interrupt.c 66.0 KB
Newer Older
1
/*
2
 * handling kvm guest interrupts
3
 *
4
 * Copyright IBM Corp. 2008, 2015
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 */

13
#include <linux/interrupt.h>
14
#include <linux/kvm_host.h>
15
#include <linux/hrtimer.h>
16
#include <linux/mmu_context.h>
17
#include <linux/signal.h>
18
#include <linux/slab.h>
19
#include <linux/bitmap.h>
20
#include <linux/vmalloc.h>
21
#include <asm/asm-offsets.h>
22
#include <asm/dis.h>
23
#include <linux/uaccess.h>
24
#include <asm/sclp.h>
25
#include <asm/isc.h>
26
#include <asm/gmap.h>
27
#include <asm/switch_to.h>
28
#include <asm/nmi.h>
29 30
#include "kvm-s390.h"
#include "gaccess.h"
31
#include "trace-s390.h"
32

33
#define PFAULT_INIT 0x0600
34 35
#define PFAULT_DONE 0x0680
#define VIRTIO_PARAM 0x0d00
36

37 38 39
/* handle external calls via sigp interpretation facility */
static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id)
{
40 41
	int c, scn;

42 43 44
	if (!(atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_ECALL_PEND))
		return 0;

45
	BUG_ON(!kvm_s390_use_sca_entries());
46
	read_lock(&vcpu->kvm->arch.sca_lock);
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
		union esca_sigp_ctrl sigp_ctrl =
			sca->cpu[vcpu->vcpu_id].sigp_ctrl;

		c = sigp_ctrl.c;
		scn = sigp_ctrl.scn;
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;
		union bsca_sigp_ctrl sigp_ctrl =
			sca->cpu[vcpu->vcpu_id].sigp_ctrl;

		c = sigp_ctrl.c;
		scn = sigp_ctrl.scn;
	}
62
	read_unlock(&vcpu->kvm->arch.sca_lock);
63 64

	if (src_id)
65
		*src_id = scn;
66

67
	return c;
68 69 70 71
}

static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id)
{
72
	int expect, rc;
73

74
	BUG_ON(!kvm_s390_use_sca_entries());
75
	read_lock(&vcpu->kvm->arch.sca_lock);
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
		union esca_sigp_ctrl *sigp_ctrl =
			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
		union esca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;

		new_val.scn = src_id;
		new_val.c = 1;
		old_val.c = 0;

		expect = old_val.value;
		rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;
		union bsca_sigp_ctrl *sigp_ctrl =
			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
		union bsca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
93

94 95 96 97 98 99 100
		new_val.scn = src_id;
		new_val.c = 1;
		old_val.c = 0;

		expect = old_val.value;
		rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
	}
101
	read_unlock(&vcpu->kvm->arch.sca_lock);
102 103

	if (rc != expect) {
104 105 106 107 108 109 110 111 112 113
		/* another external call is pending */
		return -EBUSY;
	}
	atomic_or(CPUSTAT_ECALL_PEND, &vcpu->arch.sie_block->cpuflags);
	return 0;
}

static void sca_clear_ext_call(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
114
	int rc, expect;
115

116 117
	if (!kvm_s390_use_sca_entries())
		return;
118
	atomic_andnot(CPUSTAT_ECALL_PEND, li->cpuflags);
119
	read_lock(&vcpu->kvm->arch.sca_lock);
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
		union esca_sigp_ctrl *sigp_ctrl =
			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
		union esca_sigp_ctrl old = *sigp_ctrl;

		expect = old.value;
		rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;
		union bsca_sigp_ctrl *sigp_ctrl =
			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
		union bsca_sigp_ctrl old = *sigp_ctrl;

		expect = old.value;
		rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
	}
137
	read_unlock(&vcpu->kvm->arch.sca_lock);
138
	WARN_ON(rc != expect); /* cannot clear? */
139 140
}

141
int psw_extint_disabled(struct kvm_vcpu *vcpu)
142 143 144 145
{
	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
}

146 147 148 149 150
static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
{
	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
}

151 152 153 154 155
static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
{
	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
}

156 157
static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
{
158 159 160
	return psw_extint_disabled(vcpu) &&
	       psw_ioint_disabled(vcpu) &&
	       psw_mchk_disabled(vcpu);
161 162
}

163 164 165 166 167
static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
{
	if (psw_extint_disabled(vcpu) ||
	    !(vcpu->arch.sie_block->gcr[0] & 0x800ul))
		return 0;
168 169 170
	if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
		/* No timer interrupts when single stepping */
		return 0;
171 172 173
	return 1;
}

174 175
static int ckc_irq_pending(struct kvm_vcpu *vcpu)
{
176
	if (vcpu->arch.sie_block->ckc >= kvm_s390_get_tod_clock_fast(vcpu->kvm))
177 178 179 180 181 182 183 184 185 186 187 188
		return 0;
	return ckc_interrupts_enabled(vcpu);
}

static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu)
{
	return !psw_extint_disabled(vcpu) &&
	       (vcpu->arch.sie_block->gcr[0] & 0x400ul);
}

static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu)
{
189 190 191
	if (!cpu_timer_interrupts_enabled(vcpu))
		return 0;
	return kvm_s390_get_cpu_timer(vcpu) >> 63;
192 193
}

194
static inline int is_ioirq(unsigned long irq_type)
C
Cornelia Huck 已提交
195
{
196 197 198
	return ((irq_type >= IRQ_PEND_IO_ISC_0) &&
		(irq_type <= IRQ_PEND_IO_ISC_7));
}
C
Cornelia Huck 已提交
199

200 201
static uint64_t isc_to_isc_bits(int isc)
{
C
Cornelia Huck 已提交
202 203 204
	return (0x80 >> isc) << 24;
}

205
static inline u8 int_word_to_isc(u32 int_word)
206
{
207 208 209
	return (int_word & 0x38000000) >> 27;
}

210
static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu)
211
{
212 213
	return vcpu->kvm->arch.float_int.pending_irqs |
	       vcpu->arch.local_int.pending_irqs;
214 215
}

216 217 218 219 220 221 222 223 224 225 226 227 228
static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
				   unsigned long active_mask)
{
	int i;

	for (i = 0; i <= MAX_ISC; i++)
		if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
			active_mask &= ~(1UL << (IRQ_PEND_IO_ISC_0 + i));

	return active_mask;
}

static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
229
{
230 231
	unsigned long active_mask;

232
	active_mask = pending_irqs(vcpu);
233 234
	if (!active_mask)
		return 0;
235 236 237

	if (psw_extint_disabled(vcpu))
		active_mask &= ~IRQ_PEND_EXT_MASK;
238 239 240 241
	if (psw_ioint_disabled(vcpu))
		active_mask &= ~IRQ_PEND_IO_MASK;
	else
		active_mask = disable_iscs(vcpu, active_mask);
242 243 244 245 246 247 248 249
	if (!(vcpu->arch.sie_block->gcr[0] & 0x2000ul))
		__clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
	if (!(vcpu->arch.sie_block->gcr[0] & 0x4000ul))
		__clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
	if (!(vcpu->arch.sie_block->gcr[0] & 0x800ul))
		__clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
	if (!(vcpu->arch.sie_block->gcr[0] & 0x400ul))
		__clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
250 251
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		__clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
252 253
	if (psw_mchk_disabled(vcpu))
		active_mask &= ~IRQ_PEND_MCHK_MASK;
254 255 256
	if (!(vcpu->arch.sie_block->gcr[14] &
	      vcpu->kvm->arch.float_int.mchk.cr14))
		__clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
257

258 259 260 261 262 263
	/*
	 * STOP irqs will never be actively delivered. They are triggered via
	 * intercept requests and cleared when the stop intercept is performed.
	 */
	__clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);

264 265 266
	return active_mask;
}

267 268
static void __set_cpu_idle(struct kvm_vcpu *vcpu)
{
269
	atomic_or(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
270 271 272 273 274
	set_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
}

static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
{
275
	atomic_andnot(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
276 277 278 279 280
	clear_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
}

static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
{
281 282
	atomic_andnot(CPUSTAT_IO_INT | CPUSTAT_EXT_INT | CPUSTAT_STOP_INT,
		    &vcpu->arch.sie_block->cpuflags);
283
	vcpu->arch.sie_block->lctl = 0x0000;
284 285 286 287 288 289 290
	vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);

	if (guestdbg_enabled(vcpu)) {
		vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
					       LCTL_CR10 | LCTL_CR11);
		vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
	}
291 292 293 294
}

static void __set_cpuflag(struct kvm_vcpu *vcpu, u32 flag)
{
295
	atomic_or(flag, &vcpu->arch.sie_block->cpuflags);
296 297
}

298 299
static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
{
300
	if (!(pending_irqs(vcpu) & IRQ_PEND_IO_MASK))
301 302 303 304 305 306 307
		return;
	else if (psw_ioint_disabled(vcpu))
		__set_cpuflag(vcpu, CPUSTAT_IO_INT);
	else
		vcpu->arch.sie_block->lctl |= LCTL_CR6;
}

308 309
static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
{
310
	if (!(pending_irqs(vcpu) & IRQ_PEND_EXT_MASK))
311 312 313 314 315 316 317 318 319
		return;
	if (psw_extint_disabled(vcpu))
		__set_cpuflag(vcpu, CPUSTAT_EXT_INT);
	else
		vcpu->arch.sie_block->lctl |= LCTL_CR0;
}

static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
{
320
	if (!(pending_irqs(vcpu) & IRQ_PEND_MCHK_MASK))
321 322 323 324 325 326 327
		return;
	if (psw_mchk_disabled(vcpu))
		vcpu->arch.sie_block->ictl |= ICTL_LPSW;
	else
		vcpu->arch.sie_block->lctl |= LCTL_CR14;
}

328 329 330 331 332 333
static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
{
	if (kvm_s390_is_stop_irq_pending(vcpu))
		__set_cpuflag(vcpu, CPUSTAT_STOP_INT);
}

334 335
/* Set interception request for non-deliverable interrupts */
static void set_intercept_indicators(struct kvm_vcpu *vcpu)
336
{
337
	set_intercept_indicators_io(vcpu);
338 339
	set_intercept_indicators_ext(vcpu);
	set_intercept_indicators_mchk(vcpu);
340
	set_intercept_indicators_stop(vcpu);
341 342
}

343 344
static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
{
345
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
346 347 348 349 350 351 352
	int rc;

	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
					 0, 0);

	rc  = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
			   (u16 *)__LC_EXT_INT_CODE);
353
	rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
354 355 356 357
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
358
	clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
359
	return rc ? -EFAULT : 0;
360 361 362 363
}

static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
{
364
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
365 366 367 368 369 370 371
	int rc;

	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
					 0, 0);

	rc  = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
			   (u16 __user *)__LC_EXT_INT_CODE);
372
	rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
373 374 375 376
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
377
	clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
378
	return rc ? -EFAULT : 0;
379 380
}

381
static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
382
{
383 384
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_ext_info ext;
385 386
	int rc;

387 388 389 390 391 392
	spin_lock(&li->lock);
	ext = li->irq.ext;
	clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
	li->irq.ext.ext_params2 = 0;
	spin_unlock(&li->lock);

393 394
	VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx",
		   ext.ext_params2);
395 396
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
					 KVM_S390_INT_PFAULT_INIT,
397
					 0, ext.ext_params2);
398 399 400 401 402 403 404

	rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
	rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
405
	rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
406
	return rc ? -EFAULT : 0;
407 408
}

409 410 411 412
static int __write_machine_check(struct kvm_vcpu *vcpu,
				 struct kvm_s390_mchk_info *mchk)
{
	unsigned long ext_sa_addr;
F
Fan Zhang 已提交
413
	unsigned long lc;
414
	freg_t fprs[NUM_FPRS];
415
	union mci mci;
416 417
	int rc;

418
	mci.val = mchk->mcic;
419
	/* take care of lazy register loading */
420 421 422
	save_fpu_regs();
	save_access_regs(vcpu->run->s.regs.acrs);

423
	/* Extended save area */
424 425
	rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr,
			   sizeof(unsigned long));
F
Fan Zhang 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
	/* Only bits 0 through 63-LC are used for address formation */
	lc = ext_sa_addr & MCESA_LC_MASK;
	if (test_kvm_facility(vcpu->kvm, 133)) {
		switch (lc) {
		case 0:
		case 10:
			ext_sa_addr &= ~0x3ffUL;
			break;
		case 11:
			ext_sa_addr &= ~0x7ffUL;
			break;
		case 12:
			ext_sa_addr &= ~0xfffUL;
			break;
		default:
			ext_sa_addr = 0;
			break;
		}
	} else {
		ext_sa_addr &= ~0x3ffUL;
	}

448 449 450 451 452 453 454
	if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) {
		if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs,
				    512))
			mci.vr = 0;
	} else {
		mci.vr = 0;
	}
F
Fan Zhang 已提交
455 456 457 458 459 460 461 462
	if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133)
	    && (lc == 11 || lc == 12)) {
		if (write_guest_abs(vcpu, ext_sa_addr + 1024,
				    &vcpu->run->s.regs.gscb, 32))
			mci.gs = 0;
	} else {
		mci.gs = 0;
	}
463 464

	/* General interruption information */
465
	rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID);
466 467 468 469
	rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
470
	rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE);
471 472

	/* Register-save areas */
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
	if (MACHINE_HAS_VX) {
		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
		rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128);
	} else {
		rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA,
				     vcpu->run->s.regs.fprs, 128);
	}
	rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA,
			     vcpu->run->s.regs.gprs, 128);
	rc |= put_guest_lc(vcpu, current->thread.fpu.fpc,
			   (u32 __user *) __LC_FP_CREG_SAVE_AREA);
	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr,
			   (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA);
	rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu),
			   (u64 __user *) __LC_CPU_TIMER_SAVE_AREA);
	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8,
			   (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA);
	rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA,
			     &vcpu->run->s.regs.acrs, 64);
	rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA,
			     &vcpu->arch.sie_block->gcr, 128);
494 495

	/* Extended interruption information */
496 497
	rc |= put_guest_lc(vcpu, mchk->ext_damage_code,
			   (u32 __user *) __LC_EXT_DAMAGE_CODE);
498 499 500 501 502 503 504
	rc |= put_guest_lc(vcpu, mchk->failing_storage_address,
			   (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
	rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout,
			     sizeof(mchk->fixed_logout));
	return rc ? -EFAULT : 0;
}

505
static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
506
{
507
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
508
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
509 510 511
	struct kvm_s390_mchk_info mchk = {};
	int deliver = 0;
	int rc = 0;
512

513
	spin_lock(&fi->lock);
514
	spin_lock(&li->lock);
515 516 517 518 519 520 521 522 523 524 525 526 527 528
	if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
	    test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
		/*
		 * If there was an exigent machine check pending, then any
		 * repressible machine checks that might have been pending
		 * are indicated along with it, so always clear bits for
		 * repressible and exigent interrupts
		 */
		mchk = li->irq.mchk;
		clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
		clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
		memset(&li->irq.mchk, 0, sizeof(mchk));
		deliver = 1;
	}
529
	/*
530 531 532 533
	 * We indicate floating repressible conditions along with
	 * other pending conditions. Channel Report Pending and Channel
	 * Subsystem damage are the only two and and are indicated by
	 * bits in mcic and masked in cr14.
534
	 */
535 536 537 538 539 540
	if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
		mchk.mcic |= fi->mchk.mcic;
		mchk.cr14 |= fi->mchk.cr14;
		memset(&fi->mchk, 0, sizeof(mchk));
		deliver = 1;
	}
541
	spin_unlock(&li->lock);
542
	spin_unlock(&fi->lock);
543

544
	if (deliver) {
545
		VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx",
546 547 548 549
			   mchk.mcic);
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
						 KVM_S390_MCHK,
						 mchk.cr14, mchk.mcic);
550
		rc = __write_machine_check(vcpu, &mchk);
551
	}
552
	return rc;
553 554 555 556
}

static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
{
557
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
558 559
	int rc;

560
	VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart");
561 562 563 564
	vcpu->stat.deliver_restart_signal++;
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);

	rc  = write_guest_lc(vcpu,
565
			     offsetof(struct lowcore, restart_old_psw),
566
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
567
	rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw),
568
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
569
	clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
570
	return rc ? -EFAULT : 0;
571 572
}

573
static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
574
{
575 576 577 578 579 580 581 582
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_prefix_info prefix;

	spin_lock(&li->lock);
	prefix = li->irq.prefix;
	li->irq.prefix.address = 0;
	clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
	spin_unlock(&li->lock);
583 584 585 586

	vcpu->stat.deliver_prefix_signal++;
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
					 KVM_S390_SIGP_SET_PREFIX,
587
					 prefix.address, 0);
588

589
	kvm_s390_set_prefix(vcpu, prefix.address);
590 591 592
	return 0;
}

593
static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
594
{
595
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
596
	int rc;
597 598 599 600 601 602 603 604
	int cpu_addr;

	spin_lock(&li->lock);
	cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
	clear_bit(cpu_addr, li->sigp_emerg_pending);
	if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
		clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
	spin_unlock(&li->lock);
605

606
	VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg");
607
	vcpu->stat.deliver_emergency_signal++;
608 609
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
					 cpu_addr, 0);
610 611 612

	rc  = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
			   (u16 *)__LC_EXT_INT_CODE);
613
	rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
614 615 616 617
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
618
	return rc ? -EFAULT : 0;
619 620
}

621
static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
622
{
623 624
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_extcall_info extcall;
625 626
	int rc;

627 628 629 630 631 632
	spin_lock(&li->lock);
	extcall = li->irq.extcall;
	li->irq.extcall.code = 0;
	clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
	spin_unlock(&li->lock);

633
	VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call");
634 635 636
	vcpu->stat.deliver_external_call++;
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
					 KVM_S390_INT_EXTERNAL_CALL,
637
					 extcall.code, 0);
638 639 640

	rc  = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
			   (u16 *)__LC_EXT_INT_CODE);
641
	rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
642 643 644 645
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
			    sizeof(psw_t));
646
	return rc ? -EFAULT : 0;
647 648
}

649
static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
650
{
651 652
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_pgm_info pgm_info;
653
	int rc = 0, nullifying = false;
654
	u16 ilen;
655

656 657 658 659 660 661
	spin_lock(&li->lock);
	pgm_info = li->irq.pgm;
	clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
	memset(&li->irq.pgm, 0, sizeof(pgm_info));
	spin_unlock(&li->lock);

662
	ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK;
663 664
	VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d",
		   pgm_info.code, ilen);
665 666
	vcpu->stat.deliver_program_int++;
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
667
					 pgm_info.code, 0);
668

669
	switch (pgm_info.code & ~PGM_PER) {
670 671 672 673 674 675 676 677 678
	case PGM_AFX_TRANSLATION:
	case PGM_ASX_TRANSLATION:
	case PGM_EX_TRANSLATION:
	case PGM_LFX_TRANSLATION:
	case PGM_LSTE_SEQUENCE:
	case PGM_LSX_TRANSLATION:
	case PGM_LX_TRANSLATION:
	case PGM_PRIMARY_AUTHORITY:
	case PGM_SECONDARY_AUTHORITY:
679 680
		nullifying = true;
		/* fall through */
681
	case PGM_SPACE_SWITCH:
682
		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
683 684 685 686 687 688 689 690
				  (u64 *)__LC_TRANS_EXC_CODE);
		break;
	case PGM_ALEN_TRANSLATION:
	case PGM_ALE_SEQUENCE:
	case PGM_ASTE_INSTANCE:
	case PGM_ASTE_SEQUENCE:
	case PGM_ASTE_VALIDITY:
	case PGM_EXTENDED_AUTHORITY:
691
		rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
692
				  (u8 *)__LC_EXC_ACCESS_ID);
693
		nullifying = true;
694 695 696 697 698 699 700
		break;
	case PGM_ASCE_TYPE:
	case PGM_PAGE_TRANSLATION:
	case PGM_REGION_FIRST_TRANS:
	case PGM_REGION_SECOND_TRANS:
	case PGM_REGION_THIRD_TRANS:
	case PGM_SEGMENT_TRANSLATION:
701
		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
702
				  (u64 *)__LC_TRANS_EXC_CODE);
703
		rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
704
				   (u8 *)__LC_EXC_ACCESS_ID);
705
		rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
706
				   (u8 *)__LC_OP_ACCESS_ID);
707
		nullifying = true;
708 709
		break;
	case PGM_MONITOR:
710
		rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
711
				  (u16 *)__LC_MON_CLASS_NR);
712
		rc |= put_guest_lc(vcpu, pgm_info.mon_code,
713 714
				   (u64 *)__LC_MON_CODE);
		break;
E
Eric Farman 已提交
715
	case PGM_VECTOR_PROCESSING:
716
	case PGM_DATA:
717
		rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
718 719 720
				  (u32 *)__LC_DATA_EXC_CODE);
		break;
	case PGM_PROTECTION:
721
		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
722
				  (u64 *)__LC_TRANS_EXC_CODE);
723
		rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
724 725
				   (u8 *)__LC_EXC_ACCESS_ID);
		break;
726 727 728 729 730 731 732 733 734
	case PGM_STACK_FULL:
	case PGM_STACK_EMPTY:
	case PGM_STACK_SPECIFICATION:
	case PGM_STACK_TYPE:
	case PGM_STACK_OPERATION:
	case PGM_TRACE_TABEL:
	case PGM_CRYPTO_OPERATION:
		nullifying = true;
		break;
735 736
	}

737 738
	if (pgm_info.code & PGM_PER) {
		rc |= put_guest_lc(vcpu, pgm_info.per_code,
739
				   (u8 *) __LC_PER_CODE);
740
		rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
741
				   (u8 *)__LC_PER_ATMID);
742
		rc |= put_guest_lc(vcpu, pgm_info.per_address,
743
				   (u64 *) __LC_PER_ADDRESS);
744
		rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
745 746 747
				   (u8 *) __LC_PER_ACCESS_ID);
	}

748
	if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND))
749
		kvm_s390_rewind_psw(vcpu, ilen);
750

751 752
	/* bit 1+2 of the target are the ilc, so we can directly use ilen */
	rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC);
753 754
	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
				 (u64 *) __LC_LAST_BREAK);
755
	rc |= put_guest_lc(vcpu, pgm_info.code,
756 757 758 759 760
			   (u16 *)__LC_PGM_INT_CODE);
	rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
761
	return rc ? -EFAULT : 0;
762 763
}

764
static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
765
{
766 767 768 769 770 771 772 773 774 775 776 777 778
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
	struct kvm_s390_ext_info ext;
	int rc = 0;

	spin_lock(&fi->lock);
	if (!(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
		spin_unlock(&fi->lock);
		return 0;
	}
	ext = fi->srv_signal;
	memset(&fi->srv_signal, 0, sizeof(ext));
	clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
	spin_unlock(&fi->lock);
779

780
	VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x",
781
		   ext.ext_params);
782
	vcpu->stat.deliver_service_signal++;
783 784
	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
					 ext.ext_params, 0);
785 786

	rc  = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
787
	rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
788 789 790 791
	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
792
	rc |= put_guest_lc(vcpu, ext.ext_params,
793
			   (u32 *)__LC_EXT_PARAMS);
794

795
	return rc ? -EFAULT : 0;
796 797
}

798
static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
799
{
800 801 802
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
	struct kvm_s390_interrupt_info *inti;
	int rc = 0;
803

804 805 806 807 808 809 810 811 812 813 814
	spin_lock(&fi->lock);
	inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
					struct kvm_s390_interrupt_info,
					list);
	if (inti) {
		list_del(&inti->list);
		fi->counters[FIRQ_CNTR_PFAULT] -= 1;
	}
	if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
		clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
	spin_unlock(&fi->lock);
815

816
	if (inti) {
817 818 819 820 821 822
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
						 KVM_S390_INT_PFAULT_DONE, 0,
						 inti->ext.ext_params2);
		VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx",
			   inti->ext.ext_params2);

823 824 825 826 827 828 829 830 831 832 833 834 835 836
		rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
				(u16 *)__LC_EXT_INT_CODE);
		rc |= put_guest_lc(vcpu, PFAULT_DONE,
				(u16 *)__LC_EXT_CPU_ADDR);
		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
				(u64 *)__LC_EXT_PARAMS2);
		kfree(inti);
	}
837
	return rc ? -EFAULT : 0;
838 839
}

840
static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
841
{
842 843 844
	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
	struct kvm_s390_interrupt_info *inti;
	int rc = 0;
845

846 847 848 849 850 851
	spin_lock(&fi->lock);
	inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
					struct kvm_s390_interrupt_info,
					list);
	if (inti) {
		VCPU_EVENT(vcpu, 4,
852
			   "deliver: virtio parm: 0x%x,parm64: 0x%llx",
853 854 855 856 857 858 859 860 861 862 863 864
			   inti->ext.ext_params, inti->ext.ext_params2);
		vcpu->stat.deliver_virtio_interrupt++;
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
				inti->type,
				inti->ext.ext_params,
				inti->ext.ext_params2);
		list_del(&inti->list);
		fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
	}
	if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
		clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
	spin_unlock(&fi->lock);
865

866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
	if (inti) {
		rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
				(u16 *)__LC_EXT_INT_CODE);
		rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
				(u16 *)__LC_EXT_CPU_ADDR);
		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= put_guest_lc(vcpu, inti->ext.ext_params,
				(u32 *)__LC_EXT_PARAMS);
		rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
				(u64 *)__LC_EXT_PARAMS2);
		kfree(inti);
	}
883
	return rc ? -EFAULT : 0;
884 885 886
}

static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
887
				     unsigned long irq_type)
888
{
889 890 891 892
	struct list_head *isc_list;
	struct kvm_s390_float_interrupt *fi;
	struct kvm_s390_interrupt_info *inti = NULL;
	int rc = 0;
893

894
	fi = &vcpu->kvm->arch.float_int;
895

896 897 898 899 900 901
	spin_lock(&fi->lock);
	isc_list = &fi->lists[irq_type - IRQ_PEND_IO_ISC_0];
	inti = list_first_entry_or_null(isc_list,
					struct kvm_s390_interrupt_info,
					list);
	if (inti) {
902 903 904 905 906 907 908 909
		if (inti->type & KVM_S390_INT_IO_AI_MASK)
			VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)");
		else
			VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x",
			inti->io.subchannel_id >> 8,
			inti->io.subchannel_id >> 1 & 0x3,
			inti->io.subchannel_nr);

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
		vcpu->stat.deliver_io_int++;
		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
				inti->type,
				((__u32)inti->io.subchannel_id << 16) |
				inti->io.subchannel_nr,
				((__u64)inti->io.io_int_parm << 32) |
				inti->io.io_int_word);
		list_del(&inti->list);
		fi->counters[FIRQ_CNTR_IO] -= 1;
	}
	if (list_empty(isc_list))
		clear_bit(irq_type, &fi->pending_irqs);
	spin_unlock(&fi->lock);

	if (inti) {
		rc  = put_guest_lc(vcpu, inti->io.subchannel_id,
				(u16 *)__LC_SUBCHANNEL_ID);
		rc |= put_guest_lc(vcpu, inti->io.subchannel_nr,
				(u16 *)__LC_SUBCHANNEL_NR);
		rc |= put_guest_lc(vcpu, inti->io.io_int_parm,
				(u32 *)__LC_IO_INT_PARM);
		rc |= put_guest_lc(vcpu, inti->io.io_int_word,
				(u32 *)__LC_IO_INT_WORD);
		rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
				&vcpu->arch.sie_block->gpsw,
				sizeof(psw_t));
		kfree(inti);
	}
941

942
	return rc ? -EFAULT : 0;
943 944 945 946 947 948
}

typedef int (*deliver_irq_t)(struct kvm_vcpu *vcpu);

static const deliver_irq_t deliver_irq_funcs[] = {
	[IRQ_PEND_MCHK_EX]        = __deliver_machine_check,
949
	[IRQ_PEND_MCHK_REP]       = __deliver_machine_check,
950 951 952 953 954 955 956 957
	[IRQ_PEND_PROG]           = __deliver_prog,
	[IRQ_PEND_EXT_EMERGENCY]  = __deliver_emergency_signal,
	[IRQ_PEND_EXT_EXTERNAL]   = __deliver_external_call,
	[IRQ_PEND_EXT_CLOCK_COMP] = __deliver_ckc,
	[IRQ_PEND_EXT_CPU_TIMER]  = __deliver_cpu_timer,
	[IRQ_PEND_RESTART]        = __deliver_restart,
	[IRQ_PEND_SET_PREFIX]     = __deliver_set_prefix,
	[IRQ_PEND_PFAULT_INIT]    = __deliver_pfault_init,
958 959 960
	[IRQ_PEND_EXT_SERVICE]    = __deliver_service,
	[IRQ_PEND_PFAULT_DONE]    = __deliver_pfault_done,
	[IRQ_PEND_VIRTIO]         = __deliver_virtio,
961 962
};

963 964
/* Check whether an external call is pending (deliverable or not) */
int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
965
{
966
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
967

968
	if (!sclp.has_sigpif)
969
		return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
970

971
	return sca_ext_call_pending(vcpu, NULL);
972 973
}

974
int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
975
{
976 977
	if (deliverable_irqs(vcpu))
		return 1;
978

979 980
	if (kvm_cpu_has_pending_timer(vcpu))
		return 1;
981

982
	/* external call pending and deliverable */
983
	if (kvm_s390_ext_call_pending(vcpu) &&
984 985
	    !psw_extint_disabled(vcpu) &&
	    (vcpu->arch.sie_block->gcr[0] & 0x2000ul))
986
		return 1;
987

988 989 990
	if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
		return 1;
	return 0;
991 992
}

993 994
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
995
	return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu);
996 997
}

998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
static u64 __calculate_sltime(struct kvm_vcpu *vcpu)
{
	u64 now, cputm, sltime = 0;

	if (ckc_interrupts_enabled(vcpu)) {
		now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
		sltime = tod_to_ns(vcpu->arch.sie_block->ckc - now);
		/* already expired or overflow? */
		if (!sltime || vcpu->arch.sie_block->ckc <= now)
			return 0;
		if (cpu_timer_interrupts_enabled(vcpu)) {
			cputm = kvm_s390_get_cpu_timer(vcpu);
			/* already expired? */
			if (cputm >> 63)
				return 0;
			return min(sltime, tod_to_ns(cputm));
		}
	} else if (cpu_timer_interrupts_enabled(vcpu)) {
		sltime = kvm_s390_get_cpu_timer(vcpu);
		/* already expired? */
		if (sltime >> 63)
			return 0;
	}
	return sltime;
}

1024 1025
int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
{
1026
	u64 sltime;
1027 1028 1029

	vcpu->stat.exit_wait_state++;

1030
	/* fast path */
1031
	if (kvm_arch_vcpu_runnable(vcpu))
1032
		return 0;
1033

1034 1035
	if (psw_interrupts_disabled(vcpu)) {
		VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
1036
		return -EOPNOTSUPP; /* disabled wait */
1037 1038
	}

1039 1040
	if (!ckc_interrupts_enabled(vcpu) &&
	    !cpu_timer_interrupts_enabled(vcpu)) {
1041
		VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
1042
		__set_cpu_idle(vcpu);
1043 1044 1045
		goto no_timer;
	}

1046 1047
	sltime = __calculate_sltime(vcpu);
	if (!sltime)
1048 1049 1050
		return 0;

	__set_cpu_idle(vcpu);
T
Thomas Gleixner 已提交
1051
	hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL);
1052
	VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime);
1053
no_timer:
1054
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
1055
	kvm_vcpu_block(vcpu);
1056
	__unset_cpu_idle(vcpu);
1057 1058
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

1059
	hrtimer_cancel(&vcpu->arch.ckc_timer);
1060 1061 1062
	return 0;
}

1063 1064
void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
{
1065 1066 1067 1068 1069
	/*
	 * We cannot move this into the if, as the CPU might be already
	 * in kvm_vcpu_block without having the waitqueue set (polling)
	 */
	vcpu->valid_wakeup = true;
1070
	if (swait_active(&vcpu->wq)) {
1071 1072 1073 1074 1075
		/*
		 * The vcpu gave up the cpu voluntarily, mark it as a good
		 * yield-candidate.
		 */
		vcpu->preempted = true;
1076
		swake_up(&vcpu->wq);
1077
		vcpu->stat.halt_wakeup++;
1078
	}
1079 1080 1081 1082 1083
	/*
	 * The VCPU might not be sleeping but is executing the VSIE. Let's
	 * kick it, so it leaves the SIE to process the request.
	 */
	kvm_s390_vsie_kick(vcpu);
1084 1085
}

1086 1087 1088
enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
{
	struct kvm_vcpu *vcpu;
1089
	u64 sltime;
1090 1091

	vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
1092
	sltime = __calculate_sltime(vcpu);
1093

1094 1095 1096 1097
	/*
	 * If the monotonic clock runs faster than the tod clock we might be
	 * woken up too early and have to go back to sleep to avoid deadlocks.
	 */
1098
	if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime)))
1099 1100
		return HRTIMER_RESTART;
	kvm_s390_vcpu_wakeup(vcpu);
1101 1102
	return HRTIMER_NORESTART;
}
1103

1104 1105 1106 1107
void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1108
	spin_lock(&li->lock);
1109 1110 1111
	li->pending_irqs = 0;
	bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
	memset(&li->irq, 0, sizeof(li->irq));
1112
	spin_unlock(&li->lock);
1113

1114
	sca_clear_ext_call(vcpu);
1115 1116
}

1117
int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
1118
{
1119
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1120
	deliver_irq_t func;
1121
	int rc = 0;
1122
	unsigned long irq_type;
1123
	unsigned long irqs;
1124 1125 1126

	__reset_intercept_indicators(vcpu);

1127 1128
	/* pending ckc conditions might have been invalidated */
	clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1129
	if (ckc_irq_pending(vcpu))
1130 1131
		set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);

1132 1133 1134 1135 1136
	/* pending cpu timer conditions might have been invalidated */
	clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
	if (cpu_timer_irq_pending(vcpu))
		set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);

1137
	while ((irqs = deliverable_irqs(vcpu)) && !rc) {
1138
		/* bits are in the order of interrupt priority */
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
		irq_type = find_first_bit(&irqs, IRQ_PEND_COUNT);
		if (is_ioirq(irq_type)) {
			rc = __deliver_io(vcpu, irq_type);
		} else {
			func = deliver_irq_funcs[irq_type];
			if (!func) {
				WARN_ON_ONCE(func == NULL);
				clear_bit(irq_type, &li->pending_irqs);
				continue;
			}
			rc = func(vcpu);
1150
		}
1151
	}
1152

1153
	set_intercept_indicators(vcpu);
1154 1155

	return rc;
1156 1157
}

1158
static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1159 1160 1161
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1162 1163 1164 1165
	VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code);
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
				   irq->u.pgm.code, 0);

1166 1167 1168 1169 1170 1171 1172
	if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) {
		/* auto detection if no valid ILC was given */
		irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK;
		irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu);
		irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID;
	}

1173 1174
	if (irq->u.pgm.code == PGM_PER) {
		li->irq.pgm.code |= PGM_PER;
1175
		li->irq.pgm.flags = irq->u.pgm.flags;
1176 1177 1178 1179 1180 1181 1182 1183
		/* only modify PER related information */
		li->irq.pgm.per_address = irq->u.pgm.per_address;
		li->irq.pgm.per_code = irq->u.pgm.per_code;
		li->irq.pgm.per_atmid = irq->u.pgm.per_atmid;
		li->irq.pgm.per_access_id = irq->u.pgm.per_access_id;
	} else if (!(irq->u.pgm.code & PGM_PER)) {
		li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) |
				   irq->u.pgm.code;
1184
		li->irq.pgm.flags = irq->u.pgm.flags;
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
		/* only modify non-PER information */
		li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code;
		li->irq.pgm.mon_code = irq->u.pgm.mon_code;
		li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code;
		li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr;
		li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id;
		li->irq.pgm.op_access_id = irq->u.pgm.op_access_id;
	} else {
		li->irq.pgm = irq->u.pgm;
	}
1195
	set_bit(IRQ_PEND_PROG, &li->pending_irqs);
1196 1197 1198
	return 0;
}

1199
static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1200 1201 1202
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1203 1204
	VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx",
		   irq->u.ext.ext_params2);
1205 1206
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
				   irq->u.ext.ext_params,
1207
				   irq->u.ext.ext_params2);
1208 1209 1210

	li->irq.ext = irq->u.ext;
	set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
1211
	atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1212 1213 1214
	return 0;
}

1215
static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1216 1217
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1218
	struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
1219
	uint16_t src_id = irq->u.extcall.code;
1220

1221
	VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u",
1222
		   src_id);
1223
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
1224
				   src_id, 0);
1225 1226

	/* sending vcpu invalid */
1227
	if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL)
1228 1229
		return -EINVAL;

1230
	if (sclp.has_sigpif)
1231
		return sca_inject_ext_call(vcpu, src_id);
1232

1233
	if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
1234
		return -EBUSY;
1235
	*extcall = irq->u.extcall;
1236
	atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1237 1238 1239
	return 0;
}

1240
static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1241 1242
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1243
	struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
1244

1245
	VCPU_EVENT(vcpu, 3, "inject: set prefix to %x",
1246
		   irq->u.prefix.address);
1247
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
1248
				   irq->u.prefix.address, 0);
1249

1250 1251 1252
	if (!is_vcpu_stopped(vcpu))
		return -EBUSY;

1253 1254
	*prefix = irq->u.prefix;
	set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
1255 1256 1257
	return 0;
}

1258
#define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
1259
static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1260 1261
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1262
	struct kvm_s390_stop_info *stop = &li->irq.stop;
1263
	int rc = 0;
1264

1265
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0);
1266

1267 1268 1269
	if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
		return -EINVAL;

1270 1271 1272 1273 1274 1275 1276 1277 1278
	if (is_vcpu_stopped(vcpu)) {
		if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
			rc = kvm_s390_store_status_unloaded(vcpu,
						KVM_S390_STORE_STATUS_NOADDR);
		return rc;
	}

	if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
		return -EBUSY;
1279
	stop->flags = irq->u.stop.flags;
1280
	__set_cpuflag(vcpu, CPUSTAT_STOP_INT);
1281 1282 1283 1284
	return 0;
}

static int __inject_sigp_restart(struct kvm_vcpu *vcpu,
1285
				 struct kvm_s390_irq *irq)
1286 1287 1288
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1289
	VCPU_EVENT(vcpu, 3, "%s", "inject: restart int");
1290
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
1291 1292

	set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
1293 1294 1295 1296
	return 0;
}

static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
1297
				   struct kvm_s390_irq *irq)
1298 1299 1300
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1301
	VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u",
1302 1303
		   irq->u.emerg.code);
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
1304
				   irq->u.emerg.code, 0);
1305

1306 1307 1308 1309
	/* sending vcpu invalid */
	if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL)
		return -EINVAL;

1310
	set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
1311
	set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
1312
	atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1313 1314 1315
	return 0;
}

1316
static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1317 1318
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1319
	struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
1320

1321
	VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx",
1322
		   irq->u.mchk.mcic);
1323
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
1324
				   irq->u.mchk.mcic);
1325 1326

	/*
1327 1328 1329 1330 1331 1332
	 * Because repressible machine checks can be indicated along with
	 * exigent machine checks (PoP, Chapter 11, Interruption action)
	 * we need to combine cr14, mcic and external damage code.
	 * Failing storage address and the logout area should not be or'ed
	 * together, we just indicate the last occurrence of the corresponding
	 * machine check
1333
	 */
1334
	mchk->cr14 |= irq->u.mchk.cr14;
1335
	mchk->mcic |= irq->u.mchk.mcic;
1336 1337 1338 1339
	mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
	mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
	memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
	       sizeof(mchk->fixed_logout));
1340 1341 1342 1343
	if (mchk->mcic & MCHK_EX_MASK)
		set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
	else if (mchk->mcic & MCHK_REP_MASK)
		set_bit(IRQ_PEND_MCHK_REP,  &li->pending_irqs);
1344 1345 1346
	return 0;
}

1347
static int __inject_ckc(struct kvm_vcpu *vcpu)
1348 1349 1350
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1351
	VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external");
1352
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
1353
				   0, 0);
1354 1355

	set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1356
	atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1357 1358 1359
	return 0;
}

1360
static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
1361 1362 1363
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

1364
	VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external");
1365
	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
1366
				   0, 0);
1367 1368

	set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1369
	atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1370 1371 1372
	return 0;
}

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
						  int isc, u32 schid)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
	struct kvm_s390_interrupt_info *iter;
	u16 id = (schid & 0xffff0000U) >> 16;
	u16 nr = schid & 0x0000ffffU;

	spin_lock(&fi->lock);
	list_for_each_entry(iter, isc_list, list) {
		if (schid && (id != iter->io.subchannel_id ||
			      nr != iter->io.subchannel_nr))
			continue;
		/* found an appropriate entry */
		list_del_init(&iter->list);
		fi->counters[FIRQ_CNTR_IO] -= 1;
		if (list_empty(isc_list))
			clear_bit(IRQ_PEND_IO_ISC_0 + isc, &fi->pending_irqs);
		spin_unlock(&fi->lock);
		return iter;
	}
	spin_unlock(&fi->lock);
	return NULL;
}
1398

1399 1400 1401 1402
/*
 * Dequeue and return an I/O interrupt matching any of the interruption
 * subclasses as designated by the isc mask in cr6 and the schid (if != 0).
 */
1403
struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
						    u64 isc_mask, u32 schid)
{
	struct kvm_s390_interrupt_info *inti = NULL;
	int isc;

	for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
		if (isc_mask & isc_to_isc_bits(isc))
			inti = get_io_int(kvm, isc, schid);
	}
	return inti;
}

#define SCCB_MASK 0xFFFFFFF8
#define SCCB_EVENT_PENDING 0x3

static int __inject_service(struct kvm *kvm,
			     struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

	spin_lock(&fi->lock);
	fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
	/*
	 * Early versions of the QEMU s390 bios will inject several
	 * service interrupts after another without handling a
	 * condition code indicating busy.
	 * We will silently ignore those superfluous sccb values.
	 * A future version of QEMU will take care of serialization
	 * of servc requests
	 */
	if (fi->srv_signal.ext_params & SCCB_MASK)
		goto out;
	fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
	set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
out:
	spin_unlock(&fi->lock);
	kfree(inti);
	return 0;
}

static int __inject_virtio(struct kvm *kvm,
			    struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

	spin_lock(&fi->lock);
	if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
		spin_unlock(&fi->lock);
		return -EBUSY;
	}
	fi->counters[FIRQ_CNTR_VIRTIO] += 1;
	list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
	set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
	spin_unlock(&fi->lock);
	return 0;
}

static int __inject_pfault_done(struct kvm *kvm,
				 struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

	spin_lock(&fi->lock);
	if (fi->counters[FIRQ_CNTR_PFAULT] >=
		(ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
		spin_unlock(&fi->lock);
		return -EBUSY;
	}
	fi->counters[FIRQ_CNTR_PFAULT] += 1;
	list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
	set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
	spin_unlock(&fi->lock);
	return 0;
}

#define CR_PENDING_SUBCLASS 28
static int __inject_float_mchk(struct kvm *kvm,
				struct kvm_s390_interrupt_info *inti)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;

	spin_lock(&fi->lock);
	fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
	fi->mchk.mcic |= inti->mchk.mcic;
	set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
	spin_unlock(&fi->lock);
	kfree(inti);
	return 0;
}

static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1495 1496
{
	struct kvm_s390_float_interrupt *fi;
1497 1498
	struct list_head *list;
	int isc;
1499 1500 1501

	fi = &kvm->arch.float_int;
	spin_lock(&fi->lock);
1502 1503 1504
	if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
		spin_unlock(&fi->lock);
		return -EBUSY;
J
Jens Freimann 已提交
1505
	}
1506 1507
	fi->counters[FIRQ_CNTR_IO] += 1;

1508 1509 1510 1511 1512 1513 1514
	if (inti->type & KVM_S390_INT_IO_AI_MASK)
		VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)");
	else
		VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x",
			inti->io.subchannel_id >> 8,
			inti->io.subchannel_id >> 1 & 0x3,
			inti->io.subchannel_nr);
1515 1516 1517 1518
	isc = int_word_to_isc(inti->io.io_int_word);
	list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
	list_add_tail(&inti->list, list);
	set_bit(IRQ_PEND_IO_ISC_0 + isc, &fi->pending_irqs);
1519
	spin_unlock(&fi->lock);
1520
	return 0;
1521
}
1522

1523 1524 1525 1526
/*
 * Find a destination VCPU for a floating irq and kick it.
 */
static void __floating_irq_kick(struct kvm *kvm, u64 type)
1527
{
1528
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1529
	struct kvm_s390_local_interrupt *li;
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
	struct kvm_vcpu *dst_vcpu;
	int sigcpu, online_vcpus, nr_tries = 0;

	online_vcpus = atomic_read(&kvm->online_vcpus);
	if (!online_vcpus)
		return;

	/* find idle VCPUs first, then round robin */
	sigcpu = find_first_bit(fi->idle_mask, online_vcpus);
	if (sigcpu == online_vcpus) {
		do {
			sigcpu = fi->next_rr_cpu;
			fi->next_rr_cpu = (fi->next_rr_cpu + 1) % online_vcpus;
			/* avoid endless loops if all vcpus are stopped */
			if (nr_tries++ >= online_vcpus)
				return;
		} while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu)));
	}
	dst_vcpu = kvm_get_vcpu(kvm, sigcpu);

	/* make the VCPU drop out of the SIE, or wake it up if sleeping */
	li = &dst_vcpu->arch.local_int;
	spin_lock(&li->lock);
	switch (type) {
	case KVM_S390_MCHK:
1555
		atomic_or(CPUSTAT_STOP_INT, li->cpuflags);
1556 1557
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1558
		atomic_or(CPUSTAT_IO_INT, li->cpuflags);
1559 1560
		break;
	default:
1561
		atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1562 1563 1564 1565 1566 1567 1568 1569
		break;
	}
	spin_unlock(&li->lock);
	kvm_s390_vcpu_wakeup(dst_vcpu);
}

static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
{
1570 1571
	u64 type = READ_ONCE(inti->type);
	int rc;
1572

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
	switch (type) {
	case KVM_S390_MCHK:
		rc = __inject_float_mchk(kvm, inti);
		break;
	case KVM_S390_INT_VIRTIO:
		rc = __inject_virtio(kvm, inti);
		break;
	case KVM_S390_INT_SERVICE:
		rc = __inject_service(kvm, inti);
		break;
	case KVM_S390_INT_PFAULT_DONE:
		rc = __inject_pfault_done(kvm, inti);
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
		rc = __inject_io(kvm, inti);
		break;
	default:
J
Jens Freimann 已提交
1590
		rc = -EINVAL;
1591
	}
1592 1593 1594
	if (rc)
		return rc;

1595
	__floating_irq_kick(kvm, type);
1596
	return 0;
1597 1598 1599 1600 1601 1602
}

int kvm_s390_inject_vm(struct kvm *kvm,
		       struct kvm_s390_interrupt *s390int)
{
	struct kvm_s390_interrupt_info *inti;
1603
	int rc;
1604

1605 1606 1607 1608
	inti = kzalloc(sizeof(*inti), GFP_KERNEL);
	if (!inti)
		return -ENOMEM;

1609 1610
	inti->type = s390int->type;
	switch (inti->type) {
1611
	case KVM_S390_INT_VIRTIO:
1612
		VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
1613 1614 1615 1616 1617
			 s390int->parm, s390int->parm64);
		inti->ext.ext_params = s390int->parm;
		inti->ext.ext_params2 = s390int->parm64;
		break;
	case KVM_S390_INT_SERVICE:
1618
		VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm);
1619 1620
		inti->ext.ext_params = s390int->parm;
		break;
1621 1622 1623
	case KVM_S390_INT_PFAULT_DONE:
		inti->ext.ext_params2 = s390int->parm64;
		break;
1624
	case KVM_S390_MCHK:
1625
		VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx",
1626 1627 1628 1629
			 s390int->parm64);
		inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
		inti->mchk.mcic = s390int->parm64;
		break;
1630 1631 1632 1633 1634 1635
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
		inti->io.subchannel_id = s390int->parm >> 16;
		inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
		inti->io.io_int_parm = s390int->parm64 >> 32;
		inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
		break;
1636 1637 1638 1639
	default:
		kfree(inti);
		return -EINVAL;
	}
1640 1641
	trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
				 2);
1642

1643 1644 1645 1646
	rc = __inject_vm(kvm, inti);
	if (rc)
		kfree(inti);
	return rc;
1647 1648
}

1649
int kvm_s390_reinject_io_int(struct kvm *kvm,
1650 1651
			      struct kvm_s390_interrupt_info *inti)
{
1652
	return __inject_vm(kvm, inti);
1653 1654
}

1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
		       struct kvm_s390_irq *irq)
{
	irq->type = s390int->type;
	switch (irq->type) {
	case KVM_S390_PROGRAM_INT:
		if (s390int->parm & 0xffff0000)
			return -EINVAL;
		irq->u.pgm.code = s390int->parm;
		break;
	case KVM_S390_SIGP_SET_PREFIX:
		irq->u.prefix.address = s390int->parm;
		break;
1668 1669 1670
	case KVM_S390_SIGP_STOP:
		irq->u.stop.flags = s390int->parm;
		break;
1671
	case KVM_S390_INT_EXTERNAL_CALL:
1672
		if (s390int->parm & 0xffff0000)
1673 1674 1675 1676
			return -EINVAL;
		irq->u.extcall.code = s390int->parm;
		break;
	case KVM_S390_INT_EMERGENCY:
1677
		if (s390int->parm & 0xffff0000)
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
			return -EINVAL;
		irq->u.emerg.code = s390int->parm;
		break;
	case KVM_S390_MCHK:
		irq->u.mchk.mcic = s390int->parm64;
		break;
	}
	return 0;
}

1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

	return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
}

void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;

	spin_lock(&li->lock);
	li->irq.stop.flags = 0;
	clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
	spin_unlock(&li->lock);
}

1705
static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1706
{
1707
	int rc;
1708

1709
	switch (irq->type) {
1710
	case KVM_S390_PROGRAM_INT:
1711
		rc = __inject_prog(vcpu, irq);
1712
		break;
1713
	case KVM_S390_SIGP_SET_PREFIX:
1714
		rc = __inject_set_prefix(vcpu, irq);
1715
		break;
1716
	case KVM_S390_SIGP_STOP:
1717
		rc = __inject_sigp_stop(vcpu, irq);
1718
		break;
1719
	case KVM_S390_RESTART:
1720
		rc = __inject_sigp_restart(vcpu, irq);
1721
		break;
1722
	case KVM_S390_INT_CLOCK_COMP:
1723
		rc = __inject_ckc(vcpu);
1724
		break;
1725
	case KVM_S390_INT_CPU_TIMER:
1726
		rc = __inject_cpu_timer(vcpu);
1727
		break;
1728
	case KVM_S390_INT_EXTERNAL_CALL:
1729
		rc = __inject_extcall(vcpu, irq);
1730
		break;
1731
	case KVM_S390_INT_EMERGENCY:
1732
		rc = __inject_sigp_emergency(vcpu, irq);
1733
		break;
1734
	case KVM_S390_MCHK:
1735
		rc = __inject_mchk(vcpu, irq);
1736
		break;
1737
	case KVM_S390_INT_PFAULT_INIT:
1738
		rc = __inject_pfault_init(vcpu, irq);
1739
		break;
1740 1741
	case KVM_S390_INT_VIRTIO:
	case KVM_S390_INT_SERVICE:
1742
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1743
	default:
1744
		rc = -EINVAL;
1745
	}
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756

	return rc;
}

int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	int rc;

	spin_lock(&li->lock);
	rc = do_inject_vcpu(vcpu, irq);
1757
	spin_unlock(&li->lock);
1758 1759 1760
	if (!rc)
		kvm_s390_vcpu_wakeup(vcpu);
	return rc;
1761
}
1762

1763
static inline void clear_irq_list(struct list_head *_list)
1764
{
1765
	struct kvm_s390_interrupt_info *inti, *n;
1766

1767
	list_for_each_entry_safe(inti, n, _list, list) {
1768 1769 1770 1771 1772
		list_del(&inti->list);
		kfree(inti);
	}
}

1773 1774
static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
		       struct kvm_s390_irq *irq)
1775
{
1776
	irq->type = inti->type;
1777
	switch (inti->type) {
1778 1779
	case KVM_S390_INT_PFAULT_INIT:
	case KVM_S390_INT_PFAULT_DONE:
1780
	case KVM_S390_INT_VIRTIO:
1781
		irq->u.ext = inti->ext;
1782 1783
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1784
		irq->u.io = inti->io;
1785 1786 1787 1788
		break;
	}
}

1789 1790 1791 1792 1793 1794
void kvm_s390_clear_float_irqs(struct kvm *kvm)
{
	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
	int i;

	spin_lock(&fi->lock);
1795 1796 1797
	fi->pending_irqs = 0;
	memset(&fi->srv_signal, 0, sizeof(fi->srv_signal));
	memset(&fi->mchk, 0, sizeof(fi->mchk));
1798 1799 1800 1801 1802 1803 1804
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		clear_irq_list(&fi->lists[i]);
	for (i = 0; i < FIRQ_MAX_COUNT; i++)
		fi->counters[i] = 0;
	spin_unlock(&fi->lock);
};

1805
static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
1806 1807 1808
{
	struct kvm_s390_interrupt_info *inti;
	struct kvm_s390_float_interrupt *fi;
1809
	struct kvm_s390_irq *buf;
1810
	struct kvm_s390_irq *irq;
1811
	int max_irqs;
1812 1813
	int ret = 0;
	int n = 0;
1814
	int i;
1815

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
	if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
		return -EINVAL;

	/*
	 * We are already using -ENOMEM to signal
	 * userspace it may retry with a bigger buffer,
	 * so we need to use something else for this case
	 */
	buf = vzalloc(len);
	if (!buf)
		return -ENOBUFS;

	max_irqs = len / sizeof(struct kvm_s390_irq);

1830 1831
	fi = &kvm->arch.float_int;
	spin_lock(&fi->lock);
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
	for (i = 0; i < FIRQ_LIST_COUNT; i++) {
		list_for_each_entry(inti, &fi->lists[i], list) {
			if (n == max_irqs) {
				/* signal userspace to try again */
				ret = -ENOMEM;
				goto out;
			}
			inti_to_irq(inti, &buf[n]);
			n++;
		}
	}
	if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs)) {
1844
		if (n == max_irqs) {
1845 1846
			/* signal userspace to try again */
			ret = -ENOMEM;
1847
			goto out;
1848
		}
1849 1850 1851
		irq = (struct kvm_s390_irq *) &buf[n];
		irq->type = KVM_S390_INT_SERVICE;
		irq->u.ext = fi->srv_signal;
1852 1853
		n++;
	}
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
	if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
		if (n == max_irqs) {
				/* signal userspace to try again */
				ret = -ENOMEM;
				goto out;
		}
		irq = (struct kvm_s390_irq *) &buf[n];
		irq->type = KVM_S390_MCHK;
		irq->u.mchk = fi->mchk;
		n++;
}

out:
1867
	spin_unlock(&fi->lock);
1868 1869 1870 1871 1872
	if (!ret && n > 0) {
		if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
			ret = -EFAULT;
	}
	vfree(buf);
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882

	return ret < 0 ? ret : n;
}

static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
	int r;

	switch (attr->group) {
	case KVM_DEV_FLIC_GET_ALL_IRQS:
1883
		r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
					  attr->attr);
		break;
	default:
		r = -EINVAL;
	}

	return r;
}

static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
				     u64 addr)
{
	struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
	void *target = NULL;
	void __user *source;
	u64 size;

	if (get_user(inti->type, (u64 __user *)addr))
		return -EFAULT;

	switch (inti->type) {
1905 1906
	case KVM_S390_INT_PFAULT_INIT:
	case KVM_S390_INT_PFAULT_DONE:
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
	case KVM_S390_INT_VIRTIO:
	case KVM_S390_INT_SERVICE:
		target = (void *) &inti->ext;
		source = &uptr->u.ext;
		size = sizeof(inti->ext);
		break;
	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
		target = (void *) &inti->io;
		source = &uptr->u.io;
		size = sizeof(inti->io);
		break;
	case KVM_S390_MCHK:
		target = (void *) &inti->mchk;
		source = &uptr->u.mchk;
		size = sizeof(inti->mchk);
		break;
	default:
		return -EINVAL;
	}

	if (copy_from_user(target, source, size))
		return -EFAULT;

	return 0;
}

static int enqueue_floating_irq(struct kvm_device *dev,
				struct kvm_device_attr *attr)
{
	struct kvm_s390_interrupt_info *inti = NULL;
	int r = 0;
	int len = attr->attr;

	if (len % sizeof(struct kvm_s390_irq) != 0)
		return -EINVAL;
	else if (len > KVM_S390_FLIC_MAX_BUFFER)
		return -EINVAL;

	while (len >= sizeof(struct kvm_s390_irq)) {
		inti = kzalloc(sizeof(*inti), GFP_KERNEL);
		if (!inti)
			return -ENOMEM;

		r = copy_irq_from_user(inti, attr->addr);
		if (r) {
			kfree(inti);
			return r;
		}
J
Jens Freimann 已提交
1955 1956 1957 1958 1959
		r = __inject_vm(dev->kvm, inti);
		if (r) {
			kfree(inti);
			return r;
		}
1960 1961 1962 1963 1964 1965 1966
		len -= sizeof(struct kvm_s390_irq);
		attr->addr += sizeof(struct kvm_s390_irq);
	}

	return r;
}

1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
{
	if (id >= MAX_S390_IO_ADAPTERS)
		return NULL;
	return kvm->arch.adapters[id];
}

static int register_io_adapter(struct kvm_device *dev,
			       struct kvm_device_attr *attr)
{
	struct s390_io_adapter *adapter;
	struct kvm_s390_io_adapter adapter_info;

	if (copy_from_user(&adapter_info,
			   (void __user *)attr->addr, sizeof(adapter_info)))
		return -EFAULT;

	if ((adapter_info.id >= MAX_S390_IO_ADAPTERS) ||
	    (dev->kvm->arch.adapters[adapter_info.id] != NULL))
		return -EINVAL;

	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
	if (!adapter)
		return -ENOMEM;

	INIT_LIST_HEAD(&adapter->maps);
	init_rwsem(&adapter->maps_lock);
	atomic_set(&adapter->nr_maps, 0);
	adapter->id = adapter_info.id;
	adapter->isc = adapter_info.isc;
	adapter->maskable = adapter_info.maskable;
	adapter->masked = false;
	adapter->swap = adapter_info.swap;
	dev->kvm->arch.adapters[adapter->id] = adapter;

	return 0;
}

int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
{
	int ret;
	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);

	if (!adapter || !adapter->maskable)
		return -EINVAL;
	ret = adapter->masked;
	adapter->masked = masked;
	return ret;
}

static int kvm_s390_adapter_map(struct kvm *kvm, unsigned int id, __u64 addr)
{
	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
	struct s390_map_info *map;
	int ret;

	if (!adapter || !addr)
		return -EINVAL;

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (!map) {
		ret = -ENOMEM;
		goto out;
	}
	INIT_LIST_HEAD(&map->list);
	map->guest_addr = addr;
2033
	map->addr = gmap_translate(kvm->arch.gmap, addr);
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
	if (map->addr == -EFAULT) {
		ret = -EFAULT;
		goto out;
	}
	ret = get_user_pages_fast(map->addr, 1, 1, &map->page);
	if (ret < 0)
		goto out;
	BUG_ON(ret != 1);
	down_write(&adapter->maps_lock);
	if (atomic_inc_return(&adapter->nr_maps) < MAX_S390_ADAPTER_MAPS) {
		list_add_tail(&map->list, &adapter->maps);
		ret = 0;
	} else {
		put_page(map->page);
		ret = -EINVAL;
	}
	up_write(&adapter->maps_lock);
out:
	if (ret)
		kfree(map);
	return ret;
}

static int kvm_s390_adapter_unmap(struct kvm *kvm, unsigned int id, __u64 addr)
{
	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
	struct s390_map_info *map, *tmp;
	int found = 0;

	if (!adapter || !addr)
		return -EINVAL;

	down_write(&adapter->maps_lock);
	list_for_each_entry_safe(map, tmp, &adapter->maps, list) {
		if (map->guest_addr == addr) {
			found = 1;
			atomic_dec(&adapter->nr_maps);
			list_del(&map->list);
			put_page(map->page);
			kfree(map);
			break;
		}
	}
	up_write(&adapter->maps_lock);

	return found ? 0 : -EINVAL;
}

void kvm_s390_destroy_adapters(struct kvm *kvm)
{
	int i;
	struct s390_map_info *map, *tmp;

	for (i = 0; i < MAX_S390_IO_ADAPTERS; i++) {
		if (!kvm->arch.adapters[i])
			continue;
		list_for_each_entry_safe(map, tmp,
					 &kvm->arch.adapters[i]->maps, list) {
			list_del(&map->list);
			put_page(map->page);
			kfree(map);
		}
		kfree(kvm->arch.adapters[i]);
	}
}

static int modify_io_adapter(struct kvm_device *dev,
			     struct kvm_device_attr *attr)
{
	struct kvm_s390_io_adapter_req req;
	struct s390_io_adapter *adapter;
	int ret;

	if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
		return -EFAULT;

	adapter = get_io_adapter(dev->kvm, req.id);
	if (!adapter)
		return -EINVAL;
	switch (req.type) {
	case KVM_S390_IO_ADAPTER_MASK:
		ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
		if (ret > 0)
			ret = 0;
		break;
	case KVM_S390_IO_ADAPTER_MAP:
		ret = kvm_s390_adapter_map(dev->kvm, req.id, req.addr);
		break;
	case KVM_S390_IO_ADAPTER_UNMAP:
		ret = kvm_s390_adapter_unmap(dev->kvm, req.id, req.addr);
		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr)

{
	const u64 isc_mask = 0xffUL << 24; /* all iscs set */
	u32 schid;

	if (attr->flags)
		return -EINVAL;
	if (attr->attr != sizeof(schid))
		return -EINVAL;
	if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid)))
		return -EFAULT;
	kfree(kvm_s390_get_io_int(kvm, isc_mask, schid));
	/*
	 * If userspace is conforming to the architecture, we can have at most
	 * one pending I/O interrupt per subchannel, so this is effectively a
	 * clear all.
	 */
	return 0;
}

2153 2154 2155
static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
	int r = 0;
2156 2157
	unsigned int i;
	struct kvm_vcpu *vcpu;
2158 2159 2160 2161 2162 2163

	switch (attr->group) {
	case KVM_DEV_FLIC_ENQUEUE:
		r = enqueue_floating_irq(dev, attr);
		break;
	case KVM_DEV_FLIC_CLEAR_IRQS:
2164
		kvm_s390_clear_float_irqs(dev->kvm);
2165
		break;
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
	case KVM_DEV_FLIC_APF_ENABLE:
		dev->kvm->arch.gmap->pfault_enabled = 1;
		break;
	case KVM_DEV_FLIC_APF_DISABLE_WAIT:
		dev->kvm->arch.gmap->pfault_enabled = 0;
		/*
		 * Make sure no async faults are in transition when
		 * clearing the queues. So we don't need to worry
		 * about late coming workers.
		 */
		synchronize_srcu(&dev->kvm->srcu);
		kvm_for_each_vcpu(i, vcpu, dev->kvm)
			kvm_clear_async_pf_completion_queue(vcpu);
		break;
2180 2181 2182 2183 2184 2185
	case KVM_DEV_FLIC_ADAPTER_REGISTER:
		r = register_io_adapter(dev, attr);
		break;
	case KVM_DEV_FLIC_ADAPTER_MODIFY:
		r = modify_io_adapter(dev, attr);
		break;
2186 2187 2188
	case KVM_DEV_FLIC_CLEAR_IO_IRQ:
		r = clear_io_irq(dev->kvm, attr);
		break;
2189 2190 2191 2192 2193 2194 2195
	default:
		r = -EINVAL;
	}

	return r;
}

2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
static int flic_has_attr(struct kvm_device *dev,
			     struct kvm_device_attr *attr)
{
	switch (attr->group) {
	case KVM_DEV_FLIC_GET_ALL_IRQS:
	case KVM_DEV_FLIC_ENQUEUE:
	case KVM_DEV_FLIC_CLEAR_IRQS:
	case KVM_DEV_FLIC_APF_ENABLE:
	case KVM_DEV_FLIC_APF_DISABLE_WAIT:
	case KVM_DEV_FLIC_ADAPTER_REGISTER:
	case KVM_DEV_FLIC_ADAPTER_MODIFY:
2207
	case KVM_DEV_FLIC_CLEAR_IO_IRQ:
2208 2209 2210 2211 2212
		return 0;
	}
	return -ENXIO;
}

2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
static int flic_create(struct kvm_device *dev, u32 type)
{
	if (!dev)
		return -EINVAL;
	if (dev->kvm->arch.flic)
		return -EINVAL;
	dev->kvm->arch.flic = dev;
	return 0;
}

static void flic_destroy(struct kvm_device *dev)
{
	dev->kvm->arch.flic = NULL;
	kfree(dev);
}

/* s390 floating irq controller (flic) */
struct kvm_device_ops kvm_flic_ops = {
	.name = "kvm-flic",
	.get_attr = flic_get_attr,
	.set_attr = flic_set_attr,
2234
	.has_attr = flic_has_attr,
2235 2236 2237
	.create = flic_create,
	.destroy = flic_destroy,
};
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329

static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
{
	unsigned long bit;

	bit = bit_nr + (addr % PAGE_SIZE) * 8;

	return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
}

static struct s390_map_info *get_map_info(struct s390_io_adapter *adapter,
					  u64 addr)
{
	struct s390_map_info *map;

	if (!adapter)
		return NULL;

	list_for_each_entry(map, &adapter->maps, list) {
		if (map->guest_addr == addr)
			return map;
	}
	return NULL;
}

static int adapter_indicators_set(struct kvm *kvm,
				  struct s390_io_adapter *adapter,
				  struct kvm_s390_adapter_int *adapter_int)
{
	unsigned long bit;
	int summary_set, idx;
	struct s390_map_info *info;
	void *map;

	info = get_map_info(adapter, adapter_int->ind_addr);
	if (!info)
		return -1;
	map = page_address(info->page);
	bit = get_ind_bit(info->addr, adapter_int->ind_offset, adapter->swap);
	set_bit(bit, map);
	idx = srcu_read_lock(&kvm->srcu);
	mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
	set_page_dirty_lock(info->page);
	info = get_map_info(adapter, adapter_int->summary_addr);
	if (!info) {
		srcu_read_unlock(&kvm->srcu, idx);
		return -1;
	}
	map = page_address(info->page);
	bit = get_ind_bit(info->addr, adapter_int->summary_offset,
			  adapter->swap);
	summary_set = test_and_set_bit(bit, map);
	mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
	set_page_dirty_lock(info->page);
	srcu_read_unlock(&kvm->srcu, idx);
	return summary_set ? 0 : 1;
}

/*
 * < 0 - not injected due to error
 * = 0 - coalesced, summary indicator already active
 * > 0 - injected interrupt
 */
static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
			   struct kvm *kvm, int irq_source_id, int level,
			   bool line_status)
{
	int ret;
	struct s390_io_adapter *adapter;

	/* We're only interested in the 0->1 transition. */
	if (!level)
		return 0;
	adapter = get_io_adapter(kvm, e->adapter.adapter_id);
	if (!adapter)
		return -1;
	down_read(&adapter->maps_lock);
	ret = adapter_indicators_set(kvm, adapter, &e->adapter);
	up_read(&adapter->maps_lock);
	if ((ret > 0) && !adapter->masked) {
		struct kvm_s390_interrupt s390int = {
			.type = KVM_S390_INT_IO(1, 0, 0, 0),
			.parm = 0,
			.parm64 = (adapter->isc << 27) | 0x80000000,
		};
		ret = kvm_s390_inject_vm(kvm, &s390int);
		if (ret == 0)
			ret = 1;
	}
	return ret;
}

2330 2331
int kvm_set_routing_entry(struct kvm *kvm,
			  struct kvm_kernel_irq_routing_entry *e,
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
			  const struct kvm_irq_routing_entry *ue)
{
	int ret;

	switch (ue->type) {
	case KVM_IRQ_ROUTING_S390_ADAPTER:
		e->set = set_adapter_int;
		e->adapter.summary_addr = ue->u.adapter.summary_addr;
		e->adapter.ind_addr = ue->u.adapter.ind_addr;
		e->adapter.summary_offset = ue->u.adapter.summary_offset;
		e->adapter.ind_offset = ue->u.adapter.ind_offset;
		e->adapter.adapter_id = ue->u.adapter.adapter_id;
		ret = 0;
		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
		int irq_source_id, int level, bool line_status)
{
	return -EINVAL;
}
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442

int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len)
{
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	struct kvm_s390_irq *buf;
	int r = 0;
	int n;

	buf = vmalloc(len);
	if (!buf)
		return -ENOMEM;

	if (copy_from_user((void *) buf, irqstate, len)) {
		r = -EFAULT;
		goto out_free;
	}

	/*
	 * Don't allow setting the interrupt state
	 * when there are already interrupts pending
	 */
	spin_lock(&li->lock);
	if (li->pending_irqs) {
		r = -EBUSY;
		goto out_unlock;
	}

	for (n = 0; n < len / sizeof(*buf); n++) {
		r = do_inject_vcpu(vcpu, &buf[n]);
		if (r)
			break;
	}

out_unlock:
	spin_unlock(&li->lock);
out_free:
	vfree(buf);

	return r;
}

static void store_local_irq(struct kvm_s390_local_interrupt *li,
			    struct kvm_s390_irq *irq,
			    unsigned long irq_type)
{
	switch (irq_type) {
	case IRQ_PEND_MCHK_EX:
	case IRQ_PEND_MCHK_REP:
		irq->type = KVM_S390_MCHK;
		irq->u.mchk = li->irq.mchk;
		break;
	case IRQ_PEND_PROG:
		irq->type = KVM_S390_PROGRAM_INT;
		irq->u.pgm = li->irq.pgm;
		break;
	case IRQ_PEND_PFAULT_INIT:
		irq->type = KVM_S390_INT_PFAULT_INIT;
		irq->u.ext = li->irq.ext;
		break;
	case IRQ_PEND_EXT_EXTERNAL:
		irq->type = KVM_S390_INT_EXTERNAL_CALL;
		irq->u.extcall = li->irq.extcall;
		break;
	case IRQ_PEND_EXT_CLOCK_COMP:
		irq->type = KVM_S390_INT_CLOCK_COMP;
		break;
	case IRQ_PEND_EXT_CPU_TIMER:
		irq->type = KVM_S390_INT_CPU_TIMER;
		break;
	case IRQ_PEND_SIGP_STOP:
		irq->type = KVM_S390_SIGP_STOP;
		irq->u.stop = li->irq.stop;
		break;
	case IRQ_PEND_RESTART:
		irq->type = KVM_S390_RESTART;
		break;
	case IRQ_PEND_SET_PREFIX:
		irq->type = KVM_S390_SIGP_SET_PREFIX;
		irq->u.prefix = li->irq.prefix;
		break;
	}
}

int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len)
{
2443
	int scn;
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
	unsigned long sigp_emerg_pending[BITS_TO_LONGS(KVM_MAX_VCPUS)];
	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
	unsigned long pending_irqs;
	struct kvm_s390_irq irq;
	unsigned long irq_type;
	int cpuaddr;
	int n = 0;

	spin_lock(&li->lock);
	pending_irqs = li->pending_irqs;
	memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending,
	       sizeof(sigp_emerg_pending));
	spin_unlock(&li->lock);

	for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) {
		memset(&irq, 0, sizeof(irq));
		if (irq_type == IRQ_PEND_EXT_EMERGENCY)
			continue;
		if (n + sizeof(irq) > len)
			return -ENOBUFS;
		store_local_irq(&vcpu->arch.local_int, &irq, irq_type);
		if (copy_to_user(&buf[n], &irq, sizeof(irq)))
			return -EFAULT;
		n += sizeof(irq);
	}

	if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) {
		for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) {
			memset(&irq, 0, sizeof(irq));
			if (n + sizeof(irq) > len)
				return -ENOBUFS;
			irq.type = KVM_S390_INT_EMERGENCY;
			irq.u.emerg.code = cpuaddr;
			if (copy_to_user(&buf[n], &irq, sizeof(irq)))
				return -EFAULT;
			n += sizeof(irq);
		}
	}

2483
	if (sca_ext_call_pending(vcpu, &scn)) {
2484 2485 2486 2487
		if (n + sizeof(irq) > len)
			return -ENOBUFS;
		memset(&irq, 0, sizeof(irq));
		irq.type = KVM_S390_INT_EXTERNAL_CALL;
2488
		irq.u.extcall.code = scn;
2489 2490 2491 2492 2493 2494 2495
		if (copy_to_user(&buf[n], &irq, sizeof(irq)))
			return -EFAULT;
		n += sizeof(irq);
	}

	return n;
}