interrupt.c 70.7 KB
Newer Older
1
/*
2
 * handling kvm guest interrupts
3
 *
4
 * Copyright IBM Corp. 2008, 2015
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 */

13
#include <linux/interrupt.h>
14
#include <linux/kvm_host.h>
15
#include <linux/hrtimer.h>
16
#include <linux/mmu_context.h>
17
#include <linux/signal.h>
18
#include <linux/slab.h>
19
#include <linux/bitmap.h>
20
#include <linux/vmalloc.h>
21
#include <asm/asm-offsets.h>
22
#include <asm/dis.h>
23
#include <linux/uaccess.h>
24
#include <asm/sclp.h>
25
#include <asm/isc.h>
26
#include <asm/gmap.h>
27
#include <asm/switch_to.h>
28
#include <asm/nmi.h>
29 30
#include "kvm-s390.h"
#include "gaccess.h"
31
#include "trace-s390.h"
32

33
#define PFAULT_INIT 0x0600
34 35
#define PFAULT_DONE 0x0680
#define VIRTIO_PARAM 0x0d00
36

37 38 39
/* handle external calls via sigp interpretation facility */
static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id)
{
40 41
	int c, scn;

42 43 44
	if (!(atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_ECALL_PEND))
		return 0;

45
	BUG_ON(!kvm_s390_use_sca_entries());
46
	read_lock(&vcpu->kvm->arch.sca_lock);
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
		union esca_sigp_ctrl sigp_ctrl =
			sca->cpu[vcpu->vcpu_id].sigp_ctrl;

		c = sigp_ctrl.c;
		scn = sigp_ctrl.scn;
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;
		union bsca_sigp_ctrl sigp_ctrl =
			sca->cpu[vcpu->vcpu_id].sigp_ctrl;

		c = sigp_ctrl.c;
		scn = sigp_ctrl.scn;
	}
62
	read_unlock(&vcpu->kvm->arch.sca_lock);
63 64

	if (src_id)
65
		*src_id = scn;
66

67
	return c;
68 69 70 71
}

static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id)
{
72
	int expect, rc;
73

74
	BUG_ON(!kvm_s390_use_sca_entries());
75
	read_lock(&vcpu->kvm->arch.sca_lock);
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
		union esca_sigp_ctrl *sigp_ctrl =
			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
		union esca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;

		new_val.scn = src_id;
		new_val.c = 1;
		old_val.c = 0;

		expect = old_val.value;
		rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;
		union bsca_sigp_ctrl *sigp_ctrl =
			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
		union bsca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
93

94 95 96 97 98 99 100
		new_val.scn = src_id;
		new_val.c = 1;
		old_val.c = 0;

		expect = old_val.value;
		rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
	}
101
	read_unlock(&vcpu->kvm->arch.sca_lock);
102 103

	if (rc != expect) {
104 105 106 107 108 109 110 111 112 113
		/* another external call is pending */
		return -EBUSY;
	}
	atomic_or(CPUSTAT_ECALL_PEND, &vcpu->arch.sie_block->cpuflags);
	return 0;
}

static void sca_clear_ext_call(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
114
	int rc, expect;
115

116 117
	if (!kvm_s390_use_sca_entries())
		return;
118
	atomic_andnot(CPUSTAT_ECALL_PEND, li->cpuflags);
119
	read_lock(&vcpu->kvm->arch.sca_lock);
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
		union esca_sigp_ctrl *sigp_ctrl =
			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
		union esca_sigp_ctrl old = *sigp_ctrl;

		expect = old.value;
		rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;
		union bsca_sigp_ctrl *sigp_ctrl =
			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
		union bsca_sigp_ctrl old = *sigp_ctrl;

		expect = old.value;
		rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
	}
137
	read_unlock(&vcpu->kvm->arch.sca_lock);
138
	WARN_ON(rc != expect); /* cannot clear? */
139 140
}

141
int psw_extint_disabled(struct kvm_vcpu *vcpu)
142 143 144 145
{
	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
}

146 147 148 149 150
static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
{
	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
}

151 152 153 154 155
static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
{
	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
}

156 157
static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
{
158 159 160
	return psw_extint_disabled(vcpu) &&
	       psw_ioint_disabled(vcpu) &&
	       psw_mchk_disabled(vcpu);
161 162
}

163 164 165 166 167
static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
{
	if (psw_extint_disabled(vcpu) ||
	    !(vcpu->arch.sie_block->gcr[0] & 0x800ul))
		return 0;
168 169 170
	if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
		/* No timer interrupts when single stepping */
		return 0;
171 172 173
	return 1;
}

174 175
static int ckc_irq_pending(struct kvm_vcpu *vcpu)
{
176
	if (vcpu->arch.sie_block->ckc >= kvm_s390_get_tod_clock_fast(vcpu->kvm))
177 178 179 180 181 182 183 184 185 186 187 188
		return 0;
	return ckc_interrupts_enabled(vcpu);
}

static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu)
{
	return !psw_extint_disabled(vcpu) &&
	       (vcpu->arch.sie_block->gcr[0] & 0x400ul);
}

static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu)
{
189 190 191
	if (!cpu_timer_interrupts_enabled(vcpu))
		return 0;
	return kvm_s390_get_cpu_timer(vcpu) >> 63;
192 193
}

194
static inline int is_ioirq(unsigned long irq_type)
C
Cornelia Huck 已提交
195
{
196 197 198
	return ((irq_type >= IRQ_PEND_IO_ISC_0) &&
		(irq_type <= IRQ_PEND_IO_ISC_7));
}
C
Cornelia Huck 已提交
199

200 201
static uint64_t isc_to_isc_bits(int isc)
{
C
Cornelia Huck 已提交
202 203 204
	return (0x80 >> isc) << 24;
}

205
static inline u8 int_word_to_isc(u32 int_word)
206
{
207 208 209
	return (int_word & 0x38000000) >> 27;
}

210
static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu)
211
{
212 213
	return vcpu->kvm->arch.float_int.pending_irqs |
	       vcpu->arch.local_int.pending_irqs;
214 215
}

216 217 218 219 220 221 222 223 224 225 226 227 228
static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
				   unsigned long active_mask)
{
	int i;

	for (i = 0; i <= MAX_ISC; i++)
		if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
			active_mask &= ~(1UL << (IRQ_PEND_IO_ISC_0 + i));

	return active_mask;
}

static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
229
{
230 231
	unsigned long active_mask;

232
	active_mask = pending_irqs(vcpu);
233 234
	if (!active_mask)
		return 0;
235 236 237

	if (psw_extint_disabled(vcpu))
		active_mask &= ~IRQ_PEND_EXT_MASK;
238 239 240 241
	if (psw_ioint_disabled(vcpu))
		active_mask &= ~IRQ_PEND_IO_MASK;
	else
		active_mask = disable_iscs(vcpu, active_mask);
242 243 244 245 246 247 248 249
	if (!(vcpu->arch.sie_block->gcr[0] & 0x2000ul))
		__clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
	if (!(vcpu->arch.sie_block->gcr[0] & 0x4000ul))
		__clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
	if (!(vcpu->arch.sie_block->gcr[0] & 0x800ul))
		__clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
	if (!(vcpu->arch.sie_block->gcr[0] & 0x400ul))
		__clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
250 251
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		__clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
252 253
	if (psw_mchk_disabled(vcpu))
		active_mask &= ~IRQ_PEND_MCHK_MASK;
254 255 256 257
	/*
	 * Check both floating and local interrupt's cr14 because
	 * bit IRQ_PEND_MCHK_REP could be set in both cases.
	 */
258
	if (!(vcpu->arch.sie_block->gcr[14] &
259 260
	   (vcpu->kvm->arch.float_int.mchk.cr14 |
	   vcpu->arch.local_int.irq.mchk.cr14)))
261
		__clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
262

263 264 265 266 267 268
	/*
	 * STOP irqs will never be actively delivered. They are triggered via
	 * intercept requests and cleared when the stop intercept is performed.
	 */
	__clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);

269 270 271
	return active_mask;
}

272 273
static void __set_cpu_idle(struct kvm_vcpu *vcpu)
{
274
	atomic_or(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
275 276 277 278 279
	set_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
}

static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
{
280
	atomic_andnot(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
281 282 283 284 285
	clear_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
}

static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
{
286 287
	atomic_andnot(CPUSTAT_IO_INT | CPUSTAT_EXT_INT | CPUSTAT_STOP_INT,
		    &vcpu->arch.sie_block->cpuflags);
288
	vcpu->arch.sie_block->lctl = 0x0000;
289 290 291 292 293 294 295
	vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);

	if (guestdbg_enabled(vcpu)) {
		vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
					       LCTL_CR10 | LCTL_CR11);
		vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
	}
296 297 298 299
}

static void __set_cpuflag(struct kvm_vcpu *vcpu, u32 flag)
{
300
	atomic_or(flag, &vcpu->arch.sie_block->cpuflags);
301 302
}

303 304
static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
{
305
	if (!(pending_irqs(vcpu) & IRQ_PEND_IO_MASK))
306 307 308 309 310 311 312
		return;
	else if (psw_ioint_disabled(vcpu))
		__set_cpuflag(vcpu, CPUSTAT_IO_INT);
	else
		vcpu->arch.sie_block->lctl |= LCTL_CR6;
}

313 314
static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
{
315
	if (!(pending_irqs(vcpu) & IRQ_PEND_EXT_MASK))
316 317 318 319 320 321 322 323 324
		return;
	if (psw_extint_disabled(vcpu))
		__set_cpuflag(vcpu, CPUSTAT_EXT_INT);
	else
		vcpu->arch.sie_block->lctl |= LCTL_CR0;
}

static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
{
325
	if (!(pending_irqs(vcpu) & IRQ_PEND_MCHK_MASK))
326 327 328 329 330 331 332
		return;
	if (psw_mchk_disabled(vcpu))
		vcpu->arch.sie_block->ictl |= ICTL_LPSW;
	else
		vcpu->arch.sie_block->lctl |= LCTL_CR14;
}

333 334 335 336 337 338
static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
{
	if (kvm_s390_is_stop_irq_pending(vcpu))
		__set_cpuflag(vcpu, CPUSTAT_STOP_INT);
}

339 340
/* Set interception request for non-deliverable interrupts */
static void set_intercept_indicators(struct kvm_vcpu *vcpu)
341
{
342
	set_intercept_indicators_io(vcpu);
343 344
	set_intercept_indicators_ext(vcpu);
	set_intercept_indicators_mchk(vcpu);
345
	set_intercept_indicators_stop(vcpu);
346 347
}

348 349
static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
{
350
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
351 352 353 354 355 356 357
	int rc;

	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
					 0, 0);

	rc  = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
			   (u16 *)__LC_EXT_INT_CODE);
358
	rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
359 360 361 362
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
363
	clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
364
	return rc ? -EFAULT : 0;
365 366 367 368
}

static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
{
369
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
370 371 372 373 374 375 376
	int rc;

	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
					 0, 0);

	rc  = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
			   (u16 __user *)__LC_EXT_INT_CODE);
377
	rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
378 379 380 381
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
382
	clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
383
	return rc ? -EFAULT : 0;
384 385
}

386
static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
387
{
388 389
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_ext_info ext;
390 391
	int rc;

392 393 394 395 396 397
	spin_lock(&li->lock);
	ext = li->irq.ext;
	clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
	li->irq.ext.ext_params2 = 0;
	spin_unlock(&li->lock);

398 399
	VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx",
		   ext.ext_params2);
400 401
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
					 KVM_S390_INT_PFAULT_INIT,
402
					 0, ext.ext_params2);
403 404 405 406 407 408 409

	rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
	rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
410
	rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
411
	return rc ? -EFAULT : 0;
412 413
}

414 415 416 417
static int __write_machine_check(struct kvm_vcpu *vcpu,
				 struct kvm_s390_mchk_info *mchk)
{
	unsigned long ext_sa_addr;
F
Fan Zhang 已提交
418
	unsigned long lc;
419
	freg_t fprs[NUM_FPRS];
420
	union mci mci;
421 422
	int rc;

423
	mci.val = mchk->mcic;
424
	/* take care of lazy register loading */
425 426
	save_fpu_regs();
	save_access_regs(vcpu->run->s.regs.acrs);
427 428
	if (MACHINE_HAS_GS && vcpu->arch.gs_enabled)
		save_gs_cb(current->thread.gs_cb);
429

430
	/* Extended save area */
431 432
	rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr,
			   sizeof(unsigned long));
F
Fan Zhang 已提交
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
	/* Only bits 0 through 63-LC are used for address formation */
	lc = ext_sa_addr & MCESA_LC_MASK;
	if (test_kvm_facility(vcpu->kvm, 133)) {
		switch (lc) {
		case 0:
		case 10:
			ext_sa_addr &= ~0x3ffUL;
			break;
		case 11:
			ext_sa_addr &= ~0x7ffUL;
			break;
		case 12:
			ext_sa_addr &= ~0xfffUL;
			break;
		default:
			ext_sa_addr = 0;
			break;
		}
	} else {
		ext_sa_addr &= ~0x3ffUL;
	}

455 456 457 458 459 460 461
	if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) {
		if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs,
				    512))
			mci.vr = 0;
	} else {
		mci.vr = 0;
	}
F
Fan Zhang 已提交
462 463 464 465 466 467 468 469
	if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133)
	    && (lc == 11 || lc == 12)) {
		if (write_guest_abs(vcpu, ext_sa_addr + 1024,
				    &vcpu->run->s.regs.gscb, 32))
			mci.gs = 0;
	} else {
		mci.gs = 0;
	}
470 471

	/* General interruption information */
472
	rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID);
473 474 475 476
	rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
477
	rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE);
478 479

	/* Register-save areas */
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
	if (MACHINE_HAS_VX) {
		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
		rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128);
	} else {
		rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA,
				     vcpu->run->s.regs.fprs, 128);
	}
	rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA,
			     vcpu->run->s.regs.gprs, 128);
	rc |= put_guest_lc(vcpu, current->thread.fpu.fpc,
			   (u32 __user *) __LC_FP_CREG_SAVE_AREA);
	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr,
			   (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA);
	rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu),
			   (u64 __user *) __LC_CPU_TIMER_SAVE_AREA);
	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8,
			   (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA);
	rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA,
			     &vcpu->run->s.regs.acrs, 64);
	rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA,
			     &vcpu->arch.sie_block->gcr, 128);
501 502

	/* Extended interruption information */
503 504
	rc |= put_guest_lc(vcpu, mchk->ext_damage_code,
			   (u32 __user *) __LC_EXT_DAMAGE_CODE);
505 506 507 508 509 510 511
	rc |= put_guest_lc(vcpu, mchk->failing_storage_address,
			   (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
	rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout,
			     sizeof(mchk->fixed_logout));
	return rc ? -EFAULT : 0;
}

512
static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
513
{
514
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
515
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
516 517 518
	struct kvm_s390_mchk_info mchk = {};
	int deliver = 0;
	int rc = 0;
519

520
	spin_lock(&fi->lock);
521
	spin_lock(&li->lock);
522 523 524 525 526 527 528 529 530 531 532 533 534 535
	if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
	    test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
		/*
		 * If there was an exigent machine check pending, then any
		 * repressible machine checks that might have been pending
		 * are indicated along with it, so always clear bits for
		 * repressible and exigent interrupts
		 */
		mchk = li->irq.mchk;
		clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
		clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
		memset(&li->irq.mchk, 0, sizeof(mchk));
		deliver = 1;
	}
536
	/*
537 538 539 540
	 * We indicate floating repressible conditions along with
	 * other pending conditions. Channel Report Pending and Channel
	 * Subsystem damage are the only two and and are indicated by
	 * bits in mcic and masked in cr14.
541
	 */
542 543 544 545 546 547
	if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
		mchk.mcic |= fi->mchk.mcic;
		mchk.cr14 |= fi->mchk.cr14;
		memset(&fi->mchk, 0, sizeof(mchk));
		deliver = 1;
	}
548
	spin_unlock(&li->lock);
549
	spin_unlock(&fi->lock);
550

551
	if (deliver) {
552
		VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx",
553 554 555 556
			   mchk.mcic);
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
						 KVM_S390_MCHK,
						 mchk.cr14, mchk.mcic);
557
		rc = __write_machine_check(vcpu, &mchk);
558
	}
559
	return rc;
560 561 562 563
}

static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
{
564
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
565 566
	int rc;

567
	VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart");
568 569 570 571
	vcpu->stat.deliver_restart_signal++;
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);

	rc  = write_guest_lc(vcpu,
572
			     offsetof(struct lowcore, restart_old_psw),
573
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
574
	rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw),
575
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
576
	clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
577
	return rc ? -EFAULT : 0;
578 579
}

580
static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
581
{
582 583 584 585 586 587 588 589
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_prefix_info prefix;

	spin_lock(&li->lock);
	prefix = li->irq.prefix;
	li->irq.prefix.address = 0;
	clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
	spin_unlock(&li->lock);
590 591 592 593

	vcpu->stat.deliver_prefix_signal++;
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
					 KVM_S390_SIGP_SET_PREFIX,
594
					 prefix.address, 0);
595

596
	kvm_s390_set_prefix(vcpu, prefix.address);
597 598 599
	return 0;
}

600
static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
601
{
602
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
603
	int rc;
604 605 606 607 608 609 610 611
	int cpu_addr;

	spin_lock(&li->lock);
	cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
	clear_bit(cpu_addr, li->sigp_emerg_pending);
	if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
		clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
	spin_unlock(&li->lock);
612

613
	VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg");
614
	vcpu->stat.deliver_emergency_signal++;
615 616
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
					 cpu_addr, 0);
617 618 619

	rc  = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
			   (u16 *)__LC_EXT_INT_CODE);
620
	rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
621 622 623 624
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
625
	return rc ? -EFAULT : 0;
626 627
}

628
static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
629
{
630 631
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_extcall_info extcall;
632 633
	int rc;

634 635 636 637 638 639
	spin_lock(&li->lock);
	extcall = li->irq.extcall;
	li->irq.extcall.code = 0;
	clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
	spin_unlock(&li->lock);

640
	VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call");
641 642 643
	vcpu->stat.deliver_external_call++;
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
					 KVM_S390_INT_EXTERNAL_CALL,
644
					 extcall.code, 0);
645 646 647

	rc  = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
			   (u16 *)__LC_EXT_INT_CODE);
648
	rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
649 650 651 652
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
			    sizeof(psw_t));
653
	return rc ? -EFAULT : 0;
654 655
}

656
static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
657
{
658 659
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_pgm_info pgm_info;
660
	int rc = 0, nullifying = false;
661
	u16 ilen;
662

663 664 665 666 667 668
	spin_lock(&li->lock);
	pgm_info = li->irq.pgm;
	clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
	memset(&li->irq.pgm, 0, sizeof(pgm_info));
	spin_unlock(&li->lock);

669
	ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK;
670 671
	VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d",
		   pgm_info.code, ilen);
672 673
	vcpu->stat.deliver_program_int++;
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
674
					 pgm_info.code, 0);
675

676
	switch (pgm_info.code & ~PGM_PER) {
677 678 679 680 681 682 683 684 685
	case PGM_AFX_TRANSLATION:
	case PGM_ASX_TRANSLATION:
	case PGM_EX_TRANSLATION:
	case PGM_LFX_TRANSLATION:
	case PGM_LSTE_SEQUENCE:
	case PGM_LSX_TRANSLATION:
	case PGM_LX_TRANSLATION:
	case PGM_PRIMARY_AUTHORITY:
	case PGM_SECONDARY_AUTHORITY:
686 687
		nullifying = true;
		/* fall through */
688
	case PGM_SPACE_SWITCH:
689
		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
690 691 692 693 694 695 696 697
				  (u64 *)__LC_TRANS_EXC_CODE);
		break;
	case PGM_ALEN_TRANSLATION:
	case PGM_ALE_SEQUENCE:
	case PGM_ASTE_INSTANCE:
	case PGM_ASTE_SEQUENCE:
	case PGM_ASTE_VALIDITY:
	case PGM_EXTENDED_AUTHORITY:
698
		rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
699
				  (u8 *)__LC_EXC_ACCESS_ID);
700
		nullifying = true;
701 702 703 704 705 706 707
		break;
	case PGM_ASCE_TYPE:
	case PGM_PAGE_TRANSLATION:
	case PGM_REGION_FIRST_TRANS:
	case PGM_REGION_SECOND_TRANS:
	case PGM_REGION_THIRD_TRANS:
	case PGM_SEGMENT_TRANSLATION:
708
		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
709
				  (u64 *)__LC_TRANS_EXC_CODE);
710
		rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
711
				   (u8 *)__LC_EXC_ACCESS_ID);
712
		rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
713
				   (u8 *)__LC_OP_ACCESS_ID);
714
		nullifying = true;
715 716
		break;
	case PGM_MONITOR:
717
		rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
718
				  (u16 *)__LC_MON_CLASS_NR);
719
		rc |= put_guest_lc(vcpu, pgm_info.mon_code,
720 721
				   (u64 *)__LC_MON_CODE);
		break;
E
Eric Farman 已提交
722
	case PGM_VECTOR_PROCESSING:
723
	case PGM_DATA:
724
		rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
725 726 727
				  (u32 *)__LC_DATA_EXC_CODE);
		break;
	case PGM_PROTECTION:
728
		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
729
				  (u64 *)__LC_TRANS_EXC_CODE);
730
		rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
731 732
				   (u8 *)__LC_EXC_ACCESS_ID);
		break;
733 734 735 736 737 738 739 740 741
	case PGM_STACK_FULL:
	case PGM_STACK_EMPTY:
	case PGM_STACK_SPECIFICATION:
	case PGM_STACK_TYPE:
	case PGM_STACK_OPERATION:
	case PGM_TRACE_TABEL:
	case PGM_CRYPTO_OPERATION:
		nullifying = true;
		break;
742 743
	}

744 745
	if (pgm_info.code & PGM_PER) {
		rc |= put_guest_lc(vcpu, pgm_info.per_code,
746
				   (u8 *) __LC_PER_CODE);
747
		rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
748
				   (u8 *)__LC_PER_ATMID);
749
		rc |= put_guest_lc(vcpu, pgm_info.per_address,
750
				   (u64 *) __LC_PER_ADDRESS);
751
		rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
752 753 754
				   (u8 *) __LC_PER_ACCESS_ID);
	}

755
	if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND))
756
		kvm_s390_rewind_psw(vcpu, ilen);
757

758 759
	/* bit 1+2 of the target are the ilc, so we can directly use ilen */
	rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC);
760 761
	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
				 (u64 *) __LC_LAST_BREAK);
762
	rc |= put_guest_lc(vcpu, pgm_info.code,
763 764 765 766 767
			   (u16 *)__LC_PGM_INT_CODE);
	rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
768
	return rc ? -EFAULT : 0;
769 770
}

771
static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
772
{
773 774 775 776 777 778 779 780 781 782 783 784 785
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
	struct kvm_s390_ext_info ext;
	int rc = 0;

	spin_lock(&fi->lock);
	if (!(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
		spin_unlock(&fi->lock);
		return 0;
	}
	ext = fi->srv_signal;
	memset(&fi->srv_signal, 0, sizeof(ext));
	clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
	spin_unlock(&fi->lock);
786

787
	VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x",
788
		   ext.ext_params);
789
	vcpu->stat.deliver_service_signal++;
790 791
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
					 ext.ext_params, 0);
792 793

	rc  = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
794
	rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
795 796 797 798
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
799
	rc |= put_guest_lc(vcpu, ext.ext_params,
800
			   (u32 *)__LC_EXT_PARAMS);
801

802
	return rc ? -EFAULT : 0;
803 804
}

805
static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
806
{
807 808 809
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
	struct kvm_s390_interrupt_info *inti;
	int rc = 0;
810

811 812 813 814 815 816 817 818 819 820 821
	spin_lock(&fi->lock);
	inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
					struct kvm_s390_interrupt_info,
					list);
	if (inti) {
		list_del(&inti->list);
		fi->counters[FIRQ_CNTR_PFAULT] -= 1;
	}
	if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
		clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
	spin_unlock(&fi->lock);
822

823
	if (inti) {
824 825 826 827 828 829
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
						 KVM_S390_INT_PFAULT_DONE, 0,
						 inti->ext.ext_params2);
		VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx",
			   inti->ext.ext_params2);

830 831 832 833 834 835 836 837 838 839 840 841 842 843
		rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
				(u16 *)__LC_EXT_INT_CODE);
		rc |= put_guest_lc(vcpu, PFAULT_DONE,
				(u16 *)__LC_EXT_CPU_ADDR);
		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
				(u64 *)__LC_EXT_PARAMS2);
		kfree(inti);
	}
844
	return rc ? -EFAULT : 0;
845 846
}

847
static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
848
{
849 850 851
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
	struct kvm_s390_interrupt_info *inti;
	int rc = 0;
852

853 854 855 856 857 858
	spin_lock(&fi->lock);
	inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
					struct kvm_s390_interrupt_info,
					list);
	if (inti) {
		VCPU_EVENT(vcpu, 4,
859
			   "deliver: virtio parm: 0x%x,parm64: 0x%llx",
860 861 862 863 864 865 866 867 868 869 870 871
			   inti->ext.ext_params, inti->ext.ext_params2);
		vcpu->stat.deliver_virtio_interrupt++;
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
				inti->type,
				inti->ext.ext_params,
				inti->ext.ext_params2);
		list_del(&inti->list);
		fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
	}
	if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
		clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
	spin_unlock(&fi->lock);
872

873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
	if (inti) {
		rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
				(u16 *)__LC_EXT_INT_CODE);
		rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
				(u16 *)__LC_EXT_CPU_ADDR);
		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= put_guest_lc(vcpu, inti->ext.ext_params,
				(u32 *)__LC_EXT_PARAMS);
		rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
				(u64 *)__LC_EXT_PARAMS2);
		kfree(inti);
	}
890
	return rc ? -EFAULT : 0;
891 892 893
}

static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
894
				     unsigned long irq_type)
895
{
896 897 898 899
	struct list_head *isc_list;
	struct kvm_s390_float_interrupt *fi;
	struct kvm_s390_interrupt_info *inti = NULL;
	int rc = 0;
900

901
	fi = &vcpu->kvm->arch.float_int;
902

903 904 905 906 907 908
	spin_lock(&fi->lock);
	isc_list = &fi->lists[irq_type - IRQ_PEND_IO_ISC_0];
	inti = list_first_entry_or_null(isc_list,
					struct kvm_s390_interrupt_info,
					list);
	if (inti) {
909 910 911 912 913 914 915 916
		if (inti->type & KVM_S390_INT_IO_AI_MASK)
			VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)");
		else
			VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x",
			inti->io.subchannel_id >> 8,
			inti->io.subchannel_id >> 1 & 0x3,
			inti->io.subchannel_nr);

917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
		vcpu->stat.deliver_io_int++;
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
				inti->type,
				((__u32)inti->io.subchannel_id << 16) |
				inti->io.subchannel_nr,
				((__u64)inti->io.io_int_parm << 32) |
				inti->io.io_int_word);
		list_del(&inti->list);
		fi->counters[FIRQ_CNTR_IO] -= 1;
	}
	if (list_empty(isc_list))
		clear_bit(irq_type, &fi->pending_irqs);
	spin_unlock(&fi->lock);

	if (inti) {
		rc  = put_guest_lc(vcpu, inti->io.subchannel_id,
				(u16 *)__LC_SUBCHANNEL_ID);
		rc |= put_guest_lc(vcpu, inti->io.subchannel_nr,
				(u16 *)__LC_SUBCHANNEL_NR);
		rc |= put_guest_lc(vcpu, inti->io.io_int_parm,
				(u32 *)__LC_IO_INT_PARM);
		rc |= put_guest_lc(vcpu, inti->io.io_int_word,
				(u32 *)__LC_IO_INT_WORD);
		rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		kfree(inti);
	}
948

949
	return rc ? -EFAULT : 0;
950 951 952 953 954 955
}

typedef int (*deliver_irq_t)(struct kvm_vcpu *vcpu);

static const deliver_irq_t deliver_irq_funcs[] = {
	[IRQ_PEND_MCHK_EX]        = __deliver_machine_check,
956
	[IRQ_PEND_MCHK_REP]       = __deliver_machine_check,
957 958 959 960 961 962 963 964
	[IRQ_PEND_PROG]           = __deliver_prog,
	[IRQ_PEND_EXT_EMERGENCY]  = __deliver_emergency_signal,
	[IRQ_PEND_EXT_EXTERNAL]   = __deliver_external_call,
	[IRQ_PEND_EXT_CLOCK_COMP] = __deliver_ckc,
	[IRQ_PEND_EXT_CPU_TIMER]  = __deliver_cpu_timer,
	[IRQ_PEND_RESTART]        = __deliver_restart,
	[IRQ_PEND_SET_PREFIX]     = __deliver_set_prefix,
	[IRQ_PEND_PFAULT_INIT]    = __deliver_pfault_init,
965 966 967
	[IRQ_PEND_EXT_SERVICE]    = __deliver_service,
	[IRQ_PEND_PFAULT_DONE]    = __deliver_pfault_done,
	[IRQ_PEND_VIRTIO]         = __deliver_virtio,
968 969
};

970 971
/* Check whether an external call is pending (deliverable or not) */
int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
972
{
973
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
974

975
	if (!sclp.has_sigpif)
976
		return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
977

978
	return sca_ext_call_pending(vcpu, NULL);
979 980
}

981
int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
982
{
983 984
	if (deliverable_irqs(vcpu))
		return 1;
985

986 987
	if (kvm_cpu_has_pending_timer(vcpu))
		return 1;
988

989
	/* external call pending and deliverable */
990
	if (kvm_s390_ext_call_pending(vcpu) &&
991 992
	    !psw_extint_disabled(vcpu) &&
	    (vcpu->arch.sie_block->gcr[0] & 0x2000ul))
993
		return 1;
994

995 996 997
	if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
		return 1;
	return 0;
998 999
}

1000 1001
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
1002
	return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu);
1003 1004
}

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
static u64 __calculate_sltime(struct kvm_vcpu *vcpu)
{
	u64 now, cputm, sltime = 0;

	if (ckc_interrupts_enabled(vcpu)) {
		now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
		sltime = tod_to_ns(vcpu->arch.sie_block->ckc - now);
		/* already expired or overflow? */
		if (!sltime || vcpu->arch.sie_block->ckc <= now)
			return 0;
		if (cpu_timer_interrupts_enabled(vcpu)) {
			cputm = kvm_s390_get_cpu_timer(vcpu);
			/* already expired? */
			if (cputm >> 63)
				return 0;
			return min(sltime, tod_to_ns(cputm));
		}
	} else if (cpu_timer_interrupts_enabled(vcpu)) {
		sltime = kvm_s390_get_cpu_timer(vcpu);
		/* already expired? */
		if (sltime >> 63)
			return 0;
	}
	return sltime;
}

1031 1032
int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
{
1033
	u64 sltime;
1034 1035 1036

	vcpu->stat.exit_wait_state++;

1037
	/* fast path */
1038
	if (kvm_arch_vcpu_runnable(vcpu))
1039
		return 0;
1040

1041 1042
	if (psw_interrupts_disabled(vcpu)) {
		VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
1043
		return -EOPNOTSUPP; /* disabled wait */
1044 1045
	}

1046 1047
	if (!ckc_interrupts_enabled(vcpu) &&
	    !cpu_timer_interrupts_enabled(vcpu)) {
1048
		VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
1049
		__set_cpu_idle(vcpu);
1050 1051 1052
		goto no_timer;
	}

1053 1054
	sltime = __calculate_sltime(vcpu);
	if (!sltime)
1055 1056 1057
		return 0;

	__set_cpu_idle(vcpu);
T
Thomas Gleixner 已提交
1058
	hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL);
1059
	VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime);
1060
no_timer:
1061
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
1062
	kvm_vcpu_block(vcpu);
1063
	__unset_cpu_idle(vcpu);
1064 1065
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

1066
	hrtimer_cancel(&vcpu->arch.ckc_timer);
1067 1068 1069
	return 0;
}

1070 1071
void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
{
1072 1073 1074 1075 1076
	/*
	 * We cannot move this into the if, as the CPU might be already
	 * in kvm_vcpu_block without having the waitqueue set (polling)
	 */
	vcpu->valid_wakeup = true;
1077 1078 1079 1080 1081 1082
	/*
	 * This is mostly to document, that the read in swait_active could
	 * be moved before other stores, leading to subtle races.
	 * All current users do not store or use an atomic like update
	 */
	smp_mb__after_atomic();
1083
	if (swait_active(&vcpu->wq)) {
1084 1085 1086 1087 1088
		/*
		 * The vcpu gave up the cpu voluntarily, mark it as a good
		 * yield-candidate.
		 */
		vcpu->preempted = true;
1089
		swake_up(&vcpu->wq);
1090
		vcpu->stat.halt_wakeup++;
1091
	}
1092 1093 1094 1095 1096
	/*
	 * The VCPU might not be sleeping but is executing the VSIE. Let's
	 * kick it, so it leaves the SIE to process the request.
	 */
	kvm_s390_vsie_kick(vcpu);
1097 1098
}

1099 1100 1101
enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
{
	struct kvm_vcpu *vcpu;
1102
	u64 sltime;
1103 1104

	vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
1105
	sltime = __calculate_sltime(vcpu);
1106

1107 1108 1109 1110
	/*
	 * If the monotonic clock runs faster than the tod clock we might be
	 * woken up too early and have to go back to sleep to avoid deadlocks.
	 */
1111
	if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime)))
1112 1113
		return HRTIMER_RESTART;
	kvm_s390_vcpu_wakeup(vcpu);
1114 1115
	return HRTIMER_NORESTART;
}
1116

1117 1118 1119 1120
void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1121
	spin_lock(&li->lock);
1122 1123 1124
	li->pending_irqs = 0;
	bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
	memset(&li->irq, 0, sizeof(li->irq));
1125
	spin_unlock(&li->lock);
1126

1127
	sca_clear_ext_call(vcpu);
1128 1129
}

1130
int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
1131
{
1132
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1133
	deliver_irq_t func;
1134
	int rc = 0;
1135
	unsigned long irq_type;
1136
	unsigned long irqs;
1137 1138 1139

	__reset_intercept_indicators(vcpu);

1140 1141
	/* pending ckc conditions might have been invalidated */
	clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1142
	if (ckc_irq_pending(vcpu))
1143 1144
		set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);

1145 1146 1147 1148 1149
	/* pending cpu timer conditions might have been invalidated */
	clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
	if (cpu_timer_irq_pending(vcpu))
		set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);

1150
	while ((irqs = deliverable_irqs(vcpu)) && !rc) {
1151
		/* bits are in the order of interrupt priority */
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
		irq_type = find_first_bit(&irqs, IRQ_PEND_COUNT);
		if (is_ioirq(irq_type)) {
			rc = __deliver_io(vcpu, irq_type);
		} else {
			func = deliver_irq_funcs[irq_type];
			if (!func) {
				WARN_ON_ONCE(func == NULL);
				clear_bit(irq_type, &li->pending_irqs);
				continue;
			}
			rc = func(vcpu);
1163
		}
1164
	}
1165

1166
	set_intercept_indicators(vcpu);
1167 1168

	return rc;
1169 1170
}

1171
static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1172 1173 1174
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1175 1176 1177 1178
	VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code);
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
				   irq->u.pgm.code, 0);

1179 1180 1181 1182 1183 1184 1185
	if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) {
		/* auto detection if no valid ILC was given */
		irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK;
		irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu);
		irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID;
	}

1186 1187
	if (irq->u.pgm.code == PGM_PER) {
		li->irq.pgm.code |= PGM_PER;
1188
		li->irq.pgm.flags = irq->u.pgm.flags;
1189 1190 1191 1192 1193 1194 1195 1196
		/* only modify PER related information */
		li->irq.pgm.per_address = irq->u.pgm.per_address;
		li->irq.pgm.per_code = irq->u.pgm.per_code;
		li->irq.pgm.per_atmid = irq->u.pgm.per_atmid;
		li->irq.pgm.per_access_id = irq->u.pgm.per_access_id;
	} else if (!(irq->u.pgm.code & PGM_PER)) {
		li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) |
				   irq->u.pgm.code;
1197
		li->irq.pgm.flags = irq->u.pgm.flags;
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
		/* only modify non-PER information */
		li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code;
		li->irq.pgm.mon_code = irq->u.pgm.mon_code;
		li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code;
		li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr;
		li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id;
		li->irq.pgm.op_access_id = irq->u.pgm.op_access_id;
	} else {
		li->irq.pgm = irq->u.pgm;
	}
1208
	set_bit(IRQ_PEND_PROG, &li->pending_irqs);
1209 1210 1211
	return 0;
}

1212
static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1213 1214 1215
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1216 1217
	VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx",
		   irq->u.ext.ext_params2);
1218 1219
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
				   irq->u.ext.ext_params,
1220
				   irq->u.ext.ext_params2);
1221 1222 1223

	li->irq.ext = irq->u.ext;
	set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
1224
	atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1225 1226 1227
	return 0;
}

1228
static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1229 1230
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1231
	struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
1232
	uint16_t src_id = irq->u.extcall.code;
1233

1234
	VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u",
1235
		   src_id);
1236
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
1237
				   src_id, 0);
1238 1239

	/* sending vcpu invalid */
1240
	if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL)
1241 1242
		return -EINVAL;

1243
	if (sclp.has_sigpif)
1244
		return sca_inject_ext_call(vcpu, src_id);
1245

1246
	if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
1247
		return -EBUSY;
1248
	*extcall = irq->u.extcall;
1249
	atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1250 1251 1252
	return 0;
}

1253
static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1254 1255
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1256
	struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
1257

1258
	VCPU_EVENT(vcpu, 3, "inject: set prefix to %x",
1259
		   irq->u.prefix.address);
1260
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
1261
				   irq->u.prefix.address, 0);
1262

1263 1264 1265
	if (!is_vcpu_stopped(vcpu))
		return -EBUSY;

1266 1267
	*prefix = irq->u.prefix;
	set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
1268 1269 1270
	return 0;
}

1271
#define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
1272
static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1273 1274
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1275
	struct kvm_s390_stop_info *stop = &li->irq.stop;
1276
	int rc = 0;
1277

1278
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0);
1279

1280 1281 1282
	if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
		return -EINVAL;

1283 1284 1285 1286 1287 1288 1289 1290 1291
	if (is_vcpu_stopped(vcpu)) {
		if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
			rc = kvm_s390_store_status_unloaded(vcpu,
						KVM_S390_STORE_STATUS_NOADDR);
		return rc;
	}

	if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
		return -EBUSY;
1292
	stop->flags = irq->u.stop.flags;
1293
	__set_cpuflag(vcpu, CPUSTAT_STOP_INT);
1294 1295 1296 1297
	return 0;
}

static int __inject_sigp_restart(struct kvm_vcpu *vcpu,
1298
				 struct kvm_s390_irq *irq)
1299 1300 1301
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1302
	VCPU_EVENT(vcpu, 3, "%s", "inject: restart int");
1303
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
1304 1305

	set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
1306 1307 1308 1309
	return 0;
}

static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
1310
				   struct kvm_s390_irq *irq)
1311 1312 1313
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1314
	VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u",
1315 1316
		   irq->u.emerg.code);
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
1317
				   irq->u.emerg.code, 0);
1318

1319 1320 1321 1322
	/* sending vcpu invalid */
	if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL)
		return -EINVAL;

1323
	set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
1324
	set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
1325
	atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1326 1327 1328
	return 0;
}

1329
static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1330 1331
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1332
	struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
1333

1334
	VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx",
1335
		   irq->u.mchk.mcic);
1336
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
1337
				   irq->u.mchk.mcic);
1338 1339

	/*
1340 1341 1342 1343 1344 1345
	 * Because repressible machine checks can be indicated along with
	 * exigent machine checks (PoP, Chapter 11, Interruption action)
	 * we need to combine cr14, mcic and external damage code.
	 * Failing storage address and the logout area should not be or'ed
	 * together, we just indicate the last occurrence of the corresponding
	 * machine check
1346
	 */
1347
	mchk->cr14 |= irq->u.mchk.cr14;
1348
	mchk->mcic |= irq->u.mchk.mcic;
1349 1350 1351 1352
	mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
	mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
	memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
	       sizeof(mchk->fixed_logout));
1353 1354 1355 1356
	if (mchk->mcic & MCHK_EX_MASK)
		set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
	else if (mchk->mcic & MCHK_REP_MASK)
		set_bit(IRQ_PEND_MCHK_REP,  &li->pending_irqs);
1357 1358 1359
	return 0;
}

1360
static int __inject_ckc(struct kvm_vcpu *vcpu)
1361 1362 1363
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1364
	VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external");
1365
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
1366
				   0, 0);
1367 1368

	set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1369
	atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1370 1371 1372
	return 0;
}

1373
static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
1374 1375 1376
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1377
	VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external");
1378
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
1379
				   0, 0);
1380 1381

	set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1382
	atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1383 1384 1385
	return 0;
}

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
						  int isc, u32 schid)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
	struct kvm_s390_interrupt_info *iter;
	u16 id = (schid & 0xffff0000U) >> 16;
	u16 nr = schid & 0x0000ffffU;

	spin_lock(&fi->lock);
	list_for_each_entry(iter, isc_list, list) {
		if (schid && (id != iter->io.subchannel_id ||
			      nr != iter->io.subchannel_nr))
			continue;
		/* found an appropriate entry */
		list_del_init(&iter->list);
		fi->counters[FIRQ_CNTR_IO] -= 1;
		if (list_empty(isc_list))
			clear_bit(IRQ_PEND_IO_ISC_0 + isc, &fi->pending_irqs);
		spin_unlock(&fi->lock);
		return iter;
	}
	spin_unlock(&fi->lock);
	return NULL;
}
1411

1412 1413 1414 1415
/*
 * Dequeue and return an I/O interrupt matching any of the interruption
 * subclasses as designated by the isc mask in cr6 and the schid (if != 0).
 */
1416
struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
						    u64 isc_mask, u32 schid)
{
	struct kvm_s390_interrupt_info *inti = NULL;
	int isc;

	for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
		if (isc_mask & isc_to_isc_bits(isc))
			inti = get_io_int(kvm, isc, schid);
	}
	return inti;
}

#define SCCB_MASK 0xFFFFFFF8
#define SCCB_EVENT_PENDING 0x3

static int __inject_service(struct kvm *kvm,
			     struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

	spin_lock(&fi->lock);
	fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
	/*
	 * Early versions of the QEMU s390 bios will inject several
	 * service interrupts after another without handling a
	 * condition code indicating busy.
	 * We will silently ignore those superfluous sccb values.
	 * A future version of QEMU will take care of serialization
	 * of servc requests
	 */
	if (fi->srv_signal.ext_params & SCCB_MASK)
		goto out;
	fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
	set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
out:
	spin_unlock(&fi->lock);
	kfree(inti);
	return 0;
}

static int __inject_virtio(struct kvm *kvm,
			    struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

	spin_lock(&fi->lock);
	if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
		spin_unlock(&fi->lock);
		return -EBUSY;
	}
	fi->counters[FIRQ_CNTR_VIRTIO] += 1;
	list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
	set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
	spin_unlock(&fi->lock);
	return 0;
}

static int __inject_pfault_done(struct kvm *kvm,
				 struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

	spin_lock(&fi->lock);
	if (fi->counters[FIRQ_CNTR_PFAULT] >=
		(ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
		spin_unlock(&fi->lock);
		return -EBUSY;
	}
	fi->counters[FIRQ_CNTR_PFAULT] += 1;
	list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
	set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
	spin_unlock(&fi->lock);
	return 0;
}

#define CR_PENDING_SUBCLASS 28
static int __inject_float_mchk(struct kvm *kvm,
				struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

	spin_lock(&fi->lock);
	fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
	fi->mchk.mcic |= inti->mchk.mcic;
	set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
	spin_unlock(&fi->lock);
	kfree(inti);
	return 0;
}

static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1508 1509
{
	struct kvm_s390_float_interrupt *fi;
1510 1511
	struct list_head *list;
	int isc;
1512 1513 1514

	fi = &kvm->arch.float_int;
	spin_lock(&fi->lock);
1515 1516 1517
	if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
		spin_unlock(&fi->lock);
		return -EBUSY;
J
Jens Freimann 已提交
1518
	}
1519 1520
	fi->counters[FIRQ_CNTR_IO] += 1;

1521 1522 1523 1524 1525 1526 1527
	if (inti->type & KVM_S390_INT_IO_AI_MASK)
		VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)");
	else
		VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x",
			inti->io.subchannel_id >> 8,
			inti->io.subchannel_id >> 1 & 0x3,
			inti->io.subchannel_nr);
1528 1529 1530 1531
	isc = int_word_to_isc(inti->io.io_int_word);
	list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
	list_add_tail(&inti->list, list);
	set_bit(IRQ_PEND_IO_ISC_0 + isc, &fi->pending_irqs);
1532
	spin_unlock(&fi->lock);
1533
	return 0;
1534
}
1535

1536 1537 1538 1539
/*
 * Find a destination VCPU for a floating irq and kick it.
 */
static void __floating_irq_kick(struct kvm *kvm, u64 type)
1540
{
1541
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1542
	struct kvm_s390_local_interrupt *li;
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
	struct kvm_vcpu *dst_vcpu;
	int sigcpu, online_vcpus, nr_tries = 0;

	online_vcpus = atomic_read(&kvm->online_vcpus);
	if (!online_vcpus)
		return;

	/* find idle VCPUs first, then round robin */
	sigcpu = find_first_bit(fi->idle_mask, online_vcpus);
	if (sigcpu == online_vcpus) {
		do {
			sigcpu = fi->next_rr_cpu;
			fi->next_rr_cpu = (fi->next_rr_cpu + 1) % online_vcpus;
			/* avoid endless loops if all vcpus are stopped */
			if (nr_tries++ >= online_vcpus)
				return;
		} while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu)));
	}
	dst_vcpu = kvm_get_vcpu(kvm, sigcpu);

	/* make the VCPU drop out of the SIE, or wake it up if sleeping */
	li = &dst_vcpu->arch.local_int;
	spin_lock(&li->lock);
	switch (type) {
	case KVM_S390_MCHK:
1568
		atomic_or(CPUSTAT_STOP_INT, li->cpuflags);
1569 1570
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1571
		atomic_or(CPUSTAT_IO_INT, li->cpuflags);
1572 1573
		break;
	default:
1574
		atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1575 1576 1577 1578 1579 1580 1581 1582
		break;
	}
	spin_unlock(&li->lock);
	kvm_s390_vcpu_wakeup(dst_vcpu);
}

static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
{
1583 1584
	u64 type = READ_ONCE(inti->type);
	int rc;
1585

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
	switch (type) {
	case KVM_S390_MCHK:
		rc = __inject_float_mchk(kvm, inti);
		break;
	case KVM_S390_INT_VIRTIO:
		rc = __inject_virtio(kvm, inti);
		break;
	case KVM_S390_INT_SERVICE:
		rc = __inject_service(kvm, inti);
		break;
	case KVM_S390_INT_PFAULT_DONE:
		rc = __inject_pfault_done(kvm, inti);
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
		rc = __inject_io(kvm, inti);
		break;
	default:
J
Jens Freimann 已提交
1603
		rc = -EINVAL;
1604
	}
1605 1606 1607
	if (rc)
		return rc;

1608
	__floating_irq_kick(kvm, type);
1609
	return 0;
1610 1611 1612 1613 1614 1615
}

int kvm_s390_inject_vm(struct kvm *kvm,
		       struct kvm_s390_interrupt *s390int)
{
	struct kvm_s390_interrupt_info *inti;
1616
	int rc;
1617

1618 1619 1620 1621
	inti = kzalloc(sizeof(*inti), GFP_KERNEL);
	if (!inti)
		return -ENOMEM;

1622 1623
	inti->type = s390int->type;
	switch (inti->type) {
1624
	case KVM_S390_INT_VIRTIO:
1625
		VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
1626 1627 1628 1629 1630
			 s390int->parm, s390int->parm64);
		inti->ext.ext_params = s390int->parm;
		inti->ext.ext_params2 = s390int->parm64;
		break;
	case KVM_S390_INT_SERVICE:
1631
		VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm);
1632 1633
		inti->ext.ext_params = s390int->parm;
		break;
1634 1635 1636
	case KVM_S390_INT_PFAULT_DONE:
		inti->ext.ext_params2 = s390int->parm64;
		break;
1637
	case KVM_S390_MCHK:
1638
		VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx",
1639 1640 1641 1642
			 s390int->parm64);
		inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
		inti->mchk.mcic = s390int->parm64;
		break;
1643 1644 1645 1646 1647 1648
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
		inti->io.subchannel_id = s390int->parm >> 16;
		inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
		inti->io.io_int_parm = s390int->parm64 >> 32;
		inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
		break;
1649 1650 1651 1652
	default:
		kfree(inti);
		return -EINVAL;
	}
1653 1654
	trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
				 2);
1655

1656 1657 1658 1659
	rc = __inject_vm(kvm, inti);
	if (rc)
		kfree(inti);
	return rc;
1660 1661
}

1662
int kvm_s390_reinject_io_int(struct kvm *kvm,
1663 1664
			      struct kvm_s390_interrupt_info *inti)
{
1665
	return __inject_vm(kvm, inti);
1666 1667
}

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
		       struct kvm_s390_irq *irq)
{
	irq->type = s390int->type;
	switch (irq->type) {
	case KVM_S390_PROGRAM_INT:
		if (s390int->parm & 0xffff0000)
			return -EINVAL;
		irq->u.pgm.code = s390int->parm;
		break;
	case KVM_S390_SIGP_SET_PREFIX:
		irq->u.prefix.address = s390int->parm;
		break;
1681 1682 1683
	case KVM_S390_SIGP_STOP:
		irq->u.stop.flags = s390int->parm;
		break;
1684
	case KVM_S390_INT_EXTERNAL_CALL:
1685
		if (s390int->parm & 0xffff0000)
1686 1687 1688 1689
			return -EINVAL;
		irq->u.extcall.code = s390int->parm;
		break;
	case KVM_S390_INT_EMERGENCY:
1690
		if (s390int->parm & 0xffff0000)
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
			return -EINVAL;
		irq->u.emerg.code = s390int->parm;
		break;
	case KVM_S390_MCHK:
		irq->u.mchk.mcic = s390int->parm64;
		break;
	}
	return 0;
}

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

	return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
}

void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

	spin_lock(&li->lock);
	li->irq.stop.flags = 0;
	clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
	spin_unlock(&li->lock);
}

1718
static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1719
{
1720
	int rc;
1721

1722
	switch (irq->type) {
1723
	case KVM_S390_PROGRAM_INT:
1724
		rc = __inject_prog(vcpu, irq);
1725
		break;
1726
	case KVM_S390_SIGP_SET_PREFIX:
1727
		rc = __inject_set_prefix(vcpu, irq);
1728
		break;
1729
	case KVM_S390_SIGP_STOP:
1730
		rc = __inject_sigp_stop(vcpu, irq);
1731
		break;
1732
	case KVM_S390_RESTART:
1733
		rc = __inject_sigp_restart(vcpu, irq);
1734
		break;
1735
	case KVM_S390_INT_CLOCK_COMP:
1736
		rc = __inject_ckc(vcpu);
1737
		break;
1738
	case KVM_S390_INT_CPU_TIMER:
1739
		rc = __inject_cpu_timer(vcpu);
1740
		break;
1741
	case KVM_S390_INT_EXTERNAL_CALL:
1742
		rc = __inject_extcall(vcpu, irq);
1743
		break;
1744
	case KVM_S390_INT_EMERGENCY:
1745
		rc = __inject_sigp_emergency(vcpu, irq);
1746
		break;
1747
	case KVM_S390_MCHK:
1748
		rc = __inject_mchk(vcpu, irq);
1749
		break;
1750
	case KVM_S390_INT_PFAULT_INIT:
1751
		rc = __inject_pfault_init(vcpu, irq);
1752
		break;
1753 1754
	case KVM_S390_INT_VIRTIO:
	case KVM_S390_INT_SERVICE:
1755
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1756
	default:
1757
		rc = -EINVAL;
1758
	}
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769

	return rc;
}

int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	int rc;

	spin_lock(&li->lock);
	rc = do_inject_vcpu(vcpu, irq);
1770
	spin_unlock(&li->lock);
1771 1772 1773
	if (!rc)
		kvm_s390_vcpu_wakeup(vcpu);
	return rc;
1774
}
1775

1776
static inline void clear_irq_list(struct list_head *_list)
1777
{
1778
	struct kvm_s390_interrupt_info *inti, *n;
1779

1780
	list_for_each_entry_safe(inti, n, _list, list) {
1781 1782 1783 1784 1785
		list_del(&inti->list);
		kfree(inti);
	}
}

1786 1787
static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
		       struct kvm_s390_irq *irq)
1788
{
1789
	irq->type = inti->type;
1790
	switch (inti->type) {
1791 1792
	case KVM_S390_INT_PFAULT_INIT:
	case KVM_S390_INT_PFAULT_DONE:
1793
	case KVM_S390_INT_VIRTIO:
1794
		irq->u.ext = inti->ext;
1795 1796
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1797
		irq->u.io = inti->io;
1798 1799 1800 1801
		break;
	}
}

1802 1803 1804 1805 1806 1807
void kvm_s390_clear_float_irqs(struct kvm *kvm)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	int i;

	spin_lock(&fi->lock);
1808 1809 1810
	fi->pending_irqs = 0;
	memset(&fi->srv_signal, 0, sizeof(fi->srv_signal));
	memset(&fi->mchk, 0, sizeof(fi->mchk));
1811 1812 1813 1814 1815 1816 1817
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		clear_irq_list(&fi->lists[i]);
	for (i = 0; i < FIRQ_MAX_COUNT; i++)
		fi->counters[i] = 0;
	spin_unlock(&fi->lock);
};

1818
static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
1819 1820 1821
{
	struct kvm_s390_interrupt_info *inti;
	struct kvm_s390_float_interrupt *fi;
1822
	struct kvm_s390_irq *buf;
1823
	struct kvm_s390_irq *irq;
1824
	int max_irqs;
1825 1826
	int ret = 0;
	int n = 0;
1827
	int i;
1828

1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
	if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
		return -EINVAL;

	/*
	 * We are already using -ENOMEM to signal
	 * userspace it may retry with a bigger buffer,
	 * so we need to use something else for this case
	 */
	buf = vzalloc(len);
	if (!buf)
		return -ENOBUFS;

	max_irqs = len / sizeof(struct kvm_s390_irq);

1843 1844
	fi = &kvm->arch.float_int;
	spin_lock(&fi->lock);
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
	for (i = 0; i < FIRQ_LIST_COUNT; i++) {
		list_for_each_entry(inti, &fi->lists[i], list) {
			if (n == max_irqs) {
				/* signal userspace to try again */
				ret = -ENOMEM;
				goto out;
			}
			inti_to_irq(inti, &buf[n]);
			n++;
		}
	}
	if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs)) {
1857
		if (n == max_irqs) {
1858 1859
			/* signal userspace to try again */
			ret = -ENOMEM;
1860
			goto out;
1861
		}
1862 1863 1864
		irq = (struct kvm_s390_irq *) &buf[n];
		irq->type = KVM_S390_INT_SERVICE;
		irq->u.ext = fi->srv_signal;
1865 1866
		n++;
	}
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
	if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
		if (n == max_irqs) {
				/* signal userspace to try again */
				ret = -ENOMEM;
				goto out;
		}
		irq = (struct kvm_s390_irq *) &buf[n];
		irq->type = KVM_S390_MCHK;
		irq->u.mchk = fi->mchk;
		n++;
}

out:
1880
	spin_unlock(&fi->lock);
1881 1882 1883 1884 1885
	if (!ret && n > 0) {
		if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
			ret = -EFAULT;
	}
	vfree(buf);
1886 1887 1888 1889

	return ret < 0 ? ret : n;
}

Y
Yi Min Zhao 已提交
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	struct kvm_s390_ais_all ais;

	if (attr->attr < sizeof(ais))
		return -EINVAL;

	if (!test_kvm_facility(kvm, 72))
		return -ENOTSUPP;

	mutex_lock(&fi->ais_lock);
	ais.simm = fi->simm;
	ais.nimm = fi->nimm;
	mutex_unlock(&fi->ais_lock);

	if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais)))
		return -EFAULT;

	return 0;
}

1912 1913 1914 1915 1916 1917
static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
	int r;

	switch (attr->group) {
	case KVM_DEV_FLIC_GET_ALL_IRQS:
1918
		r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
1919 1920
					  attr->attr);
		break;
Y
Yi Min Zhao 已提交
1921 1922 1923
	case KVM_DEV_FLIC_AISM_ALL:
		r = flic_ais_mode_get_all(dev->kvm, attr);
		break;
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
	default:
		r = -EINVAL;
	}

	return r;
}

static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
				     u64 addr)
{
	struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
	void *target = NULL;
	void __user *source;
	u64 size;

	if (get_user(inti->type, (u64 __user *)addr))
		return -EFAULT;

	switch (inti->type) {
1943 1944
	case KVM_S390_INT_PFAULT_INIT:
	case KVM_S390_INT_PFAULT_DONE:
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
	case KVM_S390_INT_VIRTIO:
	case KVM_S390_INT_SERVICE:
		target = (void *) &inti->ext;
		source = &uptr->u.ext;
		size = sizeof(inti->ext);
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
		target = (void *) &inti->io;
		source = &uptr->u.io;
		size = sizeof(inti->io);
		break;
	case KVM_S390_MCHK:
		target = (void *) &inti->mchk;
		source = &uptr->u.mchk;
		size = sizeof(inti->mchk);
		break;
	default:
		return -EINVAL;
	}

	if (copy_from_user(target, source, size))
		return -EFAULT;

	return 0;
}

static int enqueue_floating_irq(struct kvm_device *dev,
				struct kvm_device_attr *attr)
{
	struct kvm_s390_interrupt_info *inti = NULL;
	int r = 0;
	int len = attr->attr;

	if (len % sizeof(struct kvm_s390_irq) != 0)
		return -EINVAL;
	else if (len > KVM_S390_FLIC_MAX_BUFFER)
		return -EINVAL;

	while (len >= sizeof(struct kvm_s390_irq)) {
		inti = kzalloc(sizeof(*inti), GFP_KERNEL);
		if (!inti)
			return -ENOMEM;

		r = copy_irq_from_user(inti, attr->addr);
		if (r) {
			kfree(inti);
			return r;
		}
J
Jens Freimann 已提交
1993 1994 1995 1996 1997
		r = __inject_vm(dev->kvm, inti);
		if (r) {
			kfree(inti);
			return r;
		}
1998 1999 2000 2001 2002 2003 2004
		len -= sizeof(struct kvm_s390_irq);
		attr->addr += sizeof(struct kvm_s390_irq);
	}

	return r;
}

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
{
	if (id >= MAX_S390_IO_ADAPTERS)
		return NULL;
	return kvm->arch.adapters[id];
}

static int register_io_adapter(struct kvm_device *dev,
			       struct kvm_device_attr *attr)
{
	struct s390_io_adapter *adapter;
	struct kvm_s390_io_adapter adapter_info;

	if (copy_from_user(&adapter_info,
			   (void __user *)attr->addr, sizeof(adapter_info)))
		return -EFAULT;

	if ((adapter_info.id >= MAX_S390_IO_ADAPTERS) ||
	    (dev->kvm->arch.adapters[adapter_info.id] != NULL))
		return -EINVAL;

	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
	if (!adapter)
		return -ENOMEM;

	INIT_LIST_HEAD(&adapter->maps);
	init_rwsem(&adapter->maps_lock);
	atomic_set(&adapter->nr_maps, 0);
	adapter->id = adapter_info.id;
	adapter->isc = adapter_info.isc;
	adapter->maskable = adapter_info.maskable;
	adapter->masked = false;
	adapter->swap = adapter_info.swap;
2038 2039
	adapter->suppressible = (adapter_info.flags) &
				KVM_S390_ADAPTER_SUPPRESSIBLE;
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
	dev->kvm->arch.adapters[adapter->id] = adapter;

	return 0;
}

int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
{
	int ret;
	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);

	if (!adapter || !adapter->maskable)
		return -EINVAL;
	ret = adapter->masked;
	adapter->masked = masked;
	return ret;
}

static int kvm_s390_adapter_map(struct kvm *kvm, unsigned int id, __u64 addr)
{
	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
	struct s390_map_info *map;
	int ret;

	if (!adapter || !addr)
		return -EINVAL;

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (!map) {
		ret = -ENOMEM;
		goto out;
	}
	INIT_LIST_HEAD(&map->list);
	map->guest_addr = addr;
2073
	map->addr = gmap_translate(kvm->arch.gmap, addr);
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
	if (map->addr == -EFAULT) {
		ret = -EFAULT;
		goto out;
	}
	ret = get_user_pages_fast(map->addr, 1, 1, &map->page);
	if (ret < 0)
		goto out;
	BUG_ON(ret != 1);
	down_write(&adapter->maps_lock);
	if (atomic_inc_return(&adapter->nr_maps) < MAX_S390_ADAPTER_MAPS) {
		list_add_tail(&map->list, &adapter->maps);
		ret = 0;
	} else {
		put_page(map->page);
		ret = -EINVAL;
	}
	up_write(&adapter->maps_lock);
out:
	if (ret)
		kfree(map);
	return ret;
}

static int kvm_s390_adapter_unmap(struct kvm *kvm, unsigned int id, __u64 addr)
{
	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
	struct s390_map_info *map, *tmp;
	int found = 0;

	if (!adapter || !addr)
		return -EINVAL;

	down_write(&adapter->maps_lock);
	list_for_each_entry_safe(map, tmp, &adapter->maps, list) {
		if (map->guest_addr == addr) {
			found = 1;
			atomic_dec(&adapter->nr_maps);
			list_del(&map->list);
			put_page(map->page);
			kfree(map);
			break;
		}
	}
	up_write(&adapter->maps_lock);

	return found ? 0 : -EINVAL;
}

void kvm_s390_destroy_adapters(struct kvm *kvm)
{
	int i;
	struct s390_map_info *map, *tmp;

	for (i = 0; i < MAX_S390_IO_ADAPTERS; i++) {
		if (!kvm->arch.adapters[i])
			continue;
		list_for_each_entry_safe(map, tmp,
					 &kvm->arch.adapters[i]->maps, list) {
			list_del(&map->list);
			put_page(map->page);
			kfree(map);
		}
		kfree(kvm->arch.adapters[i]);
	}
}

static int modify_io_adapter(struct kvm_device *dev,
			     struct kvm_device_attr *attr)
{
	struct kvm_s390_io_adapter_req req;
	struct s390_io_adapter *adapter;
	int ret;

	if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
		return -EFAULT;

	adapter = get_io_adapter(dev->kvm, req.id);
	if (!adapter)
		return -EINVAL;
	switch (req.type) {
	case KVM_S390_IO_ADAPTER_MASK:
		ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
		if (ret > 0)
			ret = 0;
		break;
	case KVM_S390_IO_ADAPTER_MAP:
		ret = kvm_s390_adapter_map(dev->kvm, req.id, req.addr);
		break;
	case KVM_S390_IO_ADAPTER_UNMAP:
		ret = kvm_s390_adapter_unmap(dev->kvm, req.id, req.addr);
		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr)

{
	const u64 isc_mask = 0xffUL << 24; /* all iscs set */
	u32 schid;

	if (attr->flags)
		return -EINVAL;
	if (attr->attr != sizeof(schid))
		return -EINVAL;
	if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid)))
		return -EFAULT;
	kfree(kvm_s390_get_io_int(kvm, isc_mask, schid));
	/*
	 * If userspace is conforming to the architecture, we can have at most
	 * one pending I/O interrupt per subchannel, so this is effectively a
	 * clear all.
	 */
	return 0;
}

2193 2194 2195 2196 2197 2198
static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	struct kvm_s390_ais_req req;
	int ret = 0;

2199
	if (!test_kvm_facility(kvm, 72))
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
		return -ENOTSUPP;

	if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
		return -EFAULT;

	if (req.isc > MAX_ISC)
		return -EINVAL;

	trace_kvm_s390_modify_ais_mode(req.isc,
				       (fi->simm & AIS_MODE_MASK(req.isc)) ?
				       (fi->nimm & AIS_MODE_MASK(req.isc)) ?
				       2 : KVM_S390_AIS_MODE_SINGLE :
				       KVM_S390_AIS_MODE_ALL, req.mode);

	mutex_lock(&fi->ais_lock);
	switch (req.mode) {
	case KVM_S390_AIS_MODE_ALL:
		fi->simm &= ~AIS_MODE_MASK(req.isc);
		fi->nimm &= ~AIS_MODE_MASK(req.isc);
		break;
	case KVM_S390_AIS_MODE_SINGLE:
		fi->simm |= AIS_MODE_MASK(req.isc);
		fi->nimm &= ~AIS_MODE_MASK(req.isc);
		break;
	default:
		ret = -EINVAL;
	}
	mutex_unlock(&fi->ais_lock);

	return ret;
}

2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
static int kvm_s390_inject_airq(struct kvm *kvm,
				struct s390_io_adapter *adapter)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	struct kvm_s390_interrupt s390int = {
		.type = KVM_S390_INT_IO(1, 0, 0, 0),
		.parm = 0,
		.parm64 = (adapter->isc << 27) | 0x80000000,
	};
	int ret = 0;

2243
	if (!test_kvm_facility(kvm, 72) || !adapter->suppressible)
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
		return kvm_s390_inject_vm(kvm, &s390int);

	mutex_lock(&fi->ais_lock);
	if (fi->nimm & AIS_MODE_MASK(adapter->isc)) {
		trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc);
		goto out;
	}

	ret = kvm_s390_inject_vm(kvm, &s390int);
	if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) {
		fi->nimm |= AIS_MODE_MASK(adapter->isc);
		trace_kvm_s390_modify_ais_mode(adapter->isc,
					       KVM_S390_AIS_MODE_SINGLE, 2);
	}
out:
	mutex_unlock(&fi->ais_lock);
	return ret;
}

static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr)
{
	unsigned int id = attr->attr;
	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);

	if (!adapter)
		return -EINVAL;

	return kvm_s390_inject_airq(kvm, adapter);
}

Y
Yi Min Zhao 已提交
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	struct kvm_s390_ais_all ais;

	if (!test_kvm_facility(kvm, 72))
		return -ENOTSUPP;

	if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais)))
		return -EFAULT;

	mutex_lock(&fi->ais_lock);
	fi->simm = ais.simm;
	fi->nimm = ais.nimm;
	mutex_unlock(&fi->ais_lock);

	return 0;
}

2293 2294 2295
static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
	int r = 0;
2296 2297
	unsigned int i;
	struct kvm_vcpu *vcpu;
2298 2299 2300 2301 2302 2303

	switch (attr->group) {
	case KVM_DEV_FLIC_ENQUEUE:
		r = enqueue_floating_irq(dev, attr);
		break;
	case KVM_DEV_FLIC_CLEAR_IRQS:
2304
		kvm_s390_clear_float_irqs(dev->kvm);
2305
		break;
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
	case KVM_DEV_FLIC_APF_ENABLE:
		dev->kvm->arch.gmap->pfault_enabled = 1;
		break;
	case KVM_DEV_FLIC_APF_DISABLE_WAIT:
		dev->kvm->arch.gmap->pfault_enabled = 0;
		/*
		 * Make sure no async faults are in transition when
		 * clearing the queues. So we don't need to worry
		 * about late coming workers.
		 */
		synchronize_srcu(&dev->kvm->srcu);
		kvm_for_each_vcpu(i, vcpu, dev->kvm)
			kvm_clear_async_pf_completion_queue(vcpu);
		break;
2320 2321 2322 2323 2324 2325
	case KVM_DEV_FLIC_ADAPTER_REGISTER:
		r = register_io_adapter(dev, attr);
		break;
	case KVM_DEV_FLIC_ADAPTER_MODIFY:
		r = modify_io_adapter(dev, attr);
		break;
2326 2327 2328
	case KVM_DEV_FLIC_CLEAR_IO_IRQ:
		r = clear_io_irq(dev->kvm, attr);
		break;
2329 2330 2331
	case KVM_DEV_FLIC_AISM:
		r = modify_ais_mode(dev->kvm, attr);
		break;
2332 2333 2334
	case KVM_DEV_FLIC_AIRQ_INJECT:
		r = flic_inject_airq(dev->kvm, attr);
		break;
Y
Yi Min Zhao 已提交
2335 2336 2337
	case KVM_DEV_FLIC_AISM_ALL:
		r = flic_ais_mode_set_all(dev->kvm, attr);
		break;
2338 2339 2340 2341 2342 2343 2344
	default:
		r = -EINVAL;
	}

	return r;
}

2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
static int flic_has_attr(struct kvm_device *dev,
			     struct kvm_device_attr *attr)
{
	switch (attr->group) {
	case KVM_DEV_FLIC_GET_ALL_IRQS:
	case KVM_DEV_FLIC_ENQUEUE:
	case KVM_DEV_FLIC_CLEAR_IRQS:
	case KVM_DEV_FLIC_APF_ENABLE:
	case KVM_DEV_FLIC_APF_DISABLE_WAIT:
	case KVM_DEV_FLIC_ADAPTER_REGISTER:
	case KVM_DEV_FLIC_ADAPTER_MODIFY:
2356
	case KVM_DEV_FLIC_CLEAR_IO_IRQ:
2357
	case KVM_DEV_FLIC_AISM:
2358
	case KVM_DEV_FLIC_AIRQ_INJECT:
Y
Yi Min Zhao 已提交
2359
	case KVM_DEV_FLIC_AISM_ALL:
2360 2361 2362 2363 2364
		return 0;
	}
	return -ENXIO;
}

2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
static int flic_create(struct kvm_device *dev, u32 type)
{
	if (!dev)
		return -EINVAL;
	if (dev->kvm->arch.flic)
		return -EINVAL;
	dev->kvm->arch.flic = dev;
	return 0;
}

static void flic_destroy(struct kvm_device *dev)
{
	dev->kvm->arch.flic = NULL;
	kfree(dev);
}

/* s390 floating irq controller (flic) */
struct kvm_device_ops kvm_flic_ops = {
	.name = "kvm-flic",
	.get_attr = flic_get_attr,
	.set_attr = flic_set_attr,
2386
	.has_attr = flic_has_attr,
2387 2388 2389
	.create = flic_create,
	.destroy = flic_destroy,
};
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469

static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
{
	unsigned long bit;

	bit = bit_nr + (addr % PAGE_SIZE) * 8;

	return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
}

static struct s390_map_info *get_map_info(struct s390_io_adapter *adapter,
					  u64 addr)
{
	struct s390_map_info *map;

	if (!adapter)
		return NULL;

	list_for_each_entry(map, &adapter->maps, list) {
		if (map->guest_addr == addr)
			return map;
	}
	return NULL;
}

static int adapter_indicators_set(struct kvm *kvm,
				  struct s390_io_adapter *adapter,
				  struct kvm_s390_adapter_int *adapter_int)
{
	unsigned long bit;
	int summary_set, idx;
	struct s390_map_info *info;
	void *map;

	info = get_map_info(adapter, adapter_int->ind_addr);
	if (!info)
		return -1;
	map = page_address(info->page);
	bit = get_ind_bit(info->addr, adapter_int->ind_offset, adapter->swap);
	set_bit(bit, map);
	idx = srcu_read_lock(&kvm->srcu);
	mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
	set_page_dirty_lock(info->page);
	info = get_map_info(adapter, adapter_int->summary_addr);
	if (!info) {
		srcu_read_unlock(&kvm->srcu, idx);
		return -1;
	}
	map = page_address(info->page);
	bit = get_ind_bit(info->addr, adapter_int->summary_offset,
			  adapter->swap);
	summary_set = test_and_set_bit(bit, map);
	mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
	set_page_dirty_lock(info->page);
	srcu_read_unlock(&kvm->srcu, idx);
	return summary_set ? 0 : 1;
}

/*
 * < 0 - not injected due to error
 * = 0 - coalesced, summary indicator already active
 * > 0 - injected interrupt
 */
static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
			   struct kvm *kvm, int irq_source_id, int level,
			   bool line_status)
{
	int ret;
	struct s390_io_adapter *adapter;

	/* We're only interested in the 0->1 transition. */
	if (!level)
		return 0;
	adapter = get_io_adapter(kvm, e->adapter.adapter_id);
	if (!adapter)
		return -1;
	down_read(&adapter->maps_lock);
	ret = adapter_indicators_set(kvm, adapter, &e->adapter);
	up_read(&adapter->maps_lock);
	if ((ret > 0) && !adapter->masked) {
2470
		ret = kvm_s390_inject_airq(kvm, adapter);
2471 2472 2473 2474 2475 2476
		if (ret == 0)
			ret = 1;
	}
	return ret;
}

2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
/*
 * Inject the machine check to the guest.
 */
void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu,
				     struct mcck_volatile_info *mcck_info)
{
	struct kvm_s390_interrupt_info inti;
	struct kvm_s390_irq irq;
	struct kvm_s390_mchk_info *mchk;
	union mci mci;
	__u64 cr14 = 0;         /* upper bits are not used */
2488
	int rc;
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505

	mci.val = mcck_info->mcic;
	if (mci.sr)
		cr14 |= MCCK_CR14_RECOVERY_SUB_MASK;
	if (mci.dg)
		cr14 |= MCCK_CR14_DEGRAD_SUB_MASK;
	if (mci.w)
		cr14 |= MCCK_CR14_WARN_SUB_MASK;

	mchk = mci.ck ? &inti.mchk : &irq.u.mchk;
	mchk->cr14 = cr14;
	mchk->mcic = mcck_info->mcic;
	mchk->ext_damage_code = mcck_info->ext_damage_code;
	mchk->failing_storage_address = mcck_info->failing_storage_address;
	if (mci.ck) {
		/* Inject the floating machine check */
		inti.type = KVM_S390_MCHK;
2506
		rc = __inject_vm(vcpu->kvm, &inti);
2507 2508 2509
	} else {
		/* Inject the machine check to specified vcpu */
		irq.type = KVM_S390_MCHK;
2510
		rc = kvm_s390_inject_vcpu(vcpu, &irq);
2511
	}
2512
	WARN_ON_ONCE(rc);
2513 2514
}

2515 2516
int kvm_set_routing_entry(struct kvm *kvm,
			  struct kvm_kernel_irq_routing_entry *e,
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
			  const struct kvm_irq_routing_entry *ue)
{
	int ret;

	switch (ue->type) {
	case KVM_IRQ_ROUTING_S390_ADAPTER:
		e->set = set_adapter_int;
		e->adapter.summary_addr = ue->u.adapter.summary_addr;
		e->adapter.ind_addr = ue->u.adapter.ind_addr;
		e->adapter.summary_offset = ue->u.adapter.summary_offset;
		e->adapter.ind_offset = ue->u.adapter.ind_offset;
		e->adapter.adapter_id = ue->u.adapter.adapter_id;
		ret = 0;
		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
		int irq_source_id, int level, bool line_status)
{
	return -EINVAL;
}
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627

int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_irq *buf;
	int r = 0;
	int n;

	buf = vmalloc(len);
	if (!buf)
		return -ENOMEM;

	if (copy_from_user((void *) buf, irqstate, len)) {
		r = -EFAULT;
		goto out_free;
	}

	/*
	 * Don't allow setting the interrupt state
	 * when there are already interrupts pending
	 */
	spin_lock(&li->lock);
	if (li->pending_irqs) {
		r = -EBUSY;
		goto out_unlock;
	}

	for (n = 0; n < len / sizeof(*buf); n++) {
		r = do_inject_vcpu(vcpu, &buf[n]);
		if (r)
			break;
	}

out_unlock:
	spin_unlock(&li->lock);
out_free:
	vfree(buf);

	return r;
}

static void store_local_irq(struct kvm_s390_local_interrupt *li,
			    struct kvm_s390_irq *irq,
			    unsigned long irq_type)
{
	switch (irq_type) {
	case IRQ_PEND_MCHK_EX:
	case IRQ_PEND_MCHK_REP:
		irq->type = KVM_S390_MCHK;
		irq->u.mchk = li->irq.mchk;
		break;
	case IRQ_PEND_PROG:
		irq->type = KVM_S390_PROGRAM_INT;
		irq->u.pgm = li->irq.pgm;
		break;
	case IRQ_PEND_PFAULT_INIT:
		irq->type = KVM_S390_INT_PFAULT_INIT;
		irq->u.ext = li->irq.ext;
		break;
	case IRQ_PEND_EXT_EXTERNAL:
		irq->type = KVM_S390_INT_EXTERNAL_CALL;
		irq->u.extcall = li->irq.extcall;
		break;
	case IRQ_PEND_EXT_CLOCK_COMP:
		irq->type = KVM_S390_INT_CLOCK_COMP;
		break;
	case IRQ_PEND_EXT_CPU_TIMER:
		irq->type = KVM_S390_INT_CPU_TIMER;
		break;
	case IRQ_PEND_SIGP_STOP:
		irq->type = KVM_S390_SIGP_STOP;
		irq->u.stop = li->irq.stop;
		break;
	case IRQ_PEND_RESTART:
		irq->type = KVM_S390_RESTART;
		break;
	case IRQ_PEND_SET_PREFIX:
		irq->type = KVM_S390_SIGP_SET_PREFIX;
		irq->u.prefix = li->irq.prefix;
		break;
	}
}

int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len)
{
2628
	int scn;
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
	unsigned long sigp_emerg_pending[BITS_TO_LONGS(KVM_MAX_VCPUS)];
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	unsigned long pending_irqs;
	struct kvm_s390_irq irq;
	unsigned long irq_type;
	int cpuaddr;
	int n = 0;

	spin_lock(&li->lock);
	pending_irqs = li->pending_irqs;
	memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending,
	       sizeof(sigp_emerg_pending));
	spin_unlock(&li->lock);

	for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) {
		memset(&irq, 0, sizeof(irq));
		if (irq_type == IRQ_PEND_EXT_EMERGENCY)
			continue;
		if (n + sizeof(irq) > len)
			return -ENOBUFS;
		store_local_irq(&vcpu->arch.local_int, &irq, irq_type);
		if (copy_to_user(&buf[n], &irq, sizeof(irq)))
			return -EFAULT;
		n += sizeof(irq);
	}

	if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) {
		for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) {
			memset(&irq, 0, sizeof(irq));
			if (n + sizeof(irq) > len)
				return -ENOBUFS;
			irq.type = KVM_S390_INT_EMERGENCY;
			irq.u.emerg.code = cpuaddr;
			if (copy_to_user(&buf[n], &irq, sizeof(irq)))
				return -EFAULT;
			n += sizeof(irq);
		}
	}

2668
	if (sca_ext_call_pending(vcpu, &scn)) {
2669 2670 2671 2672
		if (n + sizeof(irq) > len)
			return -ENOBUFS;
		memset(&irq, 0, sizeof(irq));
		irq.type = KVM_S390_INT_EXTERNAL_CALL;
2673
		irq.u.extcall.code = scn;
2674 2675 2676 2677 2678 2679 2680
		if (copy_to_user(&buf[n], &irq, sizeof(irq)))
			return -EFAULT;
		n += sizeof(irq);
	}

	return n;
}