cryptd.c 26.2 KB
Newer Older
1 2 3 4 5
/*
 * Software async crypto daemon.
 *
 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
 *
6 7 8 9 10 11 12
 * Added AEAD support to cryptd.
 *    Authors: Tadeusz Struk (tadeusz.struk@intel.com)
 *             Adrian Hoban <adrian.hoban@intel.com>
 *             Gabriele Paoloni <gabriele.paoloni@intel.com>
 *             Aidan O'Mahony (aidan.o.mahony@intel.com)
 *    Copyright (c) 2010, Intel Corporation.
 *
13 14 15 16 17 18 19 20
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 */

#include <crypto/algapi.h>
21
#include <crypto/internal/hash.h>
22
#include <crypto/internal/aead.h>
23
#include <crypto/cryptd.h>
24
#include <crypto/crypto_wq.h>
25 26 27 28 29 30 31 32 33
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/sched.h>
#include <linux/slab.h>

34
#define CRYPTD_MAX_CPU_QLEN 100
35

36
struct cryptd_cpu_queue {
37
	struct crypto_queue queue;
38 39 40 41
	struct work_struct work;
};

struct cryptd_queue {
42
	struct cryptd_cpu_queue __percpu *cpu_queue;
43 44 45 46
};

struct cryptd_instance_ctx {
	struct crypto_spawn spawn;
47
	struct cryptd_queue *queue;
48 49
};

50 51 52 53 54
struct hashd_instance_ctx {
	struct crypto_shash_spawn spawn;
	struct cryptd_queue *queue;
};

55 56 57 58 59
struct aead_instance_ctx {
	struct crypto_aead_spawn aead_spawn;
	struct cryptd_queue *queue;
};

60 61 62 63 64 65 66 67
struct cryptd_blkcipher_ctx {
	struct crypto_blkcipher *child;
};

struct cryptd_blkcipher_request_ctx {
	crypto_completion_t complete;
};

68
struct cryptd_hash_ctx {
69
	struct crypto_shash *child;
70 71 72 73
};

struct cryptd_hash_request_ctx {
	crypto_completion_t complete;
74
	struct shash_desc desc;
75
};
76

77 78 79 80 81 82 83 84
struct cryptd_aead_ctx {
	struct crypto_aead *child;
};

struct cryptd_aead_request_ctx {
	crypto_completion_t complete;
};

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
static void cryptd_queue_worker(struct work_struct *work);

static int cryptd_init_queue(struct cryptd_queue *queue,
			     unsigned int max_cpu_qlen)
{
	int cpu;
	struct cryptd_cpu_queue *cpu_queue;

	queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue);
	if (!queue->cpu_queue)
		return -ENOMEM;
	for_each_possible_cpu(cpu) {
		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
		crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
		INIT_WORK(&cpu_queue->work, cryptd_queue_worker);
	}
	return 0;
}

static void cryptd_fini_queue(struct cryptd_queue *queue)
{
	int cpu;
	struct cryptd_cpu_queue *cpu_queue;

	for_each_possible_cpu(cpu) {
		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
		BUG_ON(cpu_queue->queue.qlen);
	}
	free_percpu(queue->cpu_queue);
}

static int cryptd_enqueue_request(struct cryptd_queue *queue,
				  struct crypto_async_request *request)
{
	int cpu, err;
	struct cryptd_cpu_queue *cpu_queue;

	cpu = get_cpu();
123
	cpu_queue = this_cpu_ptr(queue->cpu_queue);
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
	err = crypto_enqueue_request(&cpu_queue->queue, request);
	queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
	put_cpu();

	return err;
}

/* Called in workqueue context, do one real cryption work (via
 * req->complete) and reschedule itself if there are more work to
 * do. */
static void cryptd_queue_worker(struct work_struct *work)
{
	struct cryptd_cpu_queue *cpu_queue;
	struct crypto_async_request *req, *backlog;

	cpu_queue = container_of(work, struct cryptd_cpu_queue, work);
140 141 142 143 144 145 146
	/*
	 * Only handle one request at a time to avoid hogging crypto workqueue.
	 * preempt_disable/enable is used to prevent being preempted by
	 * cryptd_enqueue_request(). local_bh_disable/enable is used to prevent
	 * cryptd_enqueue_request() being accessed from software interrupts.
	 */
	local_bh_disable();
147 148 149 150
	preempt_disable();
	backlog = crypto_get_backlog(&cpu_queue->queue);
	req = crypto_dequeue_request(&cpu_queue->queue);
	preempt_enable();
151
	local_bh_enable();
152 153 154 155 156 157 158 159 160 161 162 163 164

	if (!req)
		return;

	if (backlog)
		backlog->complete(backlog, -EINPROGRESS);
	req->complete(req, 0);

	if (cpu_queue->queue.qlen)
		queue_work(kcrypto_wq, &cpu_queue->work);
}

static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm)
165 166 167
{
	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
	struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
168
	return ictx->queue;
169 170
}

171 172 173 174 175 176 177 178 179 180 181 182 183 184
static inline void cryptd_check_internal(struct rtattr **tb, u32 *type,
					 u32 *mask)
{
	struct crypto_attr_type *algt;

	algt = crypto_get_attr_type(tb);
	if (IS_ERR(algt))
		return;
	if ((algt->type & CRYPTO_ALG_INTERNAL))
		*type |= CRYPTO_ALG_INTERNAL;
	if ((algt->mask & CRYPTO_ALG_INTERNAL))
		*mask |= CRYPTO_ALG_INTERNAL;
}

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
static int cryptd_blkcipher_setkey(struct crypto_ablkcipher *parent,
				   const u8 *key, unsigned int keylen)
{
	struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(parent);
	struct crypto_blkcipher *child = ctx->child;
	int err;

	crypto_blkcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
	crypto_blkcipher_set_flags(child, crypto_ablkcipher_get_flags(parent) &
					  CRYPTO_TFM_REQ_MASK);
	err = crypto_blkcipher_setkey(child, key, keylen);
	crypto_ablkcipher_set_flags(parent, crypto_blkcipher_get_flags(child) &
					    CRYPTO_TFM_RES_MASK);
	return err;
}

static void cryptd_blkcipher_crypt(struct ablkcipher_request *req,
				   struct crypto_blkcipher *child,
				   int err,
				   int (*crypt)(struct blkcipher_desc *desc,
						struct scatterlist *dst,
						struct scatterlist *src,
						unsigned int len))
{
	struct cryptd_blkcipher_request_ctx *rctx;
	struct blkcipher_desc desc;

	rctx = ablkcipher_request_ctx(req);

214 215
	if (unlikely(err == -EINPROGRESS))
		goto out;
216 217 218 219 220 221 222 223 224

	desc.tfm = child;
	desc.info = req->info;
	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;

	err = crypt(&desc, req->dst, req->src, req->nbytes);

	req->base.complete = rctx->complete;

225
out:
226
	local_bh_disable();
227
	rctx->complete(&req->base, err);
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
	local_bh_enable();
}

static void cryptd_blkcipher_encrypt(struct crypto_async_request *req, int err)
{
	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(req->tfm);
	struct crypto_blkcipher *child = ctx->child;

	cryptd_blkcipher_crypt(ablkcipher_request_cast(req), child, err,
			       crypto_blkcipher_crt(child)->encrypt);
}

static void cryptd_blkcipher_decrypt(struct crypto_async_request *req, int err)
{
	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(req->tfm);
	struct crypto_blkcipher *child = ctx->child;

	cryptd_blkcipher_crypt(ablkcipher_request_cast(req), child, err,
			       crypto_blkcipher_crt(child)->decrypt);
}

static int cryptd_blkcipher_enqueue(struct ablkcipher_request *req,
M
Mark Rustad 已提交
250
				    crypto_completion_t compl)
251 252 253
{
	struct cryptd_blkcipher_request_ctx *rctx = ablkcipher_request_ctx(req);
	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
254
	struct cryptd_queue *queue;
255

256
	queue = cryptd_get_queue(crypto_ablkcipher_tfm(tfm));
257
	rctx->complete = req->base.complete;
M
Mark Rustad 已提交
258
	req->base.complete = compl;
259

260
	return cryptd_enqueue_request(queue, &req->base);
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
}

static int cryptd_blkcipher_encrypt_enqueue(struct ablkcipher_request *req)
{
	return cryptd_blkcipher_enqueue(req, cryptd_blkcipher_encrypt);
}

static int cryptd_blkcipher_decrypt_enqueue(struct ablkcipher_request *req)
{
	return cryptd_blkcipher_enqueue(req, cryptd_blkcipher_decrypt);
}

static int cryptd_blkcipher_init_tfm(struct crypto_tfm *tfm)
{
	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
	struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
	struct crypto_spawn *spawn = &ictx->spawn;
	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(tfm);
	struct crypto_blkcipher *cipher;

	cipher = crypto_spawn_blkcipher(spawn);
	if (IS_ERR(cipher))
		return PTR_ERR(cipher);

	ctx->child = cipher;
	tfm->crt_ablkcipher.reqsize =
		sizeof(struct cryptd_blkcipher_request_ctx);
	return 0;
}

static void cryptd_blkcipher_exit_tfm(struct crypto_tfm *tfm)
{
	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(tfm);

	crypto_free_blkcipher(ctx->child);
}

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
static int cryptd_init_instance(struct crypto_instance *inst,
				struct crypto_alg *alg)
{
	if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
		     "cryptd(%s)",
		     alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
		return -ENAMETOOLONG;

	memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);

	inst->alg.cra_priority = alg->cra_priority + 50;
	inst->alg.cra_blocksize = alg->cra_blocksize;
	inst->alg.cra_alignmask = alg->cra_alignmask;

	return 0;
}

315 316
static void *cryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
				   unsigned int tail)
317
{
318
	char *p;
319 320 321
	struct crypto_instance *inst;
	int err;

322 323 324 325 326
	p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
	if (!p)
		return ERR_PTR(-ENOMEM);

	inst = (void *)(p + head);
327

328 329
	err = cryptd_init_instance(inst, alg);
	if (err)
330 331 332
		goto out_free_inst;

out:
333
	return p;
334 335

out_free_inst:
336 337
	kfree(p);
	p = ERR_PTR(err);
338 339 340
	goto out;
}

341 342 343
static int cryptd_create_blkcipher(struct crypto_template *tmpl,
				   struct rtattr **tb,
				   struct cryptd_queue *queue)
344
{
345
	struct cryptd_instance_ctx *ctx;
346 347
	struct crypto_instance *inst;
	struct crypto_alg *alg;
348 349
	u32 type = CRYPTO_ALG_TYPE_BLKCIPHER;
	u32 mask = CRYPTO_ALG_TYPE_MASK;
350
	int err;
351

352 353 354
	cryptd_check_internal(tb, &type, &mask);

	alg = crypto_get_attr_alg(tb, type, mask);
355
	if (IS_ERR(alg))
356
		return PTR_ERR(alg);
357

358
	inst = cryptd_alloc_instance(alg, 0, sizeof(*ctx));
359
	err = PTR_ERR(inst);
360 361 362
	if (IS_ERR(inst))
		goto out_put_alg;

363 364 365 366 367 368 369 370
	ctx = crypto_instance_ctx(inst);
	ctx->queue = queue;

	err = crypto_init_spawn(&ctx->spawn, alg, inst,
				CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_ASYNC);
	if (err)
		goto out_free_inst;

371 372 373 374
	type = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC;
	if (alg->cra_flags & CRYPTO_ALG_INTERNAL)
		type |= CRYPTO_ALG_INTERNAL;
	inst->alg.cra_flags = type;
375 376 377 378 379 380
	inst->alg.cra_type = &crypto_ablkcipher_type;

	inst->alg.cra_ablkcipher.ivsize = alg->cra_blkcipher.ivsize;
	inst->alg.cra_ablkcipher.min_keysize = alg->cra_blkcipher.min_keysize;
	inst->alg.cra_ablkcipher.max_keysize = alg->cra_blkcipher.max_keysize;

381 382
	inst->alg.cra_ablkcipher.geniv = alg->cra_blkcipher.geniv;

383 384 385 386 387 388 389 390 391
	inst->alg.cra_ctxsize = sizeof(struct cryptd_blkcipher_ctx);

	inst->alg.cra_init = cryptd_blkcipher_init_tfm;
	inst->alg.cra_exit = cryptd_blkcipher_exit_tfm;

	inst->alg.cra_ablkcipher.setkey = cryptd_blkcipher_setkey;
	inst->alg.cra_ablkcipher.encrypt = cryptd_blkcipher_encrypt_enqueue;
	inst->alg.cra_ablkcipher.decrypt = cryptd_blkcipher_decrypt_enqueue;

392 393 394 395 396 397 398
	err = crypto_register_instance(tmpl, inst);
	if (err) {
		crypto_drop_spawn(&ctx->spawn);
out_free_inst:
		kfree(inst);
	}

399 400
out_put_alg:
	crypto_mod_put(alg);
401
	return err;
402 403
}

404 405 406
static int cryptd_hash_init_tfm(struct crypto_tfm *tfm)
{
	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
407 408
	struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
	struct crypto_shash_spawn *spawn = &ictx->spawn;
409
	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
410
	struct crypto_shash *hash;
411

412 413 414
	hash = crypto_spawn_shash(spawn);
	if (IS_ERR(hash))
		return PTR_ERR(hash);
415

416
	ctx->child = hash;
417 418 419
	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
				 sizeof(struct cryptd_hash_request_ctx) +
				 crypto_shash_descsize(hash));
420 421 422 423 424 425 426
	return 0;
}

static void cryptd_hash_exit_tfm(struct crypto_tfm *tfm)
{
	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);

427
	crypto_free_shash(ctx->child);
428 429 430 431 432 433
}

static int cryptd_hash_setkey(struct crypto_ahash *parent,
				   const u8 *key, unsigned int keylen)
{
	struct cryptd_hash_ctx *ctx   = crypto_ahash_ctx(parent);
434
	struct crypto_shash *child = ctx->child;
435 436
	int err;

437 438 439 440 441 442
	crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
	crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
				      CRYPTO_TFM_REQ_MASK);
	err = crypto_shash_setkey(child, key, keylen);
	crypto_ahash_set_flags(parent, crypto_shash_get_flags(child) &
				       CRYPTO_TFM_RES_MASK);
443 444 445 446
	return err;
}

static int cryptd_hash_enqueue(struct ahash_request *req,
M
Mark Rustad 已提交
447
				crypto_completion_t compl)
448 449 450
{
	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
451 452
	struct cryptd_queue *queue =
		cryptd_get_queue(crypto_ahash_tfm(tfm));
453 454

	rctx->complete = req->base.complete;
M
Mark Rustad 已提交
455
	req->base.complete = compl;
456

457
	return cryptd_enqueue_request(queue, &req->base);
458 459 460 461
}

static void cryptd_hash_init(struct crypto_async_request *req_async, int err)
{
462 463 464 465 466
	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
	struct crypto_shash *child = ctx->child;
	struct ahash_request *req = ahash_request_cast(req_async);
	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
	struct shash_desc *desc = &rctx->desc;
467 468 469 470

	if (unlikely(err == -EINPROGRESS))
		goto out;

471 472
	desc->tfm = child;
	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
473

474
	err = crypto_shash_init(desc);
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490

	req->base.complete = rctx->complete;

out:
	local_bh_disable();
	rctx->complete(&req->base, err);
	local_bh_enable();
}

static int cryptd_hash_init_enqueue(struct ahash_request *req)
{
	return cryptd_hash_enqueue(req, cryptd_hash_init);
}

static void cryptd_hash_update(struct crypto_async_request *req_async, int err)
{
491
	struct ahash_request *req = ahash_request_cast(req_async);
492 493 494 495 496 497 498
	struct cryptd_hash_request_ctx *rctx;

	rctx = ahash_request_ctx(req);

	if (unlikely(err == -EINPROGRESS))
		goto out;

499
	err = shash_ahash_update(req, &rctx->desc);
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515

	req->base.complete = rctx->complete;

out:
	local_bh_disable();
	rctx->complete(&req->base, err);
	local_bh_enable();
}

static int cryptd_hash_update_enqueue(struct ahash_request *req)
{
	return cryptd_hash_enqueue(req, cryptd_hash_update);
}

static void cryptd_hash_final(struct crypto_async_request *req_async, int err)
{
516 517
	struct ahash_request *req = ahash_request_cast(req_async);
	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
518 519 520 521

	if (unlikely(err == -EINPROGRESS))
		goto out;

522
	err = crypto_shash_final(&rctx->desc, req->result);
523 524 525 526 527 528 529 530 531 532 533 534 535 536

	req->base.complete = rctx->complete;

out:
	local_bh_disable();
	rctx->complete(&req->base, err);
	local_bh_enable();
}

static int cryptd_hash_final_enqueue(struct ahash_request *req)
{
	return cryptd_hash_enqueue(req, cryptd_hash_final);
}

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
static void cryptd_hash_finup(struct crypto_async_request *req_async, int err)
{
	struct ahash_request *req = ahash_request_cast(req_async);
	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);

	if (unlikely(err == -EINPROGRESS))
		goto out;

	err = shash_ahash_finup(req, &rctx->desc);

	req->base.complete = rctx->complete;

out:
	local_bh_disable();
	rctx->complete(&req->base, err);
	local_bh_enable();
}

static int cryptd_hash_finup_enqueue(struct ahash_request *req)
{
	return cryptd_hash_enqueue(req, cryptd_hash_finup);
}

560 561
static void cryptd_hash_digest(struct crypto_async_request *req_async, int err)
{
562 563 564 565 566
	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
	struct crypto_shash *child = ctx->child;
	struct ahash_request *req = ahash_request_cast(req_async);
	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
	struct shash_desc *desc = &rctx->desc;
567 568 569 570

	if (unlikely(err == -EINPROGRESS))
		goto out;

571 572
	desc->tfm = child;
	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
573

574
	err = shash_ahash_digest(req, desc);
575 576 577 578 579 580 581 582 583 584 585 586 587 588

	req->base.complete = rctx->complete;

out:
	local_bh_disable();
	rctx->complete(&req->base, err);
	local_bh_enable();
}

static int cryptd_hash_digest_enqueue(struct ahash_request *req)
{
	return cryptd_hash_enqueue(req, cryptd_hash_digest);
}

589 590 591 592 593 594 595 596 597 598 599 600 601 602
static int cryptd_hash_export(struct ahash_request *req, void *out)
{
	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);

	return crypto_shash_export(&rctx->desc, out);
}

static int cryptd_hash_import(struct ahash_request *req, const void *in)
{
	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);

	return crypto_shash_import(&rctx->desc, in);
}

603 604
static int cryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
			      struct cryptd_queue *queue)
605
{
606
	struct hashd_instance_ctx *ctx;
607
	struct ahash_instance *inst;
608
	struct shash_alg *salg;
609
	struct crypto_alg *alg;
610 611
	u32 type = 0;
	u32 mask = 0;
612
	int err;
613

614 615 616
	cryptd_check_internal(tb, &type, &mask);

	salg = shash_attr_alg(tb[1], type, mask);
617
	if (IS_ERR(salg))
618
		return PTR_ERR(salg);
619

620
	alg = &salg->base;
621 622
	inst = cryptd_alloc_instance(alg, ahash_instance_headroom(),
				     sizeof(*ctx));
623
	err = PTR_ERR(inst);
624 625 626
	if (IS_ERR(inst))
		goto out_put_alg;

627
	ctx = ahash_instance_ctx(inst);
628 629
	ctx->queue = queue;

630 631
	err = crypto_init_shash_spawn(&ctx->spawn, salg,
				      ahash_crypto_instance(inst));
632 633 634
	if (err)
		goto out_free_inst;

635 636 637 638
	type = CRYPTO_ALG_ASYNC;
	if (alg->cra_flags & CRYPTO_ALG_INTERNAL)
		type |= CRYPTO_ALG_INTERNAL;
	inst->alg.halg.base.cra_flags = type;
639

640 641
	inst->alg.halg.digestsize = salg->digestsize;
	inst->alg.halg.base.cra_ctxsize = sizeof(struct cryptd_hash_ctx);
642

643 644
	inst->alg.halg.base.cra_init = cryptd_hash_init_tfm;
	inst->alg.halg.base.cra_exit = cryptd_hash_exit_tfm;
645

646 647 648
	inst->alg.init   = cryptd_hash_init_enqueue;
	inst->alg.update = cryptd_hash_update_enqueue;
	inst->alg.final  = cryptd_hash_final_enqueue;
649 650 651
	inst->alg.finup  = cryptd_hash_finup_enqueue;
	inst->alg.export = cryptd_hash_export;
	inst->alg.import = cryptd_hash_import;
652 653
	inst->alg.setkey = cryptd_hash_setkey;
	inst->alg.digest = cryptd_hash_digest_enqueue;
654

655
	err = ahash_register_instance(tmpl, inst);
656 657 658 659 660 661
	if (err) {
		crypto_drop_shash(&ctx->spawn);
out_free_inst:
		kfree(inst);
	}

662 663
out_put_alg:
	crypto_mod_put(alg);
664
	return err;
665 666
}

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
static int cryptd_aead_setkey(struct crypto_aead *parent,
			      const u8 *key, unsigned int keylen)
{
	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
	struct crypto_aead *child = ctx->child;

	return crypto_aead_setkey(child, key, keylen);
}

static int cryptd_aead_setauthsize(struct crypto_aead *parent,
				   unsigned int authsize)
{
	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
	struct crypto_aead *child = ctx->child;

	return crypto_aead_setauthsize(child, authsize);
}

685 686 687 688 689 690
static void cryptd_aead_crypt(struct aead_request *req,
			struct crypto_aead *child,
			int err,
			int (*crypt)(struct aead_request *req))
{
	struct cryptd_aead_request_ctx *rctx;
691 692
	crypto_completion_t compl;

693
	rctx = aead_request_ctx(req);
694
	compl = rctx->complete;
695 696 697 698 699 700 701

	if (unlikely(err == -EINPROGRESS))
		goto out;
	aead_request_set_tfm(req, child);
	err = crypt( req );
out:
	local_bh_disable();
702
	compl(&req->base, err);
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
	local_bh_enable();
}

static void cryptd_aead_encrypt(struct crypto_async_request *areq, int err)
{
	struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
	struct crypto_aead *child = ctx->child;
	struct aead_request *req;

	req = container_of(areq, struct aead_request, base);
	cryptd_aead_crypt(req, child, err, crypto_aead_crt(child)->encrypt);
}

static void cryptd_aead_decrypt(struct crypto_async_request *areq, int err)
{
	struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
	struct crypto_aead *child = ctx->child;
	struct aead_request *req;

	req = container_of(areq, struct aead_request, base);
	cryptd_aead_crypt(req, child, err, crypto_aead_crt(child)->decrypt);
}

static int cryptd_aead_enqueue(struct aead_request *req,
M
Mark Rustad 已提交
727
				    crypto_completion_t compl)
728 729 730 731 732 733
{
	struct cryptd_aead_request_ctx *rctx = aead_request_ctx(req);
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	struct cryptd_queue *queue = cryptd_get_queue(crypto_aead_tfm(tfm));

	rctx->complete = req->base.complete;
M
Mark Rustad 已提交
734
	req->base.complete = compl;
735 736 737 738 739 740 741 742 743 744 745 746 747
	return cryptd_enqueue_request(queue, &req->base);
}

static int cryptd_aead_encrypt_enqueue(struct aead_request *req)
{
	return cryptd_aead_enqueue(req, cryptd_aead_encrypt );
}

static int cryptd_aead_decrypt_enqueue(struct aead_request *req)
{
	return cryptd_aead_enqueue(req, cryptd_aead_decrypt );
}

748
static int cryptd_aead_init_tfm(struct crypto_aead *tfm)
749
{
750 751
	struct aead_instance *inst = aead_alg_instance(tfm);
	struct aead_instance_ctx *ictx = aead_instance_ctx(inst);
752
	struct crypto_aead_spawn *spawn = &ictx->aead_spawn;
753
	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
754 755 756 757 758 759 760
	struct crypto_aead *cipher;

	cipher = crypto_spawn_aead(spawn);
	if (IS_ERR(cipher))
		return PTR_ERR(cipher);

	ctx->child = cipher;
761 762 763
	crypto_aead_set_reqsize(
		tfm, max((unsigned)sizeof(struct cryptd_aead_request_ctx),
			 crypto_aead_reqsize(cipher)));
764 765 766
	return 0;
}

767
static void cryptd_aead_exit_tfm(struct crypto_aead *tfm)
768
{
769
	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
770 771 772 773 774 775 776 777
	crypto_free_aead(ctx->child);
}

static int cryptd_create_aead(struct crypto_template *tmpl,
		              struct rtattr **tb,
			      struct cryptd_queue *queue)
{
	struct aead_instance_ctx *ctx;
778 779
	struct aead_instance *inst;
	struct aead_alg *alg;
780 781
	const char *name;
	u32 type = 0;
782
	u32 mask = CRYPTO_ALG_ASYNC;
783 784
	int err;

785 786
	cryptd_check_internal(tb, &type, &mask);

787 788 789
	name = crypto_attr_alg_name(tb[1]);
	if (IS_ERR(name))
		return PTR_ERR(name);
790

791 792 793
	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
	if (!inst)
		return -ENOMEM;
794

795
	ctx = aead_instance_ctx(inst);
796 797
	ctx->queue = queue;

798
	crypto_set_aead_spawn(&ctx->aead_spawn, aead_crypto_instance(inst));
799
	err = crypto_grab_aead(&ctx->aead_spawn, name, type, mask);
800 801 802
	if (err)
		goto out_free_inst;

803 804
	alg = crypto_spawn_aead_alg(&ctx->aead_spawn);
	err = cryptd_init_instance(aead_crypto_instance(inst), &alg->base);
805 806 807
	if (err)
		goto out_drop_aead;

808 809 810
	inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC |
				   (alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
	inst->alg.base.cra_ctxsize = sizeof(struct cryptd_aead_ctx);
811

812 813 814 815 816 817 818 819 820 821 822
	inst->alg.ivsize = crypto_aead_alg_ivsize(alg);
	inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(alg);

	inst->alg.init = cryptd_aead_init_tfm;
	inst->alg.exit = cryptd_aead_exit_tfm;
	inst->alg.setkey = cryptd_aead_setkey;
	inst->alg.setauthsize = cryptd_aead_setauthsize;
	inst->alg.encrypt = cryptd_aead_encrypt_enqueue;
	inst->alg.decrypt = cryptd_aead_decrypt_enqueue;

	err = aead_register_instance(tmpl, inst);
823
	if (err) {
824 825
out_drop_aead:
		crypto_drop_aead(&ctx->aead_spawn);
826 827 828 829 830 831
out_free_inst:
		kfree(inst);
	}
	return err;
}

832
static struct cryptd_queue queue;
833

834
static int cryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
835 836 837 838 839
{
	struct crypto_attr_type *algt;

	algt = crypto_get_attr_type(tb);
	if (IS_ERR(algt))
840
		return PTR_ERR(algt);
841 842 843

	switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
	case CRYPTO_ALG_TYPE_BLKCIPHER:
844
		return cryptd_create_blkcipher(tmpl, tb, &queue);
845
	case CRYPTO_ALG_TYPE_DIGEST:
846
		return cryptd_create_hash(tmpl, tb, &queue);
847 848
	case CRYPTO_ALG_TYPE_AEAD:
		return cryptd_create_aead(tmpl, tb, &queue);
849 850
	}

851
	return -EINVAL;
852 853 854 855 856
}

static void cryptd_free(struct crypto_instance *inst)
{
	struct cryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
857
	struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
858
	struct aead_instance_ctx *aead_ctx = crypto_instance_ctx(inst);
859 860 861 862 863 864

	switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
	case CRYPTO_ALG_TYPE_AHASH:
		crypto_drop_shash(&hctx->spawn);
		kfree(ahash_instance(inst));
		return;
865
	case CRYPTO_ALG_TYPE_AEAD:
866 867
		crypto_drop_aead(&aead_ctx->aead_spawn);
		kfree(aead_instance(inst));
868 869 870 871
		return;
	default:
		crypto_drop_spawn(&ctx->spawn);
		kfree(inst);
872
	}
873 874 875 876
}

static struct crypto_template cryptd_tmpl = {
	.name = "cryptd",
877
	.create = cryptd_create,
878 879 880 881
	.free = cryptd_free,
	.module = THIS_MODULE,
};

882 883 884 885
struct cryptd_ablkcipher *cryptd_alloc_ablkcipher(const char *alg_name,
						  u32 type, u32 mask)
{
	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
886
	struct crypto_tfm *tfm;
887 888 889 890

	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
		return ERR_PTR(-EINVAL);
891 892 893 894 895
	type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
	mask &= ~CRYPTO_ALG_TYPE_MASK;
	mask |= (CRYPTO_ALG_GENIV | CRYPTO_ALG_TYPE_BLKCIPHER_MASK);
	tfm = crypto_alloc_base(cryptd_alg_name, type, mask);
896 897
	if (IS_ERR(tfm))
		return ERR_CAST(tfm);
898 899
	if (tfm->__crt_alg->cra_module != THIS_MODULE) {
		crypto_free_tfm(tfm);
900 901 902
		return ERR_PTR(-EINVAL);
	}

903
	return __cryptd_ablkcipher_cast(__crypto_ablkcipher_cast(tfm));
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
}
EXPORT_SYMBOL_GPL(cryptd_alloc_ablkcipher);

struct crypto_blkcipher *cryptd_ablkcipher_child(struct cryptd_ablkcipher *tfm)
{
	struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(&tfm->base);
	return ctx->child;
}
EXPORT_SYMBOL_GPL(cryptd_ablkcipher_child);

void cryptd_free_ablkcipher(struct cryptd_ablkcipher *tfm)
{
	crypto_free_ablkcipher(&tfm->base);
}
EXPORT_SYMBOL_GPL(cryptd_free_ablkcipher);

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
struct cryptd_ahash *cryptd_alloc_ahash(const char *alg_name,
					u32 type, u32 mask)
{
	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
	struct crypto_ahash *tfm;

	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
		return ERR_PTR(-EINVAL);
	tfm = crypto_alloc_ahash(cryptd_alg_name, type, mask);
	if (IS_ERR(tfm))
		return ERR_CAST(tfm);
	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
		crypto_free_ahash(tfm);
		return ERR_PTR(-EINVAL);
	}

	return __cryptd_ahash_cast(tfm);
}
EXPORT_SYMBOL_GPL(cryptd_alloc_ahash);

struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm)
{
	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);

	return ctx->child;
}
EXPORT_SYMBOL_GPL(cryptd_ahash_child);

949 950 951 952 953 954 955
struct shash_desc *cryptd_shash_desc(struct ahash_request *req)
{
	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
	return &rctx->desc;
}
EXPORT_SYMBOL_GPL(cryptd_shash_desc);

956 957 958 959 960 961
void cryptd_free_ahash(struct cryptd_ahash *tfm)
{
	crypto_free_ahash(&tfm->base);
}
EXPORT_SYMBOL_GPL(cryptd_free_ahash);

962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
struct cryptd_aead *cryptd_alloc_aead(const char *alg_name,
						  u32 type, u32 mask)
{
	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
	struct crypto_aead *tfm;

	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
		return ERR_PTR(-EINVAL);
	tfm = crypto_alloc_aead(cryptd_alg_name, type, mask);
	if (IS_ERR(tfm))
		return ERR_CAST(tfm);
	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
		crypto_free_aead(tfm);
		return ERR_PTR(-EINVAL);
	}
	return __cryptd_aead_cast(tfm);
}
EXPORT_SYMBOL_GPL(cryptd_alloc_aead);

struct crypto_aead *cryptd_aead_child(struct cryptd_aead *tfm)
{
	struct cryptd_aead_ctx *ctx;
	ctx = crypto_aead_ctx(&tfm->base);
	return ctx->child;
}
EXPORT_SYMBOL_GPL(cryptd_aead_child);

void cryptd_free_aead(struct cryptd_aead *tfm)
{
	crypto_free_aead(&tfm->base);
}
EXPORT_SYMBOL_GPL(cryptd_free_aead);

996 997 998 999
static int __init cryptd_init(void)
{
	int err;

1000
	err = cryptd_init_queue(&queue, CRYPTD_MAX_CPU_QLEN);
1001 1002 1003 1004 1005
	if (err)
		return err;

	err = crypto_register_template(&cryptd_tmpl);
	if (err)
1006
		cryptd_fini_queue(&queue);
1007 1008 1009 1010 1011 1012

	return err;
}

static void __exit cryptd_exit(void)
{
1013
	cryptd_fini_queue(&queue);
1014 1015 1016
	crypto_unregister_template(&cryptd_tmpl);
}

1017
subsys_initcall(cryptd_init);
1018 1019 1020 1021
module_exit(cryptd_exit);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Software async crypto daemon");
1022
MODULE_ALIAS_CRYPTO("cryptd");