -EINPROGRESS))
		goto out;

498
	err = shash_ahash_update(req, &rctx->desc);
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514

	req->base.complete = rctx->complete;

out:
	local_bh_disable();
	rctx->complete(&req->base, err);
	local_bh_enable();
}

static int cryptd_hash_update_enqueue(struct ahash_request *req)
{
	return cryptd_hash_enqueue(req, cryptd_hash_update);
}

static void cryptd_hash_final(struct crypto_async_request *req_async, int err)
{
515 516
	struct ahash_request *req = ahash_request_cast(req_async);
	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
517 518 519 520

	if (unlikely(err == -EINPROGRESS))
		goto out;

521
	err = crypto_shash_final(&rctx->desc, req->result);
522 523 524 525 526 527 528 529 530 531 532 533 534 535

	req->base.complete = rctx->complete;

out:
	local_bh_disable();
	rctx->complete(&req->base, err);
	local_bh_enable();
}

static int cryptd_hash_final_enqueue(struct ahash_request *req)
{
	return cryptd_hash_enqueue(req, cryptd_hash_final);
}

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
static void cryptd_hash_finup(struct crypto_async_request *req_async, int err)
{
	struct ahash_request *req = ahash_request_cast(req_async);
	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);

	if (unlikely(err == -EINPROGRESS))
		goto out;

	err = shash_ahash_finup(req, &rctx->desc);

	req->base.complete = rctx->complete;

out:
	local_bh_disable();
	rctx->complete(&req->base, err);
	local_bh_enable();
}

static int cryptd_hash_finup_enqueue(struct ahash_request *req)
{
	return cryptd_hash_enqueue(req, cryptd_hash_finup);
}

559 560
static void cryptd_hash_digest(struct crypto_async_request *req_async, int err)
{
561 562 563 564 565
	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
	struct crypto_shash *child = ctx->child;
	struct ahash_request *req = ahash_request_cast(req_async);
	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
	struct shash_desc *desc = &rctx->desc;
566 567 568 569

	if (unlikely(err == -EINPROGRESS))
		goto out;

570 571
	desc->tfm = child;
	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
572

573
	err = shash_ahash_digest(req, desc);
574 575 576 577 578 579 580 581 582 583 584 585 586 587

	req->base.complete = rctx->complete;

out:
	local_bh_disable();
	rctx->complete(&req->base, err);
	local_bh_enable();
}

static int cryptd_hash_digest_enqueue(struct ahash_request *req)
{
	return cryptd_hash_enqueue(req, cryptd_hash_digest);
}

588 589 590 591 592 593 594 595 596 597 598 599 600 601
static int cryptd_hash_export(struct ahash_request *req, void *out)
{
	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);

	return crypto_shash_export(&rctx->desc, out);
}

static int cryptd_hash_import(struct ahash_request *req, const void *in)
{
	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);

	return crypto_shash_import(&rctx->desc, in);
}

602 603
static int cryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
			      struct cryptd_queue *queue)
604
{
605
	struct hashd_instance_ctx *ctx;
606
	struct ahash_instance *inst;
607
	struct shash_alg *salg;
608
	struct crypto_alg *alg;
609 610
	u32 type = 0;
	u32 mask = 0;
611
	int err;
612

613 614 615
	cryptd_check_internal(tb, &type, &mask);

	salg = shash_attr_alg(tb[1], type, mask);
616
	if (IS_ERR(salg))
617
		return PTR_ERR(salg);
618

619
	alg = &salg->base;
620 621
	inst = cryptd_alloc_instance(alg, ahash_instance_headroom(),
				     sizeof(*ctx));
622
	err = PTR_ERR(inst);
623 624 625
	if (IS_ERR(inst))
		goto out_put_alg;

626
	ctx = ahash_instance_ctx(inst);
627 628
	ctx->queue = queue;

629 630
	err = crypto_init_shash_spawn(&ctx->spawn, salg,
				      ahash_crypto_instance(inst));
631 632 633
	if (err)
		goto out_free_inst;

634 635 636 637
	type = CRYPTO_ALG_ASYNC;
	if (alg->cra_flags & CRYPTO_ALG_INTERNAL)
		type |= CRYPTO_ALG_INTERNAL;
	inst->alg.halg.base.cra_flags = type;
638

639 640
	inst->alg.halg.digestsize = salg->digestsize;
	inst->alg.halg.base.cra_ctxsize = sizeof(struct cryptd_hash_ctx);
641

642 643
	inst->alg.halg.base.cra_init = cryptd_hash_init_tfm;
	inst->alg.halg.base.cra_exit = cryptd_hash_exit_tfm;
644

645 646 647
	inst->alg.init   = cryptd_hash_init_enqueue;
	inst->alg.update = cryptd_hash_update_enqueue;
	inst->alg.final  = cryptd_hash_final_enqueue;
648 649 650
	inst->alg.finup  = cryptd_hash_finup_enqueue;
	inst->alg.export = cryptd_hash_export;
	inst->alg.import = cryptd_hash_import;
651 652
	inst->alg.setkey = cryptd_hash_setkey;
	inst->alg.digest = cryptd_hash_digest_enqueue;
653

654
	err = ahash_register_instance(tmpl, inst);
655 656 657 658 659 660
	if (err) {
		crypto_drop_shash(&ctx->spawn);
out_free_inst:
		kfree(inst);
	}

661 662
out_put_alg:
	crypto_mod_put(alg);
663
	return err;
664 665
}

666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
static int cryptd_aead_setkey(struct crypto_aead *parent,
			      const u8 *key, unsigned int keylen)
{
	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
	struct crypto_aead *child = ctx->child;

	return crypto_aead_setkey(child, key, keylen);
}

static int cryptd_aead_setauthsize(struct crypto_aead *parent,
				   unsigned int authsize)
{
	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
	struct crypto_aead *child = ctx->child;

	return crypto_aead_setauthsize(child, authsize);
}

684 685 686 687 688 689
static void cryptd_aead_crypt(struct aead_request *req,
			struct crypto_aead *child,
			int err,
			int (*crypt)(struct aead_request *req))
{
	struct cryptd_aead_request_ctx *rctx;
690 691
	crypto_completion_t compl;

692
	rctx = aead_request_ctx(req);
693
	compl = rctx->complete;
694 695 696 697 698 699 700

	if (unlikely(err == -EINPROGRESS))
		goto out;
	aead_request_set_tfm(req, child);
	err = crypt( req );
out:
	local_bh_disable();
701
	compl(&req->base, err);
702 703 704 705 706 707 708 709 710 711
	local_bh_enable();
}

static void cryptd_aead_encrypt(struct crypto_async_request *areq, int err)
{
	struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
	struct crypto_aead *child = ctx->child;
	struct aead_request *req;

	req = container_of(areq, struct aead_request, base);
712
	cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->encrypt);
713 714 715 716 717 718 719 720 721
}

static void cryptd_aead_decrypt(struct crypto_async_request *areq, int err)
{
	struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
	struct crypto_aead *child = ctx->child;
	struct aead_request *req;

	req = container_of(areq, struct aead_request, base);
722
	cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->decrypt);
723 724 725
}

static int cryptd_aead_enqueue(struct aead_request *req,
M
Mark Rustad 已提交
726
				    crypto_completion_t compl)
727 728 729 730 731 732
{
	struct cryptd_aead_request_ctx *rctx = aead_request_ctx(req);
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	struct cryptd_queue *queue = cryptd_get_queue(crypto_aead_tfm(tfm));

	rctx->complete = req->base.complete;
M
Mark Rustad 已提交
733
	req->base.complete = compl;
734 735 736 737 738 739 740 741 742 743 744 745 746
	return cryptd_enqueue_request(queue, &req->base);
}

static int cryptd_aead_encrypt_enqueue(struct aead_request *req)
{
	return cryptd_aead_enqueue(req, cryptd_aead_encrypt );
}

static int cryptd_aead_decrypt_enqueue(struct aead_request *req)
{
	return cryptd_aead_enqueue(req, cryptd_aead_decrypt );
}

747
static int cryptd_aead_init_tfm(struct crypto_aead *tfm)
748
{
749 750
	struct aead_instance *inst = aead_alg_instance(tfm);
	struct aead_instance_ctx *ictx = aead_instance_ctx(inst);
751
	struct crypto_aead_spawn *spawn = &ictx->aead_spawn;
752
	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
753 754 755 756 757 758 759
	struct crypto_aead *cipher;

	cipher = crypto_spawn_aead(spawn);
	if (IS_ERR(cipher))
		return PTR_ERR(cipher);

	ctx->child = cipher;
760 761 762
	crypto_aead_set_reqsize(
		tfm, max((unsigned)sizeof(struct cryptd_aead_request_ctx),
			 crypto_aead_reqsize(cipher)));
763 764 765
	return 0;
}

766
static void cryptd_aead_exit_tfm(struct crypto_aead *tfm)
767
{
768
	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
769 770 771 772 773 774 775 776
	crypto_free_aead(ctx->child);
}

static int cryptd_create_aead(struct crypto_template *tmpl,
		              struct rtattr **tb,
			      struct cryptd_queue *queue)
{
	struct aead_instance_ctx *ctx;
777 778
	struct aead_instance *inst;
	struct aead_alg *alg;
779 780
	const char *name;
	u32 type = 0;
781
	u32 mask = CRYPTO_ALG_ASYNC;
782 783
	int err;

784 785
	cryptd_check_internal(tb, &type, &mask);

786 787 788
	name = crypto_attr_alg_name(tb[1]);
	if (IS_ERR(name))
		return PTR_ERR(name);
789

790 791 792
	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
	if (!inst)
		return -ENOMEM;
793

794
	ctx = aead_instance_ctx(inst);
795 796
	ctx->queue = queue;

797
	crypto_set_aead_spawn(&ctx->aead_spawn, aead_crypto_instance(inst));
798
	err = crypto_grab_aead(&ctx->aead_spawn, name, type, mask);
799 800 801
	if (err)
		goto out_free_inst;

802 803
	alg = crypto_spawn_aead_alg(&ctx->aead_spawn);
	err = cryptd_init_instance(aead_crypto_instance(inst), &alg->base);
804 805 806
	if (err)
		goto out_drop_aead;

807
	inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC |
808 809 810
				   (alg->base.cra_flags &
				    (CRYPTO_ALG_INTERNAL |
				     CRYPTO_ALG_AEAD_NEW));
811
	inst->alg.base.cra_ctxsize = sizeof(struct cryptd_aead_ctx);
812

813 814 815 816 817 818 819 820 821 822 823
	inst->alg.ivsize = crypto_aead_alg_ivsize(alg);
	inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(alg);

	inst->alg.init = cryptd_aead_init_tfm;
	inst->alg.exit = cryptd_aead_exit_tfm;
	inst->alg.setkey = cryptd_aead_setkey;
	inst->alg.setauthsize = cryptd_aead_setauthsize;
	inst->alg.encrypt = cryptd_aead_encrypt_enqueue;
	inst->alg.decrypt = cryptd_aead_decrypt_enqueue;

	err = aead_register_instance(tmpl, inst);
824
	if (err) {
825 826
out_drop_aead:
		crypto_drop_aead(&ctx->aead_spawn);
827 828 829 830 831 832
out_free_inst:
		kfree(inst);
	}
	return err;
}

833
static struct cryptd_queue queue;
834

835
static int cryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
836 837 838 839 840
{
	struct crypto_attr_type *algt;

	algt = crypto_get_attr_type(tb);
	if (IS_ERR(algt))
841
		return PTR_ERR(algt);
842 843 844

	switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
	case CRYPTO_ALG_TYPE_BLKCIPHER:
845
		return cryptd_create_blkcipher(tmpl, tb, &queue);
846
	case CRYPTO_ALG_TYPE_DIGEST:
847
		return cryptd_create_hash(tmpl, tb, &queue);
848 849
	case CRYPTO_ALG_TYPE_AEAD:
		return cryptd_create_aead(tmpl, tb, &queue);
850 851
	}

852
	return -EINVAL;
853 854 855 856 857
}

static void cryptd_free(struct crypto_instance *inst)
{
	struct cryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
858
	struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
859
	struct aead_instance_ctx *aead_ctx = crypto_instance_ctx(inst);
860 861 862 863 864 865

	switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
	case CRYPTO_ALG_TYPE_AHASH:
		crypto_drop_shash(&hctx->spawn);
		kfree(ahash_instance(inst));
		return;
866
	case CRYPTO_ALG_TYPE_AEAD:
867 868
		crypto_drop_aead(&aead_ctx->aead_spawn);
		kfree(aead_instance(inst));
869 870 871 872
		return;
	default:
		crypto_drop_spawn(&ctx->spawn);
		kfree(inst);
873
	}
874 875 876 877
}

static struct crypto_template cryptd_tmpl = {
	.name = "cryptd",
878
	.create = cryptd_create,
879 880 881 882
	.free = cryptd_free,
	.module = THIS_MODULE,
};

883 884 885 886
struct cryptd_ablkcipher *cryptd_alloc_ablkcipher(const char *alg_name,
						  u32 type, u32 mask)
{
	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
887
	struct crypto_tfm *tfm;
888 889 890 891

	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
		return ERR_PTR(-EINVAL);
892 893 894 895 896
	type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
	mask &= ~CRYPTO_ALG_TYPE_MASK;
	mask |= (CRYPTO_ALG_GENIV | CRYPTO_ALG_TYPE_BLKCIPHER_MASK);
	tfm = crypto_alloc_base(cryptd_alg_name, type, mask);
897 898
	if (IS_ERR(tfm))
		return ERR_CAST(tfm);
899 900
	if (tfm->__crt_alg->cra_module != THIS_MODULE) {
		crypto_free_tfm(tfm);
901 902 903
		return ERR_PTR(-EINVAL);
	}

904
	return __cryptd_ablkcipher_cast(__crypto_ablkcipher_cast(tfm));
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
}
EXPORT_SYMBOL_GPL(cryptd_alloc_ablkcipher);

struct crypto_blkcipher *cryptd_ablkcipher_child(struct cryptd_ablkcipher *tfm)
{
	struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(&tfm->base);
	return ctx->child;
}
EXPORT_SYMBOL_GPL(cryptd_ablkcipher_child);

void cryptd_free_ablkcipher(struct cryptd_ablkcipher *tfm)
{
	crypto_free_ablkcipher(&tfm->base);
}
EXPORT_SYMBOL_GPL(cryptd_free_ablkcipher);

921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
struct cryptd_ahash *cryptd_alloc_ahash(const char *alg_name,
					u32 type, u32 mask)
{
	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
	struct crypto_ahash *tfm;

	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
		return ERR_PTR(-EINVAL);
	tfm = crypto_alloc_ahash(cryptd_alg_name, type, mask);
	if (IS_ERR(tfm))
		return ERR_CAST(tfm);
	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
		crypto_free_ahash(tfm);
		return ERR_PTR(-EINVAL);
	}

	return __cryptd_ahash_cast(tfm);
}
EXPORT_SYMBOL_GPL(cryptd_alloc_ahash);

struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm)
{
	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);

	return ctx->child;
}
EXPORT_SYMBOL_GPL(cryptd_ahash_child);

950 951 952 953 954 955 956
struct shash_desc *cryptd_shash_desc(struct ahash_request *req)
{
	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
	return &rctx->desc;
}
EXPORT_SYMBOL_GPL(cryptd_shash_desc);

957 958 959 960 961 962
void cryptd_free_ahash(struct cryptd_ahash *tfm)
{
	crypto_free_ahash(&tfm->base);
}
EXPORT_SYMBOL_GPL(cryptd_free_ahash);

963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
struct cryptd_aead *cryptd_alloc_aead(const char *alg_name,
						  u32 type, u32 mask)
{
	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
	struct crypto_aead *tfm;

	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
		return ERR_PTR(-EINVAL);
	tfm = crypto_alloc_aead(cryptd_alg_name, type, mask);
	if (IS_ERR(tfm))
		return ERR_CAST(tfm);
	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
		crypto_free_aead(tfm);
		return ERR_PTR(-EINVAL);
	}
	return __cryptd_aead_cast(tfm);
}
EXPORT_SYMBOL_GPL(cryptd_alloc_aead);

struct crypto_aead *cryptd_aead_child(struct cryptd_aead *tfm)
{
	struct cryptd_aead_ctx *ctx;
	ctx = crypto_aead_ctx(&tfm->base);
	return ctx->child;
}
EXPORT_SYMBOL_GPL(cryptd_aead_child);

void cryptd_free_aead(struct cryptd_aead *tfm)
{
	crypto_free_aead(&tfm->base);
}
EXPORT_SYMBOL_GPL(cryptd_free_aead);

997 998 999 1000
static int __init cryptd_init(void)
{
	int err;

1001
	err = cryptd_init_queue(&queue, CRYPTD_MAX_CPU_QLEN);
1002 1003 1004 1005 1006
	if (err)
		return err;

	err = crypto_register_template(&cryptd_tmpl);
	if (err)
1007
		cryptd_fini_queue(&queue);
1008 1009 1010 1011 1012 1013

	return err;
}

static void __exit cryptd_exit(void)
{
1014
	cryptd_fini_queue(&queue);
1015 1016 1017
	crypto_unregister_template(&cryptd_tmpl);
}

1018
subsys_initcall(cryptd_init);
1019 1020 1021 1022
module_exit(cryptd_exit);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Software async crypto daemon");
1023
MODULE_ALIAS_CRYPTO("cryptd");