i40e_txrx.c 63.9 KB
Newer Older
1 2 3
/*******************************************************************************
 *
 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
4
 * Copyright(c) 2013 - 2016 Intel Corporation.
5 6 7 8 9 10 11 12 13 14
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
15 16 17
 * You should have received a copy of the GNU General Public License along
 * with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
18 19 20 21 22 23 24 25 26
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information:
 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 ******************************************************************************/

27
#include <linux/prefetch.h>
28
#include <net/busy_poll.h>
29

30
#include "i40evf.h"
S
Scott Peterson 已提交
31
#include "i40e_trace.h"
32
#include "i40e_prototype.h"
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
				u32 td_tag)
{
	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
}

#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)

/**
 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 * @ring:      the ring that owns the buffer
 * @tx_buffer: the buffer to free
 **/
static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
					    struct i40e_tx_buffer *tx_buffer)
{
	if (tx_buffer->skb) {
55 56 57 58
		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
			kfree(tx_buffer->raw_buf);
		else
			dev_kfree_skb_any(tx_buffer->skb);
59 60 61 62 63 64 65 66 67 68 69
		if (dma_unmap_len(tx_buffer, len))
			dma_unmap_single(ring->dev,
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
					 DMA_TO_DEVICE);
	} else if (dma_unmap_len(tx_buffer, len)) {
		dma_unmap_page(ring->dev,
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
			       DMA_TO_DEVICE);
	}
70

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
	dma_unmap_len_set(tx_buffer, len, 0);
	/* tx_buffer must be completely set up in the transmit path */
}

/**
 * i40evf_clean_tx_ring - Free any empty Tx buffers
 * @tx_ring: ring to be cleaned
 **/
void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!tx_ring->tx_bi)
		return;

	/* Free all the Tx ring sk_buffs */
	for (i = 0; i < tx_ring->count; i++)
		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);

	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	if (!tx_ring->netdev)
		return;

	/* cleanup Tx queue statistics */
107
	netdev_tx_reset_queue(txring_txq(tx_ring));
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
}

/**
 * i40evf_free_tx_resources - Free Tx resources per queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
{
	i40evf_clean_tx_ring(tx_ring);
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;

	if (tx_ring->desc) {
		dma_free_coherent(tx_ring->dev, tx_ring->size,
				  tx_ring->desc, tx_ring->dma);
		tx_ring->desc = NULL;
	}
}

J
Jesse Brandeburg 已提交
129
/**
130 131
 * i40evf_get_tx_pending - how many Tx descriptors not processed
 * @tx_ring: the ring of descriptors
132
 * @in_sw: is tx_pending being checked in SW or HW
J
Jesse Brandeburg 已提交
133
 *
134 135
 * Since there is no access to the ring head register
 * in XL710, we need to use our local copies
J
Jesse Brandeburg 已提交
136
 **/
137
u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw)
J
Jesse Brandeburg 已提交
138
{
139
	u32 head, tail;
J
Jesse Brandeburg 已提交
140

141
	head = ring->next_to_clean;
142 143 144 145 146 147 148
	tail = readl(ring->tail);

	if (head != tail)
		return (head < tail) ?
			tail - head : (tail + ring->count - head);

	return 0;
J
Jesse Brandeburg 已提交
149 150
}

151
#define WB_STRIDE 4
152

153 154
/**
 * i40e_clean_tx_irq - Reclaim resources after transmit completes
155 156 157
 * @vsi: the VSI we care about
 * @tx_ring: Tx ring to clean
 * @napi_budget: Used to determine if we are in netpoll
158 159 160
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 **/
161 162
static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
			      struct i40e_ring *tx_ring, int napi_budget)
163 164 165 166
{
	u16 i = tx_ring->next_to_clean;
	struct i40e_tx_buffer *tx_buf;
	struct i40e_tx_desc *tx_desc;
167 168
	unsigned int total_bytes = 0, total_packets = 0;
	unsigned int budget = vsi->work_limit;
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183

	tx_buf = &tx_ring->tx_bi[i];
	tx_desc = I40E_TX_DESC(tx_ring, i);
	i -= tx_ring->count;

	do {
		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;

		/* prevent any other reads prior to eop_desc */
		read_barrier_depends();

S
Scott Peterson 已提交
184
		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
185 186 187
		/* if the descriptor isn't done, no work yet to do */
		if (!(eop_desc->cmd_type_offset_bsz &
		      cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE)))
188 189 190 191 192 193 194 195 196 197
			break;

		/* clear next_to_watch to prevent false hangs */
		tx_buf->next_to_watch = NULL;

		/* update the statistics for this packet */
		total_bytes += tx_buf->bytecount;
		total_packets += tx_buf->gso_segs;

		/* free the skb */
198
		napi_consume_skb(tx_buf->skb, napi_budget);
199 200 201 202 203 204 205 206 207 208 209 210 211

		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buf, dma),
				 dma_unmap_len(tx_buf, len),
				 DMA_TO_DEVICE);

		/* clear tx_buffer data */
		tx_buf->skb = NULL;
		dma_unmap_len_set(tx_buf, len, 0);

		/* unmap remaining buffers */
		while (tx_desc != eop_desc) {
S
Scott Peterson 已提交
212 213
			i40e_trace(clean_tx_irq_unmap,
				   tx_ring, tx_desc, tx_buf);
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243

			tx_buf++;
			tx_desc++;
			i++;
			if (unlikely(!i)) {
				i -= tx_ring->count;
				tx_buf = tx_ring->tx_bi;
				tx_desc = I40E_TX_DESC(tx_ring, 0);
			}

			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buf, len)) {
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buf, dma),
					       dma_unmap_len(tx_buf, len),
					       DMA_TO_DEVICE);
				dma_unmap_len_set(tx_buf, len, 0);
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buf++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buf = tx_ring->tx_bi;
			tx_desc = I40E_TX_DESC(tx_ring, 0);
		}

244 245
		prefetch(tx_desc);

246 247 248 249 250 251 252 253 254 255 256 257 258
		/* update budget accounting */
		budget--;
	} while (likely(budget));

	i += tx_ring->count;
	tx_ring->next_to_clean = i;
	u64_stats_update_begin(&tx_ring->syncp);
	tx_ring->stats.bytes += total_bytes;
	tx_ring->stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->syncp);
	tx_ring->q_vector->tx.total_bytes += total_bytes;
	tx_ring->q_vector->tx.total_packets += total_packets;

259 260 261 262 263 264
	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
		/* check to see if there are < 4 descriptors
		 * waiting to be written back, then kick the hardware to force
		 * them to be written back in case we stay in NAPI.
		 * In this mode on X722 we do not enable Interrupt.
		 */
265
		unsigned int j = i40evf_get_tx_pending(tx_ring, false);
266 267

		if (budget &&
268
		    ((j / WB_STRIDE) == 0) && (j > 0) &&
269
		    !test_bit(__I40E_VSI_DOWN, vsi->state) &&
270 271 272 273
		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
			tx_ring->arm_wb = true;
	}

274 275
	/* notify netdev of completed buffers */
	netdev_tx_completed_queue(txring_txq(tx_ring),
276 277
				  total_packets, total_bytes);

278
#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
279 280 281 282 283 284 285 286
	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
287
		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
288 289 290 291 292 293
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);
			++tx_ring->tx_stats.restart_queue;
		}
	}

294
	return !!budget;
295 296
}

297
/**
298
 * i40evf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
299
 * @vsi: the VSI we care about
300
 * @q_vector: the vector on which to enable writeback
301 302
 *
 **/
303 304
static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
				  struct i40e_q_vector *q_vector)
305
{
306
	u16 flags = q_vector->tx.ring[0].flags;
307
	u32 val;
308

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
		return;

	if (q_vector->arm_wb_state)
		return;

	val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
	      I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */

	wr32(&vsi->back->hw,
	     I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
				  vsi->base_vector - 1), val);
	q_vector->arm_wb_state = true;
}

/**
 * i40evf_force_wb - Issue SW Interrupt so HW does a wb
 * @vsi: the VSI we care about
 * @q_vector: the vector  on which to force writeback
 *
 **/
void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
{
	u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
		  I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
		  I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
		  I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
		  /* allow 00 to be written to the index */;

	wr32(&vsi->back->hw,
	     I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
	     val);
341 342
}

343 344 345 346
/**
 * i40e_set_new_dynamic_itr - Find new ITR level
 * @rc: structure containing ring performance data
 *
347 348
 * Returns true if ITR changed, false if not
 *
349 350 351 352 353 354 355 356
 * Stores a new ITR value based on packets and byte counts during
 * the last interrupt.  The advantage of per interrupt computation
 * is faster updates and more accurate ITR for the current traffic
 * pattern.  Constants in this function were computed based on
 * theoretical maximum wire speed and thresholds were set based on
 * testing data as well as attempting to minimize response time
 * while increasing bulk throughput.
 **/
357
static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
358 359
{
	enum i40e_latency_range new_latency_range = rc->latency_range;
360
	struct i40e_q_vector *qv = rc->ring->q_vector;
361 362
	u32 new_itr = rc->itr;
	int bytes_per_int;
363
	int usecs;
364 365

	if (rc->total_packets == 0 || !rc->itr)
366
		return false;
367 368

	/* simple throttlerate management
369
	 *   0-10MB/s   lowest (50000 ints/s)
370
	 *  10-20MB/s   low    (20000 ints/s)
371 372
	 *  20-1249MB/s bulk   (18000 ints/s)
	 *  > 40000 Rx packets per second (8000 ints/s)
373 374 375 376
	 *
	 * The math works out because the divisor is in 10^(-6) which
	 * turns the bytes/us input value into MB/s values, but
	 * make sure to use usecs, as the register values written
377 378
	 * are in 2 usec increments in the ITR registers, and make sure
	 * to use the smoothed values that the countdown timer gives us.
379
	 */
380
	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
381
	bytes_per_int = rc->total_bytes / usecs;
382

383
	switch (new_latency_range) {
384 385 386 387 388 389 390 391 392 393 394
	case I40E_LOWEST_LATENCY:
		if (bytes_per_int > 10)
			new_latency_range = I40E_LOW_LATENCY;
		break;
	case I40E_LOW_LATENCY:
		if (bytes_per_int > 20)
			new_latency_range = I40E_BULK_LATENCY;
		else if (bytes_per_int <= 10)
			new_latency_range = I40E_LOWEST_LATENCY;
		break;
	case I40E_BULK_LATENCY:
395
	case I40E_ULTRA_LATENCY:
396 397 398
	default:
		if (bytes_per_int <= 20)
			new_latency_range = I40E_LOW_LATENCY;
399 400
		break;
	}
401 402 403 404 405 406 407 408 409 410 411 412

	/* this is to adjust RX more aggressively when streaming small
	 * packets.  The value of 40000 was picked as it is just beyond
	 * what the hardware can receive per second if in low latency
	 * mode.
	 */
#define RX_ULTRA_PACKET_RATE 40000

	if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
	    (&qv->rx == rc))
		new_latency_range = I40E_ULTRA_LATENCY;

413
	rc->latency_range = new_latency_range;
414 415 416

	switch (new_latency_range) {
	case I40E_LOWEST_LATENCY:
417
		new_itr = I40E_ITR_50K;
418 419 420 421 422
		break;
	case I40E_LOW_LATENCY:
		new_itr = I40E_ITR_20K;
		break;
	case I40E_BULK_LATENCY:
423 424 425
		new_itr = I40E_ITR_18K;
		break;
	case I40E_ULTRA_LATENCY:
426 427 428 429 430 431 432 433
		new_itr = I40E_ITR_8K;
		break;
	default:
		break;
	}

	rc->total_bytes = 0;
	rc->total_packets = 0;
434 435 436 437 438 439 440

	if (new_itr != rc->itr) {
		rc->itr = new_itr;
		return true;
	}

	return false;
441 442
}

J
Jesse Brandeburg 已提交
443
/**
444 445 446 447 448 449 450 451 452 453 454 455 456
 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
 * @tx_ring: the tx ring to set up
 *
 * Return 0 on success, negative on error
 **/
int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
{
	struct device *dev = tx_ring->dev;
	int bi_size;

	if (!dev)
		return -ENOMEM;

457 458
	/* warn if we are about to overwrite the pointer */
	WARN_ON(tx_ring->tx_bi);
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!tx_ring->tx_bi)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
	tx_ring->size = ALIGN(tx_ring->size, 4096);
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
			 tx_ring->size);
		goto err;
	}

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	return 0;

err:
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40evf_clean_rx_ring - Free Rx buffers
 * @rx_ring: ring to be cleaned
 **/
void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!rx_ring->rx_bi)
		return;

498 499 500 501 502
	if (rx_ring->skb) {
		dev_kfree_skb(rx_ring->skb);
		rx_ring->skb = NULL;
	}

503 504
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
505 506 507 508 509
		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];

		if (!rx_bi->page)
			continue;

510 511 512 513 514 515
		/* Invalidate cache lines that may have been written to by
		 * device so that we avoid corrupting memory.
		 */
		dma_sync_single_range_for_cpu(rx_ring->dev,
					      rx_bi->dma,
					      rx_bi->page_offset,
516
					      rx_ring->rx_buf_len,
517 518 519 520
					      DMA_FROM_DEVICE);

		/* free resources associated with mapping */
		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
521
				     i40e_rx_pg_size(rx_ring),
522 523
				     DMA_FROM_DEVICE,
				     I40E_RX_DMA_ATTR);
524

525
		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
526 527 528

		rx_bi->page = NULL;
		rx_bi->page_offset = 0;
529 530 531 532 533 534 535 536
	}

	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

537
	rx_ring->next_to_alloc = 0;
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * i40evf_free_rx_resources - Free Rx resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
{
	i40evf_clean_rx_ring(rx_ring);
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;

	if (rx_ring->desc) {
		dma_free_coherent(rx_ring->dev, rx_ring->size,
				  rx_ring->desc, rx_ring->dma);
		rx_ring->desc = NULL;
	}
}

/**
 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	int bi_size;

572 573
	/* warn if we are about to overwrite the pointer */
	WARN_ON(rx_ring->rx_bi);
574 575 576 577 578
	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!rx_ring->rx_bi)
		goto err;

579
	u64_stats_init(&rx_ring->syncp);
580

581
	/* Round up to nearest 4K */
582
	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
583 584 585 586 587 588 589 590 591 592
	rx_ring->size = ALIGN(rx_ring->size, 4096);
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);

	if (!rx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
			 rx_ring->size);
		goto err;
	}

593
	rx_ring->next_to_alloc = 0;
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;
err:
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_release_rx_desc - Store the new tail and head values
 * @rx_ring: ring to bump
 * @val: new head index
 **/
static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
{
	rx_ring->next_to_use = val;
612 613 614 615

	/* update next to alloc since we have filled the ring */
	rx_ring->next_to_alloc = val;

616 617 618 619 620 621 622 623 624
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64).
	 */
	wmb();
	writel(val, rx_ring->tail);
}

625 626 627 628 629 630 631 632 633 634 635
/**
 * i40e_rx_offset - Return expected offset into page to access data
 * @rx_ring: Ring we are requesting offset of
 *
 * Returns the offset value for ring into the data buffer.
 */
static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
{
	return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
}

636
/**
637 638 639
 * i40e_alloc_mapped_page - recycle or make a new page
 * @rx_ring: ring to use
 * @bi: rx_buffer struct to modify
640
 *
641 642
 * Returns true if the page was successfully allocated or
 * reused.
643
 **/
644 645
static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
				   struct i40e_rx_buffer *bi)
646
{
647 648
	struct page *page = bi->page;
	dma_addr_t dma;
649

650 651 652 653 654
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page)) {
		rx_ring->rx_stats.page_reuse_count++;
		return true;
	}
655

656
	/* alloc new page for storage */
657
	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
658 659 660 661
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
	}
662

663
	/* map page for use */
664
	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
665
				 i40e_rx_pg_size(rx_ring),
666 667
				 DMA_FROM_DEVICE,
				 I40E_RX_DMA_ATTR);
668

669 670
	/* if mapping failed free memory back to system since
	 * there isn't much point in holding memory we can't use
671
	 */
672
	if (dma_mapping_error(rx_ring->dev, dma)) {
673
		__free_pages(page, i40e_rx_pg_order(rx_ring));
674 675
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
676 677
	}

678 679
	bi->dma = dma;
	bi->page = page;
680
	bi->page_offset = i40e_rx_offset(rx_ring);
681 682

	/* initialize pagecnt_bias to 1 representing we fully own page */
683
	bi->pagecnt_bias = 1;
684

685 686
	return true;
}
687

688 689 690 691 692 693 694 695 696 697
/**
 * i40e_receive_skb - Send a completed packet up the stack
 * @rx_ring:  rx ring in play
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
 **/
static void i40e_receive_skb(struct i40e_ring *rx_ring,
			     struct sk_buff *skb, u16 vlan_tag)
{
	struct i40e_q_vector *q_vector = rx_ring->q_vector;
698

699 700 701 702 703
	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
	    (vlan_tag & VLAN_VID_MASK))
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);

	napi_gro_receive(&q_vector->napi, skb);
704 705 706
}

/**
707
 * i40evf_alloc_rx_buffers - Replace used receive buffers
708 709
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
710
 *
711
 * Returns false if all allocations were successful, true if any fail
712
 **/
713
bool i40evf_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
714
{
715
	u16 ntu = rx_ring->next_to_use;
716 717 718 719 720
	union i40e_rx_desc *rx_desc;
	struct i40e_rx_buffer *bi;

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
721
		return false;
722

723 724
	rx_desc = I40E_RX_DESC(rx_ring, ntu);
	bi = &rx_ring->rx_bi[ntu];
725

726 727 728
	do {
		if (!i40e_alloc_mapped_page(rx_ring, bi))
			goto no_buffers;
729

730 731 732
		/* sync the buffer for use by the device */
		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
						 bi->page_offset,
733
						 rx_ring->rx_buf_len,
734 735
						 DMA_FROM_DEVICE);

736 737 738 739
		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
740

741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
		rx_desc++;
		bi++;
		ntu++;
		if (unlikely(ntu == rx_ring->count)) {
			rx_desc = I40E_RX_DESC(rx_ring, 0);
			bi = rx_ring->rx_bi;
			ntu = 0;
		}

		/* clear the status bits for the next_to_use descriptor */
		rx_desc->wb.qword1.status_error_len = 0;

		cleaned_count--;
	} while (cleaned_count);

	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
758 759 760

	return false;

761
no_buffers:
762 763
	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
764 765 766 767 768

	/* make sure to come back via polling to try again after
	 * allocation failure
	 */
	return true;
769 770 771 772 773 774
}

/**
 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
 * @vsi: the VSI we care about
 * @skb: skb currently being received and modified
775
 * @rx_desc: the receive descriptor
776 777 778
 **/
static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
				    struct sk_buff *skb,
779
				    union i40e_rx_desc *rx_desc)
780
{
781 782
	struct i40e_rx_ptype_decoded decoded;
	u32 rx_error, rx_status;
783
	bool ipv4, ipv6;
784 785 786 787 788 789 790 791 792 793
	u8 ptype;
	u64 qword;

	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
		   I40E_RXD_QW1_ERROR_SHIFT;
	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
		    I40E_RXD_QW1_STATUS_SHIFT;
	decoded = decode_rx_desc_ptype(ptype);
794 795 796

	skb->ip_summed = CHECKSUM_NONE;

797 798
	skb_checksum_none_assert(skb);

799
	/* Rx csum enabled and ip headers found? */
800 801 802 803
	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
		return;

	/* did the hardware decode the packet and checksum? */
804
	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
805 806 807 808
		return;

	/* both known and outer_ip must be set for the below code to work */
	if (!(decoded.known && decoded.outer_ip))
809 810
		return;

811 812 813 814
	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
815 816

	if (ipv4 &&
817 818
	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
819 820
		goto checksum_fail;

J
Jesse Brandeburg 已提交
821
	/* likely incorrect csum if alternate IP extension headers found */
822
	if (ipv6 &&
823
	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
824
		/* don't increment checksum err here, non-fatal err */
825 826
		return;

827
	/* there was some L4 error, count error and punt packet to the stack */
828
	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
829 830 831 832 833 834
		goto checksum_fail;

	/* handle packets that were not able to be checksummed due
	 * to arrival speed, in this case the stack can compute
	 * the csum.
	 */
835
	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
836 837
		return;

838 839 840 841 842 843 844 845 846 847
	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
	switch (decoded.inner_prot) {
	case I40E_RX_PTYPE_INNER_PROT_TCP:
	case I40E_RX_PTYPE_INNER_PROT_UDP:
	case I40E_RX_PTYPE_INNER_PROT_SCTP:
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		/* fall though */
	default:
		break;
	}
848 849 850 851 852

	return;

checksum_fail:
	vsi->back->hw_csum_rx_error++;
853 854 855
}

/**
856
 * i40e_ptype_to_htype - get a hash type
857 858 859 860
 * @ptype: the ptype value from the descriptor
 *
 * Returns a hash type to be used by skb_set_hash
 **/
861
static inline int i40e_ptype_to_htype(u8 ptype)
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
{
	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);

	if (!decoded.known)
		return PKT_HASH_TYPE_NONE;

	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
		return PKT_HASH_TYPE_L4;
	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
		return PKT_HASH_TYPE_L3;
	else
		return PKT_HASH_TYPE_L2;
}

878 879 880 881 882 883 884 885 886 887 888
/**
 * i40e_rx_hash - set the hash value in the skb
 * @ring: descriptor ring
 * @rx_desc: specific descriptor
 **/
static inline void i40e_rx_hash(struct i40e_ring *ring,
				union i40e_rx_desc *rx_desc,
				struct sk_buff *skb,
				u8 rx_ptype)
{
	u32 hash;
889
	const __le64 rss_mask =
890 891 892 893 894 895 896 897 898 899 900 901
		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);

	if (ring->netdev->features & NETIF_F_RXHASH)
		return;

	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
	}
}

902
/**
903 904 905 906 907
 * i40evf_process_skb_fields - Populate skb header fields from Rx descriptor
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being populated
 * @rx_ptype: the packet type decoded by hardware
908
 *
909 910 911
 * This function checks the ring, descriptor, and packet information in
 * order to populate the hash, checksum, VLAN, protocol, and
 * other fields within the skb.
912
 **/
913 914 915 916
static inline
void i40evf_process_skb_fields(struct i40e_ring *rx_ring,
			       union i40e_rx_desc *rx_desc, struct sk_buff *skb,
			       u8 rx_ptype)
917
{
918
	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
919

920
	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
921

922
	skb_record_rx_queue(skb, rx_ring->queue_index);
923 924 925

	/* modifies the skb - consumes the enet header */
	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
926
}
927

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
/**
 * i40e_cleanup_headers - Correct empty headers
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @skb: pointer to current skb being fixed
 *
 * Also address the case where we are pulling data in on pages only
 * and as such no data is present in the skb header.
 *
 * In addition if skb is not at least 60 bytes we need to pad it so that
 * it is large enough to qualify as a valid Ethernet frame.
 *
 * Returns true if an error was encountered and skb was freed.
 **/
static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
{
	/* if eth_skb_pad returns an error the skb was freed */
	if (eth_skb_pad(skb))
		return true;
946

947 948
	return false;
}
949

950 951 952 953 954 955 956 957 958 959 960 961
/**
 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
 * @rx_ring: rx descriptor ring to store buffers on
 * @old_buff: donor buffer to have page reused
 *
 * Synchronizes page for reuse by the adapter
 **/
static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
			       struct i40e_rx_buffer *old_buff)
{
	struct i40e_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;
962

963
	new_buff = &rx_ring->rx_bi[nta];
964

965 966 967
	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
968

969
	/* transfer page from old buffer to new buffer */
970 971 972 973
	new_buff->dma		= old_buff->dma;
	new_buff->page		= old_buff->page;
	new_buff->page_offset	= old_buff->page_offset;
	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
974 975 976
}

/**
977
 * i40e_page_is_reusable - check if any reuse is possible
978
 * @page: page struct to check
979 980 981
 *
 * A page is not reusable if it was allocated under low memory
 * conditions, or it's not in the same NUMA node as this CPU.
982
 */
983
static inline bool i40e_page_is_reusable(struct page *page)
984
{
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
	return (page_to_nid(page) == numa_mem_id()) &&
		!page_is_pfmemalloc(page);
}

/**
 * i40e_can_reuse_rx_page - Determine if this page can be reused by
 * the adapter for another receive
 *
 * @rx_buffer: buffer containing the page
 *
 * If page is reusable, rx_buffer->page_offset is adjusted to point to
 * an unused region in the page.
 *
 * For small pages, @truesize will be a constant value, half the size
 * of the memory at page.  We'll attempt to alternate between high and
 * low halves of the page, with one half ready for use by the hardware
 * and the other half being consumed by the stack.  We use the page
 * ref count to determine whether the stack has finished consuming the
 * portion of this page that was passed up with a previous packet.  If
 * the page ref count is >1, we'll assume the "other" half page is
 * still busy, and this page cannot be reused.
 *
 * For larger pages, @truesize will be the actual space used by the
 * received packet (adjusted upward to an even multiple of the cache
 * line size).  This will advance through the page by the amount
 * actually consumed by the received packets while there is still
 * space for a buffer.  Each region of larger pages will be used at
 * most once, after which the page will not be reused.
 *
 * In either case, if the page is reusable its refcount is increased.
 **/
1016
static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1017
{
1018 1019
	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
	struct page *page = rx_buffer->page;
1020 1021 1022 1023 1024 1025 1026

	/* Is any reuse possible? */
	if (unlikely(!i40e_page_is_reusable(page)))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
1027
	if (unlikely((page_count(page) - pagecnt_bias) > 1))
1028 1029
		return false;
#else
1030 1031 1032
#define I40E_LAST_OFFSET \
	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
	if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1033 1034 1035
		return false;
#endif

1036 1037 1038 1039
	/* If we have drained the page fragment pool we need to update
	 * the pagecnt_bias and page count so that we fully restock the
	 * number of references the driver holds.
	 */
1040
	if (unlikely(!pagecnt_bias)) {
1041 1042 1043
		page_ref_add(page, USHRT_MAX);
		rx_buffer->pagecnt_bias = USHRT_MAX;
	}
1044 1045

	return true;
1046 1047 1048 1049 1050 1051 1052
}

/**
 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: buffer containing page to add
 * @skb: sk_buff to place the data into
1053
 * @size: packet length from rx_desc
1054 1055
 *
 * This function will add the data contained in rx_buffer->page to the skb.
1056
 * It will just attach the page as a frag to the skb.
1057
 *
1058
 * The function will then update the page offset.
1059
 **/
1060
static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1061
			     struct i40e_rx_buffer *rx_buffer,
1062 1063
			     struct sk_buff *skb,
			     unsigned int size)
1064 1065
{
#if (PAGE_SIZE < 8192)
1066
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1067
#else
1068
	unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1069
#endif
1070

1071 1072
	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
			rx_buffer->page_offset, size, truesize);
1073

1074 1075 1076 1077 1078 1079
	/* page is being used so we must update the page offset */
#if (PAGE_SIZE < 8192)
	rx_buffer->page_offset ^= truesize;
#else
	rx_buffer->page_offset += truesize;
#endif
1080 1081
}

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
/**
 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
 * @rx_ring: rx descriptor ring to transact packets on
 * @size: size of buffer to add to skb
 *
 * This function will pull an Rx buffer from the ring and synchronize it
 * for use by the CPU.
 */
static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
						 const unsigned int size)
{
	struct i40e_rx_buffer *rx_buffer;

	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
	prefetchw(rx_buffer->page);

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
				      size,
				      DMA_FROM_DEVICE);

1105 1106 1107
	/* We have pulled a buffer for use, so decrement pagecnt_bias */
	rx_buffer->pagecnt_bias--;

1108 1109 1110
	return rx_buffer;
}

1111
/**
1112
 * i40e_construct_skb - Allocate skb and populate it
1113
 * @rx_ring: rx descriptor ring to transact packets on
1114
 * @rx_buffer: rx buffer to pull data from
1115
 * @size: size of buffer to add to skb
1116
 *
1117 1118 1119
 * This function allocates an skb.  It then populates it with the page
 * data from the current receive descriptor, taking care to set up the
 * skb correctly.
1120
 */
1121 1122 1123
static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
					  struct i40e_rx_buffer *rx_buffer,
					  unsigned int size)
1124
{
1125 1126
	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
#if (PAGE_SIZE < 8192)
1127
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1128 1129 1130 1131 1132
#else
	unsigned int truesize = SKB_DATA_ALIGN(size);
#endif
	unsigned int headlen;
	struct sk_buff *skb;
1133

1134 1135
	/* prefetch first cache line of first page */
	prefetch(va);
1136
#if L1_CACHE_BYTES < 128
1137
	prefetch(va + L1_CACHE_BYTES);
1138 1139
#endif

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	/* allocate a skb to store the frags */
	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
			       I40E_RX_HDR_SIZE,
			       GFP_ATOMIC | __GFP_NOWARN);
	if (unlikely(!skb))
		return NULL;

	/* Determine available headroom for copy */
	headlen = size;
	if (headlen > I40E_RX_HDR_SIZE)
		headlen = eth_get_headlen(va, I40E_RX_HDR_SIZE);
1151

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
	/* align pull length to size of long to optimize memcpy performance */
	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));

	/* update all of the pointers */
	size -= headlen;
	if (size) {
		skb_add_rx_frag(skb, 0, rx_buffer->page,
				rx_buffer->page_offset + headlen,
				size, truesize);

		/* buffer is used by skb, update page_offset */
#if (PAGE_SIZE < 8192)
		rx_buffer->page_offset ^= truesize;
#else
		rx_buffer->page_offset += truesize;
#endif
	} else {
		/* buffer is unused, reset bias back to rx_buffer */
		rx_buffer->pagecnt_bias++;
	}
1172 1173 1174 1175

	return skb;
}

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
/**
 * i40e_build_skb - Build skb around an existing buffer
 * @rx_ring: Rx descriptor ring to transact packets on
 * @rx_buffer: Rx buffer to pull data from
 * @size: size of buffer to add to skb
 *
 * This function builds an skb around an existing Rx buffer, taking care
 * to set up the skb correctly and avoid any memcpy overhead.
 */
static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
				      struct i40e_rx_buffer *rx_buffer,
				      unsigned int size)
{
	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
#if (PAGE_SIZE < 8192)
	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
#else
1193 1194
	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
				SKB_DATA_ALIGN(I40E_SKB_PAD + size);
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
#endif
	struct sk_buff *skb;

	/* prefetch first cache line of first page */
	prefetch(va);
#if L1_CACHE_BYTES < 128
	prefetch(va + L1_CACHE_BYTES);
#endif
	/* build an skb around the page buffer */
	skb = build_skb(va - I40E_SKB_PAD, truesize);
	if (unlikely(!skb))
		return NULL;

	/* update pointers within the skb to store the data */
	skb_reserve(skb, I40E_SKB_PAD);
	__skb_put(skb, size);

	/* buffer is used by skb, update page_offset */
#if (PAGE_SIZE < 8192)
	rx_buffer->page_offset ^= truesize;
#else
	rx_buffer->page_offset += truesize;
#endif

	return skb;
}

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
/**
 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: rx buffer to pull data from
 *
 * This function will clean up the contents of the rx_buffer.  It will
 * either recycle the bufer or unmap it and free the associated resources.
 */
static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
			       struct i40e_rx_buffer *rx_buffer)
{
	if (i40e_can_reuse_rx_page(rx_buffer)) {
1234 1235 1236 1237 1238
		/* hand second half of page back to the ring */
		i40e_reuse_rx_page(rx_ring, rx_buffer);
		rx_ring->rx_stats.page_reuse_count++;
	} else {
		/* we are not reusing the buffer so unmap it */
1239 1240
		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
				     i40e_rx_pg_size(rx_ring),
1241
				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
1242 1243
		__page_frag_cache_drain(rx_buffer->page,
					rx_buffer->pagecnt_bias);
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
	}

	/* clear contents of buffer_info */
	rx_buffer->page = NULL;
}

/**
 * i40e_is_non_eop - process handling of non-EOP buffers
 * @rx_ring: Rx ring being processed
 * @rx_desc: Rx descriptor for current buffer
 * @skb: Current socket buffer containing buffer in progress
 *
 * This function updates next to clean.  If the buffer is an EOP buffer
 * this function exits returning false, otherwise it will place the
 * sk_buff in the next buffer to be chained and return true indicating
 * that this is in fact a non-EOP buffer.
 **/
static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
			    union i40e_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(I40E_RX_DESC(rx_ring, ntc));

	/* if we are the last buffer then there is nothing else to do */
#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
		return false;

	rx_ring->rx_stats.non_eop_descs++;

	return true;
1281 1282 1283
}

/**
1284 1285 1286 1287 1288 1289 1290 1291
 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
 * @rx_ring: rx descriptor ring to transact packets on
 * @budget: Total limit on number of packets to process
 *
 * This function provides a "bounce buffer" approach to Rx interrupt
 * processing.  The advantage to this is that on systems that have
 * expensive overhead for IOMMU access this provides a means of avoiding
 * it by maintaining the mapping of the page to the system.
1292
 *
1293
 * Returns amount of work completed
1294
 **/
1295
static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1296 1297
{
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1298
	struct sk_buff *skb = rx_ring->skb;
1299
	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1300
	bool failure = false;
1301

1302
	while (likely(total_rx_packets < (unsigned int)budget)) {
1303
		struct i40e_rx_buffer *rx_buffer;
1304
		union i40e_rx_desc *rx_desc;
1305
		unsigned int size;
1306
		u16 vlan_tag;
1307 1308 1309
		u8 rx_ptype;
		u64 qword;

1310 1311
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1312
			failure = failure ||
1313
				  i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
1314 1315 1316
			cleaned_count = 0;
		}

1317 1318 1319 1320 1321
		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);

		/* status_error_len will always be zero for unused descriptors
		 * because it's cleared in cleanup, and overlaps with hdr_addr
		 * which is always zero because packet split isn't used, if the
1322
		 * hardware wrote DD then the length will be non-zero
1323
		 */
1324
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1325

1326
		/* This memory barrier is needed to keep us from reading
1327 1328
		 * any other fields out of the rx_desc until we have
		 * verified the descriptor has been written back.
1329
		 */
1330
		dma_rmb();
1331

1332 1333 1334 1335 1336
		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
		if (!size)
			break;

S
Scott Peterson 已提交
1337
		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
1338 1339
		rx_buffer = i40e_get_rx_buffer(rx_ring, size);

1340 1341 1342
		/* retrieve a buffer from the ring */
		if (skb)
			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
1343 1344
		else if (ring_uses_build_skb(rx_ring))
			skb = i40e_build_skb(rx_ring, rx_buffer, size);
1345 1346 1347 1348 1349 1350 1351
		else
			skb = i40e_construct_skb(rx_ring, rx_buffer, size);

		/* exit if we failed to retrieve a buffer */
		if (!skb) {
			rx_ring->rx_stats.alloc_buff_failed++;
			rx_buffer->pagecnt_bias++;
1352
			break;
1353
		}
1354

1355
		i40e_put_rx_buffer(rx_ring, rx_buffer);
1356 1357
		cleaned_count++;

1358
		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
1359 1360
			continue;

1361 1362 1363 1364 1365 1366
		/* ERR_MASK will only have valid bits if EOP set, and
		 * what we are doing here is actually checking
		 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
		 * the error field
		 */
		if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1367
			dev_kfree_skb_any(skb);
1368
			skb = NULL;
1369 1370 1371
			continue;
		}

1372 1373
		if (i40e_cleanup_headers(rx_ring, skb)) {
			skb = NULL;
1374
			continue;
1375
		}
1376

1377 1378 1379
		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;

1380 1381 1382 1383
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
			   I40E_RXD_QW1_PTYPE_SHIFT;

1384 1385
		/* populate checksum, VLAN, and protocol */
		i40evf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1386 1387


1388 1389 1390
		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;

S
Scott Peterson 已提交
1391
		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
1392
		i40e_receive_skb(rx_ring, skb, vlan_tag);
1393
		skb = NULL;
1394

1395 1396 1397
		/* update budget accounting */
		total_rx_packets++;
	}
1398

1399 1400
	rx_ring->skb = skb;

1401 1402 1403 1404 1405 1406 1407
	u64_stats_update_begin(&rx_ring->syncp);
	rx_ring->stats.packets += total_rx_packets;
	rx_ring->stats.bytes += total_rx_bytes;
	u64_stats_update_end(&rx_ring->syncp);
	rx_ring->q_vector->rx.total_packets += total_rx_packets;
	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;

1408
	/* guarantee a trip back through this routine if there was a failure */
1409
	return failure ? budget : (int)total_rx_packets;
1410 1411
}

1412 1413 1414 1415 1416
static u32 i40e_buildreg_itr(const int type, const u16 itr)
{
	u32 val;

	val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
1417 1418 1419
	      /* Don't clear PBA because that can cause lost interrupts that
	       * came in while we were cleaning/polling
	       */
1420 1421 1422 1423 1424 1425 1426 1427
	      (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
	      (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);

	return val;
}

/* a small macro to shorten up some long lines */
#define INTREG I40E_VFINT_DYN_CTLN1
1428
static inline int get_rx_itr(struct i40e_vsi *vsi, int idx)
1429 1430 1431
{
	struct i40evf_adapter *adapter = vsi->back;

1432
	return adapter->rx_rings[idx].rx_itr_setting;
1433 1434
}

1435
static inline int get_tx_itr(struct i40e_vsi *vsi, int idx)
1436 1437 1438
{
	struct i40evf_adapter *adapter = vsi->back;

1439
	return adapter->tx_rings[idx].tx_itr_setting;
1440
}
1441

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
/**
 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
 * @vsi: the VSI we care about
 * @q_vector: q_vector for which itr is being updated and interrupt enabled
 *
 **/
static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
					  struct i40e_q_vector *q_vector)
{
	struct i40e_hw *hw = &vsi->back->hw;
1452 1453
	bool rx = false, tx = false;
	u32 rxval, txval;
1454
	int vector;
1455 1456
	int idx = q_vector->v_idx;
	int rx_itr_setting, tx_itr_setting;
1457 1458

	vector = (q_vector->v_idx + vsi->base_vector);
1459 1460 1461 1462

	/* avoid dynamic calculation if in countdown mode OR if
	 * all dynamic is disabled
	 */
1463 1464
	rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);

1465 1466
	rx_itr_setting = get_rx_itr(vsi, idx);
	tx_itr_setting = get_tx_itr(vsi, idx);
1467

1468
	if (q_vector->itr_countdown > 0 ||
1469 1470
	    (!ITR_IS_DYNAMIC(rx_itr_setting) &&
	     !ITR_IS_DYNAMIC(tx_itr_setting))) {
1471 1472 1473
		goto enable_int;
	}

1474
	if (ITR_IS_DYNAMIC(rx_itr_setting)) {
1475 1476
		rx = i40e_set_new_dynamic_itr(&q_vector->rx);
		rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1477
	}
J
Jesse Brandeburg 已提交
1478

1479
	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
1480 1481 1482
		tx = i40e_set_new_dynamic_itr(&q_vector->tx);
		txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
	}
J
Jesse Brandeburg 已提交
1483

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
	if (rx || tx) {
		/* get the higher of the two ITR adjustments and
		 * use the same value for both ITR registers
		 * when in adaptive mode (Rx and/or Tx)
		 */
		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);

		q_vector->tx.itr = q_vector->rx.itr = itr;
		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
		tx = true;
		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
		rx = true;
1496
	}
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510

	/* only need to enable the interrupt once, but need
	 * to possibly update both ITR values
	 */
	if (rx) {
		/* set the INTENA_MSK_MASK so that this first write
		 * won't actually enable the interrupt, instead just
		 * updating the ITR (it's bit 31 PF and VF)
		 */
		rxval |= BIT(31);
		/* don't check _DOWN because interrupt isn't being enabled */
		wr32(hw, INTREG(vector - 1), rxval);
	}

1511
enable_int:
1512
	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
1513
		wr32(hw, INTREG(vector - 1), txval);
1514 1515 1516 1517 1518

	if (q_vector->itr_countdown)
		q_vector->itr_countdown--;
	else
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1519 1520
}

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
/**
 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
 * @napi: napi struct with our devices info in it
 * @budget: amount of work driver is allowed to do this pass, in packets
 *
 * This function will clean all queues associated with a q_vector.
 *
 * Returns the amount of work done
 **/
int i40evf_napi_poll(struct napi_struct *napi, int budget)
{
	struct i40e_q_vector *q_vector =
			       container_of(napi, struct i40e_q_vector, napi);
	struct i40e_vsi *vsi = q_vector->vsi;
	struct i40e_ring *ring;
	bool clean_complete = true;
1537
	bool arm_wb = false;
1538
	int budget_per_ring;
1539
	int work_done = 0;
1540

1541
	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
1542 1543 1544 1545 1546 1547 1548
		napi_complete(napi);
		return 0;
	}

	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
1549
	i40e_for_each_ring(ring, q_vector->tx) {
1550
		if (!i40e_clean_tx_irq(vsi, ring, budget)) {
1551 1552 1553 1554
			clean_complete = false;
			continue;
		}
		arm_wb |= ring->arm_wb;
1555
		ring->arm_wb = false;
1556
	}
1557

1558 1559 1560 1561
	/* Handle case where we are called by netpoll with a budget of 0 */
	if (budget <= 0)
		goto tx_only;

1562 1563 1564 1565 1566
	/* We attempt to distribute budget to each Rx queue fairly, but don't
	 * allow the budget to go below 1 because that would exit polling early.
	 */
	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);

1567
	i40e_for_each_ring(ring, q_vector->rx) {
1568
		int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
1569 1570

		work_done += cleaned;
1571 1572 1573
		/* if we clean as many as budgeted, we must not be done */
		if (cleaned >= budget_per_ring)
			clean_complete = false;
1574
	}
1575 1576

	/* If work not completed, return budget and polling will return */
1577
	if (!clean_complete) {
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
		const cpumask_t *aff_mask = &q_vector->affinity_mask;
		int cpu_id = smp_processor_id();

		/* It is possible that the interrupt affinity has changed but,
		 * if the cpu is pegged at 100%, polling will never exit while
		 * traffic continues and the interrupt will be stuck on this
		 * cpu.  We check to make sure affinity is correct before we
		 * continue to poll, otherwise we must stop polling so the
		 * interrupt can move to the correct cpu.
		 */
		if (likely(cpumask_test_cpu(cpu_id, aff_mask))) {
1589
tx_only:
1590 1591 1592 1593 1594
			if (arm_wb) {
				q_vector->tx.ring[0].tx_stats.tx_force_wb++;
				i40e_enable_wb_on_itr(vsi, q_vector);
			}
			return budget;
1595
		}
1596
	}
1597

1598 1599 1600
	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
		q_vector->arm_wb_state = false;

1601
	/* Work is done so exit the polling mode and re-enable the interrupt */
1602
	napi_complete_done(napi, work_done);
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612

	/* If we're prematurely stopping polling to fix the interrupt
	 * affinity we want to make sure polling starts back up so we
	 * issue a call to i40evf_force_wb which triggers a SW interrupt.
	 */
	if (!clean_complete)
		i40evf_force_wb(vsi, q_vector);
	else
		i40e_update_enable_itr(vsi, q_vector);

1613
	return min(work_done, budget - 1);
1614 1615 1616
}

/**
1617
 * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 * @flags:   the tx flags to be set
 *
 * Checks the skb and set up correspondingly several generic transmit flags
 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
 *
 * Returns error code indicate the frame should be dropped upon error and the
 * otherwise  returns 0 to indicate the flags has been set properly.
 **/
1628 1629 1630
static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
					       struct i40e_ring *tx_ring,
					       u32 *flags)
1631 1632 1633 1634
{
	__be16 protocol = skb->protocol;
	u32  tx_flags = 0;

1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
	if (protocol == htons(ETH_P_8021Q) &&
	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
		/* When HW VLAN acceleration is turned off by the user the
		 * stack sets the protocol to 8021q so that the driver
		 * can take any steps required to support the SW only
		 * VLAN handling.  In our case the driver doesn't need
		 * to take any further steps so just set the protocol
		 * to the encapsulated ethertype.
		 */
		skb->protocol = vlan_get_protocol(skb);
		goto out;
	}

1648
	/* if we have a HW VLAN tag being added, default to the HW one */
1649 1650
	if (skb_vlan_tag_present(skb)) {
		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1651 1652 1653 1654
		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
	/* else if it is a SW VLAN, check the next protocol and store the tag */
	} else if (protocol == htons(ETH_P_8021Q)) {
		struct vlan_hdr *vhdr, _vhdr;
J
Jesse Brandeburg 已提交
1655

1656 1657 1658 1659 1660 1661 1662 1663 1664
		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
		if (!vhdr)
			return -EINVAL;

		protocol = vhdr->h_vlan_encapsulated_proto;
		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
	}

1665
out:
1666 1667 1668 1669 1670 1671
	*flags = tx_flags;
	return 0;
}

/**
 * i40e_tso - set up the tso context descriptor
1672
 * @first:    pointer to first Tx buffer for xmit
1673
 * @hdr_len:  ptr to the size of the packet header
1674
 * @cd_type_cmd_tso_mss: Quad Word 1
1675 1676 1677
 *
 * Returns 0 if no TSO can happen, 1 if tso is going, or error
 **/
1678 1679
static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
		    u64 *cd_type_cmd_tso_mss)
1680
{
1681
	struct sk_buff *skb = first->skb;
1682
	u64 cd_cmd, cd_tso_len, cd_mss;
1683 1684 1685 1686 1687
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
1688 1689
	union {
		struct tcphdr *tcp;
1690
		struct udphdr *udp;
1691 1692 1693
		unsigned char *hdr;
	} l4;
	u32 paylen, l4_offset;
1694
	u16 gso_segs, gso_size;
1695 1696
	int err;

1697 1698 1699
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

1700 1701 1702
	if (!skb_is_gso(skb))
		return 0;

1703 1704 1705
	err = skb_cow_head(skb, 0);
	if (err < 0)
		return err;
1706

1707 1708
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
1709

1710 1711 1712 1713
	/* initialize outer IP header fields */
	if (ip.v4->version == 4) {
		ip.v4->tot_len = 0;
		ip.v4->check = 0;
1714
	} else {
1715 1716 1717
		ip.v6->payload_len = 0;
	}

1718
	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1719
					 SKB_GSO_GRE_CSUM |
1720
					 SKB_GSO_IPXIP4 |
1721
					 SKB_GSO_IPXIP6 |
1722
					 SKB_GSO_UDP_TUNNEL |
1723
					 SKB_GSO_UDP_TUNNEL_CSUM)) {
1724 1725 1726 1727
		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
			l4.udp->len = 0;

1728 1729 1730 1731
			/* determine offset of outer transport header */
			l4_offset = l4.hdr - skb->data;

			/* remove payload length from outer checksum */
1732
			paylen = skb->len - l4_offset;
1733 1734
			csum_replace_by_diff(&l4.udp->check,
					     (__force __wsum)htonl(paylen));
1735 1736
		}

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
		/* reset pointers to inner headers */
		ip.hdr = skb_inner_network_header(skb);
		l4.hdr = skb_inner_transport_header(skb);

		/* initialize inner IP header fields */
		if (ip.v4->version == 4) {
			ip.v4->tot_len = 0;
			ip.v4->check = 0;
		} else {
			ip.v6->payload_len = 0;
		}
1748 1749
	}

1750 1751 1752 1753
	/* determine offset of inner transport header */
	l4_offset = l4.hdr - skb->data;

	/* remove payload length from inner checksum */
1754
	paylen = skb->len - l4_offset;
1755
	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
1756 1757 1758

	/* compute length of segmentation header */
	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1759

1760 1761 1762 1763 1764 1765 1766 1767
	/* pull values out of skb_shinfo */
	gso_size = skb_shinfo(skb)->gso_size;
	gso_segs = skb_shinfo(skb)->gso_segs;

	/* update GSO size and bytecount with header size */
	first->gso_segs = gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

1768 1769 1770
	/* find the field values */
	cd_cmd = I40E_TX_CTX_DESC_TSO;
	cd_tso_len = skb->len - *hdr_len;
1771
	cd_mss = gso_size;
1772 1773 1774
	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1775 1776 1777 1778 1779 1780
	return 1;
}

/**
 * i40e_tx_enable_csum - Enable Tx checksum offloads
 * @skb: send buffer
1781
 * @tx_flags: pointer to Tx flags currently set
1782 1783
 * @td_cmd: Tx descriptor command bits to set
 * @td_offset: Tx descriptor header offsets to set
1784
 * @tx_ring: Tx descriptor ring
1785 1786
 * @cd_tunneling: ptr to context desc bits
 **/
1787 1788 1789 1790
static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
			       u32 *td_cmd, u32 *td_offset,
			       struct i40e_ring *tx_ring,
			       u32 *cd_tunneling)
1791
{
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
	union {
		struct tcphdr *tcp;
		struct udphdr *udp;
		unsigned char *hdr;
	} l4;
1802
	unsigned char *exthdr;
1803
	u32 offset, cmd = 0;
1804
	__be16 frag_off;
1805 1806
	u8 l4_proto = 0;

1807 1808 1809
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

1810 1811
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
1812

1813 1814 1815
	/* compute outer L2 header size */
	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;

1816
	if (skb->encapsulation) {
1817
		u32 tunnel = 0;
1818 1819
		/* define outer network header type */
		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1820 1821 1822 1823
			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
				  I40E_TX_CTX_EXT_IP_IPV4 :
				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;

1824 1825
			l4_proto = ip.v4->protocol;
		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1826
			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
1827 1828

			exthdr = ip.hdr + sizeof(*ip.v6);
1829
			l4_proto = ip.v6->nexthdr;
1830 1831 1832
			if (l4.hdr != exthdr)
				ipv6_skip_exthdr(skb, exthdr - skb->data,
						 &l4_proto, &frag_off);
1833 1834 1835 1836
		}

		/* define outer transport */
		switch (l4_proto) {
1837
		case IPPROTO_UDP:
1838
			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
1839
			*tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1840
			break;
1841
		case IPPROTO_GRE:
1842
			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
1843 1844
			*tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
			break;
1845 1846 1847 1848 1849
		case IPPROTO_IPIP:
		case IPPROTO_IPV6:
			*tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
			l4.hdr = skb_inner_network_header(skb);
			break;
1850
		default:
1851 1852 1853 1854 1855
			if (*tx_flags & I40E_TX_FLAGS_TSO)
				return -1;

			skb_checksum_help(skb);
			return 0;
1856
		}
1857

1858 1859 1860 1861 1862 1863 1864
		/* compute outer L3 header size */
		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;

		/* switch IP header pointer from outer to inner header */
		ip.hdr = skb_inner_network_header(skb);

1865 1866 1867 1868
		/* compute tunnel header size */
		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;

1869 1870
		/* indicate if we need to offload outer UDP header */
		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
1871
		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1872 1873 1874
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;

1875 1876 1877
		/* record tunnel offload values */
		*cd_tunneling |= tunnel;

1878 1879
		/* switch L4 header pointer from outer to inner */
		l4.hdr = skb_inner_transport_header(skb);
1880
		l4_proto = 0;
1881

1882 1883 1884 1885 1886
		/* reset type as we transition from outer to inner headers */
		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
		if (ip.v4->version == 4)
			*tx_flags |= I40E_TX_FLAGS_IPV4;
		if (ip.v6->version == 6)
1887
			*tx_flags |= I40E_TX_FLAGS_IPV6;
1888 1889 1890
	}

	/* Enable IP checksum offloads */
1891
	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1892
		l4_proto = ip.v4->protocol;
1893 1894 1895
		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
1896 1897 1898
		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
		       I40E_TX_DESC_CMD_IIPT_IPV4;
1899
	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1900
		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1901 1902 1903 1904 1905 1906

		exthdr = ip.hdr + sizeof(*ip.v6);
		l4_proto = ip.v6->nexthdr;
		if (l4.hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data,
					 &l4_proto, &frag_off);
1907
	}
1908

1909 1910
	/* compute inner L3 header size */
	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1911 1912

	/* Enable L4 checksum offloads */
1913
	switch (l4_proto) {
1914 1915
	case IPPROTO_TCP:
		/* enable checksum offloads */
1916 1917
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1918 1919 1920
		break;
	case IPPROTO_SCTP:
		/* enable SCTP checksum offload */
1921 1922 1923
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
		offset |= (sizeof(struct sctphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1924 1925 1926
		break;
	case IPPROTO_UDP:
		/* enable UDP checksum offload */
1927 1928 1929
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
		offset |= (sizeof(struct udphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1930 1931
		break;
	default:
1932 1933 1934 1935
		if (*tx_flags & I40E_TX_FLAGS_TSO)
			return -1;
		skb_checksum_help(skb);
		return 0;
1936
	}
1937 1938 1939

	*td_cmd |= cmd;
	*td_offset |= offset;
1940 1941

	return 1;
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
}

/**
 * i40e_create_tx_ctx Build the Tx context descriptor
 * @tx_ring:  ring to create the descriptor on
 * @cd_type_cmd_tso_mss: Quad Word 1
 * @cd_tunneling: Quad Word 0 - bits 0-31
 * @cd_l2tag2: Quad Word 0 - bits 32-63
 **/
static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
			       const u64 cd_type_cmd_tso_mss,
			       const u32 cd_tunneling, const u32 cd_l2tag2)
{
	struct i40e_tx_context_desc *context_desc;
	int i = tx_ring->next_to_use;

1958 1959
	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
	    !cd_tunneling && !cd_l2tag2)
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
		return;

	/* grab the next descriptor */
	context_desc = I40E_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	/* cpu_to_le32 and assign to struct fields */
	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1971
	context_desc->rsvd = cpu_to_le16(0);
1972 1973 1974
	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
}

J
Jesse Brandeburg 已提交
1975
/**
1976
 * __i40evf_chk_linearize - Check if there are more than 8 buffers per packet
1977 1978
 * @skb:      send buffer
 *
1979 1980 1981 1982 1983 1984 1985 1986
 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
 * and so we need to figure out the cases where we need to linearize the skb.
 *
 * For TSO we need to count the TSO header and segment payload separately.
 * As such we need to check cases where we have 7 fragments or more as we
 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
 * the segment payload in the first descriptor, and another 7 for the
 * fragments.
1987
 **/
1988
bool __i40evf_chk_linearize(struct sk_buff *skb)
1989
{
1990
	const struct skb_frag_struct *frag, *stale;
1991
	int nr_frags, sum;
1992

1993
	/* no need to check if number of frags is less than 7 */
1994
	nr_frags = skb_shinfo(skb)->nr_frags;
1995
	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
1996
		return false;
1997

1998
	/* We need to walk through the list and validate that each group
1999
	 * of 6 fragments totals at least gso_size.
2000
	 */
2001
	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2002 2003 2004 2005 2006 2007 2008 2009
	frag = &skb_shinfo(skb)->frags[0];

	/* Initialize size to the negative value of gso_size minus 1.  We
	 * use this as the worst case scenerio in which the frag ahead
	 * of us only provides one byte which is why we are limited to 6
	 * descriptors for a single transmit as the header and previous
	 * fragment are already consuming 2 descriptors.
	 */
2010
	sum = 1 - skb_shinfo(skb)->gso_size;
2011

2012 2013 2014 2015 2016 2017
	/* Add size of frags 0 through 4 to create our initial sum */
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
2018 2019 2020 2021 2022 2023

	/* Walk through fragments adding latest fragment, testing it, and
	 * then removing stale fragments from the sum.
	 */
	stale = &skb_shinfo(skb)->frags[0];
	for (;;) {
2024
		sum += skb_frag_size(frag++);
2025 2026 2027 2028 2029

		/* if sum is negative we failed to make sufficient progress */
		if (sum < 0)
			return true;

2030
		if (!nr_frags--)
2031 2032
			break;

2033
		sum -= skb_frag_size(stale++);
2034 2035
	}

2036
	return false;
2037 2038
}

2039 2040 2041 2042 2043 2044 2045
/**
 * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
 * @tx_ring: the ring to be checked
 * @size:    the size buffer we want to assure is available
 *
 * Returns -EBUSY if a stop is needed, else 0
 **/
2046
int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
{
	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
	/* Memory barrier before checking head and tail */
	smp_mb();

	/* Check again in a case another CPU has just made room available. */
	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
		return -EBUSY;

	/* A reprieve! - use start_queue because it doesn't call schedule */
	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
	++tx_ring->tx_stats.restart_queue;
	return 0;
}

2062
/**
2063
 * i40evf_tx_map - Build the Tx descriptor
2064 2065 2066 2067 2068 2069 2070 2071
 * @tx_ring:  ring to send buffer on
 * @skb:      send buffer
 * @first:    first buffer info buffer to use
 * @tx_flags: collected send information
 * @hdr_len:  size of the packet header
 * @td_cmd:   the command field in the descriptor
 * @td_offset: offset for checksum or crc
 **/
2072 2073 2074
static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
				 struct i40e_tx_buffer *first, u32 tx_flags,
				 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
{
	unsigned int data_len = skb->data_len;
	unsigned int size = skb_headlen(skb);
	struct skb_frag_struct *frag;
	struct i40e_tx_buffer *tx_bi;
	struct i40e_tx_desc *tx_desc;
	u16 i = tx_ring->next_to_use;
	u32 td_tag = 0;
	dma_addr_t dma;

	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
			 I40E_TX_FLAGS_VLAN_SHIFT;
	}

	first->tx_flags = tx_flags;

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);

	tx_desc = I40E_TX_DESC(tx_ring, i);
	tx_bi = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2099 2100
		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;

2101 2102 2103 2104 2105 2106 2107
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_bi, len, size);
		dma_unmap_addr_set(tx_bi, dma, dma);

2108 2109
		/* align size to end of page */
		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
2110 2111 2112 2113 2114
		tx_desc->buffer_addr = cpu_to_le64(dma);

		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
			tx_desc->cmd_type_offset_bsz =
				build_ctob(td_cmd, td_offset,
2115
					   max_data, td_tag);
2116 2117 2118

			tx_desc++;
			i++;
2119

2120 2121 2122 2123 2124
			if (i == tx_ring->count) {
				tx_desc = I40E_TX_DESC(tx_ring, 0);
				i = 0;
			}

2125 2126
			dma += max_data;
			size -= max_data;
2127

2128
			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
			tx_desc->buffer_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;

		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
							  size, td_tag);

		tx_desc++;
		i++;
2140

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
		if (i == tx_ring->count) {
			tx_desc = I40E_TX_DESC(tx_ring, 0);
			i = 0;
		}

		size = skb_frag_size(frag);
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
				       DMA_TO_DEVICE);

		tx_bi = &tx_ring->tx_bi[i];
	}

2155
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
2156 2157 2158 2159 2160 2161 2162

	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

2163
	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2164

2165 2166
	/* write last descriptor with RS and EOP bits */
	td_cmd |= I40E_TXD_CMD;
2167
	tx_desc->cmd_type_offset_bsz =
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
			build_ctob(td_cmd, td_offset, size, td_tag);

	/* Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.
	 *
	 * We also use this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

	/* set next_to_watch value indicating a packet is present */
	first->next_to_watch = tx_desc;
2180

2181
	/* notify HW of packet */
2182
	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
2183
		writel(i, tx_ring->tail);
2184 2185 2186 2187 2188

		/* we need this if more than one processor can write to our tail
		 * at a time, it synchronizes IO on IA64/Altix systems
		 */
		mmiowb();
2189
	}
2190

2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
	return;

dma_error:
	dev_info(tx_ring->dev, "TX DMA map failed\n");

	/* clear dma mappings for failed tx_bi map */
	for (;;) {
		tx_bi = &tx_ring->tx_bi[i];
		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
		if (tx_bi == first)
			break;
		if (i == 0)
			i = tx_ring->count;
		i--;
	}

	tx_ring->next_to_use = i;
}

/**
 * i40e_xmit_frame_ring - Sends buffer on Tx ring
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
					struct i40e_ring *tx_ring)
{
	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
	u32 cd_tunneling = 0, cd_l2tag2 = 0;
	struct i40e_tx_buffer *first;
	u32 td_offset = 0;
	u32 tx_flags = 0;
	__be16 protocol;
	u32 td_cmd = 0;
	u8 hdr_len = 0;
2228
	int tso, count;
J
Jesse Brandeburg 已提交
2229

2230 2231 2232
	/* prefetch the data, we'll need it later */
	prefetch(skb->data);

S
Scott Peterson 已提交
2233 2234
	i40e_trace(xmit_frame_ring, skb, tx_ring);

2235
	count = i40e_xmit_descriptor_count(skb);
2236
	if (i40e_chk_linearize(skb, count)) {
2237 2238 2239 2240
		if (__skb_linearize(skb)) {
			dev_kfree_skb_any(skb);
			return NETDEV_TX_OK;
		}
2241
		count = i40e_txd_use_count(skb->len);
2242 2243
		tx_ring->tx_stats.tx_linearize++;
	}
2244 2245 2246 2247 2248 2249 2250 2251 2252

	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
	 *       + 4 desc gap to avoid the cache line where head is,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time
	 */
	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
		tx_ring->tx_stats.tx_busy++;
2253
		return NETDEV_TX_BUSY;
2254
	}
2255

2256 2257 2258 2259 2260 2261
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_bi[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

2262
	/* prepare the xmit flags */
2263
	if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2264 2265 2266
		goto out_drop;

	/* obtain protocol of skb */
2267
	protocol = vlan_get_protocol(skb);
2268 2269 2270 2271 2272 2273 2274

	/* setup IPv4/IPv6 offloads */
	if (protocol == htons(ETH_P_IP))
		tx_flags |= I40E_TX_FLAGS_IPV4;
	else if (protocol == htons(ETH_P_IPV6))
		tx_flags |= I40E_TX_FLAGS_IPV6;

2275
	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
2276 2277 2278 2279 2280 2281 2282

	if (tso < 0)
		goto out_drop;
	else if (tso)
		tx_flags |= I40E_TX_FLAGS_TSO;

	/* Always offload the checksum, since it's in the data descriptor */
2283 2284 2285 2286
	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
				  tx_ring, &cd_tunneling);
	if (tso < 0)
		goto out_drop;
2287

2288 2289 2290 2291 2292
	skb_tx_timestamp(skb);

	/* always enable CRC insertion offload */
	td_cmd |= I40E_TX_DESC_CMD_ICRC;

2293 2294 2295
	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
			   cd_tunneling, cd_l2tag2);

2296 2297
	i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
		      td_cmd, td_offset);
2298 2299 2300 2301

	return NETDEV_TX_OK;

out_drop:
S
Scott Peterson 已提交
2302
	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
2303 2304
	dev_kfree_skb_any(first->skb);
	first->skb = NULL;
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
	return NETDEV_TX_OK;
}

/**
 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
 * @skb:    send buffer
 * @netdev: network interface device structure
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
	struct i40evf_adapter *adapter = netdev_priv(netdev);
2318
	struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331

	/* hardware can't handle really short frames, hardware padding works
	 * beyond this point
	 */
	if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
		if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
			return NETDEV_TX_OK;
		skb->len = I40E_MIN_TX_LEN;
		skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
	}

	return i40e_xmit_frame_ring(skb, tx_ring);
}