cryptd.c 16.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Software async crypto daemon.
 *
 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 */

#include <crypto/algapi.h>
14
#include <crypto/internal/hash.h>
15
#include <crypto/cryptd.h>
16
#include <crypto/crypto_wq.h>
17 18 19 20 21 22 23 24 25
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/sched.h>
#include <linux/slab.h>

26
#define CRYPTD_MAX_CPU_QLEN 100
27

28
struct cryptd_cpu_queue {
29
	struct crypto_queue queue;
30 31 32 33 34
	struct work_struct work;
};

struct cryptd_queue {
	struct cryptd_cpu_queue *cpu_queue;
35 36 37 38
};

struct cryptd_instance_ctx {
	struct crypto_spawn spawn;
39
	struct cryptd_queue *queue;
40 41
};

42 43 44 45 46
struct hashd_instance_ctx {
	struct crypto_shash_spawn spawn;
	struct cryptd_queue *queue;
};

47 48 49 50 51 52 53 54
struct cryptd_blkcipher_ctx {
	struct crypto_blkcipher *child;
};

struct cryptd_blkcipher_request_ctx {
	crypto_completion_t complete;
};

55
struct cryptd_hash_ctx {
56
	struct crypto_shash *child;
57 58 59 60
};

struct cryptd_hash_request_ctx {
	crypto_completion_t complete;
61
	struct shash_desc desc;
62
};
63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
static void cryptd_queue_worker(struct work_struct *work);

static int cryptd_init_queue(struct cryptd_queue *queue,
			     unsigned int max_cpu_qlen)
{
	int cpu;
	struct cryptd_cpu_queue *cpu_queue;

	queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue);
	if (!queue->cpu_queue)
		return -ENOMEM;
	for_each_possible_cpu(cpu) {
		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
		crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
		INIT_WORK(&cpu_queue->work, cryptd_queue_worker);
	}
	return 0;
}

static void cryptd_fini_queue(struct cryptd_queue *queue)
{
	int cpu;
	struct cryptd_cpu_queue *cpu_queue;

	for_each_possible_cpu(cpu) {
		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
		BUG_ON(cpu_queue->queue.qlen);
	}
	free_percpu(queue->cpu_queue);
}

static int cryptd_enqueue_request(struct cryptd_queue *queue,
				  struct crypto_async_request *request)
{
	int cpu, err;
	struct cryptd_cpu_queue *cpu_queue;

	cpu = get_cpu();
	cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
	err = crypto_enqueue_request(&cpu_queue->queue, request);
	queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
	put_cpu();

	return err;
}

/* Called in workqueue context, do one real cryption work (via
 * req->complete) and reschedule itself if there are more work to
 * do. */
static void cryptd_queue_worker(struct work_struct *work)
{
	struct cryptd_cpu_queue *cpu_queue;
	struct crypto_async_request *req, *backlog;

	cpu_queue = container_of(work, struct cryptd_cpu_queue, work);
	/* Only handle one request at a time to avoid hogging crypto
	 * workqueue. preempt_disable/enable is used to prevent
	 * being preempted by cryptd_enqueue_request() */
	preempt_disable();
	backlog = crypto_get_backlog(&cpu_queue->queue);
	req = crypto_dequeue_request(&cpu_queue->queue);
	preempt_enable();

	if (!req)
		return;

	if (backlog)
		backlog->complete(backlog, -EINPROGRESS);
	req->complete(req, 0);

	if (cpu_queue->queue.qlen)
		queue_work(kcrypto_wq, &cpu_queue->work);
}

static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm)
139 140 141
{
	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
	struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
142
	return ictx->queue;
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
}

static int cryptd_blkcipher_setkey(struct crypto_ablkcipher *parent,
				   const u8 *key, unsigned int keylen)
{
	struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(parent);
	struct crypto_blkcipher *child = ctx->child;
	int err;

	crypto_blkcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
	crypto_blkcipher_set_flags(child, crypto_ablkcipher_get_flags(parent) &
					  CRYPTO_TFM_REQ_MASK);
	err = crypto_blkcipher_setkey(child, key, keylen);
	crypto_ablkcipher_set_flags(parent, crypto_blkcipher_get_flags(child) &
					    CRYPTO_TFM_RES_MASK);
	return err;
}

static void cryptd_blkcipher_crypt(struct ablkcipher_request *req,
				   struct crypto_blkcipher *child,
				   int err,
				   int (*crypt)(struct blkcipher_desc *desc,
						struct scatterlist *dst,
						struct scatterlist *src,
						unsigned int len))
{
	struct cryptd_blkcipher_request_ctx *rctx;
	struct blkcipher_desc desc;

	rctx = ablkcipher_request_ctx(req);

174 175
	if (unlikely(err == -EINPROGRESS))
		goto out;
176 177 178 179 180 181 182 183 184

	desc.tfm = child;
	desc.info = req->info;
	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;

	err = crypt(&desc, req->dst, req->src, req->nbytes);

	req->base.complete = rctx->complete;

185
out:
186
	local_bh_disable();
187
	rctx->complete(&req->base, err);
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
	local_bh_enable();
}

static void cryptd_blkcipher_encrypt(struct crypto_async_request *req, int err)
{
	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(req->tfm);
	struct crypto_blkcipher *child = ctx->child;

	cryptd_blkcipher_crypt(ablkcipher_request_cast(req), child, err,
			       crypto_blkcipher_crt(child)->encrypt);
}

static void cryptd_blkcipher_decrypt(struct crypto_async_request *req, int err)
{
	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(req->tfm);
	struct crypto_blkcipher *child = ctx->child;

	cryptd_blkcipher_crypt(ablkcipher_request_cast(req), child, err,
			       crypto_blkcipher_crt(child)->decrypt);
}

static int cryptd_blkcipher_enqueue(struct ablkcipher_request *req,
				    crypto_completion_t complete)
{
	struct cryptd_blkcipher_request_ctx *rctx = ablkcipher_request_ctx(req);
	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
214
	struct cryptd_queue *queue;
215

216
	queue = cryptd_get_queue(crypto_ablkcipher_tfm(tfm));
217 218 219
	rctx->complete = req->base.complete;
	req->base.complete = complete;

220
	return cryptd_enqueue_request(queue, &req->base);
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
}

static int cryptd_blkcipher_encrypt_enqueue(struct ablkcipher_request *req)
{
	return cryptd_blkcipher_enqueue(req, cryptd_blkcipher_encrypt);
}

static int cryptd_blkcipher_decrypt_enqueue(struct ablkcipher_request *req)
{
	return cryptd_blkcipher_enqueue(req, cryptd_blkcipher_decrypt);
}

static int cryptd_blkcipher_init_tfm(struct crypto_tfm *tfm)
{
	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
	struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
	struct crypto_spawn *spawn = &ictx->spawn;
	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(tfm);
	struct crypto_blkcipher *cipher;

	cipher = crypto_spawn_blkcipher(spawn);
	if (IS_ERR(cipher))
		return PTR_ERR(cipher);

	ctx->child = cipher;
	tfm->crt_ablkcipher.reqsize =
		sizeof(struct cryptd_blkcipher_request_ctx);
	return 0;
}

static void cryptd_blkcipher_exit_tfm(struct crypto_tfm *tfm)
{
	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(tfm);

	crypto_free_blkcipher(ctx->child);
}

static struct crypto_instance *cryptd_alloc_instance(struct crypto_alg *alg,
259
						     unsigned int tail)
260 261 262 263
{
	struct crypto_instance *inst;
	int err;

264
	inst = kzalloc(sizeof(*inst) + tail, GFP_KERNEL);
265 266
	if (!inst) {
		inst = ERR_PTR(-ENOMEM);
267
		goto out;
268
	}
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290

	err = -ENAMETOOLONG;
	if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
		     "cryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
		goto out_free_inst;

	memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);

	inst->alg.cra_priority = alg->cra_priority + 50;
	inst->alg.cra_blocksize = alg->cra_blocksize;
	inst->alg.cra_alignmask = alg->cra_alignmask;

out:
	return inst;

out_free_inst:
	kfree(inst);
	inst = ERR_PTR(err);
	goto out;
}

static struct crypto_instance *cryptd_alloc_blkcipher(
291
	struct rtattr **tb, struct cryptd_queue *queue)
292
{
293
	struct cryptd_instance_ctx *ctx;
294 295
	struct crypto_instance *inst;
	struct crypto_alg *alg;
296
	int err;
297 298

	alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_BLKCIPHER,
299
				  CRYPTO_ALG_TYPE_MASK);
300
	if (IS_ERR(alg))
301
		return ERR_CAST(alg);
302

303
	inst = cryptd_alloc_instance(alg, sizeof(*ctx));
304 305 306
	if (IS_ERR(inst))
		goto out_put_alg;

307 308 309 310 311 312 313 314
	ctx = crypto_instance_ctx(inst);
	ctx->queue = queue;

	err = crypto_init_spawn(&ctx->spawn, alg, inst,
				CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_ASYNC);
	if (err)
		goto out_free_inst;

315
	inst->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC;
316 317 318 319 320 321
	inst->alg.cra_type = &crypto_ablkcipher_type;

	inst->alg.cra_ablkcipher.ivsize = alg->cra_blkcipher.ivsize;
	inst->alg.cra_ablkcipher.min_keysize = alg->cra_blkcipher.min_keysize;
	inst->alg.cra_ablkcipher.max_keysize = alg->cra_blkcipher.max_keysize;

322 323
	inst->alg.cra_ablkcipher.geniv = alg->cra_blkcipher.geniv;

324 325 326 327 328 329 330 331 332 333 334 335
	inst->alg.cra_ctxsize = sizeof(struct cryptd_blkcipher_ctx);

	inst->alg.cra_init = cryptd_blkcipher_init_tfm;
	inst->alg.cra_exit = cryptd_blkcipher_exit_tfm;

	inst->alg.cra_ablkcipher.setkey = cryptd_blkcipher_setkey;
	inst->alg.cra_ablkcipher.encrypt = cryptd_blkcipher_encrypt_enqueue;
	inst->alg.cra_ablkcipher.decrypt = cryptd_blkcipher_decrypt_enqueue;

out_put_alg:
	crypto_mod_put(alg);
	return inst;
336 337 338 339 340

out_free_inst:
	kfree(inst);
	inst = ERR_PTR(err);
	goto out_put_alg;
341 342
}

343 344 345
static int cryptd_hash_init_tfm(struct crypto_tfm *tfm)
{
	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
346 347
	struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
	struct crypto_shash_spawn *spawn = &ictx->spawn;
348
	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
349
	struct crypto_shash *hash;
350

351 352 353
	hash = crypto_spawn_shash(spawn);
	if (IS_ERR(hash))
		return PTR_ERR(hash);
354

355
	ctx->child = hash;
356 357 358
	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
				 sizeof(struct cryptd_hash_request_ctx) +
				 crypto_shash_descsize(hash));
359 360 361 362 363 364 365
	return 0;
}

static void cryptd_hash_exit_tfm(struct crypto_tfm *tfm)
{
	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);

366
	crypto_free_shash(ctx->child);
367 368 369 370 371 372
}

static int cryptd_hash_setkey(struct crypto_ahash *parent,
				   const u8 *key, unsigned int keylen)
{
	struct cryptd_hash_ctx *ctx   = crypto_ahash_ctx(parent);
373
	struct crypto_shash *child = ctx->child;
374 375
	int err;

376 377 378 379 380 381
	crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
	crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
				      CRYPTO_TFM_REQ_MASK);
	err = crypto_shash_setkey(child, key, keylen);
	crypto_ahash_set_flags(parent, crypto_shash_get_flags(child) &
				       CRYPTO_TFM_RES_MASK);
382 383 384 385 386 387 388 389
	return err;
}

static int cryptd_hash_enqueue(struct ahash_request *req,
				crypto_completion_t complete)
{
	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
390 391
	struct cryptd_queue *queue =
		cryptd_get_queue(crypto_ahash_tfm(tfm));
392 393 394 395

	rctx->complete = req->base.complete;
	req->base.complete = complete;

396
	return cryptd_enqueue_request(queue, &req->base);
397 398 399 400
}

static void cryptd_hash_init(struct crypto_async_request *req_async, int err)
{
401 402 403 404 405
	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
	struct crypto_shash *child = ctx->child;
	struct ahash_request *req = ahash_request_cast(req_async);
	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
	struct shash_desc *desc = &rctx->desc;
406 407 408 409

	if (unlikely(err == -EINPROGRESS))
		goto out;

410 411
	desc->tfm = child;
	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
412

413
	err = crypto_shash_init(desc);
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429

	req->base.complete = rctx->complete;

out:
	local_bh_disable();
	rctx->complete(&req->base, err);
	local_bh_enable();
}

static int cryptd_hash_init_enqueue(struct ahash_request *req)
{
	return cryptd_hash_enqueue(req, cryptd_hash_init);
}

static void cryptd_hash_update(struct crypto_async_request *req_async, int err)
{
430
	struct ahash_request *req = ahash_request_cast(req_async);
431 432 433 434 435 436 437
	struct cryptd_hash_request_ctx *rctx;

	rctx = ahash_request_ctx(req);

	if (unlikely(err == -EINPROGRESS))
		goto out;

438
	err = shash_ahash_update(req, &rctx->desc);
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454

	req->base.complete = rctx->complete;

out:
	local_bh_disable();
	rctx->complete(&req->base, err);
	local_bh_enable();
}

static int cryptd_hash_update_enqueue(struct ahash_request *req)
{
	return cryptd_hash_enqueue(req, cryptd_hash_update);
}

static void cryptd_hash_final(struct crypto_async_request *req_async, int err)
{
455 456
	struct ahash_request *req = ahash_request_cast(req_async);
	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
457 458 459 460

	if (unlikely(err == -EINPROGRESS))
		goto out;

461
	err = crypto_shash_final(&rctx->desc, req->result);
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477

	req->base.complete = rctx->complete;

out:
	local_bh_disable();
	rctx->complete(&req->base, err);
	local_bh_enable();
}

static int cryptd_hash_final_enqueue(struct ahash_request *req)
{
	return cryptd_hash_enqueue(req, cryptd_hash_final);
}

static void cryptd_hash_digest(struct crypto_async_request *req_async, int err)
{
478 479 480 481 482
	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
	struct crypto_shash *child = ctx->child;
	struct ahash_request *req = ahash_request_cast(req_async);
	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
	struct shash_desc *desc = &rctx->desc;
483 484 485 486

	if (unlikely(err == -EINPROGRESS))
		goto out;

487 488
	desc->tfm = child;
	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
489

490
	err = shash_ahash_digest(req, desc);
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505

	req->base.complete = rctx->complete;

out:
	local_bh_disable();
	rctx->complete(&req->base, err);
	local_bh_enable();
}

static int cryptd_hash_digest_enqueue(struct ahash_request *req)
{
	return cryptd_hash_enqueue(req, cryptd_hash_digest);
}

static struct crypto_instance *cryptd_alloc_hash(
506
	struct rtattr **tb, struct cryptd_queue *queue)
507
{
508
	struct hashd_instance_ctx *ctx;
509
	struct crypto_instance *inst;
510
	struct shash_alg *salg;
511
	struct crypto_alg *alg;
512
	int err;
513

514 515 516
	salg = shash_attr_alg(tb[1], 0, 0);
	if (IS_ERR(salg))
		return ERR_CAST(salg);
517

518 519
	alg = &salg->base;
	inst = cryptd_alloc_instance(alg, sizeof(*ctx));
520 521 522
	if (IS_ERR(inst))
		goto out_put_alg;

523 524 525 526 527 528 529
	ctx = crypto_instance_ctx(inst);
	ctx->queue = queue;

	err = crypto_init_shash_spawn(&ctx->spawn, salg, inst);
	if (err)
		goto out_free_inst;

530 531 532
	inst->alg.cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC;
	inst->alg.cra_type = &crypto_ahash_type;

533
	inst->alg.cra_ahash.digestsize = salg->digestsize;
534 535 536 537 538 539 540 541 542 543 544 545 546 547
	inst->alg.cra_ctxsize = sizeof(struct cryptd_hash_ctx);

	inst->alg.cra_init = cryptd_hash_init_tfm;
	inst->alg.cra_exit = cryptd_hash_exit_tfm;

	inst->alg.cra_ahash.init   = cryptd_hash_init_enqueue;
	inst->alg.cra_ahash.update = cryptd_hash_update_enqueue;
	inst->alg.cra_ahash.final  = cryptd_hash_final_enqueue;
	inst->alg.cra_ahash.setkey = cryptd_hash_setkey;
	inst->alg.cra_ahash.digest = cryptd_hash_digest_enqueue;

out_put_alg:
	crypto_mod_put(alg);
	return inst;
548 549 550 551 552

out_free_inst:
	kfree(inst);
	inst = ERR_PTR(err);
	goto out_put_alg;
553 554
}

555
static struct cryptd_queue queue;
556 557 558 559 560 561 562

static struct crypto_instance *cryptd_alloc(struct rtattr **tb)
{
	struct crypto_attr_type *algt;

	algt = crypto_get_attr_type(tb);
	if (IS_ERR(algt))
563
		return ERR_CAST(algt);
564 565 566

	switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
	case CRYPTO_ALG_TYPE_BLKCIPHER:
567
		return cryptd_alloc_blkcipher(tb, &queue);
568
	case CRYPTO_ALG_TYPE_DIGEST:
569
		return cryptd_alloc_hash(tb, &queue);
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
	}

	return ERR_PTR(-EINVAL);
}

static void cryptd_free(struct crypto_instance *inst)
{
	struct cryptd_instance_ctx *ctx = crypto_instance_ctx(inst);

	crypto_drop_spawn(&ctx->spawn);
	kfree(inst);
}

static struct crypto_template cryptd_tmpl = {
	.name = "cryptd",
	.alloc = cryptd_alloc,
	.free = cryptd_free,
	.module = THIS_MODULE,
};

590 591 592 593
struct cryptd_ablkcipher *cryptd_alloc_ablkcipher(const char *alg_name,
						  u32 type, u32 mask)
{
	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
594
	struct crypto_tfm *tfm;
595 596 597 598

	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
		return ERR_PTR(-EINVAL);
599 600 601 602 603
	type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
	mask &= ~CRYPTO_ALG_TYPE_MASK;
	mask |= (CRYPTO_ALG_GENIV | CRYPTO_ALG_TYPE_BLKCIPHER_MASK);
	tfm = crypto_alloc_base(cryptd_alg_name, type, mask);
604 605
	if (IS_ERR(tfm))
		return ERR_CAST(tfm);
606 607
	if (tfm->__crt_alg->cra_module != THIS_MODULE) {
		crypto_free_tfm(tfm);
608 609 610
		return ERR_PTR(-EINVAL);
	}

611
	return __cryptd_ablkcipher_cast(__crypto_ablkcipher_cast(tfm));
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
}
EXPORT_SYMBOL_GPL(cryptd_alloc_ablkcipher);

struct crypto_blkcipher *cryptd_ablkcipher_child(struct cryptd_ablkcipher *tfm)
{
	struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(&tfm->base);
	return ctx->child;
}
EXPORT_SYMBOL_GPL(cryptd_ablkcipher_child);

void cryptd_free_ablkcipher(struct cryptd_ablkcipher *tfm)
{
	crypto_free_ablkcipher(&tfm->base);
}
EXPORT_SYMBOL_GPL(cryptd_free_ablkcipher);

628 629 630 631
static int __init cryptd_init(void)
{
	int err;

632
	err = cryptd_init_queue(&queue, CRYPTD_MAX_CPU_QLEN);
633 634 635 636 637
	if (err)
		return err;

	err = crypto_register_template(&cryptd_tmpl);
	if (err)
638
		cryptd_fini_queue(&queue);
639 640 641 642 643 644

	return err;
}

static void __exit cryptd_exit(void)
{
645
	cryptd_fini_queue(&queue);
646 647 648 649 650 651 652 653
	crypto_unregister_template(&cryptd_tmpl);
}

module_init(cryptd_init);
module_exit(cryptd_exit);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Software async crypto daemon");