interrupt.c 65.4 KB
Newer Older
1
/*
2
 * handling kvm guest interrupts
3
 *
4
 * Copyright IBM Corp. 2008, 2015
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 */

13
#include <linux/interrupt.h>
14
#include <linux/kvm_host.h>
15
#include <linux/hrtimer.h>
16
#include <linux/mmu_context.h>
17
#include <linux/signal.h>
18
#include <linux/slab.h>
19
#include <linux/bitmap.h>
20
#include <linux/vmalloc.h>
21
#include <asm/asm-offsets.h>
22
#include <asm/dis.h>
23
#include <asm/uaccess.h>
24
#include <asm/sclp.h>
25
#include <asm/isc.h>
26
#include <asm/gmap.h>
27
#include <asm/switch_to.h>
28
#include <asm/nmi.h>
29 30
#include "kvm-s390.h"
#include "gaccess.h"
31
#include "trace-s390.h"
32

33
#define PFAULT_INIT 0x0600
34 35
#define PFAULT_DONE 0x0680
#define VIRTIO_PARAM 0x0d00
36

37 38 39
/* handle external calls via sigp interpretation facility */
static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id)
{
40 41
	int c, scn;

42 43 44
	if (!(atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_ECALL_PEND))
		return 0;

45
	read_lock(&vcpu->kvm->arch.sca_lock);
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
		union esca_sigp_ctrl sigp_ctrl =
			sca->cpu[vcpu->vcpu_id].sigp_ctrl;

		c = sigp_ctrl.c;
		scn = sigp_ctrl.scn;
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;
		union bsca_sigp_ctrl sigp_ctrl =
			sca->cpu[vcpu->vcpu_id].sigp_ctrl;

		c = sigp_ctrl.c;
		scn = sigp_ctrl.scn;
	}
61
	read_unlock(&vcpu->kvm->arch.sca_lock);
62 63

	if (src_id)
64
		*src_id = scn;
65

66
	return c;
67 68 69 70
}

static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id)
{
71
	int expect, rc;
72

73
	read_lock(&vcpu->kvm->arch.sca_lock);
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
		union esca_sigp_ctrl *sigp_ctrl =
			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
		union esca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;

		new_val.scn = src_id;
		new_val.c = 1;
		old_val.c = 0;

		expect = old_val.value;
		rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;
		union bsca_sigp_ctrl *sigp_ctrl =
			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
		union bsca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
91

92 93 94 95 96 97 98
		new_val.scn = src_id;
		new_val.c = 1;
		old_val.c = 0;

		expect = old_val.value;
		rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
	}
99
	read_unlock(&vcpu->kvm->arch.sca_lock);
100 101

	if (rc != expect) {
102 103 104 105 106 107 108 109 110 111
		/* another external call is pending */
		return -EBUSY;
	}
	atomic_or(CPUSTAT_ECALL_PEND, &vcpu->arch.sie_block->cpuflags);
	return 0;
}

static void sca_clear_ext_call(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
112
	int rc, expect;
113 114

	atomic_andnot(CPUSTAT_ECALL_PEND, li->cpuflags);
115
	read_lock(&vcpu->kvm->arch.sca_lock);
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
		union esca_sigp_ctrl *sigp_ctrl =
			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
		union esca_sigp_ctrl old = *sigp_ctrl;

		expect = old.value;
		rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;
		union bsca_sigp_ctrl *sigp_ctrl =
			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
		union bsca_sigp_ctrl old = *sigp_ctrl;

		expect = old.value;
		rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
	}
133
	read_unlock(&vcpu->kvm->arch.sca_lock);
134
	WARN_ON(rc != expect); /* cannot clear? */
135 136
}

137
int psw_extint_disabled(struct kvm_vcpu *vcpu)
138 139 140 141
{
	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
}

142 143 144 145 146
static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
{
	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
}

147 148 149 150 151
static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
{
	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
}

152 153
static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
{
154 155 156
	return psw_extint_disabled(vcpu) &&
	       psw_ioint_disabled(vcpu) &&
	       psw_mchk_disabled(vcpu);
157 158
}

159 160 161 162 163
static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
{
	if (psw_extint_disabled(vcpu) ||
	    !(vcpu->arch.sie_block->gcr[0] & 0x800ul))
		return 0;
164 165 166
	if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
		/* No timer interrupts when single stepping */
		return 0;
167 168 169
	return 1;
}

170 171
static int ckc_irq_pending(struct kvm_vcpu *vcpu)
{
172
	if (vcpu->arch.sie_block->ckc >= kvm_s390_get_tod_clock_fast(vcpu->kvm))
173 174 175 176 177 178 179 180 181 182 183 184
		return 0;
	return ckc_interrupts_enabled(vcpu);
}

static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu)
{
	return !psw_extint_disabled(vcpu) &&
	       (vcpu->arch.sie_block->gcr[0] & 0x400ul);
}

static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu)
{
185 186 187
	if (!cpu_timer_interrupts_enabled(vcpu))
		return 0;
	return kvm_s390_get_cpu_timer(vcpu) >> 63;
188 189
}

190
static inline int is_ioirq(unsigned long irq_type)
C
Cornelia Huck 已提交
191
{
192 193 194
	return ((irq_type >= IRQ_PEND_IO_ISC_0) &&
		(irq_type <= IRQ_PEND_IO_ISC_7));
}
C
Cornelia Huck 已提交
195

196 197
static uint64_t isc_to_isc_bits(int isc)
{
C
Cornelia Huck 已提交
198 199 200
	return (0x80 >> isc) << 24;
}

201
static inline u8 int_word_to_isc(u32 int_word)
202
{
203 204 205
	return (int_word & 0x38000000) >> 27;
}

206
static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu)
207
{
208 209
	return vcpu->kvm->arch.float_int.pending_irqs |
	       vcpu->arch.local_int.pending_irqs;
210 211
}

212 213 214 215 216 217 218 219 220 221 222 223 224
static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
				   unsigned long active_mask)
{
	int i;

	for (i = 0; i <= MAX_ISC; i++)
		if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
			active_mask &= ~(1UL << (IRQ_PEND_IO_ISC_0 + i));

	return active_mask;
}

static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
225
{
226 227
	unsigned long active_mask;

228
	active_mask = pending_irqs(vcpu);
229 230
	if (!active_mask)
		return 0;
231 232 233

	if (psw_extint_disabled(vcpu))
		active_mask &= ~IRQ_PEND_EXT_MASK;
234 235 236 237
	if (psw_ioint_disabled(vcpu))
		active_mask &= ~IRQ_PEND_IO_MASK;
	else
		active_mask = disable_iscs(vcpu, active_mask);
238 239 240 241 242 243 244 245
	if (!(vcpu->arch.sie_block->gcr[0] & 0x2000ul))
		__clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
	if (!(vcpu->arch.sie_block->gcr[0] & 0x4000ul))
		__clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
	if (!(vcpu->arch.sie_block->gcr[0] & 0x800ul))
		__clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
	if (!(vcpu->arch.sie_block->gcr[0] & 0x400ul))
		__clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
246 247
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		__clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
248 249
	if (psw_mchk_disabled(vcpu))
		active_mask &= ~IRQ_PEND_MCHK_MASK;
250 251 252
	if (!(vcpu->arch.sie_block->gcr[14] &
	      vcpu->kvm->arch.float_int.mchk.cr14))
		__clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
253

254 255 256 257 258 259
	/*
	 * STOP irqs will never be actively delivered. They are triggered via
	 * intercept requests and cleared when the stop intercept is performed.
	 */
	__clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);

260 261 262
	return active_mask;
}

263 264
static void __set_cpu_idle(struct kvm_vcpu *vcpu)
{
265
	atomic_or(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
266 267 268 269 270
	set_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
}

static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
{
271
	atomic_andnot(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
272 273 274 275 276
	clear_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
}

static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
{
277 278
	atomic_andnot(CPUSTAT_IO_INT | CPUSTAT_EXT_INT | CPUSTAT_STOP_INT,
		    &vcpu->arch.sie_block->cpuflags);
279
	vcpu->arch.sie_block->lctl = 0x0000;
280 281 282 283 284 285 286
	vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);

	if (guestdbg_enabled(vcpu)) {
		vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
					       LCTL_CR10 | LCTL_CR11);
		vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
	}
287 288 289 290
}

static void __set_cpuflag(struct kvm_vcpu *vcpu, u32 flag)
{
291
	atomic_or(flag, &vcpu->arch.sie_block->cpuflags);
292 293
}

294 295
static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
{
296
	if (!(pending_irqs(vcpu) & IRQ_PEND_IO_MASK))
297 298 299 300 301 302 303
		return;
	else if (psw_ioint_disabled(vcpu))
		__set_cpuflag(vcpu, CPUSTAT_IO_INT);
	else
		vcpu->arch.sie_block->lctl |= LCTL_CR6;
}

304 305
static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
{
306
	if (!(pending_irqs(vcpu) & IRQ_PEND_EXT_MASK))
307 308 309 310 311 312 313 314 315
		return;
	if (psw_extint_disabled(vcpu))
		__set_cpuflag(vcpu, CPUSTAT_EXT_INT);
	else
		vcpu->arch.sie_block->lctl |= LCTL_CR0;
}

static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
{
316
	if (!(pending_irqs(vcpu) & IRQ_PEND_MCHK_MASK))
317 318 319 320 321 322 323
		return;
	if (psw_mchk_disabled(vcpu))
		vcpu->arch.sie_block->ictl |= ICTL_LPSW;
	else
		vcpu->arch.sie_block->lctl |= LCTL_CR14;
}

324 325 326 327 328 329
static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
{
	if (kvm_s390_is_stop_irq_pending(vcpu))
		__set_cpuflag(vcpu, CPUSTAT_STOP_INT);
}

330 331
/* Set interception request for non-deliverable interrupts */
static void set_intercept_indicators(struct kvm_vcpu *vcpu)
332
{
333
	set_intercept_indicators_io(vcpu);
334 335
	set_intercept_indicators_ext(vcpu);
	set_intercept_indicators_mchk(vcpu);
336
	set_intercept_indicators_stop(vcpu);
337 338
}

339 340
static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
{
341
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
342 343 344 345 346 347 348
	int rc;

	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
					 0, 0);

	rc  = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
			   (u16 *)__LC_EXT_INT_CODE);
349
	rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
350 351 352 353
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
354
	clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
355
	return rc ? -EFAULT : 0;
356 357 358 359
}

static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
{
360
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
361 362 363 364 365 366 367
	int rc;

	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
					 0, 0);

	rc  = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
			   (u16 __user *)__LC_EXT_INT_CODE);
368
	rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
369 370 371 372
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
373
	clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
374
	return rc ? -EFAULT : 0;
375 376
}

377
static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
378
{
379 380
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_ext_info ext;
381 382
	int rc;

383 384 385 386 387 388
	spin_lock(&li->lock);
	ext = li->irq.ext;
	clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
	li->irq.ext.ext_params2 = 0;
	spin_unlock(&li->lock);

389 390
	VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx",
		   ext.ext_params2);
391 392
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
					 KVM_S390_INT_PFAULT_INIT,
393
					 0, ext.ext_params2);
394 395 396 397 398 399 400

	rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
	rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
401
	rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
402
	return rc ? -EFAULT : 0;
403 404
}

405 406 407 408
static int __write_machine_check(struct kvm_vcpu *vcpu,
				 struct kvm_s390_mchk_info *mchk)
{
	unsigned long ext_sa_addr;
409
	freg_t fprs[NUM_FPRS];
410
	union mci mci;
411 412
	int rc;

413
	mci.val = mchk->mcic;
414 415 416 417
	/* take care of lazy register loading via vcpu load/put */
	save_fpu_regs();
	save_access_regs(vcpu->run->s.regs.acrs);

418 419 420
	/* Extended save area */
	rc = read_guest_lc(vcpu, __LC_VX_SAVE_AREA_ADDR, &ext_sa_addr,
			    sizeof(unsigned long));
421 422 423 424 425 426 427 428 429
	/* Only bits 0-53 are used for address formation */
	ext_sa_addr &= ~0x3ffUL;
	if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) {
		if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs,
				    512))
			mci.vr = 0;
	} else {
		mci.vr = 0;
	}
430 431

	/* General interruption information */
432
	rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID);
433 434 435 436
	rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
437
	rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE);
438 439

	/* Register-save areas */
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
	if (MACHINE_HAS_VX) {
		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
		rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128);
	} else {
		rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA,
				     vcpu->run->s.regs.fprs, 128);
	}
	rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA,
			     vcpu->run->s.regs.gprs, 128);
	rc |= put_guest_lc(vcpu, current->thread.fpu.fpc,
			   (u32 __user *) __LC_FP_CREG_SAVE_AREA);
	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr,
			   (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA);
	rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu),
			   (u64 __user *) __LC_CPU_TIMER_SAVE_AREA);
	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8,
			   (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA);
	rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA,
			     &vcpu->run->s.regs.acrs, 64);
	rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA,
			     &vcpu->arch.sie_block->gcr, 128);
461 462

	/* Extended interruption information */
463 464
	rc |= put_guest_lc(vcpu, mchk->ext_damage_code,
			   (u32 __user *) __LC_EXT_DAMAGE_CODE);
465 466 467 468 469 470 471
	rc |= put_guest_lc(vcpu, mchk->failing_storage_address,
			   (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
	rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout,
			     sizeof(mchk->fixed_logout));
	return rc ? -EFAULT : 0;
}

472
static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
473
{
474
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
475
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
476 477 478
	struct kvm_s390_mchk_info mchk = {};
	int deliver = 0;
	int rc = 0;
479

480
	spin_lock(&fi->lock);
481
	spin_lock(&li->lock);
482 483 484 485 486 487 488 489 490 491 492 493 494 495
	if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
	    test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
		/*
		 * If there was an exigent machine check pending, then any
		 * repressible machine checks that might have been pending
		 * are indicated along with it, so always clear bits for
		 * repressible and exigent interrupts
		 */
		mchk = li->irq.mchk;
		clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
		clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
		memset(&li->irq.mchk, 0, sizeof(mchk));
		deliver = 1;
	}
496
	/*
497 498 499 500
	 * We indicate floating repressible conditions along with
	 * other pending conditions. Channel Report Pending and Channel
	 * Subsystem damage are the only two and and are indicated by
	 * bits in mcic and masked in cr14.
501
	 */
502 503 504 505 506 507
	if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
		mchk.mcic |= fi->mchk.mcic;
		mchk.cr14 |= fi->mchk.cr14;
		memset(&fi->mchk, 0, sizeof(mchk));
		deliver = 1;
	}
508
	spin_unlock(&li->lock);
509
	spin_unlock(&fi->lock);
510

511
	if (deliver) {
512
		VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx",
513 514 515 516
			   mchk.mcic);
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
						 KVM_S390_MCHK,
						 mchk.cr14, mchk.mcic);
517
		rc = __write_machine_check(vcpu, &mchk);
518
	}
519
	return rc;
520 521 522 523
}

static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
{
524
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
525 526
	int rc;

527
	VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart");
528 529 530 531
	vcpu->stat.deliver_restart_signal++;
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);

	rc  = write_guest_lc(vcpu,
532
			     offsetof(struct lowcore, restart_old_psw),
533
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
534
	rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw),
535
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
536
	clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
537
	return rc ? -EFAULT : 0;
538 539
}

540
static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
541
{
542 543 544 545 546 547 548 549
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_prefix_info prefix;

	spin_lock(&li->lock);
	prefix = li->irq.prefix;
	li->irq.prefix.address = 0;
	clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
	spin_unlock(&li->lock);
550 551 552 553

	vcpu->stat.deliver_prefix_signal++;
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
					 KVM_S390_SIGP_SET_PREFIX,
554
					 prefix.address, 0);
555

556
	kvm_s390_set_prefix(vcpu, prefix.address);
557 558 559
	return 0;
}

560
static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
561
{
562
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
563
	int rc;
564 565 566 567 568 569 570 571
	int cpu_addr;

	spin_lock(&li->lock);
	cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
	clear_bit(cpu_addr, li->sigp_emerg_pending);
	if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
		clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
	spin_unlock(&li->lock);
572

573
	VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg");
574
	vcpu->stat.deliver_emergency_signal++;
575 576
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
					 cpu_addr, 0);
577 578 579

	rc  = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
			   (u16 *)__LC_EXT_INT_CODE);
580
	rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
581 582 583 584
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
585
	return rc ? -EFAULT : 0;
586 587
}

588
static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
589
{
590 591
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_extcall_info extcall;
592 593
	int rc;

594 595 596 597 598 599
	spin_lock(&li->lock);
	extcall = li->irq.extcall;
	li->irq.extcall.code = 0;
	clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
	spin_unlock(&li->lock);

600
	VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call");
601 602 603
	vcpu->stat.deliver_external_call++;
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
					 KVM_S390_INT_EXTERNAL_CALL,
604
					 extcall.code, 0);
605 606 607

	rc  = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
			   (u16 *)__LC_EXT_INT_CODE);
608
	rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
609 610 611 612
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
			    sizeof(psw_t));
613
	return rc ? -EFAULT : 0;
614 615
}

616
static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
617
{
618 619
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_pgm_info pgm_info;
620
	int rc = 0, nullifying = false;
621
	u16 ilen;
622

623 624 625 626 627 628
	spin_lock(&li->lock);
	pgm_info = li->irq.pgm;
	clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
	memset(&li->irq.pgm, 0, sizeof(pgm_info));
	spin_unlock(&li->lock);

629
	ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK;
630 631
	VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d",
		   pgm_info.code, ilen);
632 633
	vcpu->stat.deliver_program_int++;
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
634
					 pgm_info.code, 0);
635

636
	switch (pgm_info.code & ~PGM_PER) {
637 638 639 640 641 642 643 644 645
	case PGM_AFX_TRANSLATION:
	case PGM_ASX_TRANSLATION:
	case PGM_EX_TRANSLATION:
	case PGM_LFX_TRANSLATION:
	case PGM_LSTE_SEQUENCE:
	case PGM_LSX_TRANSLATION:
	case PGM_LX_TRANSLATION:
	case PGM_PRIMARY_AUTHORITY:
	case PGM_SECONDARY_AUTHORITY:
646 647
		nullifying = true;
		/* fall through */
648
	case PGM_SPACE_SWITCH:
649
		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
650 651 652 653 654 655 656 657
				  (u64 *)__LC_TRANS_EXC_CODE);
		break;
	case PGM_ALEN_TRANSLATION:
	case PGM_ALE_SEQUENCE:
	case PGM_ASTE_INSTANCE:
	case PGM_ASTE_SEQUENCE:
	case PGM_ASTE_VALIDITY:
	case PGM_EXTENDED_AUTHORITY:
658
		rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
659
				  (u8 *)__LC_EXC_ACCESS_ID);
660
		nullifying = true;
661 662 663 664 665 666 667
		break;
	case PGM_ASCE_TYPE:
	case PGM_PAGE_TRANSLATION:
	case PGM_REGION_FIRST_TRANS:
	case PGM_REGION_SECOND_TRANS:
	case PGM_REGION_THIRD_TRANS:
	case PGM_SEGMENT_TRANSLATION:
668
		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
669
				  (u64 *)__LC_TRANS_EXC_CODE);
670
		rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
671
				   (u8 *)__LC_EXC_ACCESS_ID);
672
		rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
673
				   (u8 *)__LC_OP_ACCESS_ID);
674
		nullifying = true;
675 676
		break;
	case PGM_MONITOR:
677
		rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
678
				  (u16 *)__LC_MON_CLASS_NR);
679
		rc |= put_guest_lc(vcpu, pgm_info.mon_code,
680 681
				   (u64 *)__LC_MON_CODE);
		break;
E
Eric Farman 已提交
682
	case PGM_VECTOR_PROCESSING:
683
	case PGM_DATA:
684
		rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
685 686 687
				  (u32 *)__LC_DATA_EXC_CODE);
		break;
	case PGM_PROTECTION:
688
		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
689
				  (u64 *)__LC_TRANS_EXC_CODE);
690
		rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
691 692
				   (u8 *)__LC_EXC_ACCESS_ID);
		break;
693 694 695 696 697 698 699 700 701
	case PGM_STACK_FULL:
	case PGM_STACK_EMPTY:
	case PGM_STACK_SPECIFICATION:
	case PGM_STACK_TYPE:
	case PGM_STACK_OPERATION:
	case PGM_TRACE_TABEL:
	case PGM_CRYPTO_OPERATION:
		nullifying = true;
		break;
702 703
	}

704 705
	if (pgm_info.code & PGM_PER) {
		rc |= put_guest_lc(vcpu, pgm_info.per_code,
706
				   (u8 *) __LC_PER_CODE);
707
		rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
708
				   (u8 *)__LC_PER_ATMID);
709
		rc |= put_guest_lc(vcpu, pgm_info.per_address,
710
				   (u64 *) __LC_PER_ADDRESS);
711
		rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
712 713 714
				   (u8 *) __LC_PER_ACCESS_ID);
	}

715
	if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND))
716
		kvm_s390_rewind_psw(vcpu, ilen);
717

718 719
	/* bit 1+2 of the target are the ilc, so we can directly use ilen */
	rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC);
720 721
	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
				 (u64 *) __LC_LAST_BREAK);
722
	rc |= put_guest_lc(vcpu, pgm_info.code,
723 724 725 726 727
			   (u16 *)__LC_PGM_INT_CODE);
	rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
728
	return rc ? -EFAULT : 0;
729 730
}

731
static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
732
{
733 734 735 736 737 738 739 740 741 742 743 744 745
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
	struct kvm_s390_ext_info ext;
	int rc = 0;

	spin_lock(&fi->lock);
	if (!(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
		spin_unlock(&fi->lock);
		return 0;
	}
	ext = fi->srv_signal;
	memset(&fi->srv_signal, 0, sizeof(ext));
	clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
	spin_unlock(&fi->lock);
746

747
	VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x",
748
		   ext.ext_params);
749
	vcpu->stat.deliver_service_signal++;
750 751
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
					 ext.ext_params, 0);
752 753

	rc  = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
754
	rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
755 756 757 758
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
759
	rc |= put_guest_lc(vcpu, ext.ext_params,
760
			   (u32 *)__LC_EXT_PARAMS);
761

762
	return rc ? -EFAULT : 0;
763 764
}

765
static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
766
{
767 768 769
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
	struct kvm_s390_interrupt_info *inti;
	int rc = 0;
770

771 772 773 774 775 776 777 778 779 780 781
	spin_lock(&fi->lock);
	inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
					struct kvm_s390_interrupt_info,
					list);
	if (inti) {
		list_del(&inti->list);
		fi->counters[FIRQ_CNTR_PFAULT] -= 1;
	}
	if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
		clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
	spin_unlock(&fi->lock);
782

783
	if (inti) {
784 785 786 787 788 789
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
						 KVM_S390_INT_PFAULT_DONE, 0,
						 inti->ext.ext_params2);
		VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx",
			   inti->ext.ext_params2);

790 791 792 793 794 795 796 797 798 799 800 801 802 803
		rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
				(u16 *)__LC_EXT_INT_CODE);
		rc |= put_guest_lc(vcpu, PFAULT_DONE,
				(u16 *)__LC_EXT_CPU_ADDR);
		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
				(u64 *)__LC_EXT_PARAMS2);
		kfree(inti);
	}
804
	return rc ? -EFAULT : 0;
805 806
}

807
static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
808
{
809 810 811
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
	struct kvm_s390_interrupt_info *inti;
	int rc = 0;
812

813 814 815 816 817 818
	spin_lock(&fi->lock);
	inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
					struct kvm_s390_interrupt_info,
					list);
	if (inti) {
		VCPU_EVENT(vcpu, 4,
819
			   "deliver: virtio parm: 0x%x,parm64: 0x%llx",
820 821 822 823 824 825 826 827 828 829 830 831
			   inti->ext.ext_params, inti->ext.ext_params2);
		vcpu->stat.deliver_virtio_interrupt++;
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
				inti->type,
				inti->ext.ext_params,
				inti->ext.ext_params2);
		list_del(&inti->list);
		fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
	}
	if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
		clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
	spin_unlock(&fi->lock);
832

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
	if (inti) {
		rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
				(u16 *)__LC_EXT_INT_CODE);
		rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
				(u16 *)__LC_EXT_CPU_ADDR);
		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= put_guest_lc(vcpu, inti->ext.ext_params,
				(u32 *)__LC_EXT_PARAMS);
		rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
				(u64 *)__LC_EXT_PARAMS2);
		kfree(inti);
	}
850
	return rc ? -EFAULT : 0;
851 852 853
}

static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
854
				     unsigned long irq_type)
855
{
856 857 858 859
	struct list_head *isc_list;
	struct kvm_s390_float_interrupt *fi;
	struct kvm_s390_interrupt_info *inti = NULL;
	int rc = 0;
860

861
	fi = &vcpu->kvm->arch.float_int;
862

863 864 865 866 867 868
	spin_lock(&fi->lock);
	isc_list = &fi->lists[irq_type - IRQ_PEND_IO_ISC_0];
	inti = list_first_entry_or_null(isc_list,
					struct kvm_s390_interrupt_info,
					list);
	if (inti) {
869 870 871 872 873 874 875 876
		if (inti->type & KVM_S390_INT_IO_AI_MASK)
			VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)");
		else
			VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x",
			inti->io.subchannel_id >> 8,
			inti->io.subchannel_id >> 1 & 0x3,
			inti->io.subchannel_nr);

877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
		vcpu->stat.deliver_io_int++;
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
				inti->type,
				((__u32)inti->io.subchannel_id << 16) |
				inti->io.subchannel_nr,
				((__u64)inti->io.io_int_parm << 32) |
				inti->io.io_int_word);
		list_del(&inti->list);
		fi->counters[FIRQ_CNTR_IO] -= 1;
	}
	if (list_empty(isc_list))
		clear_bit(irq_type, &fi->pending_irqs);
	spin_unlock(&fi->lock);

	if (inti) {
		rc  = put_guest_lc(vcpu, inti->io.subchannel_id,
				(u16 *)__LC_SUBCHANNEL_ID);
		rc |= put_guest_lc(vcpu, inti->io.subchannel_nr,
				(u16 *)__LC_SUBCHANNEL_NR);
		rc |= put_guest_lc(vcpu, inti->io.io_int_parm,
				(u32 *)__LC_IO_INT_PARM);
		rc |= put_guest_lc(vcpu, inti->io.io_int_word,
				(u32 *)__LC_IO_INT_WORD);
		rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		kfree(inti);
	}
908

909
	return rc ? -EFAULT : 0;
910 911 912 913 914 915
}

typedef int (*deliver_irq_t)(struct kvm_vcpu *vcpu);

static const deliver_irq_t deliver_irq_funcs[] = {
	[IRQ_PEND_MCHK_EX]        = __deliver_machine_check,
916
	[IRQ_PEND_MCHK_REP]       = __deliver_machine_check,
917 918 919 920 921 922 923 924
	[IRQ_PEND_PROG]           = __deliver_prog,
	[IRQ_PEND_EXT_EMERGENCY]  = __deliver_emergency_signal,
	[IRQ_PEND_EXT_EXTERNAL]   = __deliver_external_call,
	[IRQ_PEND_EXT_CLOCK_COMP] = __deliver_ckc,
	[IRQ_PEND_EXT_CPU_TIMER]  = __deliver_cpu_timer,
	[IRQ_PEND_RESTART]        = __deliver_restart,
	[IRQ_PEND_SET_PREFIX]     = __deliver_set_prefix,
	[IRQ_PEND_PFAULT_INIT]    = __deliver_pfault_init,
925 926 927
	[IRQ_PEND_EXT_SERVICE]    = __deliver_service,
	[IRQ_PEND_PFAULT_DONE]    = __deliver_pfault_done,
	[IRQ_PEND_VIRTIO]         = __deliver_virtio,
928 929
};

930 931
/* Check whether an external call is pending (deliverable or not) */
int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
932
{
933
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
934

935
	if (!sclp.has_sigpif)
936
		return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
937

938
	return sca_ext_call_pending(vcpu, NULL);
939 940
}

941
int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
942
{
943 944
	if (deliverable_irqs(vcpu))
		return 1;
945

946 947
	if (kvm_cpu_has_pending_timer(vcpu))
		return 1;
948

949
	/* external call pending and deliverable */
950
	if (kvm_s390_ext_call_pending(vcpu) &&
951 952
	    !psw_extint_disabled(vcpu) &&
	    (vcpu->arch.sie_block->gcr[0] & 0x2000ul))
953
		return 1;
954

955 956 957
	if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
		return 1;
	return 0;
958 959
}

960 961
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
962
	return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu);
963 964
}

965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
static u64 __calculate_sltime(struct kvm_vcpu *vcpu)
{
	u64 now, cputm, sltime = 0;

	if (ckc_interrupts_enabled(vcpu)) {
		now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
		sltime = tod_to_ns(vcpu->arch.sie_block->ckc - now);
		/* already expired or overflow? */
		if (!sltime || vcpu->arch.sie_block->ckc <= now)
			return 0;
		if (cpu_timer_interrupts_enabled(vcpu)) {
			cputm = kvm_s390_get_cpu_timer(vcpu);
			/* already expired? */
			if (cputm >> 63)
				return 0;
			return min(sltime, tod_to_ns(cputm));
		}
	} else if (cpu_timer_interrupts_enabled(vcpu)) {
		sltime = kvm_s390_get_cpu_timer(vcpu);
		/* already expired? */
		if (sltime >> 63)
			return 0;
	}
	return sltime;
}

991 992
int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
{
993
	u64 sltime;
994 995 996

	vcpu->stat.exit_wait_state++;

997
	/* fast path */
998
	if (kvm_arch_vcpu_runnable(vcpu))
999
		return 0;
1000

1001 1002
	if (psw_interrupts_disabled(vcpu)) {
		VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
1003
		return -EOPNOTSUPP; /* disabled wait */
1004 1005
	}

1006 1007
	if (!ckc_interrupts_enabled(vcpu) &&
	    !cpu_timer_interrupts_enabled(vcpu)) {
1008
		VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
1009
		__set_cpu_idle(vcpu);
1010 1011 1012
		goto no_timer;
	}

1013 1014
	sltime = __calculate_sltime(vcpu);
	if (!sltime)
1015 1016 1017
		return 0;

	__set_cpu_idle(vcpu);
1018
	hrtimer_start(&vcpu->arch.ckc_timer, ktime_set (0, sltime) , HRTIMER_MODE_REL);
1019
	VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime);
1020
no_timer:
1021
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
1022
	kvm_vcpu_block(vcpu);
1023
	__unset_cpu_idle(vcpu);
1024 1025
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

1026
	hrtimer_cancel(&vcpu->arch.ckc_timer);
1027 1028 1029
	return 0;
}

1030 1031
void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
{
1032 1033 1034 1035 1036
	/*
	 * We cannot move this into the if, as the CPU might be already
	 * in kvm_vcpu_block without having the waitqueue set (polling)
	 */
	vcpu->valid_wakeup = true;
1037
	if (swait_active(&vcpu->wq)) {
1038 1039 1040 1041 1042
		/*
		 * The vcpu gave up the cpu voluntarily, mark it as a good
		 * yield-candidate.
		 */
		vcpu->preempted = true;
1043
		swake_up(&vcpu->wq);
1044
		vcpu->stat.halt_wakeup++;
1045
	}
1046 1047 1048 1049 1050
	/*
	 * The VCPU might not be sleeping but is executing the VSIE. Let's
	 * kick it, so it leaves the SIE to process the request.
	 */
	kvm_s390_vsie_kick(vcpu);
1051 1052
}

1053 1054 1055
enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
{
	struct kvm_vcpu *vcpu;
1056
	u64 sltime;
1057 1058

	vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
1059
	sltime = __calculate_sltime(vcpu);
1060

1061 1062 1063 1064
	/*
	 * If the monotonic clock runs faster than the tod clock we might be
	 * woken up too early and have to go back to sleep to avoid deadlocks.
	 */
1065
	if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime)))
1066 1067
		return HRTIMER_RESTART;
	kvm_s390_vcpu_wakeup(vcpu);
1068 1069
	return HRTIMER_NORESTART;
}
1070

1071 1072 1073 1074
void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1075
	spin_lock(&li->lock);
1076 1077 1078
	li->pending_irqs = 0;
	bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
	memset(&li->irq, 0, sizeof(li->irq));
1079
	spin_unlock(&li->lock);
1080

1081
	sca_clear_ext_call(vcpu);
1082 1083
}

1084
int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
1085
{
1086
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1087
	deliver_irq_t func;
1088
	int rc = 0;
1089
	unsigned long irq_type;
1090
	unsigned long irqs;
1091 1092 1093

	__reset_intercept_indicators(vcpu);

1094 1095
	/* pending ckc conditions might have been invalidated */
	clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1096
	if (ckc_irq_pending(vcpu))
1097 1098
		set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);

1099 1100 1101 1102 1103
	/* pending cpu timer conditions might have been invalidated */
	clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
	if (cpu_timer_irq_pending(vcpu))
		set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);

1104
	while ((irqs = deliverable_irqs(vcpu)) && !rc) {
1105
		/* bits are in the order of interrupt priority */
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
		irq_type = find_first_bit(&irqs, IRQ_PEND_COUNT);
		if (is_ioirq(irq_type)) {
			rc = __deliver_io(vcpu, irq_type);
		} else {
			func = deliver_irq_funcs[irq_type];
			if (!func) {
				WARN_ON_ONCE(func == NULL);
				clear_bit(irq_type, &li->pending_irqs);
				continue;
			}
			rc = func(vcpu);
1117
		}
1118
	}
1119

1120
	set_intercept_indicators(vcpu);
1121 1122

	return rc;
1123 1124
}

1125
static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1126 1127 1128
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1129 1130 1131 1132
	VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code);
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
				   irq->u.pgm.code, 0);

1133 1134 1135 1136 1137 1138 1139
	if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) {
		/* auto detection if no valid ILC was given */
		irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK;
		irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu);
		irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID;
	}

1140 1141
	if (irq->u.pgm.code == PGM_PER) {
		li->irq.pgm.code |= PGM_PER;
1142
		li->irq.pgm.flags = irq->u.pgm.flags;
1143 1144 1145 1146 1147 1148 1149 1150
		/* only modify PER related information */
		li->irq.pgm.per_address = irq->u.pgm.per_address;
		li->irq.pgm.per_code = irq->u.pgm.per_code;
		li->irq.pgm.per_atmid = irq->u.pgm.per_atmid;
		li->irq.pgm.per_access_id = irq->u.pgm.per_access_id;
	} else if (!(irq->u.pgm.code & PGM_PER)) {
		li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) |
				   irq->u.pgm.code;
1151
		li->irq.pgm.flags = irq->u.pgm.flags;
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
		/* only modify non-PER information */
		li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code;
		li->irq.pgm.mon_code = irq->u.pgm.mon_code;
		li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code;
		li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr;
		li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id;
		li->irq.pgm.op_access_id = irq->u.pgm.op_access_id;
	} else {
		li->irq.pgm = irq->u.pgm;
	}
1162
	set_bit(IRQ_PEND_PROG, &li->pending_irqs);
1163 1164 1165
	return 0;
}

1166
static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1167 1168 1169
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1170 1171
	VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx",
		   irq->u.ext.ext_params2);
1172 1173
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
				   irq->u.ext.ext_params,
1174
				   irq->u.ext.ext_params2);
1175 1176 1177

	li->irq.ext = irq->u.ext;
	set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
1178
	atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1179 1180 1181
	return 0;
}

1182
static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1183 1184
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1185
	struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
1186
	uint16_t src_id = irq->u.extcall.code;
1187

1188
	VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u",
1189
		   src_id);
1190
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
1191
				   src_id, 0);
1192 1193

	/* sending vcpu invalid */
1194
	if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL)
1195 1196
		return -EINVAL;

1197
	if (sclp.has_sigpif)
1198
		return sca_inject_ext_call(vcpu, src_id);
1199

1200
	if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
1201
		return -EBUSY;
1202
	*extcall = irq->u.extcall;
1203
	atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1204 1205 1206
	return 0;
}

1207
static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1208 1209
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1210
	struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
1211

1212
	VCPU_EVENT(vcpu, 3, "inject: set prefix to %x",
1213
		   irq->u.prefix.address);
1214
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
1215
				   irq->u.prefix.address, 0);
1216

1217 1218 1219
	if (!is_vcpu_stopped(vcpu))
		return -EBUSY;

1220 1221
	*prefix = irq->u.prefix;
	set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
1222 1223 1224
	return 0;
}

1225
#define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
1226
static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1227 1228
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1229
	struct kvm_s390_stop_info *stop = &li->irq.stop;
1230
	int rc = 0;
1231

1232
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0);
1233

1234 1235 1236
	if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
		return -EINVAL;

1237 1238 1239 1240 1241 1242 1243 1244 1245
	if (is_vcpu_stopped(vcpu)) {
		if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
			rc = kvm_s390_store_status_unloaded(vcpu,
						KVM_S390_STORE_STATUS_NOADDR);
		return rc;
	}

	if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
		return -EBUSY;
1246
	stop->flags = irq->u.stop.flags;
1247
	__set_cpuflag(vcpu, CPUSTAT_STOP_INT);
1248 1249 1250 1251
	return 0;
}

static int __inject_sigp_restart(struct kvm_vcpu *vcpu,
1252
				 struct kvm_s390_irq *irq)
1253 1254 1255
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1256
	VCPU_EVENT(vcpu, 3, "%s", "inject: restart int");
1257
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
1258 1259

	set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
1260 1261 1262 1263
	return 0;
}

static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
1264
				   struct kvm_s390_irq *irq)
1265 1266 1267
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1268
	VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u",
1269 1270
		   irq->u.emerg.code);
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
1271
				   irq->u.emerg.code, 0);
1272

1273 1274 1275 1276
	/* sending vcpu invalid */
	if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL)
		return -EINVAL;

1277
	set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
1278
	set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
1279
	atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1280 1281 1282
	return 0;
}

1283
static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1284 1285
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1286
	struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
1287

1288
	VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx",
1289
		   irq->u.mchk.mcic);
1290
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
1291
				   irq->u.mchk.mcic);
1292 1293

	/*
1294 1295 1296 1297 1298 1299
	 * Because repressible machine checks can be indicated along with
	 * exigent machine checks (PoP, Chapter 11, Interruption action)
	 * we need to combine cr14, mcic and external damage code.
	 * Failing storage address and the logout area should not be or'ed
	 * together, we just indicate the last occurrence of the corresponding
	 * machine check
1300
	 */
1301
	mchk->cr14 |= irq->u.mchk.cr14;
1302
	mchk->mcic |= irq->u.mchk.mcic;
1303 1304 1305 1306
	mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
	mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
	memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
	       sizeof(mchk->fixed_logout));
1307 1308 1309 1310
	if (mchk->mcic & MCHK_EX_MASK)
		set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
	else if (mchk->mcic & MCHK_REP_MASK)
		set_bit(IRQ_PEND_MCHK_REP,  &li->pending_irqs);
1311 1312 1313
	return 0;
}

1314
static int __inject_ckc(struct kvm_vcpu *vcpu)
1315 1316 1317
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1318
	VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external");
1319
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
1320
				   0, 0);
1321 1322

	set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1323
	atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1324 1325 1326
	return 0;
}

1327
static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
1328 1329 1330
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1331
	VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external");
1332
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
1333
				   0, 0);
1334 1335

	set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1336
	atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1337 1338 1339
	return 0;
}

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
						  int isc, u32 schid)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
	struct kvm_s390_interrupt_info *iter;
	u16 id = (schid & 0xffff0000U) >> 16;
	u16 nr = schid & 0x0000ffffU;

	spin_lock(&fi->lock);
	list_for_each_entry(iter, isc_list, list) {
		if (schid && (id != iter->io.subchannel_id ||
			      nr != iter->io.subchannel_nr))
			continue;
		/* found an appropriate entry */
		list_del_init(&iter->list);
		fi->counters[FIRQ_CNTR_IO] -= 1;
		if (list_empty(isc_list))
			clear_bit(IRQ_PEND_IO_ISC_0 + isc, &fi->pending_irqs);
		spin_unlock(&fi->lock);
		return iter;
	}
	spin_unlock(&fi->lock);
	return NULL;
}
1365

1366 1367 1368 1369
/*
 * Dequeue and return an I/O interrupt matching any of the interruption
 * subclasses as designated by the isc mask in cr6 and the schid (if != 0).
 */
1370
struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
						    u64 isc_mask, u32 schid)
{
	struct kvm_s390_interrupt_info *inti = NULL;
	int isc;

	for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
		if (isc_mask & isc_to_isc_bits(isc))
			inti = get_io_int(kvm, isc, schid);
	}
	return inti;
}

#define SCCB_MASK 0xFFFFFFF8
#define SCCB_EVENT_PENDING 0x3

static int __inject_service(struct kvm *kvm,
			     struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

	spin_lock(&fi->lock);
	fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
	/*
	 * Early versions of the QEMU s390 bios will inject several
	 * service interrupts after another without handling a
	 * condition code indicating busy.
	 * We will silently ignore those superfluous sccb values.
	 * A future version of QEMU will take care of serialization
	 * of servc requests
	 */
	if (fi->srv_signal.ext_params & SCCB_MASK)
		goto out;
	fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
	set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
out:
	spin_unlock(&fi->lock);
	kfree(inti);
	return 0;
}

static int __inject_virtio(struct kvm *kvm,
			    struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

	spin_lock(&fi->lock);
	if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
		spin_unlock(&fi->lock);
		return -EBUSY;
	}
	fi->counters[FIRQ_CNTR_VIRTIO] += 1;
	list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
	set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
	spin_unlock(&fi->lock);
	return 0;
}

static int __inject_pfault_done(struct kvm *kvm,
				 struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

	spin_lock(&fi->lock);
	if (fi->counters[FIRQ_CNTR_PFAULT] >=
		(ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
		spin_unlock(&fi->lock);
		return -EBUSY;
	}
	fi->counters[FIRQ_CNTR_PFAULT] += 1;
	list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
	set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
	spin_unlock(&fi->lock);
	return 0;
}

#define CR_PENDING_SUBCLASS 28
static int __inject_float_mchk(struct kvm *kvm,
				struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

	spin_lock(&fi->lock);
	fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
	fi->mchk.mcic |= inti->mchk.mcic;
	set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
	spin_unlock(&fi->lock);
	kfree(inti);
	return 0;
}

static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1462 1463
{
	struct kvm_s390_float_interrupt *fi;
1464 1465
	struct list_head *list;
	int isc;
1466 1467 1468

	fi = &kvm->arch.float_int;
	spin_lock(&fi->lock);
1469 1470 1471
	if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
		spin_unlock(&fi->lock);
		return -EBUSY;
J
Jens Freimann 已提交
1472
	}
1473 1474
	fi->counters[FIRQ_CNTR_IO] += 1;

1475 1476 1477 1478 1479 1480 1481
	if (inti->type & KVM_S390_INT_IO_AI_MASK)
		VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)");
	else
		VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x",
			inti->io.subchannel_id >> 8,
			inti->io.subchannel_id >> 1 & 0x3,
			inti->io.subchannel_nr);
1482 1483 1484 1485
	isc = int_word_to_isc(inti->io.io_int_word);
	list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
	list_add_tail(&inti->list, list);
	set_bit(IRQ_PEND_IO_ISC_0 + isc, &fi->pending_irqs);
1486
	spin_unlock(&fi->lock);
1487
	return 0;
1488
}
1489

1490 1491 1492 1493
/*
 * Find a destination VCPU for a floating irq and kick it.
 */
static void __floating_irq_kick(struct kvm *kvm, u64 type)
1494
{
1495
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1496
	struct kvm_s390_local_interrupt *li;
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
	struct kvm_vcpu *dst_vcpu;
	int sigcpu, online_vcpus, nr_tries = 0;

	online_vcpus = atomic_read(&kvm->online_vcpus);
	if (!online_vcpus)
		return;

	/* find idle VCPUs first, then round robin */
	sigcpu = find_first_bit(fi->idle_mask, online_vcpus);
	if (sigcpu == online_vcpus) {
		do {
			sigcpu = fi->next_rr_cpu;
			fi->next_rr_cpu = (fi->next_rr_cpu + 1) % online_vcpus;
			/* avoid endless loops if all vcpus are stopped */
			if (nr_tries++ >= online_vcpus)
				return;
		} while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu)));
	}
	dst_vcpu = kvm_get_vcpu(kvm, sigcpu);

	/* make the VCPU drop out of the SIE, or wake it up if sleeping */
	li = &dst_vcpu->arch.local_int;
	spin_lock(&li->lock);
	switch (type) {
	case KVM_S390_MCHK:
1522
		atomic_or(CPUSTAT_STOP_INT, li->cpuflags);
1523 1524
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1525
		atomic_or(CPUSTAT_IO_INT, li->cpuflags);
1526 1527
		break;
	default:
1528
		atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1529 1530 1531 1532 1533 1534 1535 1536
		break;
	}
	spin_unlock(&li->lock);
	kvm_s390_vcpu_wakeup(dst_vcpu);
}

static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
{
1537 1538
	u64 type = READ_ONCE(inti->type);
	int rc;
1539

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
	switch (type) {
	case KVM_S390_MCHK:
		rc = __inject_float_mchk(kvm, inti);
		break;
	case KVM_S390_INT_VIRTIO:
		rc = __inject_virtio(kvm, inti);
		break;
	case KVM_S390_INT_SERVICE:
		rc = __inject_service(kvm, inti);
		break;
	case KVM_S390_INT_PFAULT_DONE:
		rc = __inject_pfault_done(kvm, inti);
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
		rc = __inject_io(kvm, inti);
		break;
	default:
J
Jens Freimann 已提交
1557
		rc = -EINVAL;
1558
	}
1559 1560 1561
	if (rc)
		return rc;

1562
	__floating_irq_kick(kvm, type);
1563
	return 0;
1564 1565 1566 1567 1568 1569
}

int kvm_s390_inject_vm(struct kvm *kvm,
		       struct kvm_s390_interrupt *s390int)
{
	struct kvm_s390_interrupt_info *inti;
1570
	int rc;
1571

1572 1573 1574 1575
	inti = kzalloc(sizeof(*inti), GFP_KERNEL);
	if (!inti)
		return -ENOMEM;

1576 1577
	inti->type = s390int->type;
	switch (inti->type) {
1578
	case KVM_S390_INT_VIRTIO:
1579
		VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
1580 1581 1582 1583 1584
			 s390int->parm, s390int->parm64);
		inti->ext.ext_params = s390int->parm;
		inti->ext.ext_params2 = s390int->parm64;
		break;
	case KVM_S390_INT_SERVICE:
1585
		VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm);
1586 1587
		inti->ext.ext_params = s390int->parm;
		break;
1588 1589 1590
	case KVM_S390_INT_PFAULT_DONE:
		inti->ext.ext_params2 = s390int->parm64;
		break;
1591
	case KVM_S390_MCHK:
1592
		VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx",
1593 1594 1595 1596
			 s390int->parm64);
		inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
		inti->mchk.mcic = s390int->parm64;
		break;
1597 1598 1599 1600 1601 1602
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
		inti->io.subchannel_id = s390int->parm >> 16;
		inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
		inti->io.io_int_parm = s390int->parm64 >> 32;
		inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
		break;
1603 1604 1605 1606
	default:
		kfree(inti);
		return -EINVAL;
	}
1607 1608
	trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
				 2);
1609

1610 1611 1612 1613
	rc = __inject_vm(kvm, inti);
	if (rc)
		kfree(inti);
	return rc;
1614 1615
}

1616
int kvm_s390_reinject_io_int(struct kvm *kvm,
1617 1618
			      struct kvm_s390_interrupt_info *inti)
{
1619
	return __inject_vm(kvm, inti);
1620 1621
}

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
		       struct kvm_s390_irq *irq)
{
	irq->type = s390int->type;
	switch (irq->type) {
	case KVM_S390_PROGRAM_INT:
		if (s390int->parm & 0xffff0000)
			return -EINVAL;
		irq->u.pgm.code = s390int->parm;
		break;
	case KVM_S390_SIGP_SET_PREFIX:
		irq->u.prefix.address = s390int->parm;
		break;
1635 1636 1637
	case KVM_S390_SIGP_STOP:
		irq->u.stop.flags = s390int->parm;
		break;
1638
	case KVM_S390_INT_EXTERNAL_CALL:
1639
		if (s390int->parm & 0xffff0000)
1640 1641 1642 1643
			return -EINVAL;
		irq->u.extcall.code = s390int->parm;
		break;
	case KVM_S390_INT_EMERGENCY:
1644
		if (s390int->parm & 0xffff0000)
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
			return -EINVAL;
		irq->u.emerg.code = s390int->parm;
		break;
	case KVM_S390_MCHK:
		irq->u.mchk.mcic = s390int->parm64;
		break;
	}
	return 0;
}

1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

	return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
}

void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

	spin_lock(&li->lock);
	li->irq.stop.flags = 0;
	clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
	spin_unlock(&li->lock);
}

1672
static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1673
{
1674
	int rc;
1675

1676
	switch (irq->type) {
1677
	case KVM_S390_PROGRAM_INT:
1678
		rc = __inject_prog(vcpu, irq);
1679
		break;
1680
	case KVM_S390_SIGP_SET_PREFIX:
1681
		rc = __inject_set_prefix(vcpu, irq);
1682
		break;
1683
	case KVM_S390_SIGP_STOP:
1684
		rc = __inject_sigp_stop(vcpu, irq);
1685
		break;
1686
	case KVM_S390_RESTART:
1687
		rc = __inject_sigp_restart(vcpu, irq);
1688
		break;
1689
	case KVM_S390_INT_CLOCK_COMP:
1690
		rc = __inject_ckc(vcpu);
1691
		break;
1692
	case KVM_S390_INT_CPU_TIMER:
1693
		rc = __inject_cpu_timer(vcpu);
1694
		break;
1695
	case KVM_S390_INT_EXTERNAL_CALL:
1696
		rc = __inject_extcall(vcpu, irq);
1697
		break;
1698
	case KVM_S390_INT_EMERGENCY:
1699
		rc = __inject_sigp_emergency(vcpu, irq);
1700
		break;
1701
	case KVM_S390_MCHK:
1702
		rc = __inject_mchk(vcpu, irq);
1703
		break;
1704
	case KVM_S390_INT_PFAULT_INIT:
1705
		rc = __inject_pfault_init(vcpu, irq);
1706
		break;
1707 1708
	case KVM_S390_INT_VIRTIO:
	case KVM_S390_INT_SERVICE:
1709
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1710
	default:
1711
		rc = -EINVAL;
1712
	}
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723

	return rc;
}

int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	int rc;

	spin_lock(&li->lock);
	rc = do_inject_vcpu(vcpu, irq);
1724
	spin_unlock(&li->lock);
1725 1726 1727
	if (!rc)
		kvm_s390_vcpu_wakeup(vcpu);
	return rc;
1728
}
1729

1730
static inline void clear_irq_list(struct list_head *_list)
1731
{
1732
	struct kvm_s390_interrupt_info *inti, *n;
1733

1734
	list_for_each_entry_safe(inti, n, _list, list) {
1735 1736 1737 1738 1739
		list_del(&inti->list);
		kfree(inti);
	}
}

1740 1741
static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
		       struct kvm_s390_irq *irq)
1742
{
1743
	irq->type = inti->type;
1744
	switch (inti->type) {
1745 1746
	case KVM_S390_INT_PFAULT_INIT:
	case KVM_S390_INT_PFAULT_DONE:
1747
	case KVM_S390_INT_VIRTIO:
1748
		irq->u.ext = inti->ext;
1749 1750
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1751
		irq->u.io = inti->io;
1752 1753 1754 1755
		break;
	}
}

1756 1757 1758 1759 1760 1761
void kvm_s390_clear_float_irqs(struct kvm *kvm)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	int i;

	spin_lock(&fi->lock);
1762 1763 1764
	fi->pending_irqs = 0;
	memset(&fi->srv_signal, 0, sizeof(fi->srv_signal));
	memset(&fi->mchk, 0, sizeof(fi->mchk));
1765 1766 1767 1768 1769 1770 1771
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		clear_irq_list(&fi->lists[i]);
	for (i = 0; i < FIRQ_MAX_COUNT; i++)
		fi->counters[i] = 0;
	spin_unlock(&fi->lock);
};

1772
static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
1773 1774 1775
{
	struct kvm_s390_interrupt_info *inti;
	struct kvm_s390_float_interrupt *fi;
1776
	struct kvm_s390_irq *buf;
1777
	struct kvm_s390_irq *irq;
1778
	int max_irqs;
1779 1780
	int ret = 0;
	int n = 0;
1781
	int i;
1782

1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
	if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
		return -EINVAL;

	/*
	 * We are already using -ENOMEM to signal
	 * userspace it may retry with a bigger buffer,
	 * so we need to use something else for this case
	 */
	buf = vzalloc(len);
	if (!buf)
		return -ENOBUFS;

	max_irqs = len / sizeof(struct kvm_s390_irq);

1797 1798
	fi = &kvm->arch.float_int;
	spin_lock(&fi->lock);
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
	for (i = 0; i < FIRQ_LIST_COUNT; i++) {
		list_for_each_entry(inti, &fi->lists[i], list) {
			if (n == max_irqs) {
				/* signal userspace to try again */
				ret = -ENOMEM;
				goto out;
			}
			inti_to_irq(inti, &buf[n]);
			n++;
		}
	}
	if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs)) {
1811
		if (n == max_irqs) {
1812 1813
			/* signal userspace to try again */
			ret = -ENOMEM;
1814
			goto out;
1815
		}
1816 1817 1818
		irq = (struct kvm_s390_irq *) &buf[n];
		irq->type = KVM_S390_INT_SERVICE;
		irq->u.ext = fi->srv_signal;
1819 1820
		n++;
	}
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
	if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
		if (n == max_irqs) {
				/* signal userspace to try again */
				ret = -ENOMEM;
				goto out;
		}
		irq = (struct kvm_s390_irq *) &buf[n];
		irq->type = KVM_S390_MCHK;
		irq->u.mchk = fi->mchk;
		n++;
}

out:
1834
	spin_unlock(&fi->lock);
1835 1836 1837 1838 1839
	if (!ret && n > 0) {
		if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
			ret = -EFAULT;
	}
	vfree(buf);
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849

	return ret < 0 ? ret : n;
}

static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
	int r;

	switch (attr->group) {
	case KVM_DEV_FLIC_GET_ALL_IRQS:
1850
		r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
					  attr->attr);
		break;
	default:
		r = -EINVAL;
	}

	return r;
}

static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
				     u64 addr)
{
	struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
	void *target = NULL;
	void __user *source;
	u64 size;

	if (get_user(inti->type, (u64 __user *)addr))
		return -EFAULT;

	switch (inti->type) {
1872 1873
	case KVM_S390_INT_PFAULT_INIT:
	case KVM_S390_INT_PFAULT_DONE:
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
	case KVM_S390_INT_VIRTIO:
	case KVM_S390_INT_SERVICE:
		target = (void *) &inti->ext;
		source = &uptr->u.ext;
		size = sizeof(inti->ext);
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
		target = (void *) &inti->io;
		source = &uptr->u.io;
		size = sizeof(inti->io);
		break;
	case KVM_S390_MCHK:
		target = (void *) &inti->mchk;
		source = &uptr->u.mchk;
		size = sizeof(inti->mchk);
		break;
	default:
		return -EINVAL;
	}

	if (copy_from_user(target, source, size))
		return -EFAULT;

	return 0;
}

static int enqueue_floating_irq(struct kvm_device *dev,
				struct kvm_device_attr *attr)
{
	struct kvm_s390_interrupt_info *inti = NULL;
	int r = 0;
	int len = attr->attr;

	if (len % sizeof(struct kvm_s390_irq) != 0)
		return -EINVAL;
	else if (len > KVM_S390_FLIC_MAX_BUFFER)
		return -EINVAL;

	while (len >= sizeof(struct kvm_s390_irq)) {
		inti = kzalloc(sizeof(*inti), GFP_KERNEL);
		if (!inti)
			return -ENOMEM;

		r = copy_irq_from_user(inti, attr->addr);
		if (r) {
			kfree(inti);
			return r;
		}
J
Jens Freimann 已提交
1922 1923 1924 1925 1926
		r = __inject_vm(dev->kvm, inti);
		if (r) {
			kfree(inti);
			return r;
		}
1927 1928 1929 1930 1931 1932 1933
		len -= sizeof(struct kvm_s390_irq);
		attr->addr += sizeof(struct kvm_s390_irq);
	}

	return r;
}

1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
{
	if (id >= MAX_S390_IO_ADAPTERS)
		return NULL;
	return kvm->arch.adapters[id];
}

static int register_io_adapter(struct kvm_device *dev,
			       struct kvm_device_attr *attr)
{
	struct s390_io_adapter *adapter;
	struct kvm_s390_io_adapter adapter_info;

	if (copy_from_user(&adapter_info,
			   (void __user *)attr->addr, sizeof(adapter_info)))
		return -EFAULT;

	if ((adapter_info.id >= MAX_S390_IO_ADAPTERS) ||
	    (dev->kvm->arch.adapters[adapter_info.id] != NULL))
		return -EINVAL;

	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
	if (!adapter)
		return -ENOMEM;

	INIT_LIST_HEAD(&adapter->maps);
	init_rwsem(&adapter->maps_lock);
	atomic_set(&adapter->nr_maps, 0);
	adapter->id = adapter_info.id;
	adapter->isc = adapter_info.isc;
	adapter->maskable = adapter_info.maskable;
	adapter->masked = false;
	adapter->swap = adapter_info.swap;
	dev->kvm->arch.adapters[adapter->id] = adapter;

	return 0;
}

int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
{
	int ret;
	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);

	if (!adapter || !adapter->maskable)
		return -EINVAL;
	ret = adapter->masked;
	adapter->masked = masked;
	return ret;
}

static int kvm_s390_adapter_map(struct kvm *kvm, unsigned int id, __u64 addr)
{
	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
	struct s390_map_info *map;
	int ret;

	if (!adapter || !addr)
		return -EINVAL;

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (!map) {
		ret = -ENOMEM;
		goto out;
	}
	INIT_LIST_HEAD(&map->list);
	map->guest_addr = addr;
2000
	map->addr = gmap_translate(kvm->arch.gmap, addr);
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
	if (map->addr == -EFAULT) {
		ret = -EFAULT;
		goto out;
	}
	ret = get_user_pages_fast(map->addr, 1, 1, &map->page);
	if (ret < 0)
		goto out;
	BUG_ON(ret != 1);
	down_write(&adapter->maps_lock);
	if (atomic_inc_return(&adapter->nr_maps) < MAX_S390_ADAPTER_MAPS) {
		list_add_tail(&map->list, &adapter->maps);
		ret = 0;
	} else {
		put_page(map->page);
		ret = -EINVAL;
	}
	up_write(&adapter->maps_lock);
out:
	if (ret)
		kfree(map);
	return ret;
}

static int kvm_s390_adapter_unmap(struct kvm *kvm, unsigned int id, __u64 addr)
{
	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
	struct s390_map_info *map, *tmp;
	int found = 0;

	if (!adapter || !addr)
		return -EINVAL;

	down_write(&adapter->maps_lock);
	list_for_each_entry_safe(map, tmp, &adapter->maps, list) {
		if (map->guest_addr == addr) {
			found = 1;
			atomic_dec(&adapter->nr_maps);
			list_del(&map->list);
			put_page(map->page);
			kfree(map);
			break;
		}
	}
	up_write(&adapter->maps_lock);

	return found ? 0 : -EINVAL;
}

void kvm_s390_destroy_adapters(struct kvm *kvm)
{
	int i;
	struct s390_map_info *map, *tmp;

	for (i = 0; i < MAX_S390_IO_ADAPTERS; i++) {
		if (!kvm->arch.adapters[i])
			continue;
		list_for_each_entry_safe(map, tmp,
					 &kvm->arch.adapters[i]->maps, list) {
			list_del(&map->list);
			put_page(map->page);
			kfree(map);
		}
		kfree(kvm->arch.adapters[i]);
	}
}

static int modify_io_adapter(struct kvm_device *dev,
			     struct kvm_device_attr *attr)
{
	struct kvm_s390_io_adapter_req req;
	struct s390_io_adapter *adapter;
	int ret;

	if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
		return -EFAULT;

	adapter = get_io_adapter(dev->kvm, req.id);
	if (!adapter)
		return -EINVAL;
	switch (req.type) {
	case KVM_S390_IO_ADAPTER_MASK:
		ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
		if (ret > 0)
			ret = 0;
		break;
	case KVM_S390_IO_ADAPTER_MAP:
		ret = kvm_s390_adapter_map(dev->kvm, req.id, req.addr);
		break;
	case KVM_S390_IO_ADAPTER_UNMAP:
		ret = kvm_s390_adapter_unmap(dev->kvm, req.id, req.addr);
		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr)

{
	const u64 isc_mask = 0xffUL << 24; /* all iscs set */
	u32 schid;

	if (attr->flags)
		return -EINVAL;
	if (attr->attr != sizeof(schid))
		return -EINVAL;
	if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid)))
		return -EFAULT;
	kfree(kvm_s390_get_io_int(kvm, isc_mask, schid));
	/*
	 * If userspace is conforming to the architecture, we can have at most
	 * one pending I/O interrupt per subchannel, so this is effectively a
	 * clear all.
	 */
	return 0;
}

2120 2121 2122
static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
	int r = 0;
2123 2124
	unsigned int i;
	struct kvm_vcpu *vcpu;
2125 2126 2127 2128 2129 2130

	switch (attr->group) {
	case KVM_DEV_FLIC_ENQUEUE:
		r = enqueue_floating_irq(dev, attr);
		break;
	case KVM_DEV_FLIC_CLEAR_IRQS:
2131
		kvm_s390_clear_float_irqs(dev->kvm);
2132
		break;
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
	case KVM_DEV_FLIC_APF_ENABLE:
		dev->kvm->arch.gmap->pfault_enabled = 1;
		break;
	case KVM_DEV_FLIC_APF_DISABLE_WAIT:
		dev->kvm->arch.gmap->pfault_enabled = 0;
		/*
		 * Make sure no async faults are in transition when
		 * clearing the queues. So we don't need to worry
		 * about late coming workers.
		 */
		synchronize_srcu(&dev->kvm->srcu);
		kvm_for_each_vcpu(i, vcpu, dev->kvm)
			kvm_clear_async_pf_completion_queue(vcpu);
		break;
2147 2148 2149 2150 2151 2152
	case KVM_DEV_FLIC_ADAPTER_REGISTER:
		r = register_io_adapter(dev, attr);
		break;
	case KVM_DEV_FLIC_ADAPTER_MODIFY:
		r = modify_io_adapter(dev, attr);
		break;
2153 2154 2155
	case KVM_DEV_FLIC_CLEAR_IO_IRQ:
		r = clear_io_irq(dev->kvm, attr);
		break;
2156 2157 2158 2159 2160 2161 2162
	default:
		r = -EINVAL;
	}

	return r;
}

2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
static int flic_has_attr(struct kvm_device *dev,
			     struct kvm_device_attr *attr)
{
	switch (attr->group) {
	case KVM_DEV_FLIC_GET_ALL_IRQS:
	case KVM_DEV_FLIC_ENQUEUE:
	case KVM_DEV_FLIC_CLEAR_IRQS:
	case KVM_DEV_FLIC_APF_ENABLE:
	case KVM_DEV_FLIC_APF_DISABLE_WAIT:
	case KVM_DEV_FLIC_ADAPTER_REGISTER:
	case KVM_DEV_FLIC_ADAPTER_MODIFY:
2174
	case KVM_DEV_FLIC_CLEAR_IO_IRQ:
2175 2176 2177 2178 2179
		return 0;
	}
	return -ENXIO;
}

2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
static int flic_create(struct kvm_device *dev, u32 type)
{
	if (!dev)
		return -EINVAL;
	if (dev->kvm->arch.flic)
		return -EINVAL;
	dev->kvm->arch.flic = dev;
	return 0;
}

static void flic_destroy(struct kvm_device *dev)
{
	dev->kvm->arch.flic = NULL;
	kfree(dev);
}

/* s390 floating irq controller (flic) */
struct kvm_device_ops kvm_flic_ops = {
	.name = "kvm-flic",
	.get_attr = flic_get_attr,
	.set_attr = flic_set_attr,
2201
	.has_attr = flic_has_attr,
2202 2203 2204
	.create = flic_create,
	.destroy = flic_destroy,
};
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296

static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
{
	unsigned long bit;

	bit = bit_nr + (addr % PAGE_SIZE) * 8;

	return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
}

static struct s390_map_info *get_map_info(struct s390_io_adapter *adapter,
					  u64 addr)
{
	struct s390_map_info *map;

	if (!adapter)
		return NULL;

	list_for_each_entry(map, &adapter->maps, list) {
		if (map->guest_addr == addr)
			return map;
	}
	return NULL;
}

static int adapter_indicators_set(struct kvm *kvm,
				  struct s390_io_adapter *adapter,
				  struct kvm_s390_adapter_int *adapter_int)
{
	unsigned long bit;
	int summary_set, idx;
	struct s390_map_info *info;
	void *map;

	info = get_map_info(adapter, adapter_int->ind_addr);
	if (!info)
		return -1;
	map = page_address(info->page);
	bit = get_ind_bit(info->addr, adapter_int->ind_offset, adapter->swap);
	set_bit(bit, map);
	idx = srcu_read_lock(&kvm->srcu);
	mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
	set_page_dirty_lock(info->page);
	info = get_map_info(adapter, adapter_int->summary_addr);
	if (!info) {
		srcu_read_unlock(&kvm->srcu, idx);
		return -1;
	}
	map = page_address(info->page);
	bit = get_ind_bit(info->addr, adapter_int->summary_offset,
			  adapter->swap);
	summary_set = test_and_set_bit(bit, map);
	mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
	set_page_dirty_lock(info->page);
	srcu_read_unlock(&kvm->srcu, idx);
	return summary_set ? 0 : 1;
}

/*
 * < 0 - not injected due to error
 * = 0 - coalesced, summary indicator already active
 * > 0 - injected interrupt
 */
static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
			   struct kvm *kvm, int irq_source_id, int level,
			   bool line_status)
{
	int ret;
	struct s390_io_adapter *adapter;

	/* We're only interested in the 0->1 transition. */
	if (!level)
		return 0;
	adapter = get_io_adapter(kvm, e->adapter.adapter_id);
	if (!adapter)
		return -1;
	down_read(&adapter->maps_lock);
	ret = adapter_indicators_set(kvm, adapter, &e->adapter);
	up_read(&adapter->maps_lock);
	if ((ret > 0) && !adapter->masked) {
		struct kvm_s390_interrupt s390int = {
			.type = KVM_S390_INT_IO(1, 0, 0, 0),
			.parm = 0,
			.parm64 = (adapter->isc << 27) | 0x80000000,
		};
		ret = kvm_s390_inject_vm(kvm, &s390int);
		if (ret == 0)
			ret = 1;
	}
	return ret;
}

2297 2298
int kvm_set_routing_entry(struct kvm *kvm,
			  struct kvm_kernel_irq_routing_entry *e,
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
			  const struct kvm_irq_routing_entry *ue)
{
	int ret;

	switch (ue->type) {
	case KVM_IRQ_ROUTING_S390_ADAPTER:
		e->set = set_adapter_int;
		e->adapter.summary_addr = ue->u.adapter.summary_addr;
		e->adapter.ind_addr = ue->u.adapter.ind_addr;
		e->adapter.summary_offset = ue->u.adapter.summary_offset;
		e->adapter.ind_offset = ue->u.adapter.ind_offset;
		e->adapter.adapter_id = ue->u.adapter.adapter_id;
		ret = 0;
		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
		int irq_source_id, int level, bool line_status)
{
	return -EINVAL;
}
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409

int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_irq *buf;
	int r = 0;
	int n;

	buf = vmalloc(len);
	if (!buf)
		return -ENOMEM;

	if (copy_from_user((void *) buf, irqstate, len)) {
		r = -EFAULT;
		goto out_free;
	}

	/*
	 * Don't allow setting the interrupt state
	 * when there are already interrupts pending
	 */
	spin_lock(&li->lock);
	if (li->pending_irqs) {
		r = -EBUSY;
		goto out_unlock;
	}

	for (n = 0; n < len / sizeof(*buf); n++) {
		r = do_inject_vcpu(vcpu, &buf[n]);
		if (r)
			break;
	}

out_unlock:
	spin_unlock(&li->lock);
out_free:
	vfree(buf);

	return r;
}

static void store_local_irq(struct kvm_s390_local_interrupt *li,
			    struct kvm_s390_irq *irq,
			    unsigned long irq_type)
{
	switch (irq_type) {
	case IRQ_PEND_MCHK_EX:
	case IRQ_PEND_MCHK_REP:
		irq->type = KVM_S390_MCHK;
		irq->u.mchk = li->irq.mchk;
		break;
	case IRQ_PEND_PROG:
		irq->type = KVM_S390_PROGRAM_INT;
		irq->u.pgm = li->irq.pgm;
		break;
	case IRQ_PEND_PFAULT_INIT:
		irq->type = KVM_S390_INT_PFAULT_INIT;
		irq->u.ext = li->irq.ext;
		break;
	case IRQ_PEND_EXT_EXTERNAL:
		irq->type = KVM_S390_INT_EXTERNAL_CALL;
		irq->u.extcall = li->irq.extcall;
		break;
	case IRQ_PEND_EXT_CLOCK_COMP:
		irq->type = KVM_S390_INT_CLOCK_COMP;
		break;
	case IRQ_PEND_EXT_CPU_TIMER:
		irq->type = KVM_S390_INT_CPU_TIMER;
		break;
	case IRQ_PEND_SIGP_STOP:
		irq->type = KVM_S390_SIGP_STOP;
		irq->u.stop = li->irq.stop;
		break;
	case IRQ_PEND_RESTART:
		irq->type = KVM_S390_RESTART;
		break;
	case IRQ_PEND_SET_PREFIX:
		irq->type = KVM_S390_SIGP_SET_PREFIX;
		irq->u.prefix = li->irq.prefix;
		break;
	}
}

int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len)
{
2410
	int scn;
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
	unsigned long sigp_emerg_pending[BITS_TO_LONGS(KVM_MAX_VCPUS)];
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	unsigned long pending_irqs;
	struct kvm_s390_irq irq;
	unsigned long irq_type;
	int cpuaddr;
	int n = 0;

	spin_lock(&li->lock);
	pending_irqs = li->pending_irqs;
	memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending,
	       sizeof(sigp_emerg_pending));
	spin_unlock(&li->lock);

	for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) {
		memset(&irq, 0, sizeof(irq));
		if (irq_type == IRQ_PEND_EXT_EMERGENCY)
			continue;
		if (n + sizeof(irq) > len)
			return -ENOBUFS;
		store_local_irq(&vcpu->arch.local_int, &irq, irq_type);
		if (copy_to_user(&buf[n], &irq, sizeof(irq)))
			return -EFAULT;
		n += sizeof(irq);
	}

	if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) {
		for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) {
			memset(&irq, 0, sizeof(irq));
			if (n + sizeof(irq) > len)
				return -ENOBUFS;
			irq.type = KVM_S390_INT_EMERGENCY;
			irq.u.emerg.code = cpuaddr;
			if (copy_to_user(&buf[n], &irq, sizeof(irq)))
				return -EFAULT;
			n += sizeof(irq);
		}
	}

2450
	if (sca_ext_call_pending(vcpu, &scn)) {
2451 2452 2453 2454
		if (n + sizeof(irq) > len)
			return -ENOBUFS;
		memset(&irq, 0, sizeof(irq));
		irq.type = KVM_S390_INT_EXTERNAL_CALL;
2455
		irq.u.extcall.code = scn;
2456 2457 2458 2459 2460 2461 2462
		if (copy_to_user(&buf[n], &irq, sizeof(irq)))
			return -EFAULT;
		n += sizeof(irq);
	}

	return n;
}