interrupt.c 85.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
 * handling kvm guest interrupts
4
 *
5
 * Copyright IBM Corp. 2008, 2015
6 7 8 9
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 */

10 11 12
#define KMSG_COMPONENT "kvm-s390"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

13
#include <linux/interrupt.h>
14
#include <linux/kvm_host.h>
15
#include <linux/hrtimer.h>
16
#include <linux/mmu_context.h>
17
#include <linux/signal.h>
18
#include <linux/slab.h>
19
#include <linux/bitmap.h>
20
#include <linux/vmalloc.h>
21
#include <asm/asm-offsets.h>
22
#include <asm/dis.h>
23
#include <linux/uaccess.h>
24
#include <asm/sclp.h>
25
#include <asm/isc.h>
26
#include <asm/gmap.h>
27
#include <asm/switch_to.h>
28
#include <asm/nmi.h>
29
#include <asm/airq.h>
30 31
#include "kvm-s390.h"
#include "gaccess.h"
32
#include "trace-s390.h"
33

34
#define PFAULT_INIT 0x0600
35 36
#define PFAULT_DONE 0x0680
#define VIRTIO_PARAM 0x0d00
37

38 39
static struct kvm_s390_gib *gib;

40 41 42
/* handle external calls via sigp interpretation facility */
static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id)
{
43 44
	int c, scn;

45
	if (!kvm_s390_test_cpuflags(vcpu, CPUSTAT_ECALL_PEND))
46 47
		return 0;

48
	BUG_ON(!kvm_s390_use_sca_entries());
49
	read_lock(&vcpu->kvm->arch.sca_lock);
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
		union esca_sigp_ctrl sigp_ctrl =
			sca->cpu[vcpu->vcpu_id].sigp_ctrl;

		c = sigp_ctrl.c;
		scn = sigp_ctrl.scn;
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;
		union bsca_sigp_ctrl sigp_ctrl =
			sca->cpu[vcpu->vcpu_id].sigp_ctrl;

		c = sigp_ctrl.c;
		scn = sigp_ctrl.scn;
	}
65
	read_unlock(&vcpu->kvm->arch.sca_lock);
66 67

	if (src_id)
68
		*src_id = scn;
69

70
	return c;
71 72 73 74
}

static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id)
{
75
	int expect, rc;
76

77
	BUG_ON(!kvm_s390_use_sca_entries());
78
	read_lock(&vcpu->kvm->arch.sca_lock);
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
		union esca_sigp_ctrl *sigp_ctrl =
			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
		union esca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;

		new_val.scn = src_id;
		new_val.c = 1;
		old_val.c = 0;

		expect = old_val.value;
		rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;
		union bsca_sigp_ctrl *sigp_ctrl =
			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
		union bsca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
96

97 98 99 100 101 102 103
		new_val.scn = src_id;
		new_val.c = 1;
		old_val.c = 0;

		expect = old_val.value;
		rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
	}
104
	read_unlock(&vcpu->kvm->arch.sca_lock);
105 106

	if (rc != expect) {
107 108 109
		/* another external call is pending */
		return -EBUSY;
	}
110
	kvm_s390_set_cpuflags(vcpu, CPUSTAT_ECALL_PEND);
111 112 113 114 115
	return 0;
}

static void sca_clear_ext_call(struct kvm_vcpu *vcpu)
{
116
	int rc, expect;
117

118 119
	if (!kvm_s390_use_sca_entries())
		return;
120
	kvm_s390_clear_cpuflags(vcpu, CPUSTAT_ECALL_PEND);
121
	read_lock(&vcpu->kvm->arch.sca_lock);
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
		union esca_sigp_ctrl *sigp_ctrl =
			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
		union esca_sigp_ctrl old = *sigp_ctrl;

		expect = old.value;
		rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;
		union bsca_sigp_ctrl *sigp_ctrl =
			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
		union bsca_sigp_ctrl old = *sigp_ctrl;

		expect = old.value;
		rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
	}
139
	read_unlock(&vcpu->kvm->arch.sca_lock);
140
	WARN_ON(rc != expect); /* cannot clear? */
141 142
}

143
int psw_extint_disabled(struct kvm_vcpu *vcpu)
144 145 146 147
{
	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
}

148 149 150 151 152
static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
{
	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
}

153 154 155 156 157
static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
{
	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
}

158 159
static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
{
160 161 162
	return psw_extint_disabled(vcpu) &&
	       psw_ioint_disabled(vcpu) &&
	       psw_mchk_disabled(vcpu);
163 164
}

165 166 167
static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
{
	if (psw_extint_disabled(vcpu) ||
168
	    !(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK))
169
		return 0;
170 171 172
	if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
		/* No timer interrupts when single stepping */
		return 0;
173 174 175
	return 1;
}

176 177
static int ckc_irq_pending(struct kvm_vcpu *vcpu)
{
178 179 180
	const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
	const u64 ckc = vcpu->arch.sie_block->ckc;

181
	if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) {
182 183 184
		if ((s64)ckc >= (s64)now)
			return 0;
	} else if (ckc >= now) {
185
		return 0;
186
	}
187 188 189 190 191 192
	return ckc_interrupts_enabled(vcpu);
}

static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu)
{
	return !psw_extint_disabled(vcpu) &&
193
	       (vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK);
194 195 196 197
}

static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu)
{
198 199 200
	if (!cpu_timer_interrupts_enabled(vcpu))
		return 0;
	return kvm_s390_get_cpu_timer(vcpu) >> 63;
201 202
}

203 204
static uint64_t isc_to_isc_bits(int isc)
{
C
Cornelia Huck 已提交
205 206 207
	return (0x80 >> isc) << 24;
}

208 209 210 211 212
static inline u32 isc_to_int_word(u8 isc)
{
	return ((u32)isc << 27) | 0x80000000;
}

213
static inline u8 int_word_to_isc(u32 int_word)
214
{
215 216 217
	return (int_word & 0x38000000) >> 27;
}

218 219 220 221 222 223 224 225
/*
 * To use atomic bitmap functions, we have to provide a bitmap address
 * that is u64 aligned. However, the ipm might be u32 aligned.
 * Therefore, we logically start the bitmap at the very beginning of the
 * struct and fixup the bit number.
 */
#define IPM_BIT_OFFSET (offsetof(struct kvm_s390_gisa, ipm) * BITS_PER_BYTE)

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
/**
 * gisa_set_iam - change the GISA interruption alert mask
 *
 * @gisa: gisa to operate on
 * @iam: new IAM value to use
 *
 * Change the IAM atomically with the next alert address and the IPM
 * of the GISA if the GISA is not part of the GIB alert list. All three
 * fields are located in the first long word of the GISA.
 *
 * Returns: 0 on success
 *          -EBUSY in case the gisa is part of the alert list
 */
static inline int gisa_set_iam(struct kvm_s390_gisa *gisa, u8 iam)
{
	u64 word, _word;

	do {
		word = READ_ONCE(gisa->u64.word[0]);
		if ((u64)gisa != word >> 32)
			return -EBUSY;
		_word = (word & ~0xffUL) | iam;
	} while (cmpxchg(&gisa->u64.word[0], word, _word) != word);

	return 0;
}

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
/**
 * gisa_clear_ipm - clear the GISA interruption pending mask
 *
 * @gisa: gisa to operate on
 *
 * Clear the IPM atomically with the next alert address and the IAM
 * of the GISA unconditionally. All three fields are located in the
 * first long word of the GISA.
 */
static inline void gisa_clear_ipm(struct kvm_s390_gisa *gisa)
{
	u64 word, _word;

	do {
		word = READ_ONCE(gisa->u64.word[0]);
		_word = word & ~(0xffUL << 24);
	} while (cmpxchg(&gisa->u64.word[0], word, _word) != word);
}

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
/**
 * gisa_get_ipm_or_restore_iam - return IPM or restore GISA IAM
 *
 * @gi: gisa interrupt struct to work on
 *
 * Atomically restores the interruption alert mask if none of the
 * relevant ISCs are pending and return the IPM.
 *
 * Returns: the relevant pending ISCs
 */
static inline u8 gisa_get_ipm_or_restore_iam(struct kvm_s390_gisa_interrupt *gi)
{
	u8 pending_mask, alert_mask;
	u64 word, _word;

	do {
		word = READ_ONCE(gi->origin->u64.word[0]);
		alert_mask = READ_ONCE(gi->alert.mask);
		pending_mask = (u8)(word >> 24) & alert_mask;
		if (pending_mask)
			return pending_mask;
		_word = (word & ~0xffUL) | alert_mask;
	} while (cmpxchg(&gi->origin->u64.word[0], word, _word) != word);

	return 0;
}

static inline int gisa_in_alert_list(struct kvm_s390_gisa *gisa)
{
	return READ_ONCE(gisa->next_alert) != (u32)(u64)gisa;
}

304
static inline void gisa_set_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
305 306 307 308
{
	set_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
}

309
static inline u8 gisa_get_ipm(struct kvm_s390_gisa *gisa)
310 311 312 313
{
	return READ_ONCE(gisa->ipm);
}

314
static inline void gisa_clear_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
315 316 317 318
{
	clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
}

319
static inline int gisa_tac_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
320 321 322 323
{
	return test_and_clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
}

324
static inline unsigned long pending_irqs_no_gisa(struct kvm_vcpu *vcpu)
325
{
326
	return vcpu->kvm->arch.float_int.pending_irqs |
327 328 329 330 331
		vcpu->arch.local_int.pending_irqs;
}

static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu)
{
332 333 334 335 336 337 338
	struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
	unsigned long pending_mask;

	pending_mask = pending_irqs_no_gisa(vcpu);
	if (gi->origin)
		pending_mask |= gisa_get_ipm(gi->origin) << IRQ_PEND_IO_ISC_7;
	return pending_mask;
339 340
}

341 342
static inline int isc_to_irq_type(unsigned long isc)
{
343
	return IRQ_PEND_IO_ISC_0 - isc;
344 345 346 347
}

static inline int irq_type_to_isc(unsigned long irq_type)
{
348
	return IRQ_PEND_IO_ISC_0 - irq_type;
349 350
}

351 352 353 354 355 356 357
static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
				   unsigned long active_mask)
{
	int i;

	for (i = 0; i <= MAX_ISC; i++)
		if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
358
			active_mask &= ~(1UL << (isc_to_irq_type(i)));
359 360 361 362 363

	return active_mask;
}

static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
364
{
365 366
	unsigned long active_mask;

367
	active_mask = pending_irqs(vcpu);
368 369
	if (!active_mask)
		return 0;
370 371 372

	if (psw_extint_disabled(vcpu))
		active_mask &= ~IRQ_PEND_EXT_MASK;
373 374 375 376
	if (psw_ioint_disabled(vcpu))
		active_mask &= ~IRQ_PEND_IO_MASK;
	else
		active_mask = disable_iscs(vcpu, active_mask);
377
	if (!(vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK))
378
		__clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
379
	if (!(vcpu->arch.sie_block->gcr[0] & CR0_EMERGENCY_SIGNAL_SUBMASK))
380
		__clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
381
	if (!(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK))
382
		__clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
383
	if (!(vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK))
384
		__clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
385
	if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK))
386
		__clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
387 388
	if (psw_mchk_disabled(vcpu))
		active_mask &= ~IRQ_PEND_MCHK_MASK;
389 390 391 392
	/*
	 * Check both floating and local interrupt's cr14 because
	 * bit IRQ_PEND_MCHK_REP could be set in both cases.
	 */
393
	if (!(vcpu->arch.sie_block->gcr[14] &
394 395
	   (vcpu->kvm->arch.float_int.mchk.cr14 |
	   vcpu->arch.local_int.irq.mchk.cr14)))
396
		__clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
397

398 399 400 401 402 403
	/*
	 * STOP irqs will never be actively delivered. They are triggered via
	 * intercept requests and cleared when the stop intercept is performed.
	 */
	__clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);

404 405 406
	return active_mask;
}

407 408
static void __set_cpu_idle(struct kvm_vcpu *vcpu)
{
409
	kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT);
410
	set_bit(vcpu->vcpu_id, vcpu->kvm->arch.idle_mask);
411 412 413 414
}

static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
{
415
	kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT);
416
	clear_bit(vcpu->vcpu_id, vcpu->kvm->arch.idle_mask);
417 418 419 420
}

static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
{
421 422
	kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IO_INT | CPUSTAT_EXT_INT |
				      CPUSTAT_STOP_INT);
423
	vcpu->arch.sie_block->lctl = 0x0000;
424 425 426 427 428 429 430
	vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);

	if (guestdbg_enabled(vcpu)) {
		vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
					       LCTL_CR10 | LCTL_CR11);
		vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
	}
431 432
}

433 434
static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
{
435
	if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_IO_MASK))
436
		return;
437
	if (psw_ioint_disabled(vcpu))
438
		kvm_s390_set_cpuflags(vcpu, CPUSTAT_IO_INT);
439 440 441 442
	else
		vcpu->arch.sie_block->lctl |= LCTL_CR6;
}

443 444
static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
{
445
	if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_EXT_MASK))
446 447
		return;
	if (psw_extint_disabled(vcpu))
448
		kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
449 450 451 452 453 454
	else
		vcpu->arch.sie_block->lctl |= LCTL_CR0;
}

static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
{
455
	if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_MCHK_MASK))
456 457 458 459 460 461 462
		return;
	if (psw_mchk_disabled(vcpu))
		vcpu->arch.sie_block->ictl |= ICTL_LPSW;
	else
		vcpu->arch.sie_block->lctl |= LCTL_CR14;
}

463 464 465
static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
{
	if (kvm_s390_is_stop_irq_pending(vcpu))
466
		kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
467 468
}

469 470
/* Set interception request for non-deliverable interrupts */
static void set_intercept_indicators(struct kvm_vcpu *vcpu)
471
{
472
	set_intercept_indicators_io(vcpu);
473 474
	set_intercept_indicators_ext(vcpu);
	set_intercept_indicators_mchk(vcpu);
475
	set_intercept_indicators_stop(vcpu);
476 477
}

478 479
static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
{
480
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
481 482
	int rc;

483
	vcpu->stat.deliver_cputm++;
484 485 486 487 488
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
					 0, 0);

	rc  = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
			   (u16 *)__LC_EXT_INT_CODE);
489
	rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
490 491 492 493
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
494
	clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
495
	return rc ? -EFAULT : 0;
496 497 498 499
}

static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
{
500
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
501 502
	int rc;

503
	vcpu->stat.deliver_ckc++;
504 505 506 507 508
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
					 0, 0);

	rc  = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
			   (u16 __user *)__LC_EXT_INT_CODE);
509
	rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
510 511 512 513
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
514
	clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
515
	return rc ? -EFAULT : 0;
516 517
}

518
static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
519
{
520 521
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_ext_info ext;
522 523
	int rc;

524 525 526 527 528 529
	spin_lock(&li->lock);
	ext = li->irq.ext;
	clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
	li->irq.ext.ext_params2 = 0;
	spin_unlock(&li->lock);

530 531
	VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx",
		   ext.ext_params2);
532 533
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
					 KVM_S390_INT_PFAULT_INIT,
534
					 0, ext.ext_params2);
535 536 537 538 539 540 541

	rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
	rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
542
	rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
543
	return rc ? -EFAULT : 0;
544 545
}

546 547 548 549
static int __write_machine_check(struct kvm_vcpu *vcpu,
				 struct kvm_s390_mchk_info *mchk)
{
	unsigned long ext_sa_addr;
F
Fan Zhang 已提交
550
	unsigned long lc;
551
	freg_t fprs[NUM_FPRS];
552
	union mci mci;
553 554
	int rc;

555
	mci.val = mchk->mcic;
556
	/* take care of lazy register loading */
557 558
	save_fpu_regs();
	save_access_regs(vcpu->run->s.regs.acrs);
559 560
	if (MACHINE_HAS_GS && vcpu->arch.gs_enabled)
		save_gs_cb(current->thread.gs_cb);
561

562
	/* Extended save area */
563 564
	rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr,
			   sizeof(unsigned long));
F
Fan Zhang 已提交
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
	/* Only bits 0 through 63-LC are used for address formation */
	lc = ext_sa_addr & MCESA_LC_MASK;
	if (test_kvm_facility(vcpu->kvm, 133)) {
		switch (lc) {
		case 0:
		case 10:
			ext_sa_addr &= ~0x3ffUL;
			break;
		case 11:
			ext_sa_addr &= ~0x7ffUL;
			break;
		case 12:
			ext_sa_addr &= ~0xfffUL;
			break;
		default:
			ext_sa_addr = 0;
			break;
		}
	} else {
		ext_sa_addr &= ~0x3ffUL;
	}

587 588 589 590 591 592 593
	if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) {
		if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs,
				    512))
			mci.vr = 0;
	} else {
		mci.vr = 0;
	}
F
Fan Zhang 已提交
594 595 596 597 598 599 600 601
	if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133)
	    && (lc == 11 || lc == 12)) {
		if (write_guest_abs(vcpu, ext_sa_addr + 1024,
				    &vcpu->run->s.regs.gscb, 32))
			mci.gs = 0;
	} else {
		mci.gs = 0;
	}
602 603

	/* General interruption information */
604
	rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID);
605 606 607 608
	rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
609
	rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE);
610 611

	/* Register-save areas */
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
	if (MACHINE_HAS_VX) {
		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
		rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128);
	} else {
		rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA,
				     vcpu->run->s.regs.fprs, 128);
	}
	rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA,
			     vcpu->run->s.regs.gprs, 128);
	rc |= put_guest_lc(vcpu, current->thread.fpu.fpc,
			   (u32 __user *) __LC_FP_CREG_SAVE_AREA);
	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr,
			   (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA);
	rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu),
			   (u64 __user *) __LC_CPU_TIMER_SAVE_AREA);
	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8,
			   (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA);
	rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA,
			     &vcpu->run->s.regs.acrs, 64);
	rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA,
			     &vcpu->arch.sie_block->gcr, 128);
633 634

	/* Extended interruption information */
635 636
	rc |= put_guest_lc(vcpu, mchk->ext_damage_code,
			   (u32 __user *) __LC_EXT_DAMAGE_CODE);
637 638 639 640 641 642 643
	rc |= put_guest_lc(vcpu, mchk->failing_storage_address,
			   (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
	rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout,
			     sizeof(mchk->fixed_logout));
	return rc ? -EFAULT : 0;
}

644
static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
645
{
646
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
647
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
648 649 650
	struct kvm_s390_mchk_info mchk = {};
	int deliver = 0;
	int rc = 0;
651

652
	spin_lock(&fi->lock);
653
	spin_lock(&li->lock);
654 655 656 657 658 659 660 661 662 663 664 665 666 667
	if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
	    test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
		/*
		 * If there was an exigent machine check pending, then any
		 * repressible machine checks that might have been pending
		 * are indicated along with it, so always clear bits for
		 * repressible and exigent interrupts
		 */
		mchk = li->irq.mchk;
		clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
		clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
		memset(&li->irq.mchk, 0, sizeof(mchk));
		deliver = 1;
	}
668
	/*
669 670 671 672
	 * We indicate floating repressible conditions along with
	 * other pending conditions. Channel Report Pending and Channel
	 * Subsystem damage are the only two and and are indicated by
	 * bits in mcic and masked in cr14.
673
	 */
674 675 676 677 678 679
	if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
		mchk.mcic |= fi->mchk.mcic;
		mchk.cr14 |= fi->mchk.cr14;
		memset(&fi->mchk, 0, sizeof(mchk));
		deliver = 1;
	}
680
	spin_unlock(&li->lock);
681
	spin_unlock(&fi->lock);
682

683
	if (deliver) {
684
		VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx",
685 686 687 688
			   mchk.mcic);
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
						 KVM_S390_MCHK,
						 mchk.cr14, mchk.mcic);
689
		vcpu->stat.deliver_machine_check++;
690
		rc = __write_machine_check(vcpu, &mchk);
691
	}
692
	return rc;
693 694 695 696
}

static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
{
697
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
698 699
	int rc;

700
	VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart");
701 702 703 704
	vcpu->stat.deliver_restart_signal++;
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);

	rc  = write_guest_lc(vcpu,
705
			     offsetof(struct lowcore, restart_old_psw),
706
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
707
	rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw),
708
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
709
	clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
710
	return rc ? -EFAULT : 0;
711 712
}

713
static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
714
{
715 716 717 718 719 720 721 722
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_prefix_info prefix;

	spin_lock(&li->lock);
	prefix = li->irq.prefix;
	li->irq.prefix.address = 0;
	clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
	spin_unlock(&li->lock);
723 724 725 726

	vcpu->stat.deliver_prefix_signal++;
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
					 KVM_S390_SIGP_SET_PREFIX,
727
					 prefix.address, 0);
728

729
	kvm_s390_set_prefix(vcpu, prefix.address);
730 731 732
	return 0;
}

733
static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
734
{
735
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
736
	int rc;
737 738 739 740 741 742 743 744
	int cpu_addr;

	spin_lock(&li->lock);
	cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
	clear_bit(cpu_addr, li->sigp_emerg_pending);
	if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
		clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
	spin_unlock(&li->lock);
745

746
	VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg");
747
	vcpu->stat.deliver_emergency_signal++;
748 749
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
					 cpu_addr, 0);
750 751 752

	rc  = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
			   (u16 *)__LC_EXT_INT_CODE);
753
	rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
754 755 756 757
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
758
	return rc ? -EFAULT : 0;
759 760
}

761
static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
762
{
763 764
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_extcall_info extcall;
765 766
	int rc;

767 768 769 770 771 772
	spin_lock(&li->lock);
	extcall = li->irq.extcall;
	li->irq.extcall.code = 0;
	clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
	spin_unlock(&li->lock);

773
	VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call");
774 775 776
	vcpu->stat.deliver_external_call++;
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
					 KVM_S390_INT_EXTERNAL_CALL,
777
					 extcall.code, 0);
778 779 780

	rc  = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
			   (u16 *)__LC_EXT_INT_CODE);
781
	rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
782 783 784 785
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
			    sizeof(psw_t));
786
	return rc ? -EFAULT : 0;
787 788
}

789
static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
790
{
791 792
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_pgm_info pgm_info;
793
	int rc = 0, nullifying = false;
794
	u16 ilen;
795

796 797 798 799 800 801
	spin_lock(&li->lock);
	pgm_info = li->irq.pgm;
	clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
	memset(&li->irq.pgm, 0, sizeof(pgm_info));
	spin_unlock(&li->lock);

802
	ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK;
803 804
	VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d",
		   pgm_info.code, ilen);
805
	vcpu->stat.deliver_program++;
806
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
807
					 pgm_info.code, 0);
808

809
	switch (pgm_info.code & ~PGM_PER) {
810 811 812 813 814 815 816 817 818
	case PGM_AFX_TRANSLATION:
	case PGM_ASX_TRANSLATION:
	case PGM_EX_TRANSLATION:
	case PGM_LFX_TRANSLATION:
	case PGM_LSTE_SEQUENCE:
	case PGM_LSX_TRANSLATION:
	case PGM_LX_TRANSLATION:
	case PGM_PRIMARY_AUTHORITY:
	case PGM_SECONDARY_AUTHORITY:
819 820
		nullifying = true;
		/* fall through */
821
	case PGM_SPACE_SWITCH:
822
		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
823 824 825 826 827 828 829 830
				  (u64 *)__LC_TRANS_EXC_CODE);
		break;
	case PGM_ALEN_TRANSLATION:
	case PGM_ALE_SEQUENCE:
	case PGM_ASTE_INSTANCE:
	case PGM_ASTE_SEQUENCE:
	case PGM_ASTE_VALIDITY:
	case PGM_EXTENDED_AUTHORITY:
831
		rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
832
				  (u8 *)__LC_EXC_ACCESS_ID);
833
		nullifying = true;
834 835 836 837 838 839 840
		break;
	case PGM_ASCE_TYPE:
	case PGM_PAGE_TRANSLATION:
	case PGM_REGION_FIRST_TRANS:
	case PGM_REGION_SECOND_TRANS:
	case PGM_REGION_THIRD_TRANS:
	case PGM_SEGMENT_TRANSLATION:
841
		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
842
				  (u64 *)__LC_TRANS_EXC_CODE);
843
		rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
844
				   (u8 *)__LC_EXC_ACCESS_ID);
845
		rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
846
				   (u8 *)__LC_OP_ACCESS_ID);
847
		nullifying = true;
848 849
		break;
	case PGM_MONITOR:
850
		rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
851
				  (u16 *)__LC_MON_CLASS_NR);
852
		rc |= put_guest_lc(vcpu, pgm_info.mon_code,
853 854
				   (u64 *)__LC_MON_CODE);
		break;
E
Eric Farman 已提交
855
	case PGM_VECTOR_PROCESSING:
856
	case PGM_DATA:
857
		rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
858 859 860
				  (u32 *)__LC_DATA_EXC_CODE);
		break;
	case PGM_PROTECTION:
861
		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
862
				  (u64 *)__LC_TRANS_EXC_CODE);
863
		rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
864 865
				   (u8 *)__LC_EXC_ACCESS_ID);
		break;
866 867 868 869 870 871 872 873 874
	case PGM_STACK_FULL:
	case PGM_STACK_EMPTY:
	case PGM_STACK_SPECIFICATION:
	case PGM_STACK_TYPE:
	case PGM_STACK_OPERATION:
	case PGM_TRACE_TABEL:
	case PGM_CRYPTO_OPERATION:
		nullifying = true;
		break;
875 876
	}

877 878
	if (pgm_info.code & PGM_PER) {
		rc |= put_guest_lc(vcpu, pgm_info.per_code,
879
				   (u8 *) __LC_PER_CODE);
880
		rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
881
				   (u8 *)__LC_PER_ATMID);
882
		rc |= put_guest_lc(vcpu, pgm_info.per_address,
883
				   (u64 *) __LC_PER_ADDRESS);
884
		rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
885 886 887
				   (u8 *) __LC_PER_ACCESS_ID);
	}

888
	if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND))
889
		kvm_s390_rewind_psw(vcpu, ilen);
890

891 892
	/* bit 1+2 of the target are the ilc, so we can directly use ilen */
	rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC);
893 894
	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
				 (u64 *) __LC_LAST_BREAK);
895
	rc |= put_guest_lc(vcpu, pgm_info.code,
896 897 898 899 900
			   (u16 *)__LC_PGM_INT_CODE);
	rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
901
	return rc ? -EFAULT : 0;
902 903
}

904
static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
905
{
906 907 908 909 910 911 912 913 914 915 916 917 918
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
	struct kvm_s390_ext_info ext;
	int rc = 0;

	spin_lock(&fi->lock);
	if (!(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
		spin_unlock(&fi->lock);
		return 0;
	}
	ext = fi->srv_signal;
	memset(&fi->srv_signal, 0, sizeof(ext));
	clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
	spin_unlock(&fi->lock);
919

920
	VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x",
921
		   ext.ext_params);
922
	vcpu->stat.deliver_service_signal++;
923 924
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
					 ext.ext_params, 0);
925 926

	rc  = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
927
	rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
928 929 930 931
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
932
	rc |= put_guest_lc(vcpu, ext.ext_params,
933
			   (u32 *)__LC_EXT_PARAMS);
934

935
	return rc ? -EFAULT : 0;
936 937
}

938
static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
939
{
940 941 942
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
	struct kvm_s390_interrupt_info *inti;
	int rc = 0;
943

944 945 946 947 948 949 950 951 952 953 954
	spin_lock(&fi->lock);
	inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
					struct kvm_s390_interrupt_info,
					list);
	if (inti) {
		list_del(&inti->list);
		fi->counters[FIRQ_CNTR_PFAULT] -= 1;
	}
	if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
		clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
	spin_unlock(&fi->lock);
955

956
	if (inti) {
957 958 959 960 961 962
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
						 KVM_S390_INT_PFAULT_DONE, 0,
						 inti->ext.ext_params2);
		VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx",
			   inti->ext.ext_params2);

963 964 965 966 967 968 969 970 971 972 973 974 975 976
		rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
				(u16 *)__LC_EXT_INT_CODE);
		rc |= put_guest_lc(vcpu, PFAULT_DONE,
				(u16 *)__LC_EXT_CPU_ADDR);
		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
				(u64 *)__LC_EXT_PARAMS2);
		kfree(inti);
	}
977
	return rc ? -EFAULT : 0;
978 979
}

980
static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
981
{
982 983 984
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
	struct kvm_s390_interrupt_info *inti;
	int rc = 0;
985

986 987 988 989 990 991
	spin_lock(&fi->lock);
	inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
					struct kvm_s390_interrupt_info,
					list);
	if (inti) {
		VCPU_EVENT(vcpu, 4,
992
			   "deliver: virtio parm: 0x%x,parm64: 0x%llx",
993
			   inti->ext.ext_params, inti->ext.ext_params2);
994
		vcpu->stat.deliver_virtio++;
995 996 997 998 999 1000 1001 1002 1003 1004
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
				inti->type,
				inti->ext.ext_params,
				inti->ext.ext_params2);
		list_del(&inti->list);
		fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
	}
	if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
		clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
	spin_unlock(&fi->lock);
1005

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
	if (inti) {
		rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
				(u16 *)__LC_EXT_INT_CODE);
		rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
				(u16 *)__LC_EXT_CPU_ADDR);
		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= put_guest_lc(vcpu, inti->ext.ext_params,
				(u32 *)__LC_EXT_PARAMS);
		rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
				(u64 *)__LC_EXT_PARAMS2);
		kfree(inti);
	}
1023
	return rc ? -EFAULT : 0;
1024 1025
}

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
static int __do_deliver_io(struct kvm_vcpu *vcpu, struct kvm_s390_io_info *io)
{
	int rc;

	rc  = put_guest_lc(vcpu, io->subchannel_id, (u16 *)__LC_SUBCHANNEL_ID);
	rc |= put_guest_lc(vcpu, io->subchannel_nr, (u16 *)__LC_SUBCHANNEL_NR);
	rc |= put_guest_lc(vcpu, io->io_int_parm, (u32 *)__LC_IO_INT_PARM);
	rc |= put_guest_lc(vcpu, io->io_int_word, (u32 *)__LC_IO_INT_WORD);
	rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw,
			     sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw,
			    sizeof(psw_t));
	return rc ? -EFAULT : 0;
}

1043
static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
1044
				     unsigned long irq_type)
1045
{
1046 1047
	struct list_head *isc_list;
	struct kvm_s390_float_interrupt *fi;
1048
	struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
1049
	struct kvm_s390_interrupt_info *inti = NULL;
1050 1051
	struct kvm_s390_io_info io;
	u32 isc;
1052
	int rc = 0;
1053

1054
	fi = &vcpu->kvm->arch.float_int;
1055

1056
	spin_lock(&fi->lock);
1057 1058
	isc = irq_type_to_isc(irq_type);
	isc_list = &fi->lists[isc];
1059 1060 1061 1062
	inti = list_first_entry_or_null(isc_list,
					struct kvm_s390_interrupt_info,
					list);
	if (inti) {
1063 1064 1065 1066 1067 1068 1069 1070
		if (inti->type & KVM_S390_INT_IO_AI_MASK)
			VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)");
		else
			VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x",
			inti->io.subchannel_id >> 8,
			inti->io.subchannel_id >> 1 & 0x3,
			inti->io.subchannel_nr);

1071
		vcpu->stat.deliver_io++;
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
				inti->type,
				((__u32)inti->io.subchannel_id << 16) |
				inti->io.subchannel_nr,
				((__u64)inti->io.io_int_parm << 32) |
				inti->io.io_int_word);
		list_del(&inti->list);
		fi->counters[FIRQ_CNTR_IO] -= 1;
	}
	if (list_empty(isc_list))
		clear_bit(irq_type, &fi->pending_irqs);
	spin_unlock(&fi->lock);

	if (inti) {
1086
		rc = __do_deliver_io(vcpu, &(inti->io));
1087
		kfree(inti);
1088
		goto out;
1089
	}
1090

1091
	if (gi->origin && gisa_tac_ipm_gisc(gi->origin, isc)) {
1092 1093 1094 1095 1096 1097
		/*
		 * in case an adapter interrupt was not delivered
		 * in SIE context KVM will handle the delivery
		 */
		VCPU_EVENT(vcpu, 4, "%s isc %u", "deliver: I/O (AI/gisa)", isc);
		memset(&io, 0, sizeof(io));
1098
		io.io_int_word = isc_to_int_word(isc);
1099
		vcpu->stat.deliver_io++;
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
			KVM_S390_INT_IO(1, 0, 0, 0),
			((__u32)io.subchannel_id << 16) |
			io.subchannel_nr,
			((__u64)io.io_int_parm << 32) |
			io.io_int_word);
		rc = __do_deliver_io(vcpu, &io);
	}
out:
	return rc;
1110 1111
}

1112 1113
/* Check whether an external call is pending (deliverable or not) */
int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
1114
{
1115
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1116

1117
	if (!sclp.has_sigpif)
1118
		return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
1119

1120
	return sca_ext_call_pending(vcpu, NULL);
1121 1122
}

1123
int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
1124
{
1125 1126
	if (deliverable_irqs(vcpu))
		return 1;
1127

1128 1129
	if (kvm_cpu_has_pending_timer(vcpu))
		return 1;
1130

1131
	/* external call pending and deliverable */
1132
	if (kvm_s390_ext_call_pending(vcpu) &&
1133
	    !psw_extint_disabled(vcpu) &&
1134
	    (vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK))
1135
		return 1;
1136

1137 1138 1139
	if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
		return 1;
	return 0;
1140 1141
}

1142 1143
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
1144
	return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu);
1145 1146
}

1147 1148
static u64 __calculate_sltime(struct kvm_vcpu *vcpu)
{
1149 1150 1151
	const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
	const u64 ckc = vcpu->arch.sie_block->ckc;
	u64 cputm, sltime = 0;
1152 1153

	if (ckc_interrupts_enabled(vcpu)) {
1154
		if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) {
1155 1156 1157 1158 1159 1160 1161
			if ((s64)now < (s64)ckc)
				sltime = tod_to_ns((s64)ckc - (s64)now);
		} else if (now < ckc) {
			sltime = tod_to_ns(ckc - now);
		}
		/* already expired */
		if (!sltime)
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
			return 0;
		if (cpu_timer_interrupts_enabled(vcpu)) {
			cputm = kvm_s390_get_cpu_timer(vcpu);
			/* already expired? */
			if (cputm >> 63)
				return 0;
			return min(sltime, tod_to_ns(cputm));
		}
	} else if (cpu_timer_interrupts_enabled(vcpu)) {
		sltime = kvm_s390_get_cpu_timer(vcpu);
		/* already expired? */
		if (sltime >> 63)
			return 0;
	}
	return sltime;
}

1179 1180
int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
{
1181
	struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
1182
	u64 sltime;
1183 1184 1185

	vcpu->stat.exit_wait_state++;

1186
	/* fast path */
1187
	if (kvm_arch_vcpu_runnable(vcpu))
1188
		return 0;
1189

1190 1191
	if (psw_interrupts_disabled(vcpu)) {
		VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
1192
		return -EOPNOTSUPP; /* disabled wait */
1193 1194
	}

1195 1196 1197 1198 1199
	if (gi->origin &&
	    (gisa_get_ipm_or_restore_iam(gi) &
	     vcpu->arch.sie_block->gcr[6] >> 24))
		return 0;

1200 1201
	if (!ckc_interrupts_enabled(vcpu) &&
	    !cpu_timer_interrupts_enabled(vcpu)) {
1202
		VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
1203
		__set_cpu_idle(vcpu);
1204 1205 1206
		goto no_timer;
	}

1207 1208
	sltime = __calculate_sltime(vcpu);
	if (!sltime)
1209 1210 1211
		return 0;

	__set_cpu_idle(vcpu);
T
Thomas Gleixner 已提交
1212
	hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL);
1213
	VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime);
1214
no_timer:
1215
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
1216
	kvm_vcpu_block(vcpu);
1217
	__unset_cpu_idle(vcpu);
1218 1219
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

1220
	hrtimer_cancel(&vcpu->arch.ckc_timer);
1221 1222 1223
	return 0;
}

1224 1225
void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
{
1226 1227 1228 1229 1230
	/*
	 * We cannot move this into the if, as the CPU might be already
	 * in kvm_vcpu_block without having the waitqueue set (polling)
	 */
	vcpu->valid_wakeup = true;
1231 1232 1233 1234 1235 1236
	/*
	 * This is mostly to document, that the read in swait_active could
	 * be moved before other stores, leading to subtle races.
	 * All current users do not store or use an atomic like update
	 */
	smp_mb__after_atomic();
1237
	if (swait_active(&vcpu->wq)) {
1238 1239 1240 1241 1242
		/*
		 * The vcpu gave up the cpu voluntarily, mark it as a good
		 * yield-candidate.
		 */
		vcpu->preempted = true;
1243
		swake_up_one(&vcpu->wq);
1244
		vcpu->stat.halt_wakeup++;
1245
	}
1246 1247 1248 1249 1250
	/*
	 * The VCPU might not be sleeping but is executing the VSIE. Let's
	 * kick it, so it leaves the SIE to process the request.
	 */
	kvm_s390_vsie_kick(vcpu);
1251 1252
}

1253 1254 1255
enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
{
	struct kvm_vcpu *vcpu;
1256
	u64 sltime;
1257 1258

	vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
1259
	sltime = __calculate_sltime(vcpu);
1260

1261 1262 1263 1264
	/*
	 * If the monotonic clock runs faster than the tod clock we might be
	 * woken up too early and have to go back to sleep to avoid deadlocks.
	 */
1265
	if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime)))
1266 1267
		return HRTIMER_RESTART;
	kvm_s390_vcpu_wakeup(vcpu);
1268 1269
	return HRTIMER_NORESTART;
}
1270

1271 1272 1273 1274
void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1275
	spin_lock(&li->lock);
1276 1277 1278
	li->pending_irqs = 0;
	bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
	memset(&li->irq, 0, sizeof(li->irq));
1279
	spin_unlock(&li->lock);
1280

1281
	sca_clear_ext_call(vcpu);
1282 1283
}

1284
int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
1285
{
1286
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1287
	int rc = 0;
1288
	unsigned long irq_type;
1289
	unsigned long irqs;
1290 1291 1292

	__reset_intercept_indicators(vcpu);

1293 1294
	/* pending ckc conditions might have been invalidated */
	clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1295
	if (ckc_irq_pending(vcpu))
1296 1297
		set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);

1298 1299 1300 1301 1302
	/* pending cpu timer conditions might have been invalidated */
	clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
	if (cpu_timer_irq_pending(vcpu))
		set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);

1303
	while ((irqs = deliverable_irqs(vcpu)) && !rc) {
1304 1305
		/* bits are in the reverse order of interrupt priority */
		irq_type = find_last_bit(&irqs, IRQ_PEND_COUNT);
1306 1307 1308 1309 1310 1311 1312 1313 1314
		switch (irq_type) {
		case IRQ_PEND_IO_ISC_0:
		case IRQ_PEND_IO_ISC_1:
		case IRQ_PEND_IO_ISC_2:
		case IRQ_PEND_IO_ISC_3:
		case IRQ_PEND_IO_ISC_4:
		case IRQ_PEND_IO_ISC_5:
		case IRQ_PEND_IO_ISC_6:
		case IRQ_PEND_IO_ISC_7:
1315
			rc = __deliver_io(vcpu, irq_type);
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
			break;
		case IRQ_PEND_MCHK_EX:
		case IRQ_PEND_MCHK_REP:
			rc = __deliver_machine_check(vcpu);
			break;
		case IRQ_PEND_PROG:
			rc = __deliver_prog(vcpu);
			break;
		case IRQ_PEND_EXT_EMERGENCY:
			rc = __deliver_emergency_signal(vcpu);
			break;
		case IRQ_PEND_EXT_EXTERNAL:
			rc = __deliver_external_call(vcpu);
			break;
		case IRQ_PEND_EXT_CLOCK_COMP:
			rc = __deliver_ckc(vcpu);
			break;
		case IRQ_PEND_EXT_CPU_TIMER:
			rc = __deliver_cpu_timer(vcpu);
			break;
		case IRQ_PEND_RESTART:
			rc = __deliver_restart(vcpu);
			break;
		case IRQ_PEND_SET_PREFIX:
			rc = __deliver_set_prefix(vcpu);
			break;
		case IRQ_PEND_PFAULT_INIT:
			rc = __deliver_pfault_init(vcpu);
			break;
		case IRQ_PEND_EXT_SERVICE:
			rc = __deliver_service(vcpu);
			break;
		case IRQ_PEND_PFAULT_DONE:
			rc = __deliver_pfault_done(vcpu);
			break;
		case IRQ_PEND_VIRTIO:
			rc = __deliver_virtio(vcpu);
			break;
		default:
			WARN_ONCE(1, "Unknown pending irq type %ld", irq_type);
			clear_bit(irq_type, &li->pending_irqs);
1357
		}
1358
	}
1359

1360
	set_intercept_indicators(vcpu);
1361 1362

	return rc;
1363 1364
}

1365
static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1366 1367 1368
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1369
	vcpu->stat.inject_program++;
1370 1371 1372 1373
	VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code);
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
				   irq->u.pgm.code, 0);

1374 1375 1376 1377 1378 1379 1380
	if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) {
		/* auto detection if no valid ILC was given */
		irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK;
		irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu);
		irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID;
	}

1381 1382
	if (irq->u.pgm.code == PGM_PER) {
		li->irq.pgm.code |= PGM_PER;
1383
		li->irq.pgm.flags = irq->u.pgm.flags;
1384 1385 1386 1387 1388 1389 1390 1391
		/* only modify PER related information */
		li->irq.pgm.per_address = irq->u.pgm.per_address;
		li->irq.pgm.per_code = irq->u.pgm.per_code;
		li->irq.pgm.per_atmid = irq->u.pgm.per_atmid;
		li->irq.pgm.per_access_id = irq->u.pgm.per_access_id;
	} else if (!(irq->u.pgm.code & PGM_PER)) {
		li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) |
				   irq->u.pgm.code;
1392
		li->irq.pgm.flags = irq->u.pgm.flags;
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
		/* only modify non-PER information */
		li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code;
		li->irq.pgm.mon_code = irq->u.pgm.mon_code;
		li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code;
		li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr;
		li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id;
		li->irq.pgm.op_access_id = irq->u.pgm.op_access_id;
	} else {
		li->irq.pgm = irq->u.pgm;
	}
1403
	set_bit(IRQ_PEND_PROG, &li->pending_irqs);
1404 1405 1406
	return 0;
}

1407
static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1408 1409 1410
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1411
	vcpu->stat.inject_pfault_init++;
1412 1413
	VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx",
		   irq->u.ext.ext_params2);
1414 1415
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
				   irq->u.ext.ext_params,
1416
				   irq->u.ext.ext_params2);
1417 1418 1419

	li->irq.ext = irq->u.ext;
	set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
1420
	kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1421 1422 1423
	return 0;
}

1424
static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1425 1426
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1427
	struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
1428
	uint16_t src_id = irq->u.extcall.code;
1429

1430
	vcpu->stat.inject_external_call++;
1431
	VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u",
1432
		   src_id);
1433
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
1434
				   src_id, 0);
1435 1436

	/* sending vcpu invalid */
1437
	if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL)
1438 1439
		return -EINVAL;

1440
	if (sclp.has_sigpif)
1441
		return sca_inject_ext_call(vcpu, src_id);
1442

1443
	if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
1444
		return -EBUSY;
1445
	*extcall = irq->u.extcall;
1446
	kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1447 1448 1449
	return 0;
}

1450
static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1451 1452
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1453
	struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
1454

1455
	vcpu->stat.inject_set_prefix++;
1456
	VCPU_EVENT(vcpu, 3, "inject: set prefix to %x",
1457
		   irq->u.prefix.address);
1458
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
1459
				   irq->u.prefix.address, 0);
1460

1461 1462 1463
	if (!is_vcpu_stopped(vcpu))
		return -EBUSY;

1464 1465
	*prefix = irq->u.prefix;
	set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
1466 1467 1468
	return 0;
}

1469
#define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
1470
static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1471 1472
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1473
	struct kvm_s390_stop_info *stop = &li->irq.stop;
1474
	int rc = 0;
1475

1476
	vcpu->stat.inject_stop_signal++;
1477
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0);
1478

1479 1480 1481
	if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
		return -EINVAL;

1482 1483 1484 1485 1486 1487 1488 1489 1490
	if (is_vcpu_stopped(vcpu)) {
		if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
			rc = kvm_s390_store_status_unloaded(vcpu,
						KVM_S390_STORE_STATUS_NOADDR);
		return rc;
	}

	if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
		return -EBUSY;
1491
	stop->flags = irq->u.stop.flags;
1492
	kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
1493 1494 1495 1496
	return 0;
}

static int __inject_sigp_restart(struct kvm_vcpu *vcpu,
1497
				 struct kvm_s390_irq *irq)
1498 1499 1500
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1501
	vcpu->stat.inject_restart++;
1502
	VCPU_EVENT(vcpu, 3, "%s", "inject: restart int");
1503
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
1504 1505

	set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
1506 1507 1508 1509
	return 0;
}

static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
1510
				   struct kvm_s390_irq *irq)
1511 1512 1513
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1514
	vcpu->stat.inject_emergency_signal++;
1515
	VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u",
1516 1517
		   irq->u.emerg.code);
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
1518
				   irq->u.emerg.code, 0);
1519

1520 1521 1522 1523
	/* sending vcpu invalid */
	if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL)
		return -EINVAL;

1524
	set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
1525
	set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
1526
	kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1527 1528 1529
	return 0;
}

1530
static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1531 1532
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1533
	struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
1534

1535
	vcpu->stat.inject_mchk++;
1536
	VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx",
1537
		   irq->u.mchk.mcic);
1538
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
1539
				   irq->u.mchk.mcic);
1540 1541

	/*
1542 1543 1544 1545 1546 1547
	 * Because repressible machine checks can be indicated along with
	 * exigent machine checks (PoP, Chapter 11, Interruption action)
	 * we need to combine cr14, mcic and external damage code.
	 * Failing storage address and the logout area should not be or'ed
	 * together, we just indicate the last occurrence of the corresponding
	 * machine check
1548
	 */
1549
	mchk->cr14 |= irq->u.mchk.cr14;
1550
	mchk->mcic |= irq->u.mchk.mcic;
1551 1552 1553 1554
	mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
	mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
	memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
	       sizeof(mchk->fixed_logout));
1555 1556 1557 1558
	if (mchk->mcic & MCHK_EX_MASK)
		set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
	else if (mchk->mcic & MCHK_REP_MASK)
		set_bit(IRQ_PEND_MCHK_REP,  &li->pending_irqs);
1559 1560 1561
	return 0;
}

1562
static int __inject_ckc(struct kvm_vcpu *vcpu)
1563 1564 1565
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1566
	vcpu->stat.inject_ckc++;
1567
	VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external");
1568
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
1569
				   0, 0);
1570 1571

	set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1572
	kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1573 1574 1575
	return 0;
}

1576
static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
1577 1578 1579
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1580
	vcpu->stat.inject_cputm++;
1581
	VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external");
1582
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
1583
				   0, 0);
1584 1585

	set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1586
	kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1587 1588 1589
	return 0;
}

1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
						  int isc, u32 schid)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
	struct kvm_s390_interrupt_info *iter;
	u16 id = (schid & 0xffff0000U) >> 16;
	u16 nr = schid & 0x0000ffffU;

	spin_lock(&fi->lock);
	list_for_each_entry(iter, isc_list, list) {
		if (schid && (id != iter->io.subchannel_id ||
			      nr != iter->io.subchannel_nr))
			continue;
		/* found an appropriate entry */
		list_del_init(&iter->list);
		fi->counters[FIRQ_CNTR_IO] -= 1;
		if (list_empty(isc_list))
1608
			clear_bit(isc_to_irq_type(isc), &fi->pending_irqs);
1609 1610 1611 1612 1613 1614
		spin_unlock(&fi->lock);
		return iter;
	}
	spin_unlock(&fi->lock);
	return NULL;
}
1615

1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
static struct kvm_s390_interrupt_info *get_top_io_int(struct kvm *kvm,
						      u64 isc_mask, u32 schid)
{
	struct kvm_s390_interrupt_info *inti = NULL;
	int isc;

	for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
		if (isc_mask & isc_to_isc_bits(isc))
			inti = get_io_int(kvm, isc, schid);
	}
	return inti;
}

static int get_top_gisa_isc(struct kvm *kvm, u64 isc_mask, u32 schid)
{
1631
	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1632 1633 1634 1635 1636
	unsigned long active_mask;
	int isc;

	if (schid)
		goto out;
1637
	if (!gi->origin)
1638 1639
		goto out;

1640
	active_mask = (isc_mask & gisa_get_ipm(gi->origin) << 24) << 32;
1641 1642
	while (active_mask) {
		isc = __fls(active_mask) ^ (BITS_PER_LONG - 1);
1643
		if (gisa_tac_ipm_gisc(gi->origin, isc))
1644 1645 1646 1647 1648 1649 1650
			return isc;
		clear_bit_inv(isc, &active_mask);
	}
out:
	return -EINVAL;
}

1651 1652 1653
/*
 * Dequeue and return an I/O interrupt matching any of the interruption
 * subclasses as designated by the isc mask in cr6 and the schid (if != 0).
1654 1655 1656 1657 1658 1659 1660 1661
 * Take into account the interrupts pending in the interrupt list and in GISA.
 *
 * Note that for a guest that does not enable I/O interrupts
 * but relies on TPI, a flood of classic interrupts may starve
 * out adapter interrupts on the same isc. Linux does not do
 * that, and it is possible to work around the issue by configuring
 * different iscs for classic and adapter interrupts in the guest,
 * but we may want to revisit this in the future.
1662
 */
1663
struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
1664 1665
						    u64 isc_mask, u32 schid)
{
1666
	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1667
	struct kvm_s390_interrupt_info *inti, *tmp_inti;
1668 1669
	int isc;

1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
	inti = get_top_io_int(kvm, isc_mask, schid);

	isc = get_top_gisa_isc(kvm, isc_mask, schid);
	if (isc < 0)
		/* no AI in GISA */
		goto out;

	if (!inti)
		/* AI in GISA but no classical IO int */
		goto gisa_out;

	/* both types of interrupts present */
	if (int_word_to_isc(inti->io.io_int_word) <= isc) {
		/* classical IO int with higher priority */
1684
		gisa_set_ipm_gisc(gi->origin, isc);
1685
		goto out;
1686
	}
1687 1688 1689 1690 1691 1692 1693 1694 1695
gisa_out:
	tmp_inti = kzalloc(sizeof(*inti), GFP_KERNEL);
	if (tmp_inti) {
		tmp_inti->type = KVM_S390_INT_IO(1, 0, 0, 0);
		tmp_inti->io.io_int_word = isc_to_int_word(isc);
		if (inti)
			kvm_s390_reinject_io_int(kvm, inti);
		inti = tmp_inti;
	} else
1696
		gisa_set_ipm_gisc(gi->origin, isc);
1697
out:
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
	return inti;
}

#define SCCB_MASK 0xFFFFFFF8
#define SCCB_EVENT_PENDING 0x3

static int __inject_service(struct kvm *kvm,
			     struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

1709
	kvm->stat.inject_service_signal++;
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
	spin_lock(&fi->lock);
	fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
	/*
	 * Early versions of the QEMU s390 bios will inject several
	 * service interrupts after another without handling a
	 * condition code indicating busy.
	 * We will silently ignore those superfluous sccb values.
	 * A future version of QEMU will take care of serialization
	 * of servc requests
	 */
	if (fi->srv_signal.ext_params & SCCB_MASK)
		goto out;
	fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
	set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
out:
	spin_unlock(&fi->lock);
	kfree(inti);
	return 0;
}

static int __inject_virtio(struct kvm *kvm,
			    struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

1735
	kvm->stat.inject_virtio++;
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
	spin_lock(&fi->lock);
	if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
		spin_unlock(&fi->lock);
		return -EBUSY;
	}
	fi->counters[FIRQ_CNTR_VIRTIO] += 1;
	list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
	set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
	spin_unlock(&fi->lock);
	return 0;
}

static int __inject_pfault_done(struct kvm *kvm,
				 struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

1753
	kvm->stat.inject_pfault_done++;
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
	spin_lock(&fi->lock);
	if (fi->counters[FIRQ_CNTR_PFAULT] >=
		(ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
		spin_unlock(&fi->lock);
		return -EBUSY;
	}
	fi->counters[FIRQ_CNTR_PFAULT] += 1;
	list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
	set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
	spin_unlock(&fi->lock);
	return 0;
}

#define CR_PENDING_SUBCLASS 28
static int __inject_float_mchk(struct kvm *kvm,
				struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

1773
	kvm->stat.inject_float_mchk++;
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
	spin_lock(&fi->lock);
	fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
	fi->mchk.mcic |= inti->mchk.mcic;
	set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
	spin_unlock(&fi->lock);
	kfree(inti);
	return 0;
}

static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1784
{
1785
	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1786
	struct kvm_s390_float_interrupt *fi;
1787 1788
	struct list_head *list;
	int isc;
1789

1790
	kvm->stat.inject_io++;
1791 1792
	isc = int_word_to_isc(inti->io.io_int_word);

1793
	if (gi->origin && inti->type & KVM_S390_INT_IO_AI_MASK) {
1794
		VM_EVENT(kvm, 4, "%s isc %1u", "inject: I/O (AI/gisa)", isc);
1795
		gisa_set_ipm_gisc(gi->origin, isc);
1796 1797 1798 1799
		kfree(inti);
		return 0;
	}

1800 1801
	fi = &kvm->arch.float_int;
	spin_lock(&fi->lock);
1802 1803 1804
	if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
		spin_unlock(&fi->lock);
		return -EBUSY;
J
Jens Freimann 已提交
1805
	}
1806 1807
	fi->counters[FIRQ_CNTR_IO] += 1;

1808 1809 1810 1811 1812 1813 1814
	if (inti->type & KVM_S390_INT_IO_AI_MASK)
		VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)");
	else
		VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x",
			inti->io.subchannel_id >> 8,
			inti->io.subchannel_id >> 1 & 0x3,
			inti->io.subchannel_nr);
1815 1816
	list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
	list_add_tail(&inti->list, list);
1817
	set_bit(isc_to_irq_type(isc), &fi->pending_irqs);
1818
	spin_unlock(&fi->lock);
1819
	return 0;
1820
}
1821

1822 1823 1824 1825
/*
 * Find a destination VCPU for a floating irq and kick it.
 */
static void __floating_irq_kick(struct kvm *kvm, u64 type)
1826
{
1827 1828 1829 1830 1831 1832 1833 1834
	struct kvm_vcpu *dst_vcpu;
	int sigcpu, online_vcpus, nr_tries = 0;

	online_vcpus = atomic_read(&kvm->online_vcpus);
	if (!online_vcpus)
		return;

	/* find idle VCPUs first, then round robin */
1835
	sigcpu = find_first_bit(kvm->arch.idle_mask, online_vcpus);
1836 1837
	if (sigcpu == online_vcpus) {
		do {
1838 1839
			sigcpu = kvm->arch.float_int.next_rr_cpu++;
			kvm->arch.float_int.next_rr_cpu %= online_vcpus;
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
			/* avoid endless loops if all vcpus are stopped */
			if (nr_tries++ >= online_vcpus)
				return;
		} while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu)));
	}
	dst_vcpu = kvm_get_vcpu(kvm, sigcpu);

	/* make the VCPU drop out of the SIE, or wake it up if sleeping */
	switch (type) {
	case KVM_S390_MCHK:
1850
		kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_STOP_INT);
1851 1852
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1853 1854
		if (!(type & KVM_S390_INT_IO_AI_MASK &&
		      kvm->arch.gisa_int.origin))
1855
			kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_IO_INT);
1856 1857
		break;
	default:
1858
		kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_EXT_INT);
1859 1860 1861 1862 1863 1864 1865
		break;
	}
	kvm_s390_vcpu_wakeup(dst_vcpu);
}

static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
{
1866 1867
	u64 type = READ_ONCE(inti->type);
	int rc;
1868

1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
	switch (type) {
	case KVM_S390_MCHK:
		rc = __inject_float_mchk(kvm, inti);
		break;
	case KVM_S390_INT_VIRTIO:
		rc = __inject_virtio(kvm, inti);
		break;
	case KVM_S390_INT_SERVICE:
		rc = __inject_service(kvm, inti);
		break;
	case KVM_S390_INT_PFAULT_DONE:
		rc = __inject_pfault_done(kvm, inti);
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
		rc = __inject_io(kvm, inti);
		break;
	default:
J
Jens Freimann 已提交
1886
		rc = -EINVAL;
1887
	}
1888 1889 1890
	if (rc)
		return rc;

1891
	__floating_irq_kick(kvm, type);
1892
	return 0;
1893 1894 1895 1896 1897 1898
}

int kvm_s390_inject_vm(struct kvm *kvm,
		       struct kvm_s390_interrupt *s390int)
{
	struct kvm_s390_interrupt_info *inti;
1899
	int rc;
1900

1901 1902 1903 1904
	inti = kzalloc(sizeof(*inti), GFP_KERNEL);
	if (!inti)
		return -ENOMEM;

1905 1906
	inti->type = s390int->type;
	switch (inti->type) {
1907
	case KVM_S390_INT_VIRTIO:
1908
		VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
1909 1910 1911 1912 1913
			 s390int->parm, s390int->parm64);
		inti->ext.ext_params = s390int->parm;
		inti->ext.ext_params2 = s390int->parm64;
		break;
	case KVM_S390_INT_SERVICE:
1914
		VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm);
1915 1916
		inti->ext.ext_params = s390int->parm;
		break;
1917 1918 1919
	case KVM_S390_INT_PFAULT_DONE:
		inti->ext.ext_params2 = s390int->parm64;
		break;
1920
	case KVM_S390_MCHK:
1921
		VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx",
1922 1923 1924 1925
			 s390int->parm64);
		inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
		inti->mchk.mcic = s390int->parm64;
		break;
1926 1927 1928 1929 1930 1931
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
		inti->io.subchannel_id = s390int->parm >> 16;
		inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
		inti->io.io_int_parm = s390int->parm64 >> 32;
		inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
		break;
1932 1933 1934 1935
	default:
		kfree(inti);
		return -EINVAL;
	}
1936 1937
	trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
				 2);
1938

1939 1940 1941 1942
	rc = __inject_vm(kvm, inti);
	if (rc)
		kfree(inti);
	return rc;
1943 1944
}

1945
int kvm_s390_reinject_io_int(struct kvm *kvm,
1946 1947
			      struct kvm_s390_interrupt_info *inti)
{
1948
	return __inject_vm(kvm, inti);
1949 1950
}

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
		       struct kvm_s390_irq *irq)
{
	irq->type = s390int->type;
	switch (irq->type) {
	case KVM_S390_PROGRAM_INT:
		if (s390int->parm & 0xffff0000)
			return -EINVAL;
		irq->u.pgm.code = s390int->parm;
		break;
	case KVM_S390_SIGP_SET_PREFIX:
		irq->u.prefix.address = s390int->parm;
		break;
1964 1965 1966
	case KVM_S390_SIGP_STOP:
		irq->u.stop.flags = s390int->parm;
		break;
1967
	case KVM_S390_INT_EXTERNAL_CALL:
1968
		if (s390int->parm & 0xffff0000)
1969 1970 1971 1972
			return -EINVAL;
		irq->u.extcall.code = s390int->parm;
		break;
	case KVM_S390_INT_EMERGENCY:
1973
		if (s390int->parm & 0xffff0000)
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
			return -EINVAL;
		irq->u.emerg.code = s390int->parm;
		break;
	case KVM_S390_MCHK:
		irq->u.mchk.mcic = s390int->parm64;
		break;
	}
	return 0;
}

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

	return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
}

void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

	spin_lock(&li->lock);
	li->irq.stop.flags = 0;
	clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
	spin_unlock(&li->lock);
}

2001
static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
2002
{
2003
	int rc;
2004

2005
	switch (irq->type) {
2006
	case KVM_S390_PROGRAM_INT:
2007
		rc = __inject_prog(vcpu, irq);
2008
		break;
2009
	case KVM_S390_SIGP_SET_PREFIX:
2010
		rc = __inject_set_prefix(vcpu, irq);
2011
		break;
2012
	case KVM_S390_SIGP_STOP:
2013
		rc = __inject_sigp_stop(vcpu, irq);
2014
		break;
2015
	case KVM_S390_RESTART:
2016
		rc = __inject_sigp_restart(vcpu, irq);
2017
		break;
2018
	case KVM_S390_INT_CLOCK_COMP:
2019
		rc = __inject_ckc(vcpu);
2020
		break;
2021
	case KVM_S390_INT_CPU_TIMER:
2022
		rc = __inject_cpu_timer(vcpu);
2023
		break;
2024
	case KVM_S390_INT_EXTERNAL_CALL:
2025
		rc = __inject_extcall(vcpu, irq);
2026
		break;
2027
	case KVM_S390_INT_EMERGENCY:
2028
		rc = __inject_sigp_emergency(vcpu, irq);
2029
		break;
2030
	case KVM_S390_MCHK:
2031
		rc = __inject_mchk(vcpu, irq);
2032
		break;
2033
	case KVM_S390_INT_PFAULT_INIT:
2034
		rc = __inject_pfault_init(vcpu, irq);
2035
		break;
2036 2037
	case KVM_S390_INT_VIRTIO:
	case KVM_S390_INT_SERVICE:
2038
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2039
	default:
2040
		rc = -EINVAL;
2041
	}
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052

	return rc;
}

int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	int rc;

	spin_lock(&li->lock);
	rc = do_inject_vcpu(vcpu, irq);
2053
	spin_unlock(&li->lock);
2054 2055 2056
	if (!rc)
		kvm_s390_vcpu_wakeup(vcpu);
	return rc;
2057
}
2058

2059
static inline void clear_irq_list(struct list_head *_list)
2060
{
2061
	struct kvm_s390_interrupt_info *inti, *n;
2062

2063
	list_for_each_entry_safe(inti, n, _list, list) {
2064 2065 2066 2067 2068
		list_del(&inti->list);
		kfree(inti);
	}
}

2069 2070
static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
		       struct kvm_s390_irq *irq)
2071
{
2072
	irq->type = inti->type;
2073
	switch (inti->type) {
2074 2075
	case KVM_S390_INT_PFAULT_INIT:
	case KVM_S390_INT_PFAULT_DONE:
2076
	case KVM_S390_INT_VIRTIO:
2077
		irq->u.ext = inti->ext;
2078 2079
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2080
		irq->u.io = inti->io;
2081 2082 2083 2084
		break;
	}
}

2085 2086 2087 2088 2089 2090
void kvm_s390_clear_float_irqs(struct kvm *kvm)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	int i;

	spin_lock(&fi->lock);
2091 2092 2093
	fi->pending_irqs = 0;
	memset(&fi->srv_signal, 0, sizeof(fi->srv_signal));
	memset(&fi->mchk, 0, sizeof(fi->mchk));
2094 2095 2096 2097 2098
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		clear_irq_list(&fi->lists[i]);
	for (i = 0; i < FIRQ_MAX_COUNT; i++)
		fi->counters[i] = 0;
	spin_unlock(&fi->lock);
2099
	kvm_s390_gisa_clear(kvm);
2100 2101
};

2102
static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
2103
{
2104
	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
2105 2106
	struct kvm_s390_interrupt_info *inti;
	struct kvm_s390_float_interrupt *fi;
2107
	struct kvm_s390_irq *buf;
2108
	struct kvm_s390_irq *irq;
2109
	int max_irqs;
2110 2111
	int ret = 0;
	int n = 0;
2112
	int i;
2113

2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
	if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
		return -EINVAL;

	/*
	 * We are already using -ENOMEM to signal
	 * userspace it may retry with a bigger buffer,
	 * so we need to use something else for this case
	 */
	buf = vzalloc(len);
	if (!buf)
		return -ENOBUFS;

	max_irqs = len / sizeof(struct kvm_s390_irq);

2128
	if (gi->origin && gisa_get_ipm(gi->origin)) {
2129 2130 2131 2132 2133 2134
		for (i = 0; i <= MAX_ISC; i++) {
			if (n == max_irqs) {
				/* signal userspace to try again */
				ret = -ENOMEM;
				goto out_nolock;
			}
2135
			if (gisa_tac_ipm_gisc(gi->origin, i)) {
2136 2137 2138 2139 2140 2141 2142
				irq = (struct kvm_s390_irq *) &buf[n];
				irq->type = KVM_S390_INT_IO(1, 0, 0, 0);
				irq->u.io.io_int_word = isc_to_int_word(i);
				n++;
			}
		}
	}
2143 2144
	fi = &kvm->arch.float_int;
	spin_lock(&fi->lock);
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
	for (i = 0; i < FIRQ_LIST_COUNT; i++) {
		list_for_each_entry(inti, &fi->lists[i], list) {
			if (n == max_irqs) {
				/* signal userspace to try again */
				ret = -ENOMEM;
				goto out;
			}
			inti_to_irq(inti, &buf[n]);
			n++;
		}
	}
	if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs)) {
2157
		if (n == max_irqs) {
2158 2159
			/* signal userspace to try again */
			ret = -ENOMEM;
2160
			goto out;
2161
		}
2162 2163 2164
		irq = (struct kvm_s390_irq *) &buf[n];
		irq->type = KVM_S390_INT_SERVICE;
		irq->u.ext = fi->srv_signal;
2165 2166
		n++;
	}
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
	if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
		if (n == max_irqs) {
				/* signal userspace to try again */
				ret = -ENOMEM;
				goto out;
		}
		irq = (struct kvm_s390_irq *) &buf[n];
		irq->type = KVM_S390_MCHK;
		irq->u.mchk = fi->mchk;
		n++;
}

out:
2180
	spin_unlock(&fi->lock);
2181
out_nolock:
2182 2183 2184 2185 2186
	if (!ret && n > 0) {
		if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
			ret = -EFAULT;
	}
	vfree(buf);
2187 2188 2189 2190

	return ret < 0 ? ret : n;
}

Y
Yi Min Zhao 已提交
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	struct kvm_s390_ais_all ais;

	if (attr->attr < sizeof(ais))
		return -EINVAL;

	if (!test_kvm_facility(kvm, 72))
		return -ENOTSUPP;

	mutex_lock(&fi->ais_lock);
	ais.simm = fi->simm;
	ais.nimm = fi->nimm;
	mutex_unlock(&fi->ais_lock);

	if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais)))
		return -EFAULT;

	return 0;
}

2213 2214 2215 2216 2217 2218
static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
	int r;

	switch (attr->group) {
	case KVM_DEV_FLIC_GET_ALL_IRQS:
2219
		r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
2220 2221
					  attr->attr);
		break;
Y
Yi Min Zhao 已提交
2222 2223 2224
	case KVM_DEV_FLIC_AISM_ALL:
		r = flic_ais_mode_get_all(dev->kvm, attr);
		break;
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
	default:
		r = -EINVAL;
	}

	return r;
}

static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
				     u64 addr)
{
	struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
	void *target = NULL;
	void __user *source;
	u64 size;

	if (get_user(inti->type, (u64 __user *)addr))
		return -EFAULT;

	switch (inti->type) {
2244 2245
	case KVM_S390_INT_PFAULT_INIT:
	case KVM_S390_INT_PFAULT_DONE:
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
	case KVM_S390_INT_VIRTIO:
	case KVM_S390_INT_SERVICE:
		target = (void *) &inti->ext;
		source = &uptr->u.ext;
		size = sizeof(inti->ext);
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
		target = (void *) &inti->io;
		source = &uptr->u.io;
		size = sizeof(inti->io);
		break;
	case KVM_S390_MCHK:
		target = (void *) &inti->mchk;
		source = &uptr->u.mchk;
		size = sizeof(inti->mchk);
		break;
	default:
		return -EINVAL;
	}

	if (copy_from_user(target, source, size))
		return -EFAULT;

	return 0;
}

static int enqueue_floating_irq(struct kvm_device *dev,
				struct kvm_device_attr *attr)
{
	struct kvm_s390_interrupt_info *inti = NULL;
	int r = 0;
	int len = attr->attr;

	if (len % sizeof(struct kvm_s390_irq) != 0)
		return -EINVAL;
	else if (len > KVM_S390_FLIC_MAX_BUFFER)
		return -EINVAL;

	while (len >= sizeof(struct kvm_s390_irq)) {
		inti = kzalloc(sizeof(*inti), GFP_KERNEL);
		if (!inti)
			return -ENOMEM;

		r = copy_irq_from_user(inti, attr->addr);
		if (r) {
			kfree(inti);
			return r;
		}
J
Jens Freimann 已提交
2294 2295 2296 2297 2298
		r = __inject_vm(dev->kvm, inti);
		if (r) {
			kfree(inti);
			return r;
		}
2299 2300 2301 2302 2303 2304 2305
		len -= sizeof(struct kvm_s390_irq);
		attr->addr += sizeof(struct kvm_s390_irq);
	}

	return r;
}

2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
{
	if (id >= MAX_S390_IO_ADAPTERS)
		return NULL;
	return kvm->arch.adapters[id];
}

static int register_io_adapter(struct kvm_device *dev,
			       struct kvm_device_attr *attr)
{
	struct s390_io_adapter *adapter;
	struct kvm_s390_io_adapter adapter_info;

	if (copy_from_user(&adapter_info,
			   (void __user *)attr->addr, sizeof(adapter_info)))
		return -EFAULT;

	if ((adapter_info.id >= MAX_S390_IO_ADAPTERS) ||
	    (dev->kvm->arch.adapters[adapter_info.id] != NULL))
		return -EINVAL;

	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
	if (!adapter)
		return -ENOMEM;

	INIT_LIST_HEAD(&adapter->maps);
	init_rwsem(&adapter->maps_lock);
	atomic_set(&adapter->nr_maps, 0);
	adapter->id = adapter_info.id;
	adapter->isc = adapter_info.isc;
	adapter->maskable = adapter_info.maskable;
	adapter->masked = false;
	adapter->swap = adapter_info.swap;
2339 2340
	adapter->suppressible = (adapter_info.flags) &
				KVM_S390_ADAPTER_SUPPRESSIBLE;
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
	dev->kvm->arch.adapters[adapter->id] = adapter;

	return 0;
}

int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
{
	int ret;
	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);

	if (!adapter || !adapter->maskable)
		return -EINVAL;
	ret = adapter->masked;
	adapter->masked = masked;
	return ret;
}

static int kvm_s390_adapter_map(struct kvm *kvm, unsigned int id, __u64 addr)
{
	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
	struct s390_map_info *map;
	int ret;

	if (!adapter || !addr)
		return -EINVAL;

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (!map) {
		ret = -ENOMEM;
		goto out;
	}
	INIT_LIST_HEAD(&map->list);
	map->guest_addr = addr;
2374
	map->addr = gmap_translate(kvm->arch.gmap, addr);
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
	if (map->addr == -EFAULT) {
		ret = -EFAULT;
		goto out;
	}
	ret = get_user_pages_fast(map->addr, 1, 1, &map->page);
	if (ret < 0)
		goto out;
	BUG_ON(ret != 1);
	down_write(&adapter->maps_lock);
	if (atomic_inc_return(&adapter->nr_maps) < MAX_S390_ADAPTER_MAPS) {
		list_add_tail(&map->list, &adapter->maps);
		ret = 0;
	} else {
		put_page(map->page);
		ret = -EINVAL;
	}
	up_write(&adapter->maps_lock);
out:
	if (ret)
		kfree(map);
	return ret;
}

static int kvm_s390_adapter_unmap(struct kvm *kvm, unsigned int id, __u64 addr)
{
	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
	struct s390_map_info *map, *tmp;
	int found = 0;

	if (!adapter || !addr)
		return -EINVAL;

	down_write(&adapter->maps_lock);
	list_for_each_entry_safe(map, tmp, &adapter->maps, list) {
		if (map->guest_addr == addr) {
			found = 1;
			atomic_dec(&adapter->nr_maps);
			list_del(&map->list);
			put_page(map->page);
			kfree(map);
			break;
		}
	}
	up_write(&adapter->maps_lock);

	return found ? 0 : -EINVAL;
}

void kvm_s390_destroy_adapters(struct kvm *kvm)
{
	int i;
	struct s390_map_info *map, *tmp;

	for (i = 0; i < MAX_S390_IO_ADAPTERS; i++) {
		if (!kvm->arch.adapters[i])
			continue;
		list_for_each_entry_safe(map, tmp,
					 &kvm->arch.adapters[i]->maps, list) {
			list_del(&map->list);
			put_page(map->page);
			kfree(map);
		}
		kfree(kvm->arch.adapters[i]);
	}
}

static int modify_io_adapter(struct kvm_device *dev,
			     struct kvm_device_attr *attr)
{
	struct kvm_s390_io_adapter_req req;
	struct s390_io_adapter *adapter;
	int ret;

	if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
		return -EFAULT;

	adapter = get_io_adapter(dev->kvm, req.id);
	if (!adapter)
		return -EINVAL;
	switch (req.type) {
	case KVM_S390_IO_ADAPTER_MASK:
		ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
		if (ret > 0)
			ret = 0;
		break;
	case KVM_S390_IO_ADAPTER_MAP:
		ret = kvm_s390_adapter_map(dev->kvm, req.id, req.addr);
		break;
	case KVM_S390_IO_ADAPTER_UNMAP:
		ret = kvm_s390_adapter_unmap(dev->kvm, req.id, req.addr);
		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr)

{
	const u64 isc_mask = 0xffUL << 24; /* all iscs set */
	u32 schid;

	if (attr->flags)
		return -EINVAL;
	if (attr->attr != sizeof(schid))
		return -EINVAL;
	if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid)))
		return -EFAULT;
2485 2486
	if (!schid)
		return -EINVAL;
2487 2488 2489 2490 2491 2492 2493 2494 2495
	kfree(kvm_s390_get_io_int(kvm, isc_mask, schid));
	/*
	 * If userspace is conforming to the architecture, we can have at most
	 * one pending I/O interrupt per subchannel, so this is effectively a
	 * clear all.
	 */
	return 0;
}

2496 2497 2498 2499 2500 2501
static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	struct kvm_s390_ais_req req;
	int ret = 0;

2502
	if (!test_kvm_facility(kvm, 72))
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
		return -ENOTSUPP;

	if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
		return -EFAULT;

	if (req.isc > MAX_ISC)
		return -EINVAL;

	trace_kvm_s390_modify_ais_mode(req.isc,
				       (fi->simm & AIS_MODE_MASK(req.isc)) ?
				       (fi->nimm & AIS_MODE_MASK(req.isc)) ?
				       2 : KVM_S390_AIS_MODE_SINGLE :
				       KVM_S390_AIS_MODE_ALL, req.mode);

	mutex_lock(&fi->ais_lock);
	switch (req.mode) {
	case KVM_S390_AIS_MODE_ALL:
		fi->simm &= ~AIS_MODE_MASK(req.isc);
		fi->nimm &= ~AIS_MODE_MASK(req.isc);
		break;
	case KVM_S390_AIS_MODE_SINGLE:
		fi->simm |= AIS_MODE_MASK(req.isc);
		fi->nimm &= ~AIS_MODE_MASK(req.isc);
		break;
	default:
		ret = -EINVAL;
	}
	mutex_unlock(&fi->ais_lock);

	return ret;
}

2535 2536 2537 2538 2539 2540 2541
static int kvm_s390_inject_airq(struct kvm *kvm,
				struct s390_io_adapter *adapter)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	struct kvm_s390_interrupt s390int = {
		.type = KVM_S390_INT_IO(1, 0, 0, 0),
		.parm = 0,
2542
		.parm64 = isc_to_int_word(adapter->isc),
2543 2544 2545
	};
	int ret = 0;

2546
	if (!test_kvm_facility(kvm, 72) || !adapter->suppressible)
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
		return kvm_s390_inject_vm(kvm, &s390int);

	mutex_lock(&fi->ais_lock);
	if (fi->nimm & AIS_MODE_MASK(adapter->isc)) {
		trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc);
		goto out;
	}

	ret = kvm_s390_inject_vm(kvm, &s390int);
	if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) {
		fi->nimm |= AIS_MODE_MASK(adapter->isc);
		trace_kvm_s390_modify_ais_mode(adapter->isc,
					       KVM_S390_AIS_MODE_SINGLE, 2);
	}
out:
	mutex_unlock(&fi->ais_lock);
	return ret;
}

static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr)
{
	unsigned int id = attr->attr;
	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);

	if (!adapter)
		return -EINVAL;

	return kvm_s390_inject_airq(kvm, adapter);
}

Y
Yi Min Zhao 已提交
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	struct kvm_s390_ais_all ais;

	if (!test_kvm_facility(kvm, 72))
		return -ENOTSUPP;

	if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais)))
		return -EFAULT;

	mutex_lock(&fi->ais_lock);
	fi->simm = ais.simm;
	fi->nimm = ais.nimm;
	mutex_unlock(&fi->ais_lock);

	return 0;
}

2596 2597 2598
static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
	int r = 0;
2599 2600
	unsigned int i;
	struct kvm_vcpu *vcpu;
2601 2602 2603 2604 2605 2606

	switch (attr->group) {
	case KVM_DEV_FLIC_ENQUEUE:
		r = enqueue_floating_irq(dev, attr);
		break;
	case KVM_DEV_FLIC_CLEAR_IRQS:
2607
		kvm_s390_clear_float_irqs(dev->kvm);
2608
		break;
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
	case KVM_DEV_FLIC_APF_ENABLE:
		dev->kvm->arch.gmap->pfault_enabled = 1;
		break;
	case KVM_DEV_FLIC_APF_DISABLE_WAIT:
		dev->kvm->arch.gmap->pfault_enabled = 0;
		/*
		 * Make sure no async faults are in transition when
		 * clearing the queues. So we don't need to worry
		 * about late coming workers.
		 */
		synchronize_srcu(&dev->kvm->srcu);
		kvm_for_each_vcpu(i, vcpu, dev->kvm)
			kvm_clear_async_pf_completion_queue(vcpu);
		break;
2623 2624 2625 2626 2627 2628
	case KVM_DEV_FLIC_ADAPTER_REGISTER:
		r = register_io_adapter(dev, attr);
		break;
	case KVM_DEV_FLIC_ADAPTER_MODIFY:
		r = modify_io_adapter(dev, attr);
		break;
2629 2630 2631
	case KVM_DEV_FLIC_CLEAR_IO_IRQ:
		r = clear_io_irq(dev->kvm, attr);
		break;
2632 2633 2634
	case KVM_DEV_FLIC_AISM:
		r = modify_ais_mode(dev->kvm, attr);
		break;
2635 2636 2637
	case KVM_DEV_FLIC_AIRQ_INJECT:
		r = flic_inject_airq(dev->kvm, attr);
		break;
Y
Yi Min Zhao 已提交
2638 2639 2640
	case KVM_DEV_FLIC_AISM_ALL:
		r = flic_ais_mode_set_all(dev->kvm, attr);
		break;
2641 2642 2643 2644 2645 2646 2647
	default:
		r = -EINVAL;
	}

	return r;
}

2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
static int flic_has_attr(struct kvm_device *dev,
			     struct kvm_device_attr *attr)
{
	switch (attr->group) {
	case KVM_DEV_FLIC_GET_ALL_IRQS:
	case KVM_DEV_FLIC_ENQUEUE:
	case KVM_DEV_FLIC_CLEAR_IRQS:
	case KVM_DEV_FLIC_APF_ENABLE:
	case KVM_DEV_FLIC_APF_DISABLE_WAIT:
	case KVM_DEV_FLIC_ADAPTER_REGISTER:
	case KVM_DEV_FLIC_ADAPTER_MODIFY:
2659
	case KVM_DEV_FLIC_CLEAR_IO_IRQ:
2660
	case KVM_DEV_FLIC_AISM:
2661
	case KVM_DEV_FLIC_AIRQ_INJECT:
Y
Yi Min Zhao 已提交
2662
	case KVM_DEV_FLIC_AISM_ALL:
2663 2664 2665 2666 2667
		return 0;
	}
	return -ENXIO;
}

2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
static int flic_create(struct kvm_device *dev, u32 type)
{
	if (!dev)
		return -EINVAL;
	if (dev->kvm->arch.flic)
		return -EINVAL;
	dev->kvm->arch.flic = dev;
	return 0;
}

static void flic_destroy(struct kvm_device *dev)
{
	dev->kvm->arch.flic = NULL;
	kfree(dev);
}

/* s390 floating irq controller (flic) */
struct kvm_device_ops kvm_flic_ops = {
	.name = "kvm-flic",
	.get_attr = flic_get_attr,
	.set_attr = flic_set_attr,
2689
	.has_attr = flic_has_attr,
2690 2691 2692
	.create = flic_create,
	.destroy = flic_destroy,
};
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772

static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
{
	unsigned long bit;

	bit = bit_nr + (addr % PAGE_SIZE) * 8;

	return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
}

static struct s390_map_info *get_map_info(struct s390_io_adapter *adapter,
					  u64 addr)
{
	struct s390_map_info *map;

	if (!adapter)
		return NULL;

	list_for_each_entry(map, &adapter->maps, list) {
		if (map->guest_addr == addr)
			return map;
	}
	return NULL;
}

static int adapter_indicators_set(struct kvm *kvm,
				  struct s390_io_adapter *adapter,
				  struct kvm_s390_adapter_int *adapter_int)
{
	unsigned long bit;
	int summary_set, idx;
	struct s390_map_info *info;
	void *map;

	info = get_map_info(adapter, adapter_int->ind_addr);
	if (!info)
		return -1;
	map = page_address(info->page);
	bit = get_ind_bit(info->addr, adapter_int->ind_offset, adapter->swap);
	set_bit(bit, map);
	idx = srcu_read_lock(&kvm->srcu);
	mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
	set_page_dirty_lock(info->page);
	info = get_map_info(adapter, adapter_int->summary_addr);
	if (!info) {
		srcu_read_unlock(&kvm->srcu, idx);
		return -1;
	}
	map = page_address(info->page);
	bit = get_ind_bit(info->addr, adapter_int->summary_offset,
			  adapter->swap);
	summary_set = test_and_set_bit(bit, map);
	mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
	set_page_dirty_lock(info->page);
	srcu_read_unlock(&kvm->srcu, idx);
	return summary_set ? 0 : 1;
}

/*
 * < 0 - not injected due to error
 * = 0 - coalesced, summary indicator already active
 * > 0 - injected interrupt
 */
static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
			   struct kvm *kvm, int irq_source_id, int level,
			   bool line_status)
{
	int ret;
	struct s390_io_adapter *adapter;

	/* We're only interested in the 0->1 transition. */
	if (!level)
		return 0;
	adapter = get_io_adapter(kvm, e->adapter.adapter_id);
	if (!adapter)
		return -1;
	down_read(&adapter->maps_lock);
	ret = adapter_indicators_set(kvm, adapter, &e->adapter);
	up_read(&adapter->maps_lock);
	if ((ret > 0) && !adapter->masked) {
2773
		ret = kvm_s390_inject_airq(kvm, adapter);
2774 2775 2776 2777 2778 2779
		if (ret == 0)
			ret = 1;
	}
	return ret;
}

2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
/*
 * Inject the machine check to the guest.
 */
void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu,
				     struct mcck_volatile_info *mcck_info)
{
	struct kvm_s390_interrupt_info inti;
	struct kvm_s390_irq irq;
	struct kvm_s390_mchk_info *mchk;
	union mci mci;
	__u64 cr14 = 0;         /* upper bits are not used */
2791
	int rc;
2792 2793 2794

	mci.val = mcck_info->mcic;
	if (mci.sr)
2795
		cr14 |= CR14_RECOVERY_SUBMASK;
2796
	if (mci.dg)
2797
		cr14 |= CR14_DEGRADATION_SUBMASK;
2798
	if (mci.w)
2799
		cr14 |= CR14_WARNING_SUBMASK;
2800 2801 2802 2803 2804 2805 2806 2807 2808

	mchk = mci.ck ? &inti.mchk : &irq.u.mchk;
	mchk->cr14 = cr14;
	mchk->mcic = mcck_info->mcic;
	mchk->ext_damage_code = mcck_info->ext_damage_code;
	mchk->failing_storage_address = mcck_info->failing_storage_address;
	if (mci.ck) {
		/* Inject the floating machine check */
		inti.type = KVM_S390_MCHK;
2809
		rc = __inject_vm(vcpu->kvm, &inti);
2810 2811 2812
	} else {
		/* Inject the machine check to specified vcpu */
		irq.type = KVM_S390_MCHK;
2813
		rc = kvm_s390_inject_vcpu(vcpu, &irq);
2814
	}
2815
	WARN_ON_ONCE(rc);
2816 2817
}

2818 2819
int kvm_set_routing_entry(struct kvm *kvm,
			  struct kvm_kernel_irq_routing_entry *e,
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
			  const struct kvm_irq_routing_entry *ue)
{
	int ret;

	switch (ue->type) {
	case KVM_IRQ_ROUTING_S390_ADAPTER:
		e->set = set_adapter_int;
		e->adapter.summary_addr = ue->u.adapter.summary_addr;
		e->adapter.ind_addr = ue->u.adapter.ind_addr;
		e->adapter.summary_offset = ue->u.adapter.summary_offset;
		e->adapter.ind_offset = ue->u.adapter.ind_offset;
		e->adapter.adapter_id = ue->u.adapter.adapter_id;
		ret = 0;
		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
		int irq_source_id, int level, bool line_status)
{
	return -EINVAL;
}
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930

int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_irq *buf;
	int r = 0;
	int n;

	buf = vmalloc(len);
	if (!buf)
		return -ENOMEM;

	if (copy_from_user((void *) buf, irqstate, len)) {
		r = -EFAULT;
		goto out_free;
	}

	/*
	 * Don't allow setting the interrupt state
	 * when there are already interrupts pending
	 */
	spin_lock(&li->lock);
	if (li->pending_irqs) {
		r = -EBUSY;
		goto out_unlock;
	}

	for (n = 0; n < len / sizeof(*buf); n++) {
		r = do_inject_vcpu(vcpu, &buf[n]);
		if (r)
			break;
	}

out_unlock:
	spin_unlock(&li->lock);
out_free:
	vfree(buf);

	return r;
}

static void store_local_irq(struct kvm_s390_local_interrupt *li,
			    struct kvm_s390_irq *irq,
			    unsigned long irq_type)
{
	switch (irq_type) {
	case IRQ_PEND_MCHK_EX:
	case IRQ_PEND_MCHK_REP:
		irq->type = KVM_S390_MCHK;
		irq->u.mchk = li->irq.mchk;
		break;
	case IRQ_PEND_PROG:
		irq->type = KVM_S390_PROGRAM_INT;
		irq->u.pgm = li->irq.pgm;
		break;
	case IRQ_PEND_PFAULT_INIT:
		irq->type = KVM_S390_INT_PFAULT_INIT;
		irq->u.ext = li->irq.ext;
		break;
	case IRQ_PEND_EXT_EXTERNAL:
		irq->type = KVM_S390_INT_EXTERNAL_CALL;
		irq->u.extcall = li->irq.extcall;
		break;
	case IRQ_PEND_EXT_CLOCK_COMP:
		irq->type = KVM_S390_INT_CLOCK_COMP;
		break;
	case IRQ_PEND_EXT_CPU_TIMER:
		irq->type = KVM_S390_INT_CPU_TIMER;
		break;
	case IRQ_PEND_SIGP_STOP:
		irq->type = KVM_S390_SIGP_STOP;
		irq->u.stop = li->irq.stop;
		break;
	case IRQ_PEND_RESTART:
		irq->type = KVM_S390_RESTART;
		break;
	case IRQ_PEND_SET_PREFIX:
		irq->type = KVM_S390_SIGP_SET_PREFIX;
		irq->u.prefix = li->irq.prefix;
		break;
	}
}

int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len)
{
2931
	int scn;
2932
	DECLARE_BITMAP(sigp_emerg_pending, KVM_MAX_VCPUS);
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	unsigned long pending_irqs;
	struct kvm_s390_irq irq;
	unsigned long irq_type;
	int cpuaddr;
	int n = 0;

	spin_lock(&li->lock);
	pending_irqs = li->pending_irqs;
	memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending,
	       sizeof(sigp_emerg_pending));
	spin_unlock(&li->lock);

	for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) {
		memset(&irq, 0, sizeof(irq));
		if (irq_type == IRQ_PEND_EXT_EMERGENCY)
			continue;
		if (n + sizeof(irq) > len)
			return -ENOBUFS;
		store_local_irq(&vcpu->arch.local_int, &irq, irq_type);
		if (copy_to_user(&buf[n], &irq, sizeof(irq)))
			return -EFAULT;
		n += sizeof(irq);
	}

	if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) {
		for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) {
			memset(&irq, 0, sizeof(irq));
			if (n + sizeof(irq) > len)
				return -ENOBUFS;
			irq.type = KVM_S390_INT_EMERGENCY;
			irq.u.emerg.code = cpuaddr;
			if (copy_to_user(&buf[n], &irq, sizeof(irq)))
				return -EFAULT;
			n += sizeof(irq);
		}
	}

2971
	if (sca_ext_call_pending(vcpu, &scn)) {
2972 2973 2974 2975
		if (n + sizeof(irq) > len)
			return -ENOBUFS;
		memset(&irq, 0, sizeof(irq));
		irq.type = KVM_S390_INT_EXTERNAL_CALL;
2976
		irq.u.extcall.code = scn;
2977 2978 2979 2980 2981 2982 2983
		if (copy_to_user(&buf[n], &irq, sizeof(irq)))
			return -EFAULT;
		n += sizeof(irq);
	}

	return n;
}
2984

2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
static void __airqs_kick_single_vcpu(struct kvm *kvm, u8 deliverable_mask)
{
	int vcpu_id, online_vcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
	struct kvm_vcpu *vcpu;

	for_each_set_bit(vcpu_id, kvm->arch.idle_mask, online_vcpus) {
		vcpu = kvm_get_vcpu(kvm, vcpu_id);
		if (psw_ioint_disabled(vcpu))
			continue;
		deliverable_mask &= (u8)(vcpu->arch.sie_block->gcr[6] >> 24);
		if (deliverable_mask) {
			/* lately kicked but not yet running */
			if (test_and_set_bit(vcpu_id, gi->kicked_mask))
				return;
			kvm_s390_vcpu_wakeup(vcpu);
			return;
		}
	}
}

static enum hrtimer_restart gisa_vcpu_kicker(struct hrtimer *timer)
{
	struct kvm_s390_gisa_interrupt *gi =
		container_of(timer, struct kvm_s390_gisa_interrupt, timer);
	struct kvm *kvm =
		container_of(gi->origin, struct sie_page2, gisa)->kvm;
	u8 pending_mask;

	pending_mask = gisa_get_ipm_or_restore_iam(gi);
	if (pending_mask) {
		__airqs_kick_single_vcpu(kvm, pending_mask);
		hrtimer_forward_now(timer, ns_to_ktime(gi->expires));
		return HRTIMER_RESTART;
	};

	return HRTIMER_NORESTART;
}

#define NULL_GISA_ADDR 0x00000000UL
#define NONE_GISA_ADDR 0x00000001UL
#define GISA_ADDR_MASK 0xfffff000UL

static void process_gib_alert_list(void)
{
	struct kvm_s390_gisa_interrupt *gi;
	struct kvm_s390_gisa *gisa;
	struct kvm *kvm;
	u32 final, origin = 0UL;

	do {
		/*
		 * If the NONE_GISA_ADDR is still stored in the alert list
		 * origin, we will leave the outer loop. No further GISA has
		 * been added to the alert list by millicode while processing
		 * the current alert list.
		 */
		final = (origin & NONE_GISA_ADDR);
		/*
		 * Cut off the alert list and store the NONE_GISA_ADDR in the
		 * alert list origin to avoid further GAL interruptions.
		 * A new alert list can be build up by millicode in parallel
		 * for guests not in the yet cut-off alert list. When in the
		 * final loop, store the NULL_GISA_ADDR instead. This will re-
		 * enable GAL interruptions on the host again.
		 */
		origin = xchg(&gib->alert_list_origin,
			      (!final) ? NONE_GISA_ADDR : NULL_GISA_ADDR);
		/*
		 * Loop through the just cut-off alert list and start the
		 * gisa timers to kick idle vcpus to consume the pending
		 * interruptions asap.
		 */
		while (origin & GISA_ADDR_MASK) {
			gisa = (struct kvm_s390_gisa *)(u64)origin;
			origin = gisa->next_alert;
			gisa->next_alert = (u32)(u64)gisa;
			kvm = container_of(gisa, struct sie_page2, gisa)->kvm;
			gi = &kvm->arch.gisa_int;
			if (hrtimer_active(&gi->timer))
				hrtimer_cancel(&gi->timer);
			hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL);
		}
	} while (!final);

}

3072 3073
void kvm_s390_gisa_clear(struct kvm *kvm)
{
3074 3075 3076
	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;

	if (!gi->origin)
3077
		return;
3078
	gisa_clear_ipm(gi->origin);
3079
	VM_EVENT(kvm, 3, "gisa 0x%pK cleared", gi->origin);
3080 3081 3082 3083
}

void kvm_s390_gisa_init(struct kvm *kvm)
{
3084 3085
	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;

3086 3087
	if (!css_general_characteristics.aiv)
		return;
3088
	gi->origin = &kvm->arch.sie_page2->gisa;
3089 3090
	gi->alert.mask = 0;
	spin_lock_init(&gi->alert.ref_lock);
3091 3092 3093
	gi->expires = 50 * 1000; /* 50 usec */
	hrtimer_init(&gi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	gi->timer.function = gisa_vcpu_kicker;
3094 3095
	memset(gi->origin, 0, sizeof(struct kvm_s390_gisa));
	gi->origin->next_alert = (u32)(u64)gi->origin;
3096
	VM_EVENT(kvm, 3, "gisa 0x%pK initialized", gi->origin);
3097 3098 3099 3100
}

void kvm_s390_gisa_destroy(struct kvm *kvm)
{
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;

	if (!gi->origin)
		return;
	if (gi->alert.mask)
		KVM_EVENT(3, "vm 0x%pK has unexpected iam 0x%02x",
			  kvm, gi->alert.mask);
	while (gisa_in_alert_list(gi->origin))
		cpu_relax();
	hrtimer_cancel(&gi->timer);
	gi->origin = NULL;
3112
}
3113

3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
/**
 * kvm_s390_gisc_register - register a guest ISC
 *
 * @kvm:  the kernel vm to work with
 * @gisc: the guest interruption sub class to register
 *
 * The function extends the vm specific alert mask to use.
 * The effective IAM mask in the GISA is updated as well
 * in case the GISA is not part of the GIB alert list.
 * It will be updated latest when the IAM gets restored
 * by gisa_get_ipm_or_restore_iam().
 *
 * Returns: the nonspecific ISC (NISC) the gib alert mechanism
 *          has registered with the channel subsystem.
 *          -ENODEV in case the vm uses no GISA
 *          -ERANGE in case the guest ISC is invalid
 */
int kvm_s390_gisc_register(struct kvm *kvm, u32 gisc)
{
	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;

	if (!gi->origin)
		return -ENODEV;
	if (gisc > MAX_ISC)
		return -ERANGE;

	spin_lock(&gi->alert.ref_lock);
	gi->alert.ref_count[gisc]++;
	if (gi->alert.ref_count[gisc] == 1) {
		gi->alert.mask |= 0x80 >> gisc;
		gisa_set_iam(gi->origin, gi->alert.mask);
	}
	spin_unlock(&gi->alert.ref_lock);

	return gib->nisc;
}
EXPORT_SYMBOL_GPL(kvm_s390_gisc_register);

/**
 * kvm_s390_gisc_unregister - unregister a guest ISC
 *
 * @kvm:  the kernel vm to work with
 * @gisc: the guest interruption sub class to register
 *
 * The function reduces the vm specific alert mask to use.
 * The effective IAM mask in the GISA is updated as well
 * in case the GISA is not part of the GIB alert list.
 * It will be updated latest when the IAM gets restored
 * by gisa_get_ipm_or_restore_iam().
 *
 * Returns: the nonspecific ISC (NISC) the gib alert mechanism
 *          has registered with the channel subsystem.
 *          -ENODEV in case the vm uses no GISA
 *          -ERANGE in case the guest ISC is invalid
 *          -EINVAL in case the guest ISC is not registered
 */
int kvm_s390_gisc_unregister(struct kvm *kvm, u32 gisc)
{
	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
	int rc = 0;

	if (!gi->origin)
		return -ENODEV;
	if (gisc > MAX_ISC)
		return -ERANGE;

	spin_lock(&gi->alert.ref_lock);
	if (gi->alert.ref_count[gisc] == 0) {
		rc = -EINVAL;
		goto out;
	}
	gi->alert.ref_count[gisc]--;
	if (gi->alert.ref_count[gisc] == 0) {
		gi->alert.mask &= ~(0x80 >> gisc);
		gisa_set_iam(gi->origin, gi->alert.mask);
	}
out:
	spin_unlock(&gi->alert.ref_lock);

	return rc;
}
EXPORT_SYMBOL_GPL(kvm_s390_gisc_unregister);

3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
static void gib_alert_irq_handler(struct airq_struct *airq)
{
	inc_irq_stat(IRQIO_GAL);
	process_gib_alert_list();
}

static struct airq_struct gib_alert_irq = {
	.handler = gib_alert_irq_handler,
	.lsi_ptr = &gib_alert_irq.lsi_mask,
};

3208 3209 3210 3211 3212
void kvm_s390_gib_destroy(void)
{
	if (!gib)
		return;
	chsc_sgib(0);
3213
	unregister_adapter_interrupt(&gib_alert_irq);
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
	free_page((unsigned long)gib);
	gib = NULL;
}

int kvm_s390_gib_init(u8 nisc)
{
	int rc = 0;

	if (!css_general_characteristics.aiv) {
		KVM_EVENT(3, "%s", "gib not initialized, no AIV facility");
		goto out;
	}

	gib = (struct kvm_s390_gib *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
	if (!gib) {
		rc = -ENOMEM;
		goto out;
	}

3233 3234 3235 3236 3237 3238 3239
	gib_alert_irq.isc = nisc;
	if (register_adapter_interrupt(&gib_alert_irq)) {
		pr_err("Registering the GIB alert interruption handler failed\n");
		rc = -EIO;
		goto out_free_gib;
	}

3240 3241 3242 3243 3244 3245
	gib->nisc = nisc;
	if (chsc_sgib((u32)(u64)gib)) {
		pr_err("Associating the GIB with the AIV facility failed\n");
		free_page((unsigned long)gib);
		gib = NULL;
		rc = -EIO;
3246
		goto out_unreg_gal;
3247 3248 3249
	}

	KVM_EVENT(3, "gib 0x%pK (nisc=%d) initialized", gib, gib->nisc);
3250 3251 3252 3253 3254 3255 3256
	goto out;

out_unreg_gal:
	unregister_adapter_interrupt(&gib_alert_irq);
out_free_gib:
	free_page((unsigned long)gib);
	gib = NULL;
3257 3258 3259
out:
	return rc;
}