interrupt.c 56.1 KB
Newer Older
1
/*
2
 * handling kvm guest interrupts
3
 *
4
 * Copyright IBM Corp. 2008, 2015
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 */

13
#include <linux/interrupt.h>
14
#include <linux/kvm_host.h>
15
#include <linux/hrtimer.h>
16
#include <linux/mmu_context.h>
17
#include <linux/signal.h>
18
#include <linux/slab.h>
19
#include <linux/bitmap.h>
20
#include <linux/vmalloc.h>
21
#include <asm/asm-offsets.h>
22
#include <asm/dis.h>
23
#include <asm/uaccess.h>
24
#include <asm/sclp.h>
25
#include <asm/isc.h>
26 27
#include "kvm-s390.h"
#include "gaccess.h"
28
#include "trace-s390.h"
29

30 31 32 33
#define IOINT_SCHID_MASK 0x0000ffff
#define IOINT_SSID_MASK 0x00030000
#define IOINT_CSSID_MASK 0x03fc0000
#define IOINT_AI_MASK 0x04000000
34
#define PFAULT_INIT 0x0600
35 36
#define PFAULT_DONE 0x0680
#define VIRTIO_PARAM 0x0d00
37

38
int psw_extint_disabled(struct kvm_vcpu *vcpu)
39 40 41 42
{
	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
}

43 44 45 46 47
static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
{
	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
}

48 49 50 51 52
static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
{
	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
}

53 54 55 56 57 58 59 60 61
static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
{
	if ((vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PER) ||
	    (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO) ||
	    (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT))
		return 0;
	return 1;
}

62 63 64 65 66
static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
{
	if (psw_extint_disabled(vcpu) ||
	    !(vcpu->arch.sie_block->gcr[0] & 0x800ul))
		return 0;
67 68 69
	if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
		/* No timer interrupts when single stepping */
		return 0;
70 71 72
	return 1;
}

73
static inline int is_ioirq(unsigned long irq_type)
C
Cornelia Huck 已提交
74
{
75 76 77
	return ((irq_type >= IRQ_PEND_IO_ISC_0) &&
		(irq_type <= IRQ_PEND_IO_ISC_7));
}
C
Cornelia Huck 已提交
78

79 80
static uint64_t isc_to_isc_bits(int isc)
{
C
Cornelia Huck 已提交
81 82 83
	return (0x80 >> isc) << 24;
}

84
static inline u8 int_word_to_isc(u32 int_word)
85
{
86 87 88 89 90 91
	return (int_word & 0x38000000) >> 27;
}

static inline unsigned long pending_floating_irqs(struct kvm_vcpu *vcpu)
{
	return vcpu->kvm->arch.float_int.pending_irqs;
92 93
}

94 95 96 97 98
static inline unsigned long pending_local_irqs(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.local_int.pending_irqs;
}

99 100 101 102 103 104 105 106 107 108 109 110 111
static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
				   unsigned long active_mask)
{
	int i;

	for (i = 0; i <= MAX_ISC; i++)
		if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
			active_mask &= ~(1UL << (IRQ_PEND_IO_ISC_0 + i));

	return active_mask;
}

static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
112
{
113 114 115 116
	unsigned long active_mask;

	active_mask = pending_local_irqs(vcpu);
	active_mask |= pending_floating_irqs(vcpu);
117 118 119

	if (psw_extint_disabled(vcpu))
		active_mask &= ~IRQ_PEND_EXT_MASK;
120 121 122 123
	if (psw_ioint_disabled(vcpu))
		active_mask &= ~IRQ_PEND_IO_MASK;
	else
		active_mask = disable_iscs(vcpu, active_mask);
124 125 126 127 128 129 130 131
	if (!(vcpu->arch.sie_block->gcr[0] & 0x2000ul))
		__clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
	if (!(vcpu->arch.sie_block->gcr[0] & 0x4000ul))
		__clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
	if (!(vcpu->arch.sie_block->gcr[0] & 0x800ul))
		__clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
	if (!(vcpu->arch.sie_block->gcr[0] & 0x400ul))
		__clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
132 133
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		__clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
134 135
	if (psw_mchk_disabled(vcpu))
		active_mask &= ~IRQ_PEND_MCHK_MASK;
136 137 138
	if (!(vcpu->arch.sie_block->gcr[14] &
	      vcpu->kvm->arch.float_int.mchk.cr14))
		__clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
139

140 141 142 143 144 145
	/*
	 * STOP irqs will never be actively delivered. They are triggered via
	 * intercept requests and cleared when the stop intercept is performed.
	 */
	__clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);

146 147 148
	return active_mask;
}

149 150 151 152 153 154 155 156 157 158 159 160 161 162
static void __set_cpu_idle(struct kvm_vcpu *vcpu)
{
	atomic_set_mask(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
	set_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
}

static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
{
	atomic_clear_mask(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
	clear_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
}

static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
{
163 164
	atomic_clear_mask(CPUSTAT_IO_INT | CPUSTAT_EXT_INT | CPUSTAT_STOP_INT,
			  &vcpu->arch.sie_block->cpuflags);
165
	vcpu->arch.sie_block->lctl = 0x0000;
166 167 168 169 170 171 172
	vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);

	if (guestdbg_enabled(vcpu)) {
		vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
					       LCTL_CR10 | LCTL_CR11);
		vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
	}
173 174 175 176 177 178 179
}

static void __set_cpuflag(struct kvm_vcpu *vcpu, u32 flag)
{
	atomic_set_mask(flag, &vcpu->arch.sie_block->cpuflags);
}

180 181 182 183 184 185 186 187 188 189
static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
{
	if (!(pending_floating_irqs(vcpu) & IRQ_PEND_IO_MASK))
		return;
	else if (psw_ioint_disabled(vcpu))
		__set_cpuflag(vcpu, CPUSTAT_IO_INT);
	else
		vcpu->arch.sie_block->lctl |= LCTL_CR6;
}

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
{
	if (!(pending_local_irqs(vcpu) & IRQ_PEND_EXT_MASK))
		return;
	if (psw_extint_disabled(vcpu))
		__set_cpuflag(vcpu, CPUSTAT_EXT_INT);
	else
		vcpu->arch.sie_block->lctl |= LCTL_CR0;
}

static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
{
	if (!(pending_local_irqs(vcpu) & IRQ_PEND_MCHK_MASK))
		return;
	if (psw_mchk_disabled(vcpu))
		vcpu->arch.sie_block->ictl |= ICTL_LPSW;
	else
		vcpu->arch.sie_block->lctl |= LCTL_CR14;
}

210 211 212 213 214 215
static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
{
	if (kvm_s390_is_stop_irq_pending(vcpu))
		__set_cpuflag(vcpu, CPUSTAT_STOP_INT);
}

216 217
/* Set interception request for non-deliverable interrupts */
static void set_intercept_indicators(struct kvm_vcpu *vcpu)
218
{
219
	set_intercept_indicators_io(vcpu);
220 221
	set_intercept_indicators_ext(vcpu);
	set_intercept_indicators_mchk(vcpu);
222
	set_intercept_indicators_stop(vcpu);
223 224
}

225 226 227 228 229 230 231 232 233
static u16 get_ilc(struct kvm_vcpu *vcpu)
{
	switch (vcpu->arch.sie_block->icptcode) {
	case ICPT_INST:
	case ICPT_INSTPROGI:
	case ICPT_OPEREXC:
	case ICPT_PARTEXEC:
	case ICPT_IOINST:
		/* last instruction only stored for these icptcodes */
234
		return insn_length(vcpu->arch.sie_block->ipa >> 8);
235 236 237 238 239 240 241
	case ICPT_PROGI:
		return vcpu->arch.sie_block->pgmilc;
	default:
		return 0;
	}
}

242 243
static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
{
244
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
245 246 247 248 249 250 251
	int rc;

	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
					 0, 0);

	rc  = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
			   (u16 *)__LC_EXT_INT_CODE);
252
	rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
253 254 255 256
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
257
	clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
258
	return rc ? -EFAULT : 0;
259 260 261 262
}

static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
{
263
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
264 265 266 267 268 269 270
	int rc;

	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
					 0, 0);

	rc  = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
			   (u16 __user *)__LC_EXT_INT_CODE);
271
	rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
272 273 274 275
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
276
	clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
277
	return rc ? -EFAULT : 0;
278 279
}

280
static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
281
{
282 283
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_ext_info ext;
284 285
	int rc;

286 287 288 289 290 291
	spin_lock(&li->lock);
	ext = li->irq.ext;
	clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
	li->irq.ext.ext_params2 = 0;
	spin_unlock(&li->lock);

292
	VCPU_EVENT(vcpu, 4, "interrupt: pfault init parm:%x,parm64:%llx",
293
		   0, ext.ext_params2);
294 295
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
					 KVM_S390_INT_PFAULT_INIT,
296
					 0, ext.ext_params2);
297 298 299 300 301 302 303

	rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
	rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
304
	rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
305
	return rc ? -EFAULT : 0;
306 307
}

308
static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
309
{
310
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
311
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
312
	struct kvm_s390_mchk_info mchk = {};
E
Eric Farman 已提交
313
	unsigned long adtl_status_addr;
314 315
	int deliver = 0;
	int rc = 0;
316

317
	spin_lock(&fi->lock);
318
	spin_lock(&li->lock);
319 320 321 322 323 324 325 326 327 328 329 330 331 332
	if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
	    test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
		/*
		 * If there was an exigent machine check pending, then any
		 * repressible machine checks that might have been pending
		 * are indicated along with it, so always clear bits for
		 * repressible and exigent interrupts
		 */
		mchk = li->irq.mchk;
		clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
		clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
		memset(&li->irq.mchk, 0, sizeof(mchk));
		deliver = 1;
	}
333
	/*
334 335 336 337
	 * We indicate floating repressible conditions along with
	 * other pending conditions. Channel Report Pending and Channel
	 * Subsystem damage are the only two and and are indicated by
	 * bits in mcic and masked in cr14.
338
	 */
339 340 341 342 343 344
	if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
		mchk.mcic |= fi->mchk.mcic;
		mchk.cr14 |= fi->mchk.cr14;
		memset(&fi->mchk, 0, sizeof(mchk));
		deliver = 1;
	}
345
	spin_unlock(&li->lock);
346
	spin_unlock(&fi->lock);
347

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
	if (deliver) {
		VCPU_EVENT(vcpu, 4, "interrupt: machine check mcic=%llx",
			   mchk.mcic);
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
						 KVM_S390_MCHK,
						 mchk.cr14, mchk.mcic);

		rc  = kvm_s390_vcpu_store_status(vcpu,
						 KVM_S390_STORE_STATUS_PREFIXED);
		rc |= read_guest_lc(vcpu, __LC_VX_SAVE_AREA_ADDR,
				    &adtl_status_addr,
				    sizeof(unsigned long));
		rc |= kvm_s390_vcpu_store_adtl_status(vcpu,
						      adtl_status_addr);
		rc |= put_guest_lc(vcpu, mchk.mcic,
				   (u64 __user *) __LC_MCCK_CODE);
		rc |= put_guest_lc(vcpu, mchk.failing_storage_address,
				   (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
		rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA,
				     &mchk.fixed_logout,
				     sizeof(mchk.fixed_logout));
		rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
				     &vcpu->arch.sie_block->gpsw,
				     sizeof(psw_t));
		rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
				    &vcpu->arch.sie_block->gpsw,
				    sizeof(psw_t));
	}
376
	return rc ? -EFAULT : 0;
377 378 379 380
}

static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
{
381
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
382 383 384 385 386 387 388 389 390 391 392
	int rc;

	VCPU_EVENT(vcpu, 4, "%s", "interrupt: cpu restart");
	vcpu->stat.deliver_restart_signal++;
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);

	rc  = write_guest_lc(vcpu,
			     offsetof(struct _lowcore, restart_old_psw),
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, offsetof(struct _lowcore, restart_psw),
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
393
	clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
394
	return rc ? -EFAULT : 0;
395 396
}

397
static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
398
{
399 400 401 402 403 404 405 406
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_prefix_info prefix;

	spin_lock(&li->lock);
	prefix = li->irq.prefix;
	li->irq.prefix.address = 0;
	clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
	spin_unlock(&li->lock);
407

408
	VCPU_EVENT(vcpu, 4, "interrupt: set prefix to %x", prefix.address);
409 410 411
	vcpu->stat.deliver_prefix_signal++;
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
					 KVM_S390_SIGP_SET_PREFIX,
412
					 prefix.address, 0);
413

414
	kvm_s390_set_prefix(vcpu, prefix.address);
415 416 417
	return 0;
}

418
static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
419
{
420
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
421
	int rc;
422 423 424 425 426 427 428 429
	int cpu_addr;

	spin_lock(&li->lock);
	cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
	clear_bit(cpu_addr, li->sigp_emerg_pending);
	if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
		clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
	spin_unlock(&li->lock);
430 431 432

	VCPU_EVENT(vcpu, 4, "%s", "interrupt: sigp emerg");
	vcpu->stat.deliver_emergency_signal++;
433 434
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
					 cpu_addr, 0);
435 436 437

	rc  = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
			   (u16 *)__LC_EXT_INT_CODE);
438
	rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
439 440 441 442
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
443
	return rc ? -EFAULT : 0;
444 445
}

446
static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
447
{
448 449
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_extcall_info extcall;
450 451
	int rc;

452 453 454 455 456 457
	spin_lock(&li->lock);
	extcall = li->irq.extcall;
	li->irq.extcall.code = 0;
	clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
	spin_unlock(&li->lock);

458 459 460 461
	VCPU_EVENT(vcpu, 4, "%s", "interrupt: sigp ext call");
	vcpu->stat.deliver_external_call++;
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
					 KVM_S390_INT_EXTERNAL_CALL,
462
					 extcall.code, 0);
463 464 465

	rc  = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
			   (u16 *)__LC_EXT_INT_CODE);
466
	rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
467 468 469 470
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
			    sizeof(psw_t));
471
	return rc ? -EFAULT : 0;
472 473
}

474
static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
475
{
476 477
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_pgm_info pgm_info;
478
	int rc = 0, nullifying = false;
479
	u16 ilc = get_ilc(vcpu);
480

481 482 483 484 485 486
	spin_lock(&li->lock);
	pgm_info = li->irq.pgm;
	clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
	memset(&li->irq.pgm, 0, sizeof(pgm_info));
	spin_unlock(&li->lock);

487
	VCPU_EVENT(vcpu, 4, "interrupt: pgm check code:%x, ilc:%x",
488
		   pgm_info.code, ilc);
489 490
	vcpu->stat.deliver_program_int++;
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
491
					 pgm_info.code, 0);
492

493
	switch (pgm_info.code & ~PGM_PER) {
494 495 496 497 498 499 500 501 502
	case PGM_AFX_TRANSLATION:
	case PGM_ASX_TRANSLATION:
	case PGM_EX_TRANSLATION:
	case PGM_LFX_TRANSLATION:
	case PGM_LSTE_SEQUENCE:
	case PGM_LSX_TRANSLATION:
	case PGM_LX_TRANSLATION:
	case PGM_PRIMARY_AUTHORITY:
	case PGM_SECONDARY_AUTHORITY:
503 504
		nullifying = true;
		/* fall through */
505
	case PGM_SPACE_SWITCH:
506
		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
507 508 509 510 511 512 513 514
				  (u64 *)__LC_TRANS_EXC_CODE);
		break;
	case PGM_ALEN_TRANSLATION:
	case PGM_ALE_SEQUENCE:
	case PGM_ASTE_INSTANCE:
	case PGM_ASTE_SEQUENCE:
	case PGM_ASTE_VALIDITY:
	case PGM_EXTENDED_AUTHORITY:
515
		rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
516
				  (u8 *)__LC_EXC_ACCESS_ID);
517
		nullifying = true;
518 519 520 521 522 523 524
		break;
	case PGM_ASCE_TYPE:
	case PGM_PAGE_TRANSLATION:
	case PGM_REGION_FIRST_TRANS:
	case PGM_REGION_SECOND_TRANS:
	case PGM_REGION_THIRD_TRANS:
	case PGM_SEGMENT_TRANSLATION:
525
		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
526
				  (u64 *)__LC_TRANS_EXC_CODE);
527
		rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
528
				   (u8 *)__LC_EXC_ACCESS_ID);
529
		rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
530
				   (u8 *)__LC_OP_ACCESS_ID);
531
		nullifying = true;
532 533
		break;
	case PGM_MONITOR:
534
		rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
535
				  (u16 *)__LC_MON_CLASS_NR);
536
		rc |= put_guest_lc(vcpu, pgm_info.mon_code,
537 538
				   (u64 *)__LC_MON_CODE);
		break;
E
Eric Farman 已提交
539
	case PGM_VECTOR_PROCESSING:
540
	case PGM_DATA:
541
		rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
542 543 544
				  (u32 *)__LC_DATA_EXC_CODE);
		break;
	case PGM_PROTECTION:
545
		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
546
				  (u64 *)__LC_TRANS_EXC_CODE);
547
		rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
548 549
				   (u8 *)__LC_EXC_ACCESS_ID);
		break;
550 551 552 553 554 555 556 557 558
	case PGM_STACK_FULL:
	case PGM_STACK_EMPTY:
	case PGM_STACK_SPECIFICATION:
	case PGM_STACK_TYPE:
	case PGM_STACK_OPERATION:
	case PGM_TRACE_TABEL:
	case PGM_CRYPTO_OPERATION:
		nullifying = true;
		break;
559 560
	}

561 562
	if (pgm_info.code & PGM_PER) {
		rc |= put_guest_lc(vcpu, pgm_info.per_code,
563
				   (u8 *) __LC_PER_CODE);
564
		rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
565
				   (u8 *)__LC_PER_ATMID);
566
		rc |= put_guest_lc(vcpu, pgm_info.per_address,
567
				   (u64 *) __LC_PER_ADDRESS);
568
		rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
569 570 571
				   (u8 *) __LC_PER_ACCESS_ID);
	}

572 573 574
	if (nullifying && vcpu->arch.sie_block->icptcode == ICPT_INST)
		kvm_s390_rewind_psw(vcpu, ilc);

575
	rc |= put_guest_lc(vcpu, ilc, (u16 *) __LC_PGM_ILC);
576 577
	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
				 (u64 *) __LC_LAST_BREAK);
578
	rc |= put_guest_lc(vcpu, pgm_info.code,
579 580 581 582 583
			   (u16 *)__LC_PGM_INT_CODE);
	rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
584
	return rc ? -EFAULT : 0;
585 586
}

587
static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
588
{
589 590 591 592 593 594 595 596 597 598 599 600 601
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
	struct kvm_s390_ext_info ext;
	int rc = 0;

	spin_lock(&fi->lock);
	if (!(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
		spin_unlock(&fi->lock);
		return 0;
	}
	ext = fi->srv_signal;
	memset(&fi->srv_signal, 0, sizeof(ext));
	clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
	spin_unlock(&fi->lock);
602 603

	VCPU_EVENT(vcpu, 4, "interrupt: sclp parm:%x",
604
		   ext.ext_params);
605
	vcpu->stat.deliver_service_signal++;
606 607
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
					 ext.ext_params, 0);
608 609

	rc  = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
610
	rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
611 612 613 614
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
615
	rc |= put_guest_lc(vcpu, ext.ext_params,
616
			   (u32 *)__LC_EXT_PARAMS);
617

618
	return rc ? -EFAULT : 0;
619 620
}

621
static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
622
{
623 624 625
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
	struct kvm_s390_interrupt_info *inti;
	int rc = 0;
626

627 628 629 630 631 632 633 634 635 636 637 638 639 640
	spin_lock(&fi->lock);
	inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
					struct kvm_s390_interrupt_info,
					list);
	if (inti) {
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
				KVM_S390_INT_PFAULT_DONE, 0,
				inti->ext.ext_params2);
		list_del(&inti->list);
		fi->counters[FIRQ_CNTR_PFAULT] -= 1;
	}
	if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
		clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
	spin_unlock(&fi->lock);
641

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
	if (inti) {
		rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
				(u16 *)__LC_EXT_INT_CODE);
		rc |= put_guest_lc(vcpu, PFAULT_DONE,
				(u16 *)__LC_EXT_CPU_ADDR);
		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
				(u64 *)__LC_EXT_PARAMS2);
		kfree(inti);
	}
657
	return rc ? -EFAULT : 0;
658 659
}

660
static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
661
{
662 663 664
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
	struct kvm_s390_interrupt_info *inti;
	int rc = 0;
665

666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
	spin_lock(&fi->lock);
	inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
					struct kvm_s390_interrupt_info,
					list);
	if (inti) {
		VCPU_EVENT(vcpu, 4,
			   "interrupt: virtio parm:%x,parm64:%llx",
			   inti->ext.ext_params, inti->ext.ext_params2);
		vcpu->stat.deliver_virtio_interrupt++;
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
				inti->type,
				inti->ext.ext_params,
				inti->ext.ext_params2);
		list_del(&inti->list);
		fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
	}
	if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
		clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
	spin_unlock(&fi->lock);
685

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
	if (inti) {
		rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
				(u16 *)__LC_EXT_INT_CODE);
		rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
				(u16 *)__LC_EXT_CPU_ADDR);
		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= put_guest_lc(vcpu, inti->ext.ext_params,
				(u32 *)__LC_EXT_PARAMS);
		rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
				(u64 *)__LC_EXT_PARAMS2);
		kfree(inti);
	}
703
	return rc ? -EFAULT : 0;
704 705 706
}

static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
707
				     unsigned long irq_type)
708
{
709 710 711 712
	struct list_head *isc_list;
	struct kvm_s390_float_interrupt *fi;
	struct kvm_s390_interrupt_info *inti = NULL;
	int rc = 0;
713

714
	fi = &vcpu->kvm->arch.float_int;
715

716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
	spin_lock(&fi->lock);
	isc_list = &fi->lists[irq_type - IRQ_PEND_IO_ISC_0];
	inti = list_first_entry_or_null(isc_list,
					struct kvm_s390_interrupt_info,
					list);
	if (inti) {
		VCPU_EVENT(vcpu, 4, "interrupt: I/O %llx", inti->type);
		vcpu->stat.deliver_io_int++;
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
				inti->type,
				((__u32)inti->io.subchannel_id << 16) |
				inti->io.subchannel_nr,
				((__u64)inti->io.io_int_parm << 32) |
				inti->io.io_int_word);
		list_del(&inti->list);
		fi->counters[FIRQ_CNTR_IO] -= 1;
	}
	if (list_empty(isc_list))
		clear_bit(irq_type, &fi->pending_irqs);
	spin_unlock(&fi->lock);

	if (inti) {
		rc  = put_guest_lc(vcpu, inti->io.subchannel_id,
				(u16 *)__LC_SUBCHANNEL_ID);
		rc |= put_guest_lc(vcpu, inti->io.subchannel_nr,
				(u16 *)__LC_SUBCHANNEL_NR);
		rc |= put_guest_lc(vcpu, inti->io.io_int_parm,
				(u32 *)__LC_IO_INT_PARM);
		rc |= put_guest_lc(vcpu, inti->io.io_int_word,
				(u32 *)__LC_IO_INT_WORD);
		rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		kfree(inti);
	}
754

755
	return rc ? -EFAULT : 0;
756 757 758 759 760 761
}

typedef int (*deliver_irq_t)(struct kvm_vcpu *vcpu);

static const deliver_irq_t deliver_irq_funcs[] = {
	[IRQ_PEND_MCHK_EX]        = __deliver_machine_check,
762
	[IRQ_PEND_MCHK_REP]       = __deliver_machine_check,
763 764 765 766 767 768 769 770
	[IRQ_PEND_PROG]           = __deliver_prog,
	[IRQ_PEND_EXT_EMERGENCY]  = __deliver_emergency_signal,
	[IRQ_PEND_EXT_EXTERNAL]   = __deliver_external_call,
	[IRQ_PEND_EXT_CLOCK_COMP] = __deliver_ckc,
	[IRQ_PEND_EXT_CPU_TIMER]  = __deliver_cpu_timer,
	[IRQ_PEND_RESTART]        = __deliver_restart,
	[IRQ_PEND_SET_PREFIX]     = __deliver_set_prefix,
	[IRQ_PEND_PFAULT_INIT]    = __deliver_pfault_init,
771 772 773
	[IRQ_PEND_EXT_SERVICE]    = __deliver_service,
	[IRQ_PEND_PFAULT_DONE]    = __deliver_pfault_done,
	[IRQ_PEND_VIRTIO]         = __deliver_virtio,
774 775
};

776 777
/* Check whether an external call is pending (deliverable or not) */
int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
778
{
779 780
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	uint8_t sigp_ctrl = vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sigp_ctrl;
781

782 783
	if (!sclp_has_sigpif())
		return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
784

785 786
	return (sigp_ctrl & SIGP_CTRL_C) &&
	       (atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_ECALL_PEND);
787 788
}

789
int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
790
{
791
	int rc;
792

793
	rc = !!deliverable_irqs(vcpu);
794

795 796
	if (!rc && kvm_cpu_has_pending_timer(vcpu))
		rc = 1;
797

798 799 800 801
	/* external call pending and deliverable */
	if (!rc && kvm_s390_ext_call_pending(vcpu) &&
	    !psw_extint_disabled(vcpu) &&
	    (vcpu->arch.sie_block->gcr[0] & 0x2000ul))
802 803
		rc = 1;

804
	if (!rc && !exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
805 806
		rc = 1;

807 808 809
	return rc;
}

810 811
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
812 813 814 815 816 817
	if (!(vcpu->arch.sie_block->ckc <
	      get_tod_clock_fast() + vcpu->arch.sie_block->epoch))
		return 0;
	if (!ckc_interrupts_enabled(vcpu))
		return 0;
	return 1;
818 819
}

820 821 822 823 824 825
int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
{
	u64 now, sltime;

	vcpu->stat.exit_wait_state++;

826 827 828
	/* fast path */
	if (kvm_cpu_has_pending_timer(vcpu) || kvm_arch_vcpu_runnable(vcpu))
		return 0;
829

830 831
	if (psw_interrupts_disabled(vcpu)) {
		VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
832
		return -EOPNOTSUPP; /* disabled wait */
833 834
	}

835
	if (!ckc_interrupts_enabled(vcpu)) {
836
		VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
837
		__set_cpu_idle(vcpu);
838 839 840
		goto no_timer;
	}

841
	now = get_tod_clock_fast() + vcpu->arch.sie_block->epoch;
842
	sltime = tod_to_ns(vcpu->arch.sie_block->ckc - now);
843 844 845 846 847 848

	/* underflow */
	if (vcpu->arch.sie_block->ckc < now)
		return 0;

	__set_cpu_idle(vcpu);
849 850
	hrtimer_start(&vcpu->arch.ckc_timer, ktime_set (0, sltime) , HRTIMER_MODE_REL);
	VCPU_EVENT(vcpu, 5, "enabled wait via clock comparator: %llx ns", sltime);
851
no_timer:
852
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
853
	kvm_vcpu_block(vcpu);
854
	__unset_cpu_idle(vcpu);
855 856
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

857
	hrtimer_cancel(&vcpu->arch.ckc_timer);
858 859 860
	return 0;
}

861 862 863 864 865 866 867 868 869
void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
{
	if (waitqueue_active(&vcpu->wq)) {
		/*
		 * The vcpu gave up the cpu voluntarily, mark it as a good
		 * yield-candidate.
		 */
		vcpu->preempted = true;
		wake_up_interruptible(&vcpu->wq);
870
		vcpu->stat.halt_wakeup++;
871 872 873
	}
}

874 875 876
enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
{
	struct kvm_vcpu *vcpu;
877
	u64 now, sltime;
878 879

	vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
880 881
	now = get_tod_clock_fast() + vcpu->arch.sie_block->epoch;
	sltime = tod_to_ns(vcpu->arch.sie_block->ckc - now);
882

883 884 885 886 887 888 889 890
	/*
	 * If the monotonic clock runs faster than the tod clock we might be
	 * woken up too early and have to go back to sleep to avoid deadlocks.
	 */
	if (vcpu->arch.sie_block->ckc > now &&
	    hrtimer_forward_now(timer, ns_to_ktime(sltime)))
		return HRTIMER_RESTART;
	kvm_s390_vcpu_wakeup(vcpu);
891 892
	return HRTIMER_NORESTART;
}
893

894 895 896 897
void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

898
	spin_lock(&li->lock);
899 900 901
	li->pending_irqs = 0;
	bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
	memset(&li->irq, 0, sizeof(li->irq));
902
	spin_unlock(&li->lock);
903 904

	/* clear pending external calls set by sigp interpretation facility */
905
	atomic_clear_mask(CPUSTAT_ECALL_PEND, li->cpuflags);
906
	vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sigp_ctrl = 0;
907 908
}

909
int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
910
{
911
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
912
	deliver_irq_t func;
913
	int rc = 0;
914
	unsigned long irq_type;
915
	unsigned long irqs;
916 917 918

	__reset_intercept_indicators(vcpu);

919 920 921 922 923 924
	/* pending ckc conditions might have been invalidated */
	clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
	if (kvm_cpu_has_pending_timer(vcpu))
		set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);

	do {
925
		irqs = deliverable_irqs(vcpu);
926
		/* bits are in the order of interrupt priority */
927
		irq_type = find_first_bit(&irqs, IRQ_PEND_COUNT);
928 929
		if (irq_type == IRQ_PEND_COUNT)
			break;
930 931 932 933 934 935 936 937 938 939
		if (is_ioirq(irq_type)) {
			rc = __deliver_io(vcpu, irq_type);
		} else {
			func = deliver_irq_funcs[irq_type];
			if (!func) {
				WARN_ON_ONCE(func == NULL);
				clear_bit(irq_type, &li->pending_irqs);
				continue;
			}
			rc = func(vcpu);
940
		}
941 942 943
		if (rc)
			break;
	} while (!rc);
944

945
	set_intercept_indicators(vcpu);
946 947

	return rc;
948 949
}

950
static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
951 952 953
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

954
	li->irq.pgm = irq->u.pgm;
955
	set_bit(IRQ_PEND_PROG, &li->pending_irqs);
956 957 958
	return 0;
}

959 960
int kvm_s390_inject_program_int(struct kvm_vcpu *vcpu, u16 code)
{
961
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
962
	struct kvm_s390_irq irq;
963 964

	VCPU_EVENT(vcpu, 3, "inject: program check %d (from kernel)", code);
965 966
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT, code,
				   0, 1);
967
	spin_lock(&li->lock);
968 969
	irq.u.pgm.code = code;
	__inject_prog(vcpu, &irq);
970
	BUG_ON(waitqueue_active(li->wq));
971
	spin_unlock(&li->lock);
972 973 974 975 976 977 978
	return 0;
}

int kvm_s390_inject_prog_irq(struct kvm_vcpu *vcpu,
			     struct kvm_s390_pgm_info *pgm_info)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
979
	struct kvm_s390_irq irq;
980
	int rc;
981 982 983 984 985

	VCPU_EVENT(vcpu, 3, "inject: prog irq %d (from kernel)",
		   pgm_info->code);
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
				   pgm_info->code, 0, 1);
986
	spin_lock(&li->lock);
987 988
	irq.u.pgm = *pgm_info;
	rc = __inject_prog(vcpu, &irq);
989
	BUG_ON(waitqueue_active(li->wq));
990
	spin_unlock(&li->lock);
991 992 993
	return rc;
}

994
static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
995 996 997
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

998 999 1000 1001 1002 1003 1004 1005
	VCPU_EVENT(vcpu, 3, "inject: external irq params:%x, params2:%llx",
		   irq->u.ext.ext_params, irq->u.ext.ext_params2);
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
				   irq->u.ext.ext_params,
				   irq->u.ext.ext_params2, 2);

	li->irq.ext = irq->u.ext;
	set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
1006 1007 1008 1009
	atomic_set_mask(CPUSTAT_EXT_INT, li->cpuflags);
	return 0;
}

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
static int __inject_extcall_sigpif(struct kvm_vcpu *vcpu, uint16_t src_id)
{
	unsigned char new_val, old_val;
	uint8_t *sigp_ctrl = &vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sigp_ctrl;

	new_val = SIGP_CTRL_C | (src_id & SIGP_CTRL_SCN_MASK);
	old_val = *sigp_ctrl & ~SIGP_CTRL_C;
	if (cmpxchg(sigp_ctrl, old_val, new_val) != old_val) {
		/* another external call is pending */
		return -EBUSY;
	}
	atomic_set_mask(CPUSTAT_ECALL_PEND, &vcpu->arch.sie_block->cpuflags);
	return 0;
}

1025
static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1026 1027
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1028
	struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
1029
	uint16_t src_id = irq->u.extcall.code;
1030 1031

	VCPU_EVENT(vcpu, 3, "inject: external call source-cpu:%u",
1032
		   src_id);
1033
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
1034 1035 1036 1037 1038 1039 1040 1041 1042
				   src_id, 0, 2);

	/* sending vcpu invalid */
	if (src_id >= KVM_MAX_VCPUS ||
	    kvm_get_vcpu(vcpu->kvm, src_id) == NULL)
		return -EINVAL;

	if (sclp_has_sigpif())
		return __inject_extcall_sigpif(vcpu, src_id);
1043

1044 1045
	if (!test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
		return -EBUSY;
1046
	*extcall = irq->u.extcall;
1047 1048 1049 1050
	atomic_set_mask(CPUSTAT_EXT_INT, li->cpuflags);
	return 0;
}

1051
static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1052 1053
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1054
	struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
1055 1056

	VCPU_EVENT(vcpu, 3, "inject: set prefix to %x (from user)",
1057
		   irq->u.prefix.address);
1058
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
1059
				   irq->u.prefix.address, 0, 2);
1060

1061 1062 1063
	if (!is_vcpu_stopped(vcpu))
		return -EBUSY;

1064 1065
	*prefix = irq->u.prefix;
	set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
1066 1067 1068
	return 0;
}

1069
#define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
1070
static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1071 1072
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1073
	struct kvm_s390_stop_info *stop = &li->irq.stop;
1074
	int rc = 0;
1075

1076 1077
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0, 2);

1078 1079 1080
	if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
		return -EINVAL;

1081 1082 1083 1084 1085 1086 1087 1088 1089
	if (is_vcpu_stopped(vcpu)) {
		if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
			rc = kvm_s390_store_status_unloaded(vcpu,
						KVM_S390_STORE_STATUS_NOADDR);
		return rc;
	}

	if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
		return -EBUSY;
1090
	stop->flags = irq->u.stop.flags;
1091
	__set_cpuflag(vcpu, CPUSTAT_STOP_INT);
1092 1093 1094 1095
	return 0;
}

static int __inject_sigp_restart(struct kvm_vcpu *vcpu,
1096
				 struct kvm_s390_irq *irq)
1097 1098 1099
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1100 1101 1102 1103
	VCPU_EVENT(vcpu, 3, "inject: restart type %llx", irq->type);
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0, 2);

	set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
1104 1105 1106 1107
	return 0;
}

static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
1108
				   struct kvm_s390_irq *irq)
1109 1110 1111
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1112 1113 1114
	VCPU_EVENT(vcpu, 3, "inject: emergency %u\n",
		   irq->u.emerg.code);
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
1115
				   irq->u.emerg.code, 0, 2);
1116

1117
	set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
1118
	set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
1119 1120 1121 1122
	atomic_set_mask(CPUSTAT_EXT_INT, li->cpuflags);
	return 0;
}

1123
static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1124 1125
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1126
	struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
1127 1128

	VCPU_EVENT(vcpu, 5, "inject: machine check parm64:%llx",
1129
		   irq->u.mchk.mcic);
1130
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
1131
				   irq->u.mchk.mcic, 2);
1132 1133

	/*
1134 1135 1136 1137 1138 1139
	 * Because repressible machine checks can be indicated along with
	 * exigent machine checks (PoP, Chapter 11, Interruption action)
	 * we need to combine cr14, mcic and external damage code.
	 * Failing storage address and the logout area should not be or'ed
	 * together, we just indicate the last occurrence of the corresponding
	 * machine check
1140
	 */
1141
	mchk->cr14 |= irq->u.mchk.cr14;
1142
	mchk->mcic |= irq->u.mchk.mcic;
1143 1144 1145 1146
	mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
	mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
	memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
	       sizeof(mchk->fixed_logout));
1147 1148 1149 1150
	if (mchk->mcic & MCHK_EX_MASK)
		set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
	else if (mchk->mcic & MCHK_REP_MASK)
		set_bit(IRQ_PEND_MCHK_REP,  &li->pending_irqs);
1151 1152 1153
	return 0;
}

1154
static int __inject_ckc(struct kvm_vcpu *vcpu)
1155 1156 1157
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1158 1159 1160 1161 1162
	VCPU_EVENT(vcpu, 3, "inject: type %x", KVM_S390_INT_CLOCK_COMP);
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
				   0, 0, 2);

	set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1163 1164 1165 1166
	atomic_set_mask(CPUSTAT_EXT_INT, li->cpuflags);
	return 0;
}

1167
static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
1168 1169 1170
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1171 1172 1173 1174 1175
	VCPU_EVENT(vcpu, 3, "inject: type %x", KVM_S390_INT_CPU_TIMER);
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
				   0, 0, 2);

	set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1176
	atomic_set_mask(CPUSTAT_EXT_INT, li->cpuflags);
1177 1178 1179
	return 0;
}

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
						  int isc, u32 schid)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
	struct kvm_s390_interrupt_info *iter;
	u16 id = (schid & 0xffff0000U) >> 16;
	u16 nr = schid & 0x0000ffffU;

	spin_lock(&fi->lock);
	list_for_each_entry(iter, isc_list, list) {
		if (schid && (id != iter->io.subchannel_id ||
			      nr != iter->io.subchannel_nr))
			continue;
		/* found an appropriate entry */
		list_del_init(&iter->list);
		fi->counters[FIRQ_CNTR_IO] -= 1;
		if (list_empty(isc_list))
			clear_bit(IRQ_PEND_IO_ISC_0 + isc, &fi->pending_irqs);
		spin_unlock(&fi->lock);
		return iter;
	}
	spin_unlock(&fi->lock);
	return NULL;
}
1205

1206 1207 1208 1209
/*
 * Dequeue and return an I/O interrupt matching any of the interruption
 * subclasses as designated by the isc mask in cr6 and the schid (if != 0).
 */
1210
struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
						    u64 isc_mask, u32 schid)
{
	struct kvm_s390_interrupt_info *inti = NULL;
	int isc;

	for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
		if (isc_mask & isc_to_isc_bits(isc))
			inti = get_io_int(kvm, isc, schid);
	}
	return inti;
}

#define SCCB_MASK 0xFFFFFFF8
#define SCCB_EVENT_PENDING 0x3

static int __inject_service(struct kvm *kvm,
			     struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

	spin_lock(&fi->lock);
	fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
	/*
	 * Early versions of the QEMU s390 bios will inject several
	 * service interrupts after another without handling a
	 * condition code indicating busy.
	 * We will silently ignore those superfluous sccb values.
	 * A future version of QEMU will take care of serialization
	 * of servc requests
	 */
	if (fi->srv_signal.ext_params & SCCB_MASK)
		goto out;
	fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
	set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
out:
	spin_unlock(&fi->lock);
	kfree(inti);
	return 0;
}

static int __inject_virtio(struct kvm *kvm,
			    struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

	spin_lock(&fi->lock);
	if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
		spin_unlock(&fi->lock);
		return -EBUSY;
	}
	fi->counters[FIRQ_CNTR_VIRTIO] += 1;
	list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
	set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
	spin_unlock(&fi->lock);
	return 0;
}

static int __inject_pfault_done(struct kvm *kvm,
				 struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

	spin_lock(&fi->lock);
	if (fi->counters[FIRQ_CNTR_PFAULT] >=
		(ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
		spin_unlock(&fi->lock);
		return -EBUSY;
	}
	fi->counters[FIRQ_CNTR_PFAULT] += 1;
	list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
	set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
	spin_unlock(&fi->lock);
	return 0;
}

#define CR_PENDING_SUBCLASS 28
static int __inject_float_mchk(struct kvm *kvm,
				struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

	spin_lock(&fi->lock);
	fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
	fi->mchk.mcic |= inti->mchk.mcic;
	set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
	spin_unlock(&fi->lock);
	kfree(inti);
	return 0;
}

static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1302 1303
{
	struct kvm_s390_float_interrupt *fi;
1304 1305
	struct list_head *list;
	int isc;
1306 1307 1308

	fi = &kvm->arch.float_int;
	spin_lock(&fi->lock);
1309 1310 1311
	if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
		spin_unlock(&fi->lock);
		return -EBUSY;
J
Jens Freimann 已提交
1312
	}
1313 1314 1315 1316 1317 1318
	fi->counters[FIRQ_CNTR_IO] += 1;

	isc = int_word_to_isc(inti->io.io_int_word);
	list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
	list_add_tail(&inti->list, list);
	set_bit(IRQ_PEND_IO_ISC_0 + isc, &fi->pending_irqs);
1319
	spin_unlock(&fi->lock);
1320
	return 0;
1321
}
1322

J
Jens Freimann 已提交
1323
static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1324
{
1325 1326
	struct kvm_s390_local_interrupt *li;
	struct kvm_s390_float_interrupt *fi;
1327
	struct kvm_vcpu *dst_vcpu = NULL;
1328
	int sigcpu;
1329 1330
	u64 type = READ_ONCE(inti->type);
	int rc;
1331

1332
	fi = &kvm->arch.float_int;
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350

	switch (type) {
	case KVM_S390_MCHK:
		rc = __inject_float_mchk(kvm, inti);
		break;
	case KVM_S390_INT_VIRTIO:
		rc = __inject_virtio(kvm, inti);
		break;
	case KVM_S390_INT_SERVICE:
		rc = __inject_service(kvm, inti);
		break;
	case KVM_S390_INT_PFAULT_DONE:
		rc = __inject_pfault_done(kvm, inti);
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
		rc = __inject_io(kvm, inti);
		break;
	default:
J
Jens Freimann 已提交
1351
		rc = -EINVAL;
1352
	}
1353 1354 1355
	if (rc)
		return rc;

1356 1357 1358 1359 1360 1361
	sigcpu = find_first_bit(fi->idle_mask, KVM_MAX_VCPUS);
	if (sigcpu == KVM_MAX_VCPUS) {
		do {
			sigcpu = fi->next_rr_cpu++;
			if (sigcpu == KVM_MAX_VCPUS)
				sigcpu = fi->next_rr_cpu = 0;
1362
		} while (kvm_get_vcpu(kvm, sigcpu) == NULL);
1363
	}
1364 1365
	dst_vcpu = kvm_get_vcpu(kvm, sigcpu);
	li = &dst_vcpu->arch.local_int;
1366
	spin_lock(&li->lock);
1367
	switch (type) {
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	case KVM_S390_MCHK:
		atomic_set_mask(CPUSTAT_STOP_INT, li->cpuflags);
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
		atomic_set_mask(CPUSTAT_IO_INT, li->cpuflags);
		break;
	default:
		atomic_set_mask(CPUSTAT_EXT_INT, li->cpuflags);
		break;
	}
1378
	spin_unlock(&li->lock);
1379
	kvm_s390_vcpu_wakeup(kvm_get_vcpu(kvm, sigcpu));
1380 1381
	return 0;

1382 1383 1384 1385 1386 1387
}

int kvm_s390_inject_vm(struct kvm *kvm,
		       struct kvm_s390_interrupt *s390int)
{
	struct kvm_s390_interrupt_info *inti;
1388
	int rc;
1389

1390 1391 1392 1393
	inti = kzalloc(sizeof(*inti), GFP_KERNEL);
	if (!inti)
		return -ENOMEM;

1394 1395
	inti->type = s390int->type;
	switch (inti->type) {
1396
	case KVM_S390_INT_VIRTIO:
1397
		VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
1398 1399 1400 1401 1402 1403 1404 1405
			 s390int->parm, s390int->parm64);
		inti->ext.ext_params = s390int->parm;
		inti->ext.ext_params2 = s390int->parm64;
		break;
	case KVM_S390_INT_SERVICE:
		VM_EVENT(kvm, 5, "inject: sclp parm:%x", s390int->parm);
		inti->ext.ext_params = s390int->parm;
		break;
1406 1407 1408
	case KVM_S390_INT_PFAULT_DONE:
		inti->ext.ext_params2 = s390int->parm64;
		break;
1409 1410 1411 1412 1413 1414
	case KVM_S390_MCHK:
		VM_EVENT(kvm, 5, "inject: machine check parm64:%llx",
			 s390int->parm64);
		inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
		inti->mchk.mcic = s390int->parm64;
		break;
1415
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1416
		if (inti->type & IOINT_AI_MASK)
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
			VM_EVENT(kvm, 5, "%s", "inject: I/O (AI)");
		else
			VM_EVENT(kvm, 5, "inject: I/O css %x ss %x schid %04x",
				 s390int->type & IOINT_CSSID_MASK,
				 s390int->type & IOINT_SSID_MASK,
				 s390int->type & IOINT_SCHID_MASK);
		inti->io.subchannel_id = s390int->parm >> 16;
		inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
		inti->io.io_int_parm = s390int->parm64 >> 32;
		inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
		break;
1428 1429 1430 1431
	default:
		kfree(inti);
		return -EINVAL;
	}
1432 1433
	trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
				 2);
1434

1435 1436 1437 1438
	rc = __inject_vm(kvm, inti);
	if (rc)
		kfree(inti);
	return rc;
1439 1440
}

1441
int kvm_s390_reinject_io_int(struct kvm *kvm,
1442 1443
			      struct kvm_s390_interrupt_info *inti)
{
1444
	return __inject_vm(kvm, inti);
1445 1446
}

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
		       struct kvm_s390_irq *irq)
{
	irq->type = s390int->type;
	switch (irq->type) {
	case KVM_S390_PROGRAM_INT:
		if (s390int->parm & 0xffff0000)
			return -EINVAL;
		irq->u.pgm.code = s390int->parm;
		break;
	case KVM_S390_SIGP_SET_PREFIX:
		irq->u.prefix.address = s390int->parm;
		break;
1460 1461 1462
	case KVM_S390_SIGP_STOP:
		irq->u.stop.flags = s390int->parm;
		break;
1463
	case KVM_S390_INT_EXTERNAL_CALL:
1464
		if (s390int->parm & 0xffff0000)
1465 1466 1467 1468
			return -EINVAL;
		irq->u.extcall.code = s390int->parm;
		break;
	case KVM_S390_INT_EMERGENCY:
1469
		if (s390int->parm & 0xffff0000)
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
			return -EINVAL;
		irq->u.emerg.code = s390int->parm;
		break;
	case KVM_S390_MCHK:
		irq->u.mchk.mcic = s390int->parm64;
		break;
	}
	return 0;
}

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

	return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
}

void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

	spin_lock(&li->lock);
	li->irq.stop.flags = 0;
	clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
	spin_unlock(&li->lock);
}

1497
int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1498
{
1499 1500
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	int rc;
1501

1502
	spin_lock(&li->lock);
1503
	switch (irq->type) {
1504 1505
	case KVM_S390_PROGRAM_INT:
		VCPU_EVENT(vcpu, 3, "inject: program check %d (from user)",
1506 1507
			   irq->u.pgm.code);
		rc = __inject_prog(vcpu, irq);
1508
		break;
1509
	case KVM_S390_SIGP_SET_PREFIX:
1510
		rc = __inject_set_prefix(vcpu, irq);
1511
		break;
1512
	case KVM_S390_SIGP_STOP:
1513
		rc = __inject_sigp_stop(vcpu, irq);
1514
		break;
1515
	case KVM_S390_RESTART:
1516
		rc = __inject_sigp_restart(vcpu, irq);
1517
		break;
1518
	case KVM_S390_INT_CLOCK_COMP:
1519
		rc = __inject_ckc(vcpu);
1520
		break;
1521
	case KVM_S390_INT_CPU_TIMER:
1522
		rc = __inject_cpu_timer(vcpu);
1523
		break;
1524
	case KVM_S390_INT_EXTERNAL_CALL:
1525
		rc = __inject_extcall(vcpu, irq);
1526
		break;
1527
	case KVM_S390_INT_EMERGENCY:
1528
		rc = __inject_sigp_emergency(vcpu, irq);
1529
		break;
1530
	case KVM_S390_MCHK:
1531
		rc = __inject_mchk(vcpu, irq);
1532
		break;
1533
	case KVM_S390_INT_PFAULT_INIT:
1534
		rc = __inject_pfault_init(vcpu, irq);
1535
		break;
1536 1537
	case KVM_S390_INT_VIRTIO:
	case KVM_S390_INT_SERVICE:
1538
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1539
	default:
1540
		rc = -EINVAL;
1541
	}
1542
	spin_unlock(&li->lock);
1543 1544 1545
	if (!rc)
		kvm_s390_vcpu_wakeup(vcpu);
	return rc;
1546
}
1547

1548
static inline void clear_irq_list(struct list_head *_list)
1549
{
1550
	struct kvm_s390_interrupt_info *inti, *n;
1551

1552
	list_for_each_entry_safe(inti, n, _list, list) {
1553 1554 1555 1556 1557
		list_del(&inti->list);
		kfree(inti);
	}
}

1558 1559
static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
		       struct kvm_s390_irq *irq)
1560
{
1561
	irq->type = inti->type;
1562
	switch (inti->type) {
1563 1564
	case KVM_S390_INT_PFAULT_INIT:
	case KVM_S390_INT_PFAULT_DONE:
1565
	case KVM_S390_INT_VIRTIO:
1566
		irq->u.ext = inti->ext;
1567 1568
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1569
		irq->u.io = inti->io;
1570 1571 1572 1573
		break;
	}
}

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
void kvm_s390_clear_float_irqs(struct kvm *kvm)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	int i;

	spin_lock(&fi->lock);
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		clear_irq_list(&fi->lists[i]);
	for (i = 0; i < FIRQ_MAX_COUNT; i++)
		fi->counters[i] = 0;
	spin_unlock(&fi->lock);
};

1587
static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
1588 1589 1590
{
	struct kvm_s390_interrupt_info *inti;
	struct kvm_s390_float_interrupt *fi;
1591
	struct kvm_s390_irq *buf;
1592
	struct kvm_s390_irq *irq;
1593
	int max_irqs;
1594 1595
	int ret = 0;
	int n = 0;
1596
	int i;
1597

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
	if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
		return -EINVAL;

	/*
	 * We are already using -ENOMEM to signal
	 * userspace it may retry with a bigger buffer,
	 * so we need to use something else for this case
	 */
	buf = vzalloc(len);
	if (!buf)
		return -ENOBUFS;

	max_irqs = len / sizeof(struct kvm_s390_irq);

1612 1613
	fi = &kvm->arch.float_int;
	spin_lock(&fi->lock);
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
	for (i = 0; i < FIRQ_LIST_COUNT; i++) {
		list_for_each_entry(inti, &fi->lists[i], list) {
			if (n == max_irqs) {
				/* signal userspace to try again */
				ret = -ENOMEM;
				goto out;
			}
			inti_to_irq(inti, &buf[n]);
			n++;
		}
	}
	if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs)) {
1626
		if (n == max_irqs) {
1627 1628
			/* signal userspace to try again */
			ret = -ENOMEM;
1629
			goto out;
1630
		}
1631 1632 1633
		irq = (struct kvm_s390_irq *) &buf[n];
		irq->type = KVM_S390_INT_SERVICE;
		irq->u.ext = fi->srv_signal;
1634 1635
		n++;
	}
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
	if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
		if (n == max_irqs) {
				/* signal userspace to try again */
				ret = -ENOMEM;
				goto out;
		}
		irq = (struct kvm_s390_irq *) &buf[n];
		irq->type = KVM_S390_MCHK;
		irq->u.mchk = fi->mchk;
		n++;
}

out:
1649
	spin_unlock(&fi->lock);
1650 1651 1652 1653 1654
	if (!ret && n > 0) {
		if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
			ret = -EFAULT;
	}
	vfree(buf);
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664

	return ret < 0 ? ret : n;
}

static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
	int r;

	switch (attr->group) {
	case KVM_DEV_FLIC_GET_ALL_IRQS:
1665
		r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
					  attr->attr);
		break;
	default:
		r = -EINVAL;
	}

	return r;
}

static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
				     u64 addr)
{
	struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
	void *target = NULL;
	void __user *source;
	u64 size;

	if (get_user(inti->type, (u64 __user *)addr))
		return -EFAULT;

	switch (inti->type) {
1687 1688
	case KVM_S390_INT_PFAULT_INIT:
	case KVM_S390_INT_PFAULT_DONE:
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
	case KVM_S390_INT_VIRTIO:
	case KVM_S390_INT_SERVICE:
		target = (void *) &inti->ext;
		source = &uptr->u.ext;
		size = sizeof(inti->ext);
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
		target = (void *) &inti->io;
		source = &uptr->u.io;
		size = sizeof(inti->io);
		break;
	case KVM_S390_MCHK:
		target = (void *) &inti->mchk;
		source = &uptr->u.mchk;
		size = sizeof(inti->mchk);
		break;
	default:
		return -EINVAL;
	}

	if (copy_from_user(target, source, size))
		return -EFAULT;

	return 0;
}

static int enqueue_floating_irq(struct kvm_device *dev,
				struct kvm_device_attr *attr)
{
	struct kvm_s390_interrupt_info *inti = NULL;
	int r = 0;
	int len = attr->attr;

	if (len % sizeof(struct kvm_s390_irq) != 0)
		return -EINVAL;
	else if (len > KVM_S390_FLIC_MAX_BUFFER)
		return -EINVAL;

	while (len >= sizeof(struct kvm_s390_irq)) {
		inti = kzalloc(sizeof(*inti), GFP_KERNEL);
		if (!inti)
			return -ENOMEM;

		r = copy_irq_from_user(inti, attr->addr);
		if (r) {
			kfree(inti);
			return r;
		}
J
Jens Freimann 已提交
1737 1738 1739 1740 1741
		r = __inject_vm(dev->kvm, inti);
		if (r) {
			kfree(inti);
			return r;
		}
1742 1743 1744 1745 1746 1747 1748
		len -= sizeof(struct kvm_s390_irq);
		attr->addr += sizeof(struct kvm_s390_irq);
	}

	return r;
}

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
{
	if (id >= MAX_S390_IO_ADAPTERS)
		return NULL;
	return kvm->arch.adapters[id];
}

static int register_io_adapter(struct kvm_device *dev,
			       struct kvm_device_attr *attr)
{
	struct s390_io_adapter *adapter;
	struct kvm_s390_io_adapter adapter_info;

	if (copy_from_user(&adapter_info,
			   (void __user *)attr->addr, sizeof(adapter_info)))
		return -EFAULT;

	if ((adapter_info.id >= MAX_S390_IO_ADAPTERS) ||
	    (dev->kvm->arch.adapters[adapter_info.id] != NULL))
		return -EINVAL;

	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
	if (!adapter)
		return -ENOMEM;

	INIT_LIST_HEAD(&adapter->maps);
	init_rwsem(&adapter->maps_lock);
	atomic_set(&adapter->nr_maps, 0);
	adapter->id = adapter_info.id;
	adapter->isc = adapter_info.isc;
	adapter->maskable = adapter_info.maskable;
	adapter->masked = false;
	adapter->swap = adapter_info.swap;
	dev->kvm->arch.adapters[adapter->id] = adapter;

	return 0;
}

int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
{
	int ret;
	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);

	if (!adapter || !adapter->maskable)
		return -EINVAL;
	ret = adapter->masked;
	adapter->masked = masked;
	return ret;
}

static int kvm_s390_adapter_map(struct kvm *kvm, unsigned int id, __u64 addr)
{
	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
	struct s390_map_info *map;
	int ret;

	if (!adapter || !addr)
		return -EINVAL;

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (!map) {
		ret = -ENOMEM;
		goto out;
	}
	INIT_LIST_HEAD(&map->list);
	map->guest_addr = addr;
1815
	map->addr = gmap_translate(kvm->arch.gmap, addr);
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
	if (map->addr == -EFAULT) {
		ret = -EFAULT;
		goto out;
	}
	ret = get_user_pages_fast(map->addr, 1, 1, &map->page);
	if (ret < 0)
		goto out;
	BUG_ON(ret != 1);
	down_write(&adapter->maps_lock);
	if (atomic_inc_return(&adapter->nr_maps) < MAX_S390_ADAPTER_MAPS) {
		list_add_tail(&map->list, &adapter->maps);
		ret = 0;
	} else {
		put_page(map->page);
		ret = -EINVAL;
	}
	up_write(&adapter->maps_lock);
out:
	if (ret)
		kfree(map);
	return ret;
}

static int kvm_s390_adapter_unmap(struct kvm *kvm, unsigned int id, __u64 addr)
{
	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
	struct s390_map_info *map, *tmp;
	int found = 0;

	if (!adapter || !addr)
		return -EINVAL;

	down_write(&adapter->maps_lock);
	list_for_each_entry_safe(map, tmp, &adapter->maps, list) {
		if (map->guest_addr == addr) {
			found = 1;
			atomic_dec(&adapter->nr_maps);
			list_del(&map->list);
			put_page(map->page);
			kfree(map);
			break;
		}
	}
	up_write(&adapter->maps_lock);

	return found ? 0 : -EINVAL;
}

void kvm_s390_destroy_adapters(struct kvm *kvm)
{
	int i;
	struct s390_map_info *map, *tmp;

	for (i = 0; i < MAX_S390_IO_ADAPTERS; i++) {
		if (!kvm->arch.adapters[i])
			continue;
		list_for_each_entry_safe(map, tmp,
					 &kvm->arch.adapters[i]->maps, list) {
			list_del(&map->list);
			put_page(map->page);
			kfree(map);
		}
		kfree(kvm->arch.adapters[i]);
	}
}

static int modify_io_adapter(struct kvm_device *dev,
			     struct kvm_device_attr *attr)
{
	struct kvm_s390_io_adapter_req req;
	struct s390_io_adapter *adapter;
	int ret;

	if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
		return -EFAULT;

	adapter = get_io_adapter(dev->kvm, req.id);
	if (!adapter)
		return -EINVAL;
	switch (req.type) {
	case KVM_S390_IO_ADAPTER_MASK:
		ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
		if (ret > 0)
			ret = 0;
		break;
	case KVM_S390_IO_ADAPTER_MAP:
		ret = kvm_s390_adapter_map(dev->kvm, req.id, req.addr);
		break;
	case KVM_S390_IO_ADAPTER_UNMAP:
		ret = kvm_s390_adapter_unmap(dev->kvm, req.id, req.addr);
		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

1914 1915 1916
static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
	int r = 0;
1917 1918
	unsigned int i;
	struct kvm_vcpu *vcpu;
1919 1920 1921 1922 1923 1924

	switch (attr->group) {
	case KVM_DEV_FLIC_ENQUEUE:
		r = enqueue_floating_irq(dev, attr);
		break;
	case KVM_DEV_FLIC_CLEAR_IRQS:
1925
		kvm_s390_clear_float_irqs(dev->kvm);
1926
		break;
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
	case KVM_DEV_FLIC_APF_ENABLE:
		dev->kvm->arch.gmap->pfault_enabled = 1;
		break;
	case KVM_DEV_FLIC_APF_DISABLE_WAIT:
		dev->kvm->arch.gmap->pfault_enabled = 0;
		/*
		 * Make sure no async faults are in transition when
		 * clearing the queues. So we don't need to worry
		 * about late coming workers.
		 */
		synchronize_srcu(&dev->kvm->srcu);
		kvm_for_each_vcpu(i, vcpu, dev->kvm)
			kvm_clear_async_pf_completion_queue(vcpu);
		break;
1941 1942 1943 1944 1945 1946
	case KVM_DEV_FLIC_ADAPTER_REGISTER:
		r = register_io_adapter(dev, attr);
		break;
	case KVM_DEV_FLIC_ADAPTER_MODIFY:
		r = modify_io_adapter(dev, attr);
		break;
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
	default:
		r = -EINVAL;
	}

	return r;
}

static int flic_create(struct kvm_device *dev, u32 type)
{
	if (!dev)
		return -EINVAL;
	if (dev->kvm->arch.flic)
		return -EINVAL;
	dev->kvm->arch.flic = dev;
	return 0;
}

static void flic_destroy(struct kvm_device *dev)
{
	dev->kvm->arch.flic = NULL;
	kfree(dev);
}

/* s390 floating irq controller (flic) */
struct kvm_device_ops kvm_flic_ops = {
	.name = "kvm-flic",
	.get_attr = flic_get_attr,
	.set_attr = flic_set_attr,
	.create = flic_create,
	.destroy = flic_destroy,
};
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069

static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
{
	unsigned long bit;

	bit = bit_nr + (addr % PAGE_SIZE) * 8;

	return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
}

static struct s390_map_info *get_map_info(struct s390_io_adapter *adapter,
					  u64 addr)
{
	struct s390_map_info *map;

	if (!adapter)
		return NULL;

	list_for_each_entry(map, &adapter->maps, list) {
		if (map->guest_addr == addr)
			return map;
	}
	return NULL;
}

static int adapter_indicators_set(struct kvm *kvm,
				  struct s390_io_adapter *adapter,
				  struct kvm_s390_adapter_int *adapter_int)
{
	unsigned long bit;
	int summary_set, idx;
	struct s390_map_info *info;
	void *map;

	info = get_map_info(adapter, adapter_int->ind_addr);
	if (!info)
		return -1;
	map = page_address(info->page);
	bit = get_ind_bit(info->addr, adapter_int->ind_offset, adapter->swap);
	set_bit(bit, map);
	idx = srcu_read_lock(&kvm->srcu);
	mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
	set_page_dirty_lock(info->page);
	info = get_map_info(adapter, adapter_int->summary_addr);
	if (!info) {
		srcu_read_unlock(&kvm->srcu, idx);
		return -1;
	}
	map = page_address(info->page);
	bit = get_ind_bit(info->addr, adapter_int->summary_offset,
			  adapter->swap);
	summary_set = test_and_set_bit(bit, map);
	mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
	set_page_dirty_lock(info->page);
	srcu_read_unlock(&kvm->srcu, idx);
	return summary_set ? 0 : 1;
}

/*
 * < 0 - not injected due to error
 * = 0 - coalesced, summary indicator already active
 * > 0 - injected interrupt
 */
static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
			   struct kvm *kvm, int irq_source_id, int level,
			   bool line_status)
{
	int ret;
	struct s390_io_adapter *adapter;

	/* We're only interested in the 0->1 transition. */
	if (!level)
		return 0;
	adapter = get_io_adapter(kvm, e->adapter.adapter_id);
	if (!adapter)
		return -1;
	down_read(&adapter->maps_lock);
	ret = adapter_indicators_set(kvm, adapter, &e->adapter);
	up_read(&adapter->maps_lock);
	if ((ret > 0) && !adapter->masked) {
		struct kvm_s390_interrupt s390int = {
			.type = KVM_S390_INT_IO(1, 0, 0, 0),
			.parm = 0,
			.parm64 = (adapter->isc << 27) | 0x80000000,
		};
		ret = kvm_s390_inject_vm(kvm, &s390int);
		if (ret == 0)
			ret = 1;
	}
	return ret;
}

2070
int kvm_set_routing_entry(struct kvm_kernel_irq_routing_entry *e,
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
			  const struct kvm_irq_routing_entry *ue)
{
	int ret;

	switch (ue->type) {
	case KVM_IRQ_ROUTING_S390_ADAPTER:
		e->set = set_adapter_int;
		e->adapter.summary_addr = ue->u.adapter.summary_addr;
		e->adapter.ind_addr = ue->u.adapter.ind_addr;
		e->adapter.summary_offset = ue->u.adapter.summary_offset;
		e->adapter.ind_offset = ue->u.adapter.ind_offset;
		e->adapter.adapter_id = ue->u.adapter.adapter_id;
		ret = 0;
		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
		int irq_source_id, int level, bool line_status)
{
	return -EINVAL;
}