i40e_txrx.c 54.0 KB
Newer Older
1 2 3
/*******************************************************************************
 *
 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
J
Jesse Brandeburg 已提交
4
 * Copyright(c) 2013 - 2014 Intel Corporation.
5 6 7 8 9 10 11 12 13 14
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
15 16 17
 * You should have received a copy of the GNU General Public License along
 * with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
18 19 20 21 22 23 24 25 26
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information:
 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 ******************************************************************************/

27
#include <linux/prefetch.h>
28
#include <net/busy_poll.h>
29

30
#include "i40evf.h"
31
#include "i40e_prototype.h"
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
				u32 td_tag)
{
	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
}

#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)

/**
 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 * @ring:      the ring that owns the buffer
 * @tx_buffer: the buffer to free
 **/
static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
					    struct i40e_tx_buffer *tx_buffer)
{
	if (tx_buffer->skb) {
54 55 56 57 58
		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
			kfree(tx_buffer->raw_buf);
		else
			dev_kfree_skb_any(tx_buffer->skb);

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
		if (dma_unmap_len(tx_buffer, len))
			dma_unmap_single(ring->dev,
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
					 DMA_TO_DEVICE);
	} else if (dma_unmap_len(tx_buffer, len)) {
		dma_unmap_page(ring->dev,
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
			       DMA_TO_DEVICE);
	}
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
	dma_unmap_len_set(tx_buffer, len, 0);
	/* tx_buffer must be completely set up in the transmit path */
}

/**
 * i40evf_clean_tx_ring - Free any empty Tx buffers
 * @tx_ring: ring to be cleaned
 **/
void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!tx_ring->tx_bi)
		return;

	/* Free all the Tx ring sk_buffs */
	for (i = 0; i < tx_ring->count; i++)
		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);

	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	if (!tx_ring->netdev)
		return;

	/* cleanup Tx queue statistics */
	netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
						  tx_ring->queue_index));
}

/**
 * i40evf_free_tx_resources - Free Tx resources per queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
{
	i40evf_clean_tx_ring(tx_ring);
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;

	if (tx_ring->desc) {
		dma_free_coherent(tx_ring->dev, tx_ring->size,
				  tx_ring->desc, tx_ring->dma);
		tx_ring->desc = NULL;
	}
}

J
Jesse Brandeburg 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142
/**
 * i40e_get_head - Retrieve head from head writeback
 * @tx_ring:  tx ring to fetch head of
 *
 * Returns value of Tx ring head based on value stored
 * in head write-back location
 **/
static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
{
	void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;

	return le32_to_cpu(*(volatile __le32 *)head);
}

143 144
#define WB_STRIDE 0x3

145 146 147 148 149 150 151 152 153 154 155
/**
 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 * @tx_ring:  tx ring to clean
 * @budget:   how many cleans we're allowed
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 **/
static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
{
	u16 i = tx_ring->next_to_clean;
	struct i40e_tx_buffer *tx_buf;
156
	struct i40e_tx_desc *tx_head;
157 158 159 160 161 162 163 164
	struct i40e_tx_desc *tx_desc;
	unsigned int total_packets = 0;
	unsigned int total_bytes = 0;

	tx_buf = &tx_ring->tx_bi[i];
	tx_desc = I40E_TX_DESC(tx_ring, i);
	i -= tx_ring->count;

165 166
	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));

167 168 169 170 171 172 173 174 175 176
	do {
		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;

		/* prevent any other reads prior to eop_desc */
		read_barrier_depends();

177 178
		/* we have caught up to head, no work left to do */
		if (tx_head == tx_desc)
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
			break;

		/* clear next_to_watch to prevent false hangs */
		tx_buf->next_to_watch = NULL;

		/* update the statistics for this packet */
		total_bytes += tx_buf->bytecount;
		total_packets += tx_buf->gso_segs;

		/* free the skb */
		dev_kfree_skb_any(tx_buf->skb);

		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buf, dma),
				 dma_unmap_len(tx_buf, len),
				 DMA_TO_DEVICE);

		/* clear tx_buffer data */
		tx_buf->skb = NULL;
		dma_unmap_len_set(tx_buf, len, 0);

		/* unmap remaining buffers */
		while (tx_desc != eop_desc) {

			tx_buf++;
			tx_desc++;
			i++;
			if (unlikely(!i)) {
				i -= tx_ring->count;
				tx_buf = tx_ring->tx_bi;
				tx_desc = I40E_TX_DESC(tx_ring, 0);
			}

			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buf, len)) {
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buf, dma),
					       dma_unmap_len(tx_buf, len),
					       DMA_TO_DEVICE);
				dma_unmap_len_set(tx_buf, len, 0);
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buf++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buf = tx_ring->tx_bi;
			tx_desc = I40E_TX_DESC(tx_ring, 0);
		}

233 234
		prefetch(tx_desc);

235 236 237 238 239 240 241 242 243 244 245 246 247
		/* update budget accounting */
		budget--;
	} while (likely(budget));

	i += tx_ring->count;
	tx_ring->next_to_clean = i;
	u64_stats_update_begin(&tx_ring->syncp);
	tx_ring->stats.bytes += total_bytes;
	tx_ring->stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->syncp);
	tx_ring->q_vector->tx.total_bytes += total_bytes;
	tx_ring->q_vector->tx.total_packets += total_packets;

248 249 250 251
	/* check to see if there are any non-cache aligned descriptors
	 * waiting to be written back, and kick the hardware to force
	 * them to be written back in case of napi polling
	 */
252 253 254 255 256 257
	if (budget &&
	    !((i & WB_STRIDE) == WB_STRIDE) &&
	    !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
	    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
		tx_ring->arm_wb = true;

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
	netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
						      tx_ring->queue_index),
				  total_packets, total_bytes);

#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
		   !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);
			++tx_ring->tx_stats.restart_queue;
		}
	}

278
	return !!budget;
279 280
}

281
/**
282
 * i40evf_force_wb -Arm hardware to do a wb on noncache aligned descriptors
283 284 285 286
 * @vsi: the VSI we care about
 * @q_vector: the vector  on which to force writeback
 *
 **/
287
static void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
288
{
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
	u16 flags = q_vector->tx.ring[0].flags;

	if (flags & I40E_TXR_FLAGS_WB_ON_ITR) {
		u32 val;

		if (q_vector->arm_wb_state)
			return;

		val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK;

		wr32(&vsi->back->hw,
		     I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
					  vsi->base_vector - 1),
		     val);
		q_vector->arm_wb_state = true;
	} else {
		u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
			  I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
			  I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
			  I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK;
			  /* allow 00 to be written to the index */

		wr32(&vsi->back->hw,
		     I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
					  vsi->base_vector - 1), val);
	}
315 316
}

317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
/**
 * i40e_set_new_dynamic_itr - Find new ITR level
 * @rc: structure containing ring performance data
 *
 * Stores a new ITR value based on packets and byte counts during
 * the last interrupt.  The advantage of per interrupt computation
 * is faster updates and more accurate ITR for the current traffic
 * pattern.  Constants in this function were computed based on
 * theoretical maximum wire speed and thresholds were set based on
 * testing data as well as attempting to minimize response time
 * while increasing bulk throughput.
 **/
static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
{
	enum i40e_latency_range new_latency_range = rc->latency_range;
	u32 new_itr = rc->itr;
	int bytes_per_int;

	if (rc->total_packets == 0 || !rc->itr)
		return;

	/* simple throttlerate management
	 *   0-10MB/s   lowest (100000 ints/s)
	 *  10-20MB/s   low    (20000 ints/s)
	 *  20-1249MB/s bulk   (8000 ints/s)
	 */
	bytes_per_int = rc->total_bytes / rc->itr;
344
	switch (new_latency_range) {
345 346 347 348 349 350 351 352 353 354 355 356
	case I40E_LOWEST_LATENCY:
		if (bytes_per_int > 10)
			new_latency_range = I40E_LOW_LATENCY;
		break;
	case I40E_LOW_LATENCY:
		if (bytes_per_int > 20)
			new_latency_range = I40E_BULK_LATENCY;
		else if (bytes_per_int <= 10)
			new_latency_range = I40E_LOWEST_LATENCY;
		break;
	case I40E_BULK_LATENCY:
		if (bytes_per_int <= 20)
357 358 359 360 361
			new_latency_range = I40E_LOW_LATENCY;
		break;
	default:
		if (bytes_per_int <= 20)
			new_latency_range = I40E_LOW_LATENCY;
362 363
		break;
	}
364
	rc->latency_range = new_latency_range;
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379

	switch (new_latency_range) {
	case I40E_LOWEST_LATENCY:
		new_itr = I40E_ITR_100K;
		break;
	case I40E_LOW_LATENCY:
		new_itr = I40E_ITR_20K;
		break;
	case I40E_BULK_LATENCY:
		new_itr = I40E_ITR_8K;
		break;
	default:
		break;
	}

380 381
	if (new_itr != rc->itr)
		rc->itr = new_itr;
382 383 384 385 386

	rc->total_bytes = 0;
	rc->total_packets = 0;
}

387
/*
388 389 390 391 392 393 394 395 396 397 398 399 400
 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
 * @tx_ring: the tx ring to set up
 *
 * Return 0 on success, negative on error
 **/
int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
{
	struct device *dev = tx_ring->dev;
	int bi_size;

	if (!dev)
		return -ENOMEM;

401 402
	/* warn if we are about to overwrite the pointer */
	WARN_ON(tx_ring->tx_bi);
403 404 405 406 407 408 409
	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!tx_ring->tx_bi)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
410 411 412 413
	/* add u32 for head writeback, align after this takes care of
	 * guaranteeing this is at least one cache line in size
	 */
	tx_ring->size += sizeof(u32);
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
	tx_ring->size = ALIGN(tx_ring->size, 4096);
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
			 tx_ring->size);
		goto err;
	}

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	return 0;

err:
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40evf_clean_rx_ring - Free Rx buffers
 * @rx_ring: ring to be cleaned
 **/
void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	struct i40e_rx_buffer *rx_bi;
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!rx_ring->rx_bi)
		return;

448 449 450 451 452 453 454 455 456 457 458 459
	if (ring_is_ps_enabled(rx_ring)) {
		int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;

		rx_bi = &rx_ring->rx_bi[0];
		if (rx_bi->hdr_buf) {
			dma_free_coherent(dev,
					  bufsz,
					  rx_bi->hdr_buf,
					  rx_bi->dma);
			for (i = 0; i < rx_ring->count; i++) {
				rx_bi = &rx_ring->rx_bi[i];
				rx_bi->dma = 0;
460
				rx_bi->hdr_buf = NULL;
461 462 463
			}
		}
	}
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		rx_bi = &rx_ring->rx_bi[i];
		if (rx_bi->dma) {
			dma_unmap_single(dev,
					 rx_bi->dma,
					 rx_ring->rx_buf_len,
					 DMA_FROM_DEVICE);
			rx_bi->dma = 0;
		}
		if (rx_bi->skb) {
			dev_kfree_skb(rx_bi->skb);
			rx_bi->skb = NULL;
		}
		if (rx_bi->page) {
			if (rx_bi->page_dma) {
				dma_unmap_page(dev,
					       rx_bi->page_dma,
					       PAGE_SIZE / 2,
					       DMA_FROM_DEVICE);
				rx_bi->page_dma = 0;
			}
			__free_page(rx_bi->page);
			rx_bi->page = NULL;
			rx_bi->page_offset = 0;
		}
	}

	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * i40evf_free_rx_resources - Free Rx resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
{
	i40evf_clean_rx_ring(rx_ring);
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;

	if (rx_ring->desc) {
		dma_free_coherent(rx_ring->dev, rx_ring->size,
				  rx_ring->desc, rx_ring->dma);
		rx_ring->desc = NULL;
	}
}

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
/**
 * i40evf_alloc_rx_headers - allocate rx header buffers
 * @rx_ring: ring to alloc buffers
 *
 * Allocate rx header buffers for the entire ring. As these are static,
 * this is only called when setting up a new ring.
 **/
void i40evf_alloc_rx_headers(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	struct i40e_rx_buffer *rx_bi;
	dma_addr_t dma;
	void *buffer;
	int buf_size;
	int i;

	if (rx_ring->rx_bi[0].hdr_buf)
		return;
	/* Make sure the buffers don't cross cache line boundaries. */
	buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
	buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
				    &dma, GFP_KERNEL);
	if (!buffer)
		return;
	for (i = 0; i < rx_ring->count; i++) {
		rx_bi = &rx_ring->rx_bi[i];
		rx_bi->dma = dma + (i * buf_size);
		rx_bi->hdr_buf = buffer + (i * buf_size);
	}
}

552 553 554 555 556 557 558 559 560 561 562
/**
 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	int bi_size;

563 564
	/* warn if we are about to overwrite the pointer */
	WARN_ON(rx_ring->rx_bi);
565 566 567 568 569
	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!rx_ring->rx_bi)
		goto err;

570
	u64_stats_init(&rx_ring->syncp);
571

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
	/* Round up to nearest 4K */
	rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
		? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
		: rx_ring->count * sizeof(union i40e_32byte_rx_desc);
	rx_ring->size = ALIGN(rx_ring->size, 4096);
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);

	if (!rx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
			 rx_ring->size);
		goto err;
	}

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;
err:
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_release_rx_desc - Store the new tail and head values
 * @rx_ring: ring to bump
 * @val: new head index
 **/
static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
{
	rx_ring->next_to_use = val;
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64).
	 */
	wmb();
	writel(val, rx_ring->tail);
}

/**
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
 * i40evf_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
 **/
void i40evf_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
{
	u16 i = rx_ring->next_to_use;
	union i40e_rx_desc *rx_desc;
	struct i40e_rx_buffer *bi;

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
		return;

	while (cleaned_count--) {
		rx_desc = I40E_RX_DESC(rx_ring, i);
		bi = &rx_ring->rx_bi[i];

		if (bi->skb) /* desc is in use */
			goto no_buffers;
		if (!bi->page) {
			bi->page = alloc_page(GFP_ATOMIC);
			if (!bi->page) {
				rx_ring->rx_stats.alloc_page_failed++;
				goto no_buffers;
			}
		}

		if (!bi->page_dma) {
			/* use a half page if we're re-using */
			bi->page_offset ^= PAGE_SIZE / 2;
			bi->page_dma = dma_map_page(rx_ring->dev,
						    bi->page,
						    bi->page_offset,
						    PAGE_SIZE / 2,
						    DMA_FROM_DEVICE);
			if (dma_mapping_error(rx_ring->dev,
					      bi->page_dma)) {
				rx_ring->rx_stats.alloc_page_failed++;
				bi->page_dma = 0;
				goto no_buffers;
			}
		}

		dma_sync_single_range_for_device(rx_ring->dev,
						 bi->dma,
						 0,
						 rx_ring->rx_hdr_len,
						 DMA_FROM_DEVICE);
		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
		rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
		rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
		i++;
		if (i == rx_ring->count)
			i = 0;
	}

no_buffers:
	if (rx_ring->next_to_use != i)
		i40e_release_rx_desc(rx_ring, i);
}

/**
 * i40evf_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
680 681 682
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
 **/
683
void i40evf_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
{
	u16 i = rx_ring->next_to_use;
	union i40e_rx_desc *rx_desc;
	struct i40e_rx_buffer *bi;
	struct sk_buff *skb;

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
		return;

	while (cleaned_count--) {
		rx_desc = I40E_RX_DESC(rx_ring, i);
		bi = &rx_ring->rx_bi[i];
		skb = bi->skb;

		if (!skb) {
			skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
							rx_ring->rx_buf_len);
			if (!skb) {
				rx_ring->rx_stats.alloc_buff_failed++;
				goto no_buffers;
			}
			/* initialize queue mapping */
			skb_record_rx_queue(skb, rx_ring->queue_index);
			bi->skb = skb;
		}

		if (!bi->dma) {
			bi->dma = dma_map_single(rx_ring->dev,
						 skb->data,
						 rx_ring->rx_buf_len,
						 DMA_FROM_DEVICE);
			if (dma_mapping_error(rx_ring->dev, bi->dma)) {
				rx_ring->rx_stats.alloc_buff_failed++;
				bi->dma = 0;
				goto no_buffers;
			}
		}

723 724
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
		rx_desc->read.hdr_addr = 0;
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
		i++;
		if (i == rx_ring->count)
			i = 0;
	}

no_buffers:
	if (rx_ring->next_to_use != i)
		i40e_release_rx_desc(rx_ring, i);
}

/**
 * i40e_receive_skb - Send a completed packet up the stack
 * @rx_ring:  rx ring in play
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
 **/
static void i40e_receive_skb(struct i40e_ring *rx_ring,
			     struct sk_buff *skb, u16 vlan_tag)
{
	struct i40e_q_vector *q_vector = rx_ring->q_vector;
	struct i40e_vsi *vsi = rx_ring->vsi;
	u64 flags = vsi->back->flags;

	if (vlan_tag & VLAN_VID_MASK)
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);

	if (flags & I40E_FLAG_IN_NETPOLL)
		netif_rx(skb);
	else
		napi_gro_receive(&q_vector->napi, skb);
}

/**
 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
 * @vsi: the VSI we care about
 * @skb: skb currently being received and modified
 * @rx_status: status value of last descriptor in packet
 * @rx_error: error value of last descriptor in packet
 * @rx_ptype: ptype value of last descriptor in packet
 **/
static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
				    struct sk_buff *skb,
				    u32 rx_status,
				    u32 rx_error,
				    u16 rx_ptype)
{
771 772
	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
	bool ipv4 = false, ipv6 = false;
773 774 775
	bool ipv4_tunnel, ipv6_tunnel;
	__wsum rx_udp_csum;
	struct iphdr *iph;
776
	__sum16 csum;
777

778 779 780 781
	ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
		     (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
	ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
		     (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
782 783 784 785

	skb->ip_summed = CHECKSUM_NONE;

	/* Rx csum enabled and ip headers found? */
786 787 788 789
	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
		return;

	/* did the hardware decode the packet and checksum? */
790
	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
791 792 793 794
		return;

	/* both known and outer_ip must be set for the below code to work */
	if (!(decoded.known && decoded.outer_ip))
795 796
		return;

797 798 799 800 801 802 803 804
	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
	    decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
		ipv4 = true;
	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
		 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
		ipv6 = true;

	if (ipv4 &&
805 806
	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
807 808
		goto checksum_fail;

J
Jesse Brandeburg 已提交
809
	/* likely incorrect csum if alternate IP extension headers found */
810
	if (ipv6 &&
811
	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
812
		/* don't increment checksum err here, non-fatal err */
813 814
		return;

815
	/* there was some L4 error, count error and punt packet to the stack */
816
	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
817 818 819 820 821 822
		goto checksum_fail;

	/* handle packets that were not able to be checksummed due
	 * to arrival speed, in this case the stack can compute
	 * the csum.
	 */
823
	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
824 825
		return;

826 827 828 829 830 831
	/* If VXLAN traffic has an outer UDPv4 checksum we need to check
	 * it in the driver, hardware does not do it for us.
	 * Since L3L4P bit was set we assume a valid IHL value (>=5)
	 * so the total length of IPv4 header is IHL*4 bytes
	 * The UDP_0 bit *may* bet set if the *inner* header is UDP
	 */
832
	if (ipv4_tunnel) {
833 834 835 836 837 838 839 840 841
		skb->transport_header = skb->mac_header +
					sizeof(struct ethhdr) +
					(ip_hdr(skb)->ihl * 4);

		/* Add 4 bytes for VLAN tagged packets */
		skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
					  skb->protocol == htons(ETH_P_8021AD))
					  ? VLAN_HLEN : 0;

842 843 844 845 846 847 848 849
		if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
		    (udp_hdr(skb)->check != 0)) {
			rx_udp_csum = udp_csum(skb);
			iph = ip_hdr(skb);
			csum = csum_tcpudp_magic(iph->saddr, iph->daddr,
						 (skb->len -
						  skb_transport_offset(skb)),
						 IPPROTO_UDP, rx_udp_csum);
850

851 852 853 854
			if (udp_hdr(skb)->check != csum)
				goto checksum_fail;

		} /* else its GRE and so no outer UDP header */
855 856 857
	}

	skb->ip_summed = CHECKSUM_UNNECESSARY;
858
	skb->csum_level = ipv4_tunnel || ipv6_tunnel;
859 860 861 862 863

	return;

checksum_fail:
	vsi->back->hw_csum_rx_error++;
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
}

/**
 * i40e_rx_hash - returns the hash value from the Rx descriptor
 * @ring: descriptor ring
 * @rx_desc: specific descriptor
 **/
static inline u32 i40e_rx_hash(struct i40e_ring *ring,
			       union i40e_rx_desc *rx_desc)
{
	const __le64 rss_mask =
		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);

	if ((ring->netdev->features & NETIF_F_RXHASH) &&
	    (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
		return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
	else
		return 0;
}

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
/**
 * i40e_ptype_to_hash - get a hash type
 * @ptype: the ptype value from the descriptor
 *
 * Returns a hash type to be used by skb_set_hash
 **/
static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
{
	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);

	if (!decoded.known)
		return PKT_HASH_TYPE_NONE;

	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
		return PKT_HASH_TYPE_L4;
	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
		return PKT_HASH_TYPE_L3;
	else
		return PKT_HASH_TYPE_L2;
}

908
/**
909
 * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
910 911 912 913 914
 * @rx_ring:  rx ring to clean
 * @budget:   how many cleans we're allowed
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 **/
915
static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, int budget)
916 917 918 919
{
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
	u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
920
	const int current_node = numa_mem_id();
921 922 923 924
	struct i40e_vsi *vsi = rx_ring->vsi;
	u16 i = rx_ring->next_to_clean;
	union i40e_rx_desc *rx_desc;
	u32 rx_error, rx_status;
925
	u8 rx_ptype;
926 927
	u64 qword;

928
	do {
929 930 931
		struct i40e_rx_buffer *rx_bi;
		struct sk_buff *skb;
		u16 vlan_tag;
932 933 934 935 936 937 938 939 940 941 942 943
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
			i40evf_alloc_rx_buffers_ps(rx_ring, cleaned_count);
			cleaned_count = 0;
		}

		i = rx_ring->next_to_clean;
		rx_desc = I40E_RX_DESC(rx_ring, i);
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
		rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
			I40E_RXD_QW1_STATUS_SHIFT;

944
		if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
945 946 947 948 949 950
			break;

		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * DD bit is set.
		 */
951
		dma_rmb();
952 953
		rx_bi = &rx_ring->rx_bi[i];
		skb = rx_bi->skb;
954 955 956
		if (likely(!skb)) {
			skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
							rx_ring->rx_hdr_len);
957
			if (!skb) {
958
				rx_ring->rx_stats.alloc_buff_failed++;
959 960 961
				break;
			}

962 963 964 965 966 967 968 969 970
			/* initialize queue mapping */
			skb_record_rx_queue(skb, rx_ring->queue_index);
			/* we are reusing so sync this buffer for CPU use */
			dma_sync_single_range_for_cpu(rx_ring->dev,
						      rx_bi->dma,
						      0,
						      rx_ring->rx_hdr_len,
						      DMA_FROM_DEVICE);
		}
971 972 973 974 975 976 977 978 979
		rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
				I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
		rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
				I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
		rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
			 I40E_RXD_QW1_LENGTH_SPH_SHIFT;

		rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
			   I40E_RXD_QW1_ERROR_SHIFT;
980 981
		rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
		rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
982 983 984

		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
			   I40E_RXD_QW1_PTYPE_SHIFT;
985
		prefetch(rx_bi->page);
986
		rx_bi->skb = NULL;
987 988 989
		cleaned_count++;
		if (rx_hbo || rx_sph) {
			int len;
990 991 992
			if (rx_hbo)
				len = I40E_RX_HDR_SIZE;
			else
993 994 995 996 997 998 999 1000 1001 1002 1003 1004
				len = rx_header_len;
			memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
		} else if (skb->len == 0) {
			int len;

			len = (rx_packet_len > skb_headlen(skb) ?
				skb_headlen(skb) : rx_packet_len);
			memcpy(__skb_put(skb, len),
			       rx_bi->page + rx_bi->page_offset,
			       len);
			rx_bi->page_offset += len;
			rx_packet_len -= len;
1005 1006 1007
		}

		/* Get the rest of the data if this was a header split */
1008
		if (rx_packet_len) {
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
					   rx_bi->page,
					   rx_bi->page_offset,
					   rx_packet_len);

			skb->len += rx_packet_len;
			skb->data_len += rx_packet_len;
			skb->truesize += rx_packet_len;

			if ((page_count(rx_bi->page) == 1) &&
			    (page_to_nid(rx_bi->page) == current_node))
				get_page(rx_bi->page);
			else
				rx_bi->page = NULL;

			dma_unmap_page(rx_ring->dev,
				       rx_bi->page_dma,
				       PAGE_SIZE / 2,
				       DMA_FROM_DEVICE);
			rx_bi->page_dma = 0;
		}
1030
		I40E_RX_INCREMENT(rx_ring, i);
1031 1032

		if (unlikely(
1033
		    !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1034 1035 1036
			struct i40e_rx_buffer *next_buffer;

			next_buffer = &rx_ring->rx_bi[i];
1037
			next_buffer->skb = skb;
1038
			rx_ring->rx_stats.non_eop_descs++;
1039
			continue;
1040 1041 1042
		}

		/* ERR_MASK will only have valid bits if EOP set */
1043
		if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1044
			dev_kfree_skb_any(skb);
1045
			continue;
1046 1047
		}

1048 1049
		skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
			     i40e_ptype_to_hash(rx_ptype));
1050 1051 1052 1053 1054 1055 1056 1057
		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;
		total_rx_packets++;

		skb->protocol = eth_type_trans(skb, rx_ring->netdev);

		i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);

1058
		vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1059 1060
			 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
			 : 0;
1061 1062 1063 1064 1065 1066 1067
#ifdef I40E_FCOE
		if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
			dev_kfree_skb_any(skb);
			continue;
		}
#endif
		skb_mark_napi_id(skb, &rx_ring->q_vector->napi);
1068 1069 1070 1071
		i40e_receive_skb(rx_ring, skb, vlan_tag);

		rx_desc->wb.qword1.status_error_len = 0;

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
	} while (likely(total_rx_packets < budget));

	u64_stats_update_begin(&rx_ring->syncp);
	rx_ring->stats.packets += total_rx_packets;
	rx_ring->stats.bytes += total_rx_bytes;
	u64_stats_update_end(&rx_ring->syncp);
	rx_ring->q_vector->rx.total_packets += total_rx_packets;
	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;

	return total_rx_packets;
}

/**
 * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
 * @rx_ring:  rx ring to clean
 * @budget:   how many cleans we're allowed
 *
 * Returns number of packets cleaned
 **/
static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
{
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
	struct i40e_vsi *vsi = rx_ring->vsi;
	union i40e_rx_desc *rx_desc;
	u32 rx_error, rx_status;
	u16 rx_packet_len;
	u8 rx_ptype;
	u64 qword;
	u16 i;

	do {
		struct i40e_rx_buffer *rx_bi;
		struct sk_buff *skb;
		u16 vlan_tag;
1107 1108
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1109
			i40evf_alloc_rx_buffers_1buf(rx_ring, cleaned_count);
1110 1111 1112
			cleaned_count = 0;
		}

1113 1114
		i = rx_ring->next_to_clean;
		rx_desc = I40E_RX_DESC(rx_ring, i);
1115 1116
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
		rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1117 1118
			I40E_RXD_QW1_STATUS_SHIFT;

1119
		if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1120 1121 1122 1123 1124 1125
			break;

		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * DD bit is set.
		 */
1126
		dma_rmb();
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

		rx_bi = &rx_ring->rx_bi[i];
		skb = rx_bi->skb;
		prefetch(skb->data);

		rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
				I40E_RXD_QW1_LENGTH_PBUF_SHIFT;

		rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
			   I40E_RXD_QW1_ERROR_SHIFT;
1137
		rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154

		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
			   I40E_RXD_QW1_PTYPE_SHIFT;
		rx_bi->skb = NULL;
		cleaned_count++;

		/* Get the header and possibly the whole packet
		 * If this is an skb from previous receive dma will be 0
		 */
		skb_put(skb, rx_packet_len);
		dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
				 DMA_FROM_DEVICE);
		rx_bi->dma = 0;

		I40E_RX_INCREMENT(rx_ring, i);

		if (unlikely(
1155
		    !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1156 1157 1158 1159 1160
			rx_ring->rx_stats.non_eop_descs++;
			continue;
		}

		/* ERR_MASK will only have valid bits if EOP set */
1161
		if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
			dev_kfree_skb_any(skb);
			/* TODO: shouldn't we increment a counter indicating the
			 * drop?
			 */
			continue;
		}

		skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
			     i40e_ptype_to_hash(rx_ptype));
		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;
		total_rx_packets++;

		skb->protocol = eth_type_trans(skb, rx_ring->netdev);

		i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);

1179
		vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1180 1181 1182 1183 1184 1185
			 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
			 : 0;
		i40e_receive_skb(rx_ring, skb, vlan_tag);

		rx_desc->wb.qword1.status_error_len = 0;
	} while (likely(total_rx_packets < budget));
1186 1187 1188 1189 1190 1191 1192 1193

	u64_stats_update_begin(&rx_ring->syncp);
	rx_ring->stats.packets += total_rx_packets;
	rx_ring->stats.bytes += total_rx_bytes;
	u64_stats_update_end(&rx_ring->syncp);
	rx_ring->q_vector->rx.total_packets += total_rx_packets;
	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;

1194
	return total_rx_packets;
1195 1196
}

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
/**
 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
 * @vsi: the VSI we care about
 * @q_vector: q_vector for which itr is being updated and interrupt enabled
 *
 **/
static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
					  struct i40e_q_vector *q_vector)
{
	struct i40e_hw *hw = &vsi->back->hw;
	u16 old_itr;
	int vector;
	u32 val;

	vector = (q_vector->v_idx + vsi->base_vector);
	if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
		old_itr = q_vector->rx.itr;
		i40e_set_new_dynamic_itr(&q_vector->rx);
		if (old_itr != q_vector->rx.itr) {
1216 1217
			val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
			I40E_VFINT_DYN_CTLN1_CLEARPBA_MASK |
1218
			(I40E_RX_ITR <<
1219
				I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1220
			(q_vector->rx.itr <<
1221
				I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);
1222
		} else {
1223 1224
			val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
			I40E_VFINT_DYN_CTLN1_CLEARPBA_MASK |
1225
			(I40E_ITR_NONE <<
1226
				I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT);
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
		}
		if (!test_bit(__I40E_DOWN, &vsi->state))
			wr32(hw, I40E_VFINT_DYN_CTLN1(vector - 1), val);
	} else {
		i40evf_irq_enable_queues(vsi->back, 1
			<< q_vector->v_idx);
	}
	if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
		old_itr = q_vector->tx.itr;
		i40e_set_new_dynamic_itr(&q_vector->tx);
		if (old_itr != q_vector->tx.itr) {
1238 1239
			val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
				I40E_VFINT_DYN_CTLN1_CLEARPBA_MASK |
1240
				(I40E_TX_ITR <<
1241
				   I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1242
				(q_vector->tx.itr <<
1243
				   I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);
1244 1245

		} else {
1246 1247
			val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
				I40E_VFINT_DYN_CTLN1_CLEARPBA_MASK |
1248
				(I40E_ITR_NONE <<
1249
				   I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT);
1250 1251 1252 1253
		}
		if (!test_bit(__I40E_DOWN, &vsi->state))
			wr32(hw, I40E_VFINT_DYN_CTLN1(vector - 1), val);
	} else {
1254
		i40evf_irq_enable_queues(vsi->back, BIT(q_vector->v_idx));
1255 1256 1257
	}
}

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
/**
 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
 * @napi: napi struct with our devices info in it
 * @budget: amount of work driver is allowed to do this pass, in packets
 *
 * This function will clean all queues associated with a q_vector.
 *
 * Returns the amount of work done
 **/
int i40evf_napi_poll(struct napi_struct *napi, int budget)
{
	struct i40e_q_vector *q_vector =
			       container_of(napi, struct i40e_q_vector, napi);
	struct i40e_vsi *vsi = q_vector->vsi;
	struct i40e_ring *ring;
	bool clean_complete = true;
1274
	bool arm_wb = false;
1275
	int budget_per_ring;
1276
	int cleaned;
1277 1278 1279 1280 1281 1282 1283 1284 1285

	if (test_bit(__I40E_DOWN, &vsi->state)) {
		napi_complete(napi);
		return 0;
	}

	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
1286
	i40e_for_each_ring(ring, q_vector->tx) {
1287
		clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1288
		arm_wb |= ring->arm_wb;
1289
		ring->arm_wb = false;
1290
	}
1291 1292 1293 1294 1295 1296

	/* We attempt to distribute budget to each Rx queue fairly, but don't
	 * allow the budget to go below 1 because that would exit polling early.
	 */
	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);

1297 1298 1299 1300 1301 1302 1303 1304
	i40e_for_each_ring(ring, q_vector->rx) {
		if (ring_is_ps_enabled(ring))
			cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
		else
			cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
		/* if we didn't clean as many as budgeted, we must be done */
		clean_complete &= (budget_per_ring != cleaned);
	}
1305 1306

	/* If work not completed, return budget and polling will return */
1307 1308
	if (!clean_complete) {
		if (arm_wb)
1309
			i40evf_force_wb(vsi, q_vector);
1310
		return budget;
1311
	}
1312

1313 1314 1315
	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
		q_vector->arm_wb_state = false;

1316 1317
	/* Work is done so exit the polling mode and re-enable the interrupt */
	napi_complete(napi);
1318
	i40e_update_enable_itr(vsi, q_vector);
1319 1320 1321 1322
	return 0;
}

/**
1323
 * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 * @flags:   the tx flags to be set
 *
 * Checks the skb and set up correspondingly several generic transmit flags
 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
 *
 * Returns error code indicate the frame should be dropped upon error and the
 * otherwise  returns 0 to indicate the flags has been set properly.
 **/
1334 1335 1336
static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
					       struct i40e_ring *tx_ring,
					       u32 *flags)
1337 1338 1339 1340
{
	__be16 protocol = skb->protocol;
	u32  tx_flags = 0;

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
	if (protocol == htons(ETH_P_8021Q) &&
	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
		/* When HW VLAN acceleration is turned off by the user the
		 * stack sets the protocol to 8021q so that the driver
		 * can take any steps required to support the SW only
		 * VLAN handling.  In our case the driver doesn't need
		 * to take any further steps so just set the protocol
		 * to the encapsulated ethertype.
		 */
		skb->protocol = vlan_get_protocol(skb);
		goto out;
	}

1354
	/* if we have a HW VLAN tag being added, default to the HW one */
1355 1356
	if (skb_vlan_tag_present(skb)) {
		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
	/* else if it is a SW VLAN, check the next protocol and store the tag */
	} else if (protocol == htons(ETH_P_8021Q)) {
		struct vlan_hdr *vhdr, _vhdr;
		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
		if (!vhdr)
			return -EINVAL;

		protocol = vhdr->h_vlan_encapsulated_proto;
		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
	}

1370
out:
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
	*flags = tx_flags;
	return 0;
}

/**
 * i40e_tso - set up the tso context descriptor
 * @tx_ring:  ptr to the ring to send
 * @skb:      ptr to the skb we're sending
 * @hdr_len:  ptr to the size of the packet header
 * @cd_tunneling: ptr to context descriptor bits
 *
 * Returns 0 if no TSO can happen, 1 if tso is going, or error
 **/
static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1385 1386
		    u8 *hdr_len, u64 *cd_type_cmd_tso_mss,
		    u32 *cd_tunneling)
1387 1388
{
	u32 cd_cmd, cd_tso_len, cd_mss;
1389
	struct ipv6hdr *ipv6h;
1390 1391 1392 1393 1394 1395 1396 1397
	struct tcphdr *tcph;
	struct iphdr *iph;
	u32 l4len;
	int err;

	if (!skb_is_gso(skb))
		return 0;

1398 1399 1400
	err = skb_cow_head(skb, 0);
	if (err < 0)
		return err;
1401

1402 1403 1404 1405
	iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
	ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);

	if (iph->version == 4) {
1406 1407 1408 1409 1410
		tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
						 0, IPPROTO_TCP, 0);
1411
	} else if (ipv6h->version == 6) {
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
		tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
		ipv6h->payload_len = 0;
		tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
					       0, IPPROTO_TCP, 0);
	}

	l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
	*hdr_len = (skb->encapsulation
		    ? (skb_inner_transport_header(skb) - skb->data)
		    : skb_transport_offset(skb)) + l4len;

	/* find the field values */
	cd_cmd = I40E_TX_CTX_DESC_TSO;
	cd_tso_len = skb->len - *hdr_len;
	cd_mss = skb_shinfo(skb)->gso_size;
	*cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
				((u64)cd_tso_len <<
				 I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
				((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
	return 1;
}

/**
 * i40e_tx_enable_csum - Enable Tx checksum offloads
 * @skb: send buffer
1437
 * @tx_flags: pointer to Tx flags currently set
1438 1439 1440 1441
 * @td_cmd: Tx descriptor command bits to set
 * @td_offset: Tx descriptor header offsets to set
 * @cd_tunneling: ptr to context desc bits
 **/
1442
static void i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1443 1444 1445 1446 1447 1448 1449 1450 1451
				u32 *td_cmd, u32 *td_offset,
				struct i40e_ring *tx_ring,
				u32 *cd_tunneling)
{
	struct ipv6hdr *this_ipv6_hdr;
	unsigned int this_tcp_hdrlen;
	struct iphdr *this_ip_hdr;
	u32 network_hdr_len;
	u8 l4_hdr = 0;
1452 1453
	struct udphdr *oudph;
	struct iphdr *oiph;
1454
	u32 l4_tunnel = 0;
1455 1456

	if (skb->encapsulation) {
1457 1458
		switch (ip_hdr(skb)->protocol) {
		case IPPROTO_UDP:
1459 1460
			oudph = udp_hdr(skb);
			oiph = ip_hdr(skb);
1461
			l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING;
1462
			*tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1463 1464 1465 1466
			break;
		default:
			return;
		}
1467 1468 1469 1470 1471
		network_hdr_len = skb_inner_network_header_len(skb);
		this_ip_hdr = inner_ip_hdr(skb);
		this_ipv6_hdr = inner_ipv6_hdr(skb);
		this_tcp_hdrlen = inner_tcp_hdrlen(skb);

1472 1473
		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
			if (*tx_flags & I40E_TX_FLAGS_TSO) {
1474 1475 1476 1477 1478 1479
				*cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
				ip_hdr(skb)->check = 0;
			} else {
				*cd_tunneling |=
					 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
			}
1480
		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1481
			*cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
1482
			if (*tx_flags & I40E_TX_FLAGS_TSO)
1483 1484 1485 1486 1487
				ip_hdr(skb)->check = 0;
		}

		/* Now set the ctx descriptor fields */
		*cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
1488 1489
				   I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT      |
				   l4_tunnel                             |
1490 1491 1492
				   ((skb_inner_network_offset(skb) -
					skb_transport_offset(skb)) >> 1) <<
				   I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1493
		if (this_ip_hdr->version == 6) {
1494 1495
			*tx_flags &= ~I40E_TX_FLAGS_IPV4;
			*tx_flags |= I40E_TX_FLAGS_IPV6;
1496 1497
		}

1498

1499 1500 1501 1502 1503 1504 1505 1506 1507
		if ((tx_ring->flags & I40E_TXR_FLAGS_OUTER_UDP_CSUM) &&
		    (l4_tunnel == I40E_TXD_CTX_UDP_TUNNELING)        &&
		    (*cd_tunneling & I40E_TXD_CTX_QW0_EXT_IP_MASK)) {
			oudph->check = ~csum_tcpudp_magic(oiph->saddr,
					oiph->daddr,
					(skb->len - skb_transport_offset(skb)),
					IPPROTO_UDP, 0);
			*cd_tunneling |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
		}
1508 1509 1510 1511 1512 1513 1514 1515
	} else {
		network_hdr_len = skb_network_header_len(skb);
		this_ip_hdr = ip_hdr(skb);
		this_ipv6_hdr = ipv6_hdr(skb);
		this_tcp_hdrlen = tcp_hdrlen(skb);
	}

	/* Enable IP checksum offloads */
1516
	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1517 1518 1519 1520
		l4_hdr = this_ip_hdr->protocol;
		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
1521
		if (*tx_flags & I40E_TX_FLAGS_TSO) {
1522 1523 1524 1525 1526 1527 1528 1529
			*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
			this_ip_hdr->check = 0;
		} else {
			*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
		}
		/* Now set the td_offset for IP header length */
		*td_offset = (network_hdr_len >> 2) <<
			      I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1530
	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
		l4_hdr = this_ipv6_hdr->nexthdr;
		*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
		/* Now set the td_offset for IP header length */
		*td_offset = (network_hdr_len >> 2) <<
			      I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
	}
	/* words in MACLEN + dwords in IPLEN + dwords in L4Len */
	*td_offset |= (skb_network_offset(skb) >> 1) <<
		       I40E_TX_DESC_LENGTH_MACLEN_SHIFT;

	/* Enable L4 checksum offloads */
	switch (l4_hdr) {
	case IPPROTO_TCP:
		/* enable checksum offloads */
		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
		*td_offset |= (this_tcp_hdrlen >> 2) <<
			       I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
		break;
	case IPPROTO_SCTP:
		/* enable SCTP checksum offload */
		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
		*td_offset |= (sizeof(struct sctphdr) >> 2) <<
			       I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
		break;
	case IPPROTO_UDP:
		/* enable UDP checksum offload */
		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
		*td_offset |= (sizeof(struct udphdr) >> 2) <<
			       I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
		break;
	default:
		break;
	}
}

/**
 * i40e_create_tx_ctx Build the Tx context descriptor
 * @tx_ring:  ring to create the descriptor on
 * @cd_type_cmd_tso_mss: Quad Word 1
 * @cd_tunneling: Quad Word 0 - bits 0-31
 * @cd_l2tag2: Quad Word 0 - bits 32-63
 **/
static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
			       const u64 cd_type_cmd_tso_mss,
			       const u32 cd_tunneling, const u32 cd_l2tag2)
{
	struct i40e_tx_context_desc *context_desc;
	int i = tx_ring->next_to_use;

1580 1581
	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
	    !cd_tunneling && !cd_l2tag2)
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
		return;

	/* grab the next descriptor */
	context_desc = I40E_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	/* cpu_to_le32 and assign to struct fields */
	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1593
	context_desc->rsvd = cpu_to_le16(0);
1594 1595 1596
	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
}

1597 1598 1599 1600 1601 1602 1603 1604 1605
 /**
 * i40e_chk_linearize - Check if there are more than 8 fragments per packet
 * @skb:      send buffer
 * @tx_flags: collected send information
 *
 * Note: Our HW can't scatter-gather more than 8 fragments to build
 * a packet on the wire and so we need to figure out the cases where we
 * need to linearize the skb.
 **/
1606
static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags)
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
{
	struct skb_frag_struct *frag;
	bool linearize = false;
	unsigned int size = 0;
	u16 num_frags;
	u16 gso_segs;

	num_frags = skb_shinfo(skb)->nr_frags;
	gso_segs = skb_shinfo(skb)->gso_segs;

	if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
1618
		u16 j = 0;
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632

		if (num_frags < (I40E_MAX_BUFFER_TXD))
			goto linearize_chk_done;
		/* try the simple math, if we have too many frags per segment */
		if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
		    I40E_MAX_BUFFER_TXD) {
			linearize = true;
			goto linearize_chk_done;
		}
		frag = &skb_shinfo(skb)->frags[0];
		/* we might still have more fragments per segment */
		do {
			size += skb_frag_size(frag);
			frag++; j++;
1633 1634 1635 1636 1637
			if ((size >= skb_shinfo(skb)->gso_size) &&
			    (j < I40E_MAX_BUFFER_TXD)) {
				size = (size % skb_shinfo(skb)->gso_size);
				j = (size) ? 1 : 0;
			}
1638
			if (j == I40E_MAX_BUFFER_TXD) {
1639 1640
				linearize = true;
				break;
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
			}
			num_frags--;
		} while (num_frags);
	} else {
		if (num_frags >= I40E_MAX_BUFFER_TXD)
			linearize = true;
	}

linearize_chk_done:
	return linearize;
}

1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
/**
 * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
 * @tx_ring: the ring to be checked
 * @size:    the size buffer we want to assure is available
 *
 * Returns -EBUSY if a stop is needed, else 0
 **/
static inline int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
{
	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
	/* Memory barrier before checking head and tail */
	smp_mb();

	/* Check again in a case another CPU has just made room available. */
	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
		return -EBUSY;

	/* A reprieve! - use start_queue because it doesn't call schedule */
	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
	++tx_ring->tx_stats.restart_queue;
	return 0;
}

/**
 * i40evf_maybe_stop_tx - 1st level check for tx stop conditions
 * @tx_ring: the ring to be checked
 * @size:    the size buffer we want to assure is available
 *
 * Returns 0 if stop is not needed
 **/
1683
static inline int i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1684 1685 1686 1687 1688 1689
{
	if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
		return 0;
	return __i40evf_maybe_stop_tx(tx_ring, size);
}

1690
/**
1691
 * i40evf_tx_map - Build the Tx descriptor
1692 1693 1694 1695 1696 1697 1698 1699
 * @tx_ring:  ring to send buffer on
 * @skb:      send buffer
 * @first:    first buffer info buffer to use
 * @tx_flags: collected send information
 * @hdr_len:  size of the packet header
 * @td_cmd:   the command field in the descriptor
 * @td_offset: offset for checksum or crc
 **/
1700 1701 1702
static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
				 struct i40e_tx_buffer *first, u32 tx_flags,
				 const u8 hdr_len, u32 td_cmd, u32 td_offset)
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
{
	unsigned int data_len = skb->data_len;
	unsigned int size = skb_headlen(skb);
	struct skb_frag_struct *frag;
	struct i40e_tx_buffer *tx_bi;
	struct i40e_tx_desc *tx_desc;
	u16 i = tx_ring->next_to_use;
	u32 td_tag = 0;
	dma_addr_t dma;
	u16 gso_segs;

	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
			 I40E_TX_FLAGS_VLAN_SHIFT;
	}

	if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
		gso_segs = skb_shinfo(skb)->gso_segs;
	else
		gso_segs = 1;

	/* multiply data chunks by size of headers */
	first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
	first->gso_segs = gso_segs;
	first->skb = skb;
	first->tx_flags = tx_flags;

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);

	tx_desc = I40E_TX_DESC(tx_ring, i);
	tx_bi = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_bi, len, size);
		dma_unmap_addr_set(tx_bi, dma, dma);

		tx_desc->buffer_addr = cpu_to_le64(dma);

		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
			tx_desc->cmd_type_offset_bsz =
				build_ctob(td_cmd, td_offset,
					   I40E_MAX_DATA_PER_TXD, td_tag);

			tx_desc++;
			i++;
			if (i == tx_ring->count) {
				tx_desc = I40E_TX_DESC(tx_ring, 0);
				i = 0;
			}

			dma += I40E_MAX_DATA_PER_TXD;
			size -= I40E_MAX_DATA_PER_TXD;

			tx_desc->buffer_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;

		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
							  size, td_tag);

		tx_desc++;
		i++;
		if (i == tx_ring->count) {
			tx_desc = I40E_TX_DESC(tx_ring, 0);
			i = 0;
		}

		size = skb_frag_size(frag);
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
				       DMA_TO_DEVICE);

		tx_bi = &tx_ring->tx_bi[i];
	}

1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
	/* Place RS bit on last descriptor of any packet that spans across the
	 * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
	 */
#define WB_STRIDE 0x3
	if (((i & WB_STRIDE) != WB_STRIDE) &&
	    (first <= &tx_ring->tx_bi[i]) &&
	    (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
		tx_desc->cmd_type_offset_bsz =
			build_ctob(td_cmd, td_offset, size, td_tag) |
			cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
					 I40E_TXD_QW1_CMD_SHIFT);
	} else {
		tx_desc->cmd_type_offset_bsz =
			build_ctob(td_cmd, td_offset, size, td_tag) |
			cpu_to_le64((u64)I40E_TXD_CMD <<
					 I40E_TXD_QW1_CMD_SHIFT);
	}
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823

	netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
						 tx_ring->queue_index),
			     first->bytecount);

	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64).
	 */
	wmb();

	/* set next_to_watch value indicating a packet is present */
	first->next_to_watch = tx_desc;

	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

1824
	i40evf_maybe_stop_tx(tx_ring, DESC_NEEDED);
1825
	/* notify HW of packet */
1826 1827 1828 1829
	if (!skb->xmit_more ||
	    netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
						   tx_ring->queue_index)))
		writel(i, tx_ring->tail);
1830 1831
	else
		prefetchw(tx_desc + 1);
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852

	return;

dma_error:
	dev_info(tx_ring->dev, "TX DMA map failed\n");

	/* clear dma mappings for failed tx_bi map */
	for (;;) {
		tx_bi = &tx_ring->tx_bi[i];
		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
		if (tx_bi == first)
			break;
		if (i == 0)
			i = tx_ring->count;
		i--;
	}

	tx_ring->next_to_use = i;
}

/**
1853
 * i40evf_xmit_descriptor_count - calculate number of tx descriptors needed
1854 1855 1856 1857 1858 1859 1860
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 *
 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
 * there is not enough descriptors available in this ring since we need at least
 * one descriptor.
 **/
1861 1862
static inline int i40evf_xmit_descriptor_count(struct sk_buff *skb,
					       struct i40e_ring *tx_ring)
1863 1864 1865 1866 1867 1868
{
	unsigned int f;
	int count = 0;

	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
1869
	 *       + 4 desc gap to avoid the cache line where head is,
1870 1871 1872 1873 1874
	 *       + 1 desc for context descriptor,
	 * otherwise try next time
	 */
	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1875

1876
	count += TXD_USE_COUNT(skb_headlen(skb));
1877
	if (i40evf_maybe_stop_tx(tx_ring, count + 4 + 1)) {
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
		tx_ring->tx_stats.tx_busy++;
		return 0;
	}
	return count;
}

/**
 * i40e_xmit_frame_ring - Sends buffer on Tx ring
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
					struct i40e_ring *tx_ring)
{
	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
	u32 cd_tunneling = 0, cd_l2tag2 = 0;
	struct i40e_tx_buffer *first;
	u32 td_offset = 0;
	u32 tx_flags = 0;
	__be16 protocol;
	u32 td_cmd = 0;
	u8 hdr_len = 0;
	int tso;
1903
	if (0 == i40evf_xmit_descriptor_count(skb, tx_ring))
1904 1905 1906
		return NETDEV_TX_BUSY;

	/* prepare the xmit flags */
1907
	if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
1908 1909 1910
		goto out_drop;

	/* obtain protocol of skb */
1911
	protocol = vlan_get_protocol(skb);
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921

	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_bi[tx_ring->next_to_use];

	/* setup IPv4/IPv6 offloads */
	if (protocol == htons(ETH_P_IP))
		tx_flags |= I40E_TX_FLAGS_IPV4;
	else if (protocol == htons(ETH_P_IPV6))
		tx_flags |= I40E_TX_FLAGS_IPV6;

1922
	tso = i40e_tso(tx_ring, skb, &hdr_len,
1923 1924 1925 1926 1927 1928 1929
		       &cd_type_cmd_tso_mss, &cd_tunneling);

	if (tso < 0)
		goto out_drop;
	else if (tso)
		tx_flags |= I40E_TX_FLAGS_TSO;

1930
	if (i40e_chk_linearize(skb, tx_flags)) {
1931 1932
		if (skb_linearize(skb))
			goto out_drop;
1933 1934
		tx_ring->tx_stats.tx_linearize++;
	}
1935 1936 1937 1938 1939 1940 1941 1942 1943
	skb_tx_timestamp(skb);

	/* always enable CRC insertion offload */
	td_cmd |= I40E_TX_DESC_CMD_ICRC;

	/* Always offload the checksum, since it's in the data descriptor */
	if (skb->ip_summed == CHECKSUM_PARTIAL) {
		tx_flags |= I40E_TX_FLAGS_CSUM;

1944
		i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
1945 1946 1947 1948 1949 1950
				    tx_ring, &cd_tunneling);
	}

	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
			   cd_tunneling, cd_l2tag2);

1951 1952
	i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
		      td_cmd, td_offset);
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984

	return NETDEV_TX_OK;

out_drop:
	dev_kfree_skb_any(skb);
	return NETDEV_TX_OK;
}

/**
 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
 * @skb:    send buffer
 * @netdev: network interface device structure
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
	struct i40evf_adapter *adapter = netdev_priv(netdev);
	struct i40e_ring *tx_ring = adapter->tx_rings[skb->queue_mapping];

	/* hardware can't handle really short frames, hardware padding works
	 * beyond this point
	 */
	if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
		if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
			return NETDEV_TX_OK;
		skb->len = I40E_MIN_TX_LEN;
		skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
	}

	return i40e_xmit_frame_ring(skb, tx_ring);
}