cryptd.c 25.8 KB
Newer Older
1 2 3 4 5
/*
 * Software async crypto daemon.
 *
 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
 *
6 7 8 9 10 11 12
 * Added AEAD support to cryptd.
 *    Authors: Tadeusz Struk (tadeusz.struk@intel.com)
 *             Adrian Hoban <adrian.hoban@intel.com>
 *             Gabriele Paoloni <gabriele.paoloni@intel.com>
 *             Aidan O'Mahony (aidan.o.mahony@intel.com)
 *    Copyright (c) 2010, Intel Corporation.
 *
13 14 15 16 17 18 19 20
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 */

#include <crypto/algapi.h>
21
#include <crypto/internal/hash.h>
22
#include <crypto/internal/aead.h>
23
#include <crypto/cryptd.h>
24
#include <crypto/crypto_wq.h>
25 26 27 28 29 30 31 32 33
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/sched.h>
#include <linux/slab.h>

34
#define CRYPTD_MAX_CPU_QLEN 100
35

36
struct cryptd_cpu_queue {
37
	struct crypto_queue queue;
38 39 40 41
	struct work_struct work;
};

struct cryptd_queue {
42
	struct cryptd_cpu_queue __percpu *cpu_queue;
43 44 45 46
};

struct cryptd_instance_ctx {
	struct crypto_spawn spawn;
47
	struct cryptd_queue *queue;
48 49
};

50 51 52 53 54
struct hashd_instance_ctx {
	struct crypto_shash_spawn spawn;
	struct cryptd_queue *queue;
};

55 56 57 58 59
struct aead_instance_ctx {
	struct crypto_aead_spawn aead_spawn;
	struct cryptd_queue *queue;
};

60 61 62 63 64 65 66 67
struct cryptd_blkcipher_ctx {
	struct crypto_blkcipher *child;
};

struct cryptd_blkcipher_request_ctx {
	crypto_completion_t complete;
};

68
struct cryptd_hash_ctx {
69
	struct crypto_shash *child;
70 71 72 73
};

struct cryptd_hash_request_ctx {
	crypto_completion_t complete;
74
	struct shash_desc desc;
75
};
76

77 78 79 80 81 82 83 84
struct cryptd_aead_ctx {
	struct crypto_aead *child;
};

struct cryptd_aead_request_ctx {
	crypto_completion_t complete;
};

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
static void cryptd_queue_worker(struct work_struct *work);

static int cryptd_init_queue(struct cryptd_queue *queue,
			     unsigned int max_cpu_qlen)
{
	int cpu;
	struct cryptd_cpu_queue *cpu_queue;

	queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue);
	if (!queue->cpu_queue)
		return -ENOMEM;
	for_each_possible_cpu(cpu) {
		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
		crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
		INIT_WORK(&cpu_queue->work, cryptd_queue_worker);
	}
	return 0;
}

static void cryptd_fini_queue(struct cryptd_queue *queue)
{
	int cpu;
	struct cryptd_cpu_queue *cpu_queue;

	for_each_possible_cpu(cpu) {
		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
		BUG_ON(cpu_queue->queue.qlen);
	}
	free_percpu(queue->cpu_queue);
}

static int cryptd_enqueue_request(struct cryptd_queue *queue,
				  struct crypto_async_request *request)
{
	int cpu, err;
	struct cryptd_cpu_queue *cpu_queue;

	cpu = get_cpu();
123
	cpu_queue = this_cpu_ptr(queue->cpu_queue);
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
	err = crypto_enqueue_request(&cpu_queue->queue, request);
	queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
	put_cpu();

	return err;
}

/* Called in workqueue context, do one real cryption work (via
 * req->complete) and reschedule itself if there are more work to
 * do. */
static void cryptd_queue_worker(struct work_struct *work)
{
	struct cryptd_cpu_queue *cpu_queue;
	struct crypto_async_request *req, *backlog;

	cpu_queue = container_of(work, struct cryptd_cpu_queue, work);
140 141 142 143 144 145 146
	/*
	 * Only handle one request at a time to avoid hogging crypto workqueue.
	 * preempt_disable/enable is used to prevent being preempted by
	 * cryptd_enqueue_request(). local_bh_disable/enable is used to prevent
	 * cryptd_enqueue_request() being accessed from software interrupts.
	 */
	local_bh_disable();
147 148 149 150
	preempt_disable();
	backlog = crypto_get_backlog(&cpu_queue->queue);
	req = crypto_dequeue_request(&cpu_queue->queue);
	preempt_enable();
151
	local_bh_enable();
152 153 154 155 156 157 158 159 160 161 162 163 164

	if (!req)
		return;

	if (backlog)
		backlog->complete(backlog, -EINPROGRESS);
	req->complete(req, 0);

	if (cpu_queue->queue.qlen)
		queue_work(kcrypto_wq, &cpu_queue->work);
}

static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm)
165 166 167
{
	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
	struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
168
	return ictx->queue;
169 170
}

171 172 173 174 175 176 177 178 179 180 181 182 183 184
static inline void cryptd_check_internal(struct rtattr **tb, u32 *type,
					 u32 *mask)
{
	struct crypto_attr_type *algt;

	algt = crypto_get_attr_type(tb);
	if (IS_ERR(algt))
		return;
	if ((algt->type & CRYPTO_ALG_INTERNAL))
		*type |= CRYPTO_ALG_INTERNAL;
	if ((algt->mask & CRYPTO_ALG_INTERNAL))
		*mask |= CRYPTO_ALG_INTERNAL;
}

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
static int cryptd_blkcipher_setkey(struct crypto_ablkcipher *parent,
				   const u8 *key, unsigned int keylen)
{
	struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(parent);
	struct crypto_blkcipher *child = ctx->child;
	int err;

	crypto_blkcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
	crypto_blkcipher_set_flags(child, crypto_ablkcipher_get_flags(parent) &
					  CRYPTO_TFM_REQ_MASK);
	err = crypto_blkcipher_setkey(child, key, keylen);
	crypto_ablkcipher_set_flags(parent, crypto_blkcipher_get_flags(child) &
					    CRYPTO_TFM_RES_MASK);
	return err;
}

static void cryptd_blkcipher_crypt(struct ablkcipher_request *req,
				   struct crypto_blkcipher *child,
				   int err,
				   int (*crypt)(struct blkcipher_desc *desc,
						struct scatterlist *dst,
						struct scatterlist *src,
						unsigned int len))
{
	struct cryptd_blkcipher_request_ctx *rctx;
	struct blkcipher_desc desc;

	rctx = ablkcipher_request_ctx(req);

214 215
	if (unlikely(err == -EINPROGRESS))
		goto out;
216 217 218 219 220 221 222 223 224

	desc.tfm = child;
	desc.info = req->info;
	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;

	err = crypt(&desc, req->dst, req->src, req->nbytes);

	req->base.complete = rctx->complete;

225
out:
226
	local_bh_disable();
227
	rctx->complete(&req->base, err);
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
	local_bh_enable();
}

static void cryptd_blkcipher_encrypt(struct crypto_async_request *req, int err)
{
	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(req->tfm);
	struct crypto_blkcipher *child = ctx->child;

	cryptd_blkcipher_crypt(ablkcipher_request_cast(req), child, err,
			       crypto_blkcipher_crt(child)->encrypt);
}

static void cryptd_blkcipher_decrypt(struct crypto_async_request *req, int err)
{
	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(req->tfm);
	struct crypto_blkcipher *child = ctx->child;

	cryptd_blkcipher_crypt(ablkcipher_request_cast(req), child, err,
			       crypto_blkcipher_crt(child)->decrypt);
}

static int cryptd_blkcipher_enqueue(struct ablkcipher_request *req,
M
Mark Rustad 已提交
250
				    crypto_completion_t compl)
251 252 253
{
	struct cryptd_blkcipher_request_ctx *rctx = ablkcipher_request_ctx(req);
	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
254
	struct cryptd_queue *queue;
255

256
	queue = cryptd_get_queue(crypto_ablkcipher_tfm(tfm));
257
	rctx->complete = req->base.complete;
M
Mark Rustad 已提交
258
	req->base.complete = compl;
259

260
	return cryptd_enqueue_request(queue, &req->base);
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
}

static int cryptd_blkcipher_encrypt_enqueue(struct ablkcipher_request *req)
{
	return cryptd_blkcipher_enqueue(req, cryptd_blkcipher_encrypt);
}

static int cryptd_blkcipher_decrypt_enqueue(struct ablkcipher_request *req)
{
	return cryptd_blkcipher_enqueue(req, cryptd_blkcipher_decrypt);
}

static int cryptd_blkcipher_init_tfm(struct crypto_tfm *tfm)
{
	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
	struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
	struct crypto_spawn *spawn = &ictx->spawn;
	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(tfm);
	struct crypto_blkcipher *cipher;

	cipher = crypto_spawn_blkcipher(spawn);
	if (IS_ERR(cipher))
		return PTR_ERR(cipher);

	ctx->child = cipher;
	tfm->crt_ablkcipher.reqsize =
		sizeof(struct cryptd_blkcipher_request_ctx);
	return 0;
}

static void cryptd_blkcipher_exit_tfm(struct crypto_tfm *tfm)
{
	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(tfm);

	crypto_free_blkcipher(ctx->child);
}

298 299
static void *cryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
				   unsigned int tail)
300
{
301
	char *p;
302 303 304
	struct crypto_instance *inst;
	int err;

305 306 307 308 309
	p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
	if (!p)
		return ERR_PTR(-ENOMEM);

	inst = (void *)(p + head);
310 311 312 313 314 315 316 317 318 319 320 321 322

	err = -ENAMETOOLONG;
	if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
		     "cryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
		goto out_free_inst;

	memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);

	inst->alg.cra_priority = alg->cra_priority + 50;
	inst->alg.cra_blocksize = alg->cra_blocksize;
	inst->alg.cra_alignmask = alg->cra_alignmask;

out:
323
	return p;
324 325

out_free_inst:
326 327
	kfree(p);
	p = ERR_PTR(err);
328 329 330
	goto out;
}

331 332 333
static int cryptd_create_blkcipher(struct crypto_template *tmpl,
				   struct rtattr **tb,
				   struct cryptd_queue *queue)
334
{
335
	struct cryptd_instance_ctx *ctx;
336 337
	struct crypto_instance *inst;
	struct crypto_alg *alg;
338 339
	u32 type = CRYPTO_ALG_TYPE_BLKCIPHER;
	u32 mask = CRYPTO_ALG_TYPE_MASK;
340
	int err;
341

342 343 344
	cryptd_check_internal(tb, &type, &mask);

	alg = crypto_get_attr_alg(tb, type, mask);
345
	if (IS_ERR(alg))
346
		return PTR_ERR(alg);
347

348
	inst = cryptd_alloc_instance(alg, 0, sizeof(*ctx));
349
	err = PTR_ERR(inst);
350 351 352
	if (IS_ERR(inst))
		goto out_put_alg;

353 354 355 356 357 358 359 360
	ctx = crypto_instance_ctx(inst);
	ctx->queue = queue;

	err = crypto_init_spawn(&ctx->spawn, alg, inst,
				CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_ASYNC);
	if (err)
		goto out_free_inst;

361 362 363 364
	type = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC;
	if (alg->cra_flags & CRYPTO_ALG_INTERNAL)
		type |= CRYPTO_ALG_INTERNAL;
	inst->alg.cra_flags = type;
365 366 367 368 369 370
	inst->alg.cra_type = &crypto_ablkcipher_type;

	inst->alg.cra_ablkcipher.ivsize = alg->cra_blkcipher.ivsize;
	inst->alg.cra_ablkcipher.min_keysize = alg->cra_blkcipher.min_keysize;
	inst->alg.cra_ablkcipher.max_keysize = alg->cra_blkcipher.max_keysize;

371 372
	inst->alg.cra_ablkcipher.geniv = alg->cra_blkcipher.geniv;

373 374 375 376 377 378 379 380 381
	inst->alg.cra_ctxsize = sizeof(struct cryptd_blkcipher_ctx);

	inst->alg.cra_init = cryptd_blkcipher_init_tfm;
	inst->alg.cra_exit = cryptd_blkcipher_exit_tfm;

	inst->alg.cra_ablkcipher.setkey = cryptd_blkcipher_setkey;
	inst->alg.cra_ablkcipher.encrypt = cryptd_blkcipher_encrypt_enqueue;
	inst->alg.cra_ablkcipher.decrypt = cryptd_blkcipher_decrypt_enqueue;

382 383 384 385 386 387 388
	err = crypto_register_instance(tmpl, inst);
	if (err) {
		crypto_drop_spawn(&ctx->spawn);
out_free_inst:
		kfree(inst);
	}

389 390
out_put_alg:
	crypto_mod_put(alg);
391
	return err;
392 393
}

394 395 396
static int cryptd_hash_init_tfm(struct crypto_tfm *tfm)
{
	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
397 398
	struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
	struct crypto_shash_spawn *spawn = &ictx->spawn;
399
	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
400
	struct crypto_shash *hash;
401

402 403 404
	hash = crypto_spawn_shash(spawn);
	if (IS_ERR(hash))
		return PTR_ERR(hash);
405

406
	ctx->child = hash;
407 408 409
	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
				 sizeof(struct cryptd_hash_request_ctx) +
				 crypto_shash_descsize(hash));
410 411 412 413 414 415 416
	return 0;
}

static void cryptd_hash_exit_tfm(struct crypto_tfm *tfm)
{
	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);

417
	crypto_free_shash(ctx->child);
418 419 420 421 422 423
}

static int cryptd_hash_setkey(struct crypto_ahash *parent,
				   const u8 *key, unsigned int keylen)
{
	struct cryptd_hash_ctx *ctx   = crypto_ahash_ctx(parent);
424
	struct crypto_shash *child = ctx->child;
425 426
	int err;

427 428 429 430 431 432
	crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
	crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
				      CRYPTO_TFM_REQ_MASK);
	err = crypto_shash_setkey(child, key, keylen);
	crypto_ahash_set_flags(parent, crypto_shash_get_flags(child) &
				       CRYPTO_TFM_RES_MASK);
433 434 435 436
	return err;
}

static int cryptd_hash_enqueue(struct ahash_request *req,
M
Mark Rustad 已提交
437
				crypto_completion_t compl)
438 439 440
{
	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
441 442
	struct cryptd_queue *queue =
		cryptd_get_queue(crypto_ahash_tfm(tfm));
443 444

	rctx->complete = req->base.complete;
M
Mark Rustad 已提交
445
	req->base.complete = compl;
446

447
	return cryptd_enqueue_request(queue, &req->base);
448 449 450 451
}

static void cryptd_hash_init(struct crypto_async_request *req_async, int err)
{
452 453 454 455 456
	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
	struct crypto_shash *child = ctx->child;
	struct ahash_request *req = ahash_request_cast(req_async);
	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
	struct shash_desc *desc = &rctx->desc;
457 458 459 460

	if (unlikely(err == -EINPROGRESS))
		goto out;

461 462
	desc->tfm = child;
	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
463

464
	err = crypto_shash_init(desc);
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480

	req->base.complete = rctx->complete;

out:
	local_bh_disable();
	rctx->complete(&req->base, err);
	local_bh_enable();
}

static int cryptd_hash_init_enqueue(struct ahash_request *req)
{
	return cryptd_hash_enqueue(req, cryptd_hash_init);
}

static void cryptd_hash_update(struct crypto_async_request *req_async, int err)
{
481
	struct ahash_request *req = ahash_request_cast(req_async);
482 483 484 485 486 487 488
	struct cryptd_hash_request_ctx *rctx;

	rctx = ahash_request_ctx(req);

	if (unlikely(err == -EINPROGRESS))
		goto out;

489
	err = shash_ahash_update(req, &rctx->desc);
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505

	req->base.complete = rctx->complete;

out:
	local_bh_disable();
	rctx->complete(&req->base, err);
	local_bh_enable();
}

static int cryptd_hash_update_enqueue(struct ahash_request *req)
{
	return cryptd_hash_enqueue(req, cryptd_hash_update);
}

static void cryptd_hash_final(struct crypto_async_request *req_async, int err)
{
506 507
	struct ahash_request *req = ahash_request_cast(req_async);
	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
508 509 510 511

	if (unlikely(err == -EINPROGRESS))
		goto out;

512
	err = crypto_shash_final(&rctx->desc, req->result);
513 514 515 516 517 518 519 520 521 522 523 524 525 526

	req->base.complete = rctx->complete;

out:
	local_bh_disable();
	rctx->complete(&req->base, err);
	local_bh_enable();
}

static int cryptd_hash_final_enqueue(struct ahash_request *req)
{
	return cryptd_hash_enqueue(req, cryptd_hash_final);
}

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
static void cryptd_hash_finup(struct crypto_async_request *req_async, int err)
{
	struct ahash_request *req = ahash_request_cast(req_async);
	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);

	if (unlikely(err == -EINPROGRESS))
		goto out;

	err = shash_ahash_finup(req, &rctx->desc);

	req->base.complete = rctx->complete;

out:
	local_bh_disable();
	rctx->complete(&req->base, err);
	local_bh_enable();
}

static int cryptd_hash_finup_enqueue(struct ahash_request *req)
{
	return cryptd_hash_enqueue(req, cryptd_hash_finup);
}

550 551
static void cryptd_hash_digest(struct crypto_async_request *req_async, int err)
{
552 553 554 555 556
	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
	struct crypto_shash *child = ctx->child;
	struct ahash_request *req = ahash_request_cast(req_async);
	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
	struct shash_desc *desc = &rctx->desc;
557 558 559 560

	if (unlikely(err == -EINPROGRESS))
		goto out;

561 562
	desc->tfm = child;
	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
563

564
	err = shash_ahash_digest(req, desc);
565 566 567 568 569 570 571 572 573 574 575 576 577 578

	req->base.complete = rctx->complete;

out:
	local_bh_disable();
	rctx->complete(&req->base, err);
	local_bh_enable();
}

static int cryptd_hash_digest_enqueue(struct ahash_request *req)
{
	return cryptd_hash_enqueue(req, cryptd_hash_digest);
}

579 580 581 582 583 584 585 586 587 588 589 590 591 592
static int cryptd_hash_export(struct ahash_request *req, void *out)
{
	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);

	return crypto_shash_export(&rctx->desc, out);
}

static int cryptd_hash_import(struct ahash_request *req, const void *in)
{
	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);

	return crypto_shash_import(&rctx->desc, in);
}

593 594
static int cryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
			      struct cryptd_queue *queue)
595
{
596
	struct hashd_instance_ctx *ctx;
597
	struct ahash_instance *inst;
598
	struct shash_alg *salg;
599
	struct crypto_alg *alg;
600 601
	u32 type = 0;
	u32 mask = 0;
602
	int err;
603

604 605 606
	cryptd_check_internal(tb, &type, &mask);

	salg = shash_attr_alg(tb[1], type, mask);
607
	if (IS_ERR(salg))
608
		return PTR_ERR(salg);
609

610
	alg = &salg->base;
611 612
	inst = cryptd_alloc_instance(alg, ahash_instance_headroom(),
				     sizeof(*ctx));
613
	err = PTR_ERR(inst);
614 615 616
	if (IS_ERR(inst))
		goto out_put_alg;

617
	ctx = ahash_instance_ctx(inst);
618 619
	ctx->queue = queue;

620 621
	err = crypto_init_shash_spawn(&ctx->spawn, salg,
				      ahash_crypto_instance(inst));
622 623 624
	if (err)
		goto out_free_inst;

625 626 627 628
	type = CRYPTO_ALG_ASYNC;
	if (alg->cra_flags & CRYPTO_ALG_INTERNAL)
		type |= CRYPTO_ALG_INTERNAL;
	inst->alg.halg.base.cra_flags = type;
629

630 631
	inst->alg.halg.digestsize = salg->digestsize;
	inst->alg.halg.base.cra_ctxsize = sizeof(struct cryptd_hash_ctx);
632

633 634
	inst->alg.halg.base.cra_init = cryptd_hash_init_tfm;
	inst->alg.halg.base.cra_exit = cryptd_hash_exit_tfm;
635

636 637 638
	inst->alg.init   = cryptd_hash_init_enqueue;
	inst->alg.update = cryptd_hash_update_enqueue;
	inst->alg.final  = cryptd_hash_final_enqueue;
639 640 641
	inst->alg.finup  = cryptd_hash_finup_enqueue;
	inst->alg.export = cryptd_hash_export;
	inst->alg.import = cryptd_hash_import;
642 643
	inst->alg.setkey = cryptd_hash_setkey;
	inst->alg.digest = cryptd_hash_digest_enqueue;
644

645
	err = ahash_register_instance(tmpl, inst);
646 647 648 649 650 651
	if (err) {
		crypto_drop_shash(&ctx->spawn);
out_free_inst:
		kfree(inst);
	}

652 653
out_put_alg:
	crypto_mod_put(alg);
654
	return err;
655 656
}

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
static void cryptd_aead_crypt(struct aead_request *req,
			struct crypto_aead *child,
			int err,
			int (*crypt)(struct aead_request *req))
{
	struct cryptd_aead_request_ctx *rctx;
	rctx = aead_request_ctx(req);

	if (unlikely(err == -EINPROGRESS))
		goto out;
	aead_request_set_tfm(req, child);
	err = crypt( req );
	req->base.complete = rctx->complete;
out:
	local_bh_disable();
	rctx->complete(&req->base, err);
	local_bh_enable();
}

static void cryptd_aead_encrypt(struct crypto_async_request *areq, int err)
{
	struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
	struct crypto_aead *child = ctx->child;
	struct aead_request *req;

	req = container_of(areq, struct aead_request, base);
	cryptd_aead_crypt(req, child, err, crypto_aead_crt(child)->encrypt);
}

static void cryptd_aead_decrypt(struct crypto_async_request *areq, int err)
{
	struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
	struct crypto_aead *child = ctx->child;
	struct aead_request *req;

	req = container_of(areq, struct aead_request, base);
	cryptd_aead_crypt(req, child, err, crypto_aead_crt(child)->decrypt);
}

static int cryptd_aead_enqueue(struct aead_request *req,
M
Mark Rustad 已提交
697
				    crypto_completion_t compl)
698 699 700 701 702 703
{
	struct cryptd_aead_request_ctx *rctx = aead_request_ctx(req);
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	struct cryptd_queue *queue = cryptd_get_queue(crypto_aead_tfm(tfm));

	rctx->complete = req->base.complete;
M
Mark Rustad 已提交
704
	req->base.complete = compl;
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
	return cryptd_enqueue_request(queue, &req->base);
}

static int cryptd_aead_encrypt_enqueue(struct aead_request *req)
{
	return cryptd_aead_enqueue(req, cryptd_aead_encrypt );
}

static int cryptd_aead_decrypt_enqueue(struct aead_request *req)
{
	return cryptd_aead_enqueue(req, cryptd_aead_decrypt );
}

static int cryptd_aead_init_tfm(struct crypto_tfm *tfm)
{
	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
	struct aead_instance_ctx *ictx = crypto_instance_ctx(inst);
	struct crypto_aead_spawn *spawn = &ictx->aead_spawn;
	struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(tfm);
	struct crypto_aead *cipher;

	cipher = crypto_spawn_aead(spawn);
	if (IS_ERR(cipher))
		return PTR_ERR(cipher);

	crypto_aead_set_flags(cipher, CRYPTO_TFM_REQ_MAY_SLEEP);
	ctx->child = cipher;
732 733
	crypto_aead_set_reqsize(__crypto_aead_cast(tfm),
				sizeof(struct cryptd_aead_request_ctx));
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
	return 0;
}

static void cryptd_aead_exit_tfm(struct crypto_tfm *tfm)
{
	struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(tfm);
	crypto_free_aead(ctx->child);
}

static int cryptd_create_aead(struct crypto_template *tmpl,
		              struct rtattr **tb,
			      struct cryptd_queue *queue)
{
	struct aead_instance_ctx *ctx;
	struct crypto_instance *inst;
	struct crypto_alg *alg;
750 751
	u32 type = CRYPTO_ALG_TYPE_AEAD;
	u32 mask = CRYPTO_ALG_TYPE_MASK;
752 753
	int err;

754 755 756
	cryptd_check_internal(tb, &type, &mask);

	alg = crypto_get_attr_alg(tb, type, mask);
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
        if (IS_ERR(alg))
		return PTR_ERR(alg);

	inst = cryptd_alloc_instance(alg, 0, sizeof(*ctx));
	err = PTR_ERR(inst);
	if (IS_ERR(inst))
		goto out_put_alg;

	ctx = crypto_instance_ctx(inst);
	ctx->queue = queue;

	err = crypto_init_spawn(&ctx->aead_spawn.base, alg, inst,
			CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_ASYNC);
	if (err)
		goto out_free_inst;

773 774 775 776
	type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC;
	if (alg->cra_flags & CRYPTO_ALG_INTERNAL)
		type |= CRYPTO_ALG_INTERNAL;
	inst->alg.cra_flags = type;
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
	inst->alg.cra_type = alg->cra_type;
	inst->alg.cra_ctxsize = sizeof(struct cryptd_aead_ctx);
	inst->alg.cra_init = cryptd_aead_init_tfm;
	inst->alg.cra_exit = cryptd_aead_exit_tfm;
	inst->alg.cra_aead.setkey      = alg->cra_aead.setkey;
	inst->alg.cra_aead.setauthsize = alg->cra_aead.setauthsize;
	inst->alg.cra_aead.geniv       = alg->cra_aead.geniv;
	inst->alg.cra_aead.ivsize      = alg->cra_aead.ivsize;
	inst->alg.cra_aead.maxauthsize = alg->cra_aead.maxauthsize;
	inst->alg.cra_aead.encrypt     = cryptd_aead_encrypt_enqueue;
	inst->alg.cra_aead.decrypt     = cryptd_aead_decrypt_enqueue;
	inst->alg.cra_aead.givencrypt  = alg->cra_aead.givencrypt;
	inst->alg.cra_aead.givdecrypt  = alg->cra_aead.givdecrypt;

	err = crypto_register_instance(tmpl, inst);
	if (err) {
		crypto_drop_spawn(&ctx->aead_spawn.base);
out_free_inst:
		kfree(inst);
	}
out_put_alg:
	crypto_mod_put(alg);
	return err;
}

802
static struct cryptd_queue queue;
803

804
static int cryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
805 806 807 808 809
{
	struct crypto_attr_type *algt;

	algt = crypto_get_attr_type(tb);
	if (IS_ERR(algt))
810
		return PTR_ERR(algt);
811 812 813

	switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
	case CRYPTO_ALG_TYPE_BLKCIPHER:
814
		return cryptd_create_blkcipher(tmpl, tb, &queue);
815
	case CRYPTO_ALG_TYPE_DIGEST:
816
		return cryptd_create_hash(tmpl, tb, &queue);
817 818
	case CRYPTO_ALG_TYPE_AEAD:
		return cryptd_create_aead(tmpl, tb, &queue);
819 820
	}

821
	return -EINVAL;
822 823 824 825 826
}

static void cryptd_free(struct crypto_instance *inst)
{
	struct cryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
827
	struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
828
	struct aead_instance_ctx *aead_ctx = crypto_instance_ctx(inst);
829 830 831 832 833 834

	switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
	case CRYPTO_ALG_TYPE_AHASH:
		crypto_drop_shash(&hctx->spawn);
		kfree(ahash_instance(inst));
		return;
835 836 837 838 839 840 841
	case CRYPTO_ALG_TYPE_AEAD:
		crypto_drop_spawn(&aead_ctx->aead_spawn.base);
		kfree(inst);
		return;
	default:
		crypto_drop_spawn(&ctx->spawn);
		kfree(inst);
842
	}
843 844 845 846
}

static struct crypto_template cryptd_tmpl = {
	.name = "cryptd",
847
	.create = cryptd_create,
848 849 850 851
	.free = cryptd_free,
	.module = THIS_MODULE,
};

852 853 854 855
struct cryptd_ablkcipher *cryptd_alloc_ablkcipher(const char *alg_name,
						  u32 type, u32 mask)
{
	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
856
	struct crypto_tfm *tfm;
857 858 859 860

	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
		return ERR_PTR(-EINVAL);
861 862 863 864 865
	type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
	mask &= ~CRYPTO_ALG_TYPE_MASK;
	mask |= (CRYPTO_ALG_GENIV | CRYPTO_ALG_TYPE_BLKCIPHER_MASK);
	tfm = crypto_alloc_base(cryptd_alg_name, type, mask);
866 867
	if (IS_ERR(tfm))
		return ERR_CAST(tfm);
868 869
	if (tfm->__crt_alg->cra_module != THIS_MODULE) {
		crypto_free_tfm(tfm);
870 871 872
		return ERR_PTR(-EINVAL);
	}

873
	return __cryptd_ablkcipher_cast(__crypto_ablkcipher_cast(tfm));
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
}
EXPORT_SYMBOL_GPL(cryptd_alloc_ablkcipher);

struct crypto_blkcipher *cryptd_ablkcipher_child(struct cryptd_ablkcipher *tfm)
{
	struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(&tfm->base);
	return ctx->child;
}
EXPORT_SYMBOL_GPL(cryptd_ablkcipher_child);

void cryptd_free_ablkcipher(struct cryptd_ablkcipher *tfm)
{
	crypto_free_ablkcipher(&tfm->base);
}
EXPORT_SYMBOL_GPL(cryptd_free_ablkcipher);

890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
struct cryptd_ahash *cryptd_alloc_ahash(const char *alg_name,
					u32 type, u32 mask)
{
	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
	struct crypto_ahash *tfm;

	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
		return ERR_PTR(-EINVAL);
	tfm = crypto_alloc_ahash(cryptd_alg_name, type, mask);
	if (IS_ERR(tfm))
		return ERR_CAST(tfm);
	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
		crypto_free_ahash(tfm);
		return ERR_PTR(-EINVAL);
	}

	return __cryptd_ahash_cast(tfm);
}
EXPORT_SYMBOL_GPL(cryptd_alloc_ahash);

struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm)
{
	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);

	return ctx->child;
}
EXPORT_SYMBOL_GPL(cryptd_ahash_child);

919 920 921 922 923 924 925
struct shash_desc *cryptd_shash_desc(struct ahash_request *req)
{
	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
	return &rctx->desc;
}
EXPORT_SYMBOL_GPL(cryptd_shash_desc);

926 927 928 929 930 931
void cryptd_free_ahash(struct cryptd_ahash *tfm)
{
	crypto_free_ahash(&tfm->base);
}
EXPORT_SYMBOL_GPL(cryptd_free_ahash);

932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
struct cryptd_aead *cryptd_alloc_aead(const char *alg_name,
						  u32 type, u32 mask)
{
	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
	struct crypto_aead *tfm;

	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
		return ERR_PTR(-EINVAL);
	tfm = crypto_alloc_aead(cryptd_alg_name, type, mask);
	if (IS_ERR(tfm))
		return ERR_CAST(tfm);
	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
		crypto_free_aead(tfm);
		return ERR_PTR(-EINVAL);
	}
	return __cryptd_aead_cast(tfm);
}
EXPORT_SYMBOL_GPL(cryptd_alloc_aead);

struct crypto_aead *cryptd_aead_child(struct cryptd_aead *tfm)
{
	struct cryptd_aead_ctx *ctx;
	ctx = crypto_aead_ctx(&tfm->base);
	return ctx->child;
}
EXPORT_SYMBOL_GPL(cryptd_aead_child);

void cryptd_free_aead(struct cryptd_aead *tfm)
{
	crypto_free_aead(&tfm->base);
}
EXPORT_SYMBOL_GPL(cryptd_free_aead);

966 967 968 969
static int __init cryptd_init(void)
{
	int err;

970
	err = cryptd_init_queue(&queue, CRYPTD_MAX_CPU_QLEN);
971 972 973 974 975
	if (err)
		return err;

	err = crypto_register_template(&cryptd_tmpl);
	if (err)
976
		cryptd_fini_queue(&queue);
977 978 979 980 981 982

	return err;
}

static void __exit cryptd_exit(void)
{
983
	cryptd_fini_queue(&queue);
984 985 986
	crypto_unregister_template(&cryptd_tmpl);
}

987
subsys_initcall(cryptd_init);
988 989 990 991
module_exit(cryptd_exit);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Software async crypto daemon");
992
MODULE_ALIAS_CRYPTO("cryptd");