cryptd.c 16.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Software async crypto daemon.
 *
 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 */

#include <crypto/algapi.h>
14
#include <crypto/internal/hash.h>
15
#include <crypto/cryptd.h>
16
#include <crypto/crypto_wq.h>
17 18 19 20 21 22 23 24 25
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/sched.h>
#include <linux/slab.h>

26
#define CRYPTD_MAX_CPU_QLEN 100
27

28
struct cryptd_cpu_queue {
29
	struct crypto_queue queue;
30 31 32 33 34
	struct work_struct work;
};

struct cryptd_queue {
	struct cryptd_cpu_queue *cpu_queue;
35 36 37 38
};

struct cryptd_instance_ctx {
	struct crypto_spawn spawn;
39
	struct cryptd_queue *queue;
40 41 42 43 44 45 46 47 48 49
};

struct cryptd_blkcipher_ctx {
	struct crypto_blkcipher *child;
};

struct cryptd_blkcipher_request_ctx {
	crypto_completion_t complete;
};

50 51 52 53 54 55 56
struct cryptd_hash_ctx {
	struct crypto_hash *child;
};

struct cryptd_hash_request_ctx {
	crypto_completion_t complete;
};
57

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
static void cryptd_queue_worker(struct work_struct *work);

static int cryptd_init_queue(struct cryptd_queue *queue,
			     unsigned int max_cpu_qlen)
{
	int cpu;
	struct cryptd_cpu_queue *cpu_queue;

	queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue);
	if (!queue->cpu_queue)
		return -ENOMEM;
	for_each_possible_cpu(cpu) {
		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
		crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
		INIT_WORK(&cpu_queue->work, cryptd_queue_worker);
	}
	return 0;
}

static void cryptd_fini_queue(struct cryptd_queue *queue)
{
	int cpu;
	struct cryptd_cpu_queue *cpu_queue;

	for_each_possible_cpu(cpu) {
		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
		BUG_ON(cpu_queue->queue.qlen);
	}
	free_percpu(queue->cpu_queue);
}

static int cryptd_enqueue_request(struct cryptd_queue *queue,
				  struct crypto_async_request *request)
{
	int cpu, err;
	struct cryptd_cpu_queue *cpu_queue;

	cpu = get_cpu();
	cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
	err = crypto_enqueue_request(&cpu_queue->queue, request);
	queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
	put_cpu();

	return err;
}

/* Called in workqueue context, do one real cryption work (via
 * req->complete) and reschedule itself if there are more work to
 * do. */
static void cryptd_queue_worker(struct work_struct *work)
{
	struct cryptd_cpu_queue *cpu_queue;
	struct crypto_async_request *req, *backlog;

	cpu_queue = container_of(work, struct cryptd_cpu_queue, work);
	/* Only handle one request at a time to avoid hogging crypto
	 * workqueue. preempt_disable/enable is used to prevent
	 * being preempted by cryptd_enqueue_request() */
	preempt_disable();
	backlog = crypto_get_backlog(&cpu_queue->queue);
	req = crypto_dequeue_request(&cpu_queue->queue);
	preempt_enable();

	if (!req)
		return;

	if (backlog)
		backlog->complete(backlog, -EINPROGRESS);
	req->complete(req, 0);

	if (cpu_queue->queue.qlen)
		queue_work(kcrypto_wq, &cpu_queue->work);
}

static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm)
133 134 135
{
	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
	struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
136
	return ictx->queue;
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
}

static int cryptd_blkcipher_setkey(struct crypto_ablkcipher *parent,
				   const u8 *key, unsigned int keylen)
{
	struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(parent);
	struct crypto_blkcipher *child = ctx->child;
	int err;

	crypto_blkcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
	crypto_blkcipher_set_flags(child, crypto_ablkcipher_get_flags(parent) &
					  CRYPTO_TFM_REQ_MASK);
	err = crypto_blkcipher_setkey(child, key, keylen);
	crypto_ablkcipher_set_flags(parent, crypto_blkcipher_get_flags(child) &
					    CRYPTO_TFM_RES_MASK);
	return err;
}

static void cryptd_blkcipher_crypt(struct ablkcipher_request *req,
				   struct crypto_blkcipher *child,
				   int err,
				   int (*crypt)(struct blkcipher_desc *desc,
						struct scatterlist *dst,
						struct scatterlist *src,
						unsigned int len))
{
	struct cryptd_blkcipher_request_ctx *rctx;
	struct blkcipher_desc desc;

	rctx = ablkcipher_request_ctx(req);

168 169
	if (unlikely(err == -EINPROGRESS))
		goto out;
170 171 172 173 174 175 176 177 178

	desc.tfm = child;
	desc.info = req->info;
	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;

	err = crypt(&desc, req->dst, req->src, req->nbytes);

	req->base.complete = rctx->complete;

179
out:
180
	local_bh_disable();
181
	rctx->complete(&req->base, err);
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
	local_bh_enable();
}

static void cryptd_blkcipher_encrypt(struct crypto_async_request *req, int err)
{
	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(req->tfm);
	struct crypto_blkcipher *child = ctx->child;

	cryptd_blkcipher_crypt(ablkcipher_request_cast(req), child, err,
			       crypto_blkcipher_crt(child)->encrypt);
}

static void cryptd_blkcipher_decrypt(struct crypto_async_request *req, int err)
{
	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(req->tfm);
	struct crypto_blkcipher *child = ctx->child;

	cryptd_blkcipher_crypt(ablkcipher_request_cast(req), child, err,
			       crypto_blkcipher_crt(child)->decrypt);
}

static int cryptd_blkcipher_enqueue(struct ablkcipher_request *req,
				    crypto_completion_t complete)
{
	struct cryptd_blkcipher_request_ctx *rctx = ablkcipher_request_ctx(req);
	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
208
	struct cryptd_queue *queue;
209

210
	queue = cryptd_get_queue(crypto_ablkcipher_tfm(tfm));
211 212 213
	rctx->complete = req->base.complete;
	req->base.complete = complete;

214
	return cryptd_enqueue_request(queue, &req->base);
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
}

static int cryptd_blkcipher_encrypt_enqueue(struct ablkcipher_request *req)
{
	return cryptd_blkcipher_enqueue(req, cryptd_blkcipher_encrypt);
}

static int cryptd_blkcipher_decrypt_enqueue(struct ablkcipher_request *req)
{
	return cryptd_blkcipher_enqueue(req, cryptd_blkcipher_decrypt);
}

static int cryptd_blkcipher_init_tfm(struct crypto_tfm *tfm)
{
	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
	struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
	struct crypto_spawn *spawn = &ictx->spawn;
	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(tfm);
	struct crypto_blkcipher *cipher;

	cipher = crypto_spawn_blkcipher(spawn);
	if (IS_ERR(cipher))
		return PTR_ERR(cipher);

	ctx->child = cipher;
	tfm->crt_ablkcipher.reqsize =
		sizeof(struct cryptd_blkcipher_request_ctx);
	return 0;
}

static void cryptd_blkcipher_exit_tfm(struct crypto_tfm *tfm)
{
	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(tfm);

	crypto_free_blkcipher(ctx->child);
}

static struct crypto_instance *cryptd_alloc_instance(struct crypto_alg *alg,
253
						     struct cryptd_queue *queue)
254 255 256 257 258 259
{
	struct crypto_instance *inst;
	struct cryptd_instance_ctx *ctx;
	int err;

	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
260 261
	if (!inst) {
		inst = ERR_PTR(-ENOMEM);
262
		goto out;
263
	}
264 265 266 267 268 269 270 271 272 273 274 275

	err = -ENAMETOOLONG;
	if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
		     "cryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
		goto out_free_inst;

	ctx = crypto_instance_ctx(inst);
	err = crypto_init_spawn(&ctx->spawn, alg, inst,
				CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_ASYNC);
	if (err)
		goto out_free_inst;

276
	ctx->queue = queue;
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293

	memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);

	inst->alg.cra_priority = alg->cra_priority + 50;
	inst->alg.cra_blocksize = alg->cra_blocksize;
	inst->alg.cra_alignmask = alg->cra_alignmask;

out:
	return inst;

out_free_inst:
	kfree(inst);
	inst = ERR_PTR(err);
	goto out;
}

static struct crypto_instance *cryptd_alloc_blkcipher(
294
	struct rtattr **tb, struct cryptd_queue *queue)
295 296 297 298 299
{
	struct crypto_instance *inst;
	struct crypto_alg *alg;

	alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_BLKCIPHER,
300
				  CRYPTO_ALG_TYPE_MASK);
301
	if (IS_ERR(alg))
302
		return ERR_CAST(alg);
303

304
	inst = cryptd_alloc_instance(alg, queue);
305 306 307
	if (IS_ERR(inst))
		goto out_put_alg;

308
	inst->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC;
309 310 311 312 313 314
	inst->alg.cra_type = &crypto_ablkcipher_type;

	inst->alg.cra_ablkcipher.ivsize = alg->cra_blkcipher.ivsize;
	inst->alg.cra_ablkcipher.min_keysize = alg->cra_blkcipher.min_keysize;
	inst->alg.cra_ablkcipher.max_keysize = alg->cra_blkcipher.max_keysize;

315 316
	inst->alg.cra_ablkcipher.geniv = alg->cra_blkcipher.geniv;

317 318 319 320 321 322 323 324 325 326 327 328 329 330
	inst->alg.cra_ctxsize = sizeof(struct cryptd_blkcipher_ctx);

	inst->alg.cra_init = cryptd_blkcipher_init_tfm;
	inst->alg.cra_exit = cryptd_blkcipher_exit_tfm;

	inst->alg.cra_ablkcipher.setkey = cryptd_blkcipher_setkey;
	inst->alg.cra_ablkcipher.encrypt = cryptd_blkcipher_encrypt_enqueue;
	inst->alg.cra_ablkcipher.decrypt = cryptd_blkcipher_decrypt_enqueue;

out_put_alg:
	crypto_mod_put(alg);
	return inst;
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
static int cryptd_hash_init_tfm(struct crypto_tfm *tfm)
{
	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
	struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
	struct crypto_spawn *spawn = &ictx->spawn;
	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
	struct crypto_hash *cipher;

	cipher = crypto_spawn_hash(spawn);
	if (IS_ERR(cipher))
		return PTR_ERR(cipher);

	ctx->child = cipher;
	tfm->crt_ahash.reqsize =
		sizeof(struct cryptd_hash_request_ctx);
	return 0;
}

static void cryptd_hash_exit_tfm(struct crypto_tfm *tfm)
{
	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);

	crypto_free_hash(ctx->child);
}

static int cryptd_hash_setkey(struct crypto_ahash *parent,
				   const u8 *key, unsigned int keylen)
{
	struct cryptd_hash_ctx *ctx   = crypto_ahash_ctx(parent);
	struct crypto_hash     *child = ctx->child;
	int err;

	crypto_hash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
	crypto_hash_set_flags(child, crypto_ahash_get_flags(parent) &
					  CRYPTO_TFM_REQ_MASK);
	err = crypto_hash_setkey(child, key, keylen);
	crypto_ahash_set_flags(parent, crypto_hash_get_flags(child) &
					    CRYPTO_TFM_RES_MASK);
	return err;
}

static int cryptd_hash_enqueue(struct ahash_request *req,
				crypto_completion_t complete)
{
	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
377 378
	struct cryptd_queue *queue =
		cryptd_get_queue(crypto_ahash_tfm(tfm));
379 380 381 382

	rctx->complete = req->base.complete;
	req->base.complete = complete;

383
	return cryptd_enqueue_request(queue, &req->base);
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
}

static void cryptd_hash_init(struct crypto_async_request *req_async, int err)
{
	struct cryptd_hash_ctx *ctx   = crypto_tfm_ctx(req_async->tfm);
	struct crypto_hash     *child = ctx->child;
	struct ahash_request    *req = ahash_request_cast(req_async);
	struct cryptd_hash_request_ctx *rctx;
	struct hash_desc desc;

	rctx = ahash_request_ctx(req);

	if (unlikely(err == -EINPROGRESS))
		goto out;

	desc.tfm = child;
	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;

	err = crypto_hash_crt(child)->init(&desc);

	req->base.complete = rctx->complete;

out:
	local_bh_disable();
	rctx->complete(&req->base, err);
	local_bh_enable();
}

static int cryptd_hash_init_enqueue(struct ahash_request *req)
{
	return cryptd_hash_enqueue(req, cryptd_hash_init);
}

static void cryptd_hash_update(struct crypto_async_request *req_async, int err)
{
	struct cryptd_hash_ctx *ctx   = crypto_tfm_ctx(req_async->tfm);
	struct crypto_hash     *child = ctx->child;
	struct ahash_request    *req = ahash_request_cast(req_async);
	struct cryptd_hash_request_ctx *rctx;
	struct hash_desc desc;

	rctx = ahash_request_ctx(req);

	if (unlikely(err == -EINPROGRESS))
		goto out;

	desc.tfm = child;
	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;

	err = crypto_hash_crt(child)->update(&desc,
						req->src,
						req->nbytes);

	req->base.complete = rctx->complete;

out:
	local_bh_disable();
	rctx->complete(&req->base, err);
	local_bh_enable();
}

static int cryptd_hash_update_enqueue(struct ahash_request *req)
{
	return cryptd_hash_enqueue(req, cryptd_hash_update);
}

static void cryptd_hash_final(struct crypto_async_request *req_async, int err)
{
	struct cryptd_hash_ctx *ctx   = crypto_tfm_ctx(req_async->tfm);
	struct crypto_hash     *child = ctx->child;
	struct ahash_request    *req = ahash_request_cast(req_async);
	struct cryptd_hash_request_ctx *rctx;
	struct hash_desc desc;

	rctx = ahash_request_ctx(req);

	if (unlikely(err == -EINPROGRESS))
		goto out;

	desc.tfm = child;
	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;

	err = crypto_hash_crt(child)->final(&desc, req->result);

	req->base.complete = rctx->complete;

out:
	local_bh_disable();
	rctx->complete(&req->base, err);
	local_bh_enable();
}

static int cryptd_hash_final_enqueue(struct ahash_request *req)
{
	return cryptd_hash_enqueue(req, cryptd_hash_final);
}

static void cryptd_hash_digest(struct crypto_async_request *req_async, int err)
{
	struct cryptd_hash_ctx *ctx   = crypto_tfm_ctx(req_async->tfm);
	struct crypto_hash     *child = ctx->child;
	struct ahash_request    *req = ahash_request_cast(req_async);
	struct cryptd_hash_request_ctx *rctx;
	struct hash_desc desc;

	rctx = ahash_request_ctx(req);

	if (unlikely(err == -EINPROGRESS))
		goto out;

	desc.tfm = child;
	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;

	err = crypto_hash_crt(child)->digest(&desc,
						req->src,
						req->nbytes,
						req->result);

	req->base.complete = rctx->complete;

out:
	local_bh_disable();
	rctx->complete(&req->base, err);
	local_bh_enable();
}

static int cryptd_hash_digest_enqueue(struct ahash_request *req)
{
	return cryptd_hash_enqueue(req, cryptd_hash_digest);
}

static struct crypto_instance *cryptd_alloc_hash(
516
	struct rtattr **tb, struct cryptd_queue *queue)
517 518 519 520 521 522 523 524 525
{
	struct crypto_instance *inst;
	struct crypto_alg *alg;

	alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_HASH,
				  CRYPTO_ALG_TYPE_HASH_MASK);
	if (IS_ERR(alg))
		return ERR_PTR(PTR_ERR(alg));

526
	inst = cryptd_alloc_instance(alg, queue);
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
	if (IS_ERR(inst))
		goto out_put_alg;

	inst->alg.cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC;
	inst->alg.cra_type = &crypto_ahash_type;

	inst->alg.cra_ahash.digestsize = alg->cra_hash.digestsize;
	inst->alg.cra_ctxsize = sizeof(struct cryptd_hash_ctx);

	inst->alg.cra_init = cryptd_hash_init_tfm;
	inst->alg.cra_exit = cryptd_hash_exit_tfm;

	inst->alg.cra_ahash.init   = cryptd_hash_init_enqueue;
	inst->alg.cra_ahash.update = cryptd_hash_update_enqueue;
	inst->alg.cra_ahash.final  = cryptd_hash_final_enqueue;
	inst->alg.cra_ahash.setkey = cryptd_hash_setkey;
	inst->alg.cra_ahash.digest = cryptd_hash_digest_enqueue;

out_put_alg:
	crypto_mod_put(alg);
	return inst;
}

550
static struct cryptd_queue queue;
551 552 553 554 555 556 557

static struct crypto_instance *cryptd_alloc(struct rtattr **tb)
{
	struct crypto_attr_type *algt;

	algt = crypto_get_attr_type(tb);
	if (IS_ERR(algt))
558
		return ERR_CAST(algt);
559 560 561

	switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
	case CRYPTO_ALG_TYPE_BLKCIPHER:
562
		return cryptd_alloc_blkcipher(tb, &queue);
563
	case CRYPTO_ALG_TYPE_DIGEST:
564
		return cryptd_alloc_hash(tb, &queue);
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
	}

	return ERR_PTR(-EINVAL);
}

static void cryptd_free(struct crypto_instance *inst)
{
	struct cryptd_instance_ctx *ctx = crypto_instance_ctx(inst);

	crypto_drop_spawn(&ctx->spawn);
	kfree(inst);
}

static struct crypto_template cryptd_tmpl = {
	.name = "cryptd",
	.alloc = cryptd_alloc,
	.free = cryptd_free,
	.module = THIS_MODULE,
};

585 586 587 588
struct cryptd_ablkcipher *cryptd_alloc_ablkcipher(const char *alg_name,
						  u32 type, u32 mask)
{
	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
589
	struct crypto_tfm *tfm;
590 591 592 593

	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
		return ERR_PTR(-EINVAL);
594 595 596 597 598
	type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
	mask &= ~CRYPTO_ALG_TYPE_MASK;
	mask |= (CRYPTO_ALG_GENIV | CRYPTO_ALG_TYPE_BLKCIPHER_MASK);
	tfm = crypto_alloc_base(cryptd_alg_name, type, mask);
599 600
	if (IS_ERR(tfm))
		return ERR_CAST(tfm);
601 602
	if (tfm->__crt_alg->cra_module != THIS_MODULE) {
		crypto_free_tfm(tfm);
603 604 605
		return ERR_PTR(-EINVAL);
	}

606
	return __cryptd_ablkcipher_cast(__crypto_ablkcipher_cast(tfm));
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
}
EXPORT_SYMBOL_GPL(cryptd_alloc_ablkcipher);

struct crypto_blkcipher *cryptd_ablkcipher_child(struct cryptd_ablkcipher *tfm)
{
	struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(&tfm->base);
	return ctx->child;
}
EXPORT_SYMBOL_GPL(cryptd_ablkcipher_child);

void cryptd_free_ablkcipher(struct cryptd_ablkcipher *tfm)
{
	crypto_free_ablkcipher(&tfm->base);
}
EXPORT_SYMBOL_GPL(cryptd_free_ablkcipher);

623 624 625 626
static int __init cryptd_init(void)
{
	int err;

627
	err = cryptd_init_queue(&queue, CRYPTD_MAX_CPU_QLEN);
628 629 630 631 632
	if (err)
		return err;

	err = crypto_register_template(&cryptd_tmpl);
	if (err)
633
		cryptd_fini_queue(&queue);
634 635 636 637 638 639

	return err;
}

static void __exit cryptd_exit(void)
{
640
	cryptd_fini_queue(&queue);
641 642 643 644 645 646 647 648
	crypto_unregister_template(&cryptd_tmpl);
}

module_init(cryptd_init);
module_exit(cryptd_exit);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Software async crypto daemon");