i40e_txrx.c 62.3 KB
Newer Older
1 2 3
/*******************************************************************************
 *
 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
4
 * Copyright(c) 2013 - 2016 Intel Corporation.
5 6 7 8 9 10 11 12 13 14
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
15 16 17
 * You should have received a copy of the GNU General Public License along
 * with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
18 19 20 21 22 23 24 25 26
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information:
 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 ******************************************************************************/

27
#include <linux/prefetch.h>
28
#include <net/busy_poll.h>
29

30
#include "i40evf.h"
31
#include "i40e_prototype.h"
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
				u32 td_tag)
{
	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
}

#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)

/**
 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 * @ring:      the ring that owns the buffer
 * @tx_buffer: the buffer to free
 **/
static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
					    struct i40e_tx_buffer *tx_buffer)
{
	if (tx_buffer->skb) {
54 55 56 57
		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
			kfree(tx_buffer->raw_buf);
		else
			dev_kfree_skb_any(tx_buffer->skb);
58 59 60 61 62 63 64 65 66 67 68
		if (dma_unmap_len(tx_buffer, len))
			dma_unmap_single(ring->dev,
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
					 DMA_TO_DEVICE);
	} else if (dma_unmap_len(tx_buffer, len)) {
		dma_unmap_page(ring->dev,
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
			       DMA_TO_DEVICE);
	}
69

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
	dma_unmap_len_set(tx_buffer, len, 0);
	/* tx_buffer must be completely set up in the transmit path */
}

/**
 * i40evf_clean_tx_ring - Free any empty Tx buffers
 * @tx_ring: ring to be cleaned
 **/
void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!tx_ring->tx_bi)
		return;

	/* Free all the Tx ring sk_buffs */
	for (i = 0; i < tx_ring->count; i++)
		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);

	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	if (!tx_ring->netdev)
		return;

	/* cleanup Tx queue statistics */
106
	netdev_tx_reset_queue(txring_txq(tx_ring));
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
}

/**
 * i40evf_free_tx_resources - Free Tx resources per queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
{
	i40evf_clean_tx_ring(tx_ring);
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;

	if (tx_ring->desc) {
		dma_free_coherent(tx_ring->dev, tx_ring->size,
				  tx_ring->desc, tx_ring->dma);
		tx_ring->desc = NULL;
	}
}

J
Jesse Brandeburg 已提交
128
/**
129 130
 * i40evf_get_tx_pending - how many Tx descriptors not processed
 * @tx_ring: the ring of descriptors
131
 * @in_sw: is tx_pending being checked in SW or HW
J
Jesse Brandeburg 已提交
132
 *
133 134
 * Since there is no access to the ring head register
 * in XL710, we need to use our local copies
J
Jesse Brandeburg 已提交
135
 **/
136
u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw)
J
Jesse Brandeburg 已提交
137
{
138
	u32 head, tail;
J
Jesse Brandeburg 已提交
139

140
	head = ring->next_to_clean;
141 142 143 144 145 146 147
	tail = readl(ring->tail);

	if (head != tail)
		return (head < tail) ?
			tail - head : (tail + ring->count - head);

	return 0;
J
Jesse Brandeburg 已提交
148 149
}

150
#define WB_STRIDE 4
151

152 153
/**
 * i40e_clean_tx_irq - Reclaim resources after transmit completes
154 155 156
 * @vsi: the VSI we care about
 * @tx_ring: Tx ring to clean
 * @napi_budget: Used to determine if we are in netpoll
157 158 159
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 **/
160 161
static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
			      struct i40e_ring *tx_ring, int napi_budget)
162 163 164 165
{
	u16 i = tx_ring->next_to_clean;
	struct i40e_tx_buffer *tx_buf;
	struct i40e_tx_desc *tx_desc;
166 167
	unsigned int total_bytes = 0, total_packets = 0;
	unsigned int budget = vsi->work_limit;
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

	tx_buf = &tx_ring->tx_bi[i];
	tx_desc = I40E_TX_DESC(tx_ring, i);
	i -= tx_ring->count;

	do {
		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;

		/* prevent any other reads prior to eop_desc */
		read_barrier_depends();

183 184 185
		/* if the descriptor isn't done, no work yet to do */
		if (!(eop_desc->cmd_type_offset_bsz &
		      cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE)))
186 187 188 189 190 191 192 193 194 195
			break;

		/* clear next_to_watch to prevent false hangs */
		tx_buf->next_to_watch = NULL;

		/* update the statistics for this packet */
		total_bytes += tx_buf->bytecount;
		total_packets += tx_buf->gso_segs;

		/* free the skb */
196
		napi_consume_skb(tx_buf->skb, napi_budget);
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buf, dma),
				 dma_unmap_len(tx_buf, len),
				 DMA_TO_DEVICE);

		/* clear tx_buffer data */
		tx_buf->skb = NULL;
		dma_unmap_len_set(tx_buf, len, 0);

		/* unmap remaining buffers */
		while (tx_desc != eop_desc) {

			tx_buf++;
			tx_desc++;
			i++;
			if (unlikely(!i)) {
				i -= tx_ring->count;
				tx_buf = tx_ring->tx_bi;
				tx_desc = I40E_TX_DESC(tx_ring, 0);
			}

			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buf, len)) {
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buf, dma),
					       dma_unmap_len(tx_buf, len),
					       DMA_TO_DEVICE);
				dma_unmap_len_set(tx_buf, len, 0);
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buf++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buf = tx_ring->tx_bi;
			tx_desc = I40E_TX_DESC(tx_ring, 0);
		}

240 241
		prefetch(tx_desc);

242 243 244 245 246 247 248 249 250 251 252 253 254
		/* update budget accounting */
		budget--;
	} while (likely(budget));

	i += tx_ring->count;
	tx_ring->next_to_clean = i;
	u64_stats_update_begin(&tx_ring->syncp);
	tx_ring->stats.bytes += total_bytes;
	tx_ring->stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->syncp);
	tx_ring->q_vector->tx.total_bytes += total_bytes;
	tx_ring->q_vector->tx.total_packets += total_packets;

255 256 257 258 259 260
	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
		/* check to see if there are < 4 descriptors
		 * waiting to be written back, then kick the hardware to force
		 * them to be written back in case we stay in NAPI.
		 * In this mode on X722 we do not enable Interrupt.
		 */
261
		unsigned int j = i40evf_get_tx_pending(tx_ring, false);
262 263

		if (budget &&
264
		    ((j / WB_STRIDE) == 0) && (j > 0) &&
265
		    !test_bit(__I40E_DOWN, &vsi->state) &&
266 267 268 269
		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
			tx_ring->arm_wb = true;
	}

270 271
	/* notify netdev of completed buffers */
	netdev_tx_completed_queue(txring_txq(tx_ring),
272 273 274 275 276 277 278 279 280 281 282
				  total_packets, total_bytes);

#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
283
		   !test_bit(__I40E_DOWN, &vsi->state)) {
284 285 286 287 288 289
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);
			++tx_ring->tx_stats.restart_queue;
		}
	}

290
	return !!budget;
291 292
}

293
/**
294
 * i40evf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
295
 * @vsi: the VSI we care about
296
 * @q_vector: the vector on which to enable writeback
297 298
 *
 **/
299 300
static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
				  struct i40e_q_vector *q_vector)
301
{
302
	u16 flags = q_vector->tx.ring[0].flags;
303
	u32 val;
304

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
		return;

	if (q_vector->arm_wb_state)
		return;

	val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
	      I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */

	wr32(&vsi->back->hw,
	     I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
				  vsi->base_vector - 1), val);
	q_vector->arm_wb_state = true;
}

/**
 * i40evf_force_wb - Issue SW Interrupt so HW does a wb
 * @vsi: the VSI we care about
 * @q_vector: the vector  on which to force writeback
 *
 **/
void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
{
	u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
		  I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
		  I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
		  I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
		  /* allow 00 to be written to the index */;

	wr32(&vsi->back->hw,
	     I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
	     val);
337 338
}

339 340 341 342
/**
 * i40e_set_new_dynamic_itr - Find new ITR level
 * @rc: structure containing ring performance data
 *
343 344
 * Returns true if ITR changed, false if not
 *
345 346 347 348 349 350 351 352
 * Stores a new ITR value based on packets and byte counts during
 * the last interrupt.  The advantage of per interrupt computation
 * is faster updates and more accurate ITR for the current traffic
 * pattern.  Constants in this function were computed based on
 * theoretical maximum wire speed and thresholds were set based on
 * testing data as well as attempting to minimize response time
 * while increasing bulk throughput.
 **/
353
static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
354 355
{
	enum i40e_latency_range new_latency_range = rc->latency_range;
356
	struct i40e_q_vector *qv = rc->ring->q_vector;
357 358
	u32 new_itr = rc->itr;
	int bytes_per_int;
359
	int usecs;
360 361

	if (rc->total_packets == 0 || !rc->itr)
362
		return false;
363 364

	/* simple throttlerate management
365
	 *   0-10MB/s   lowest (50000 ints/s)
366
	 *  10-20MB/s   low    (20000 ints/s)
367 368
	 *  20-1249MB/s bulk   (18000 ints/s)
	 *  > 40000 Rx packets per second (8000 ints/s)
369 370 371 372
	 *
	 * The math works out because the divisor is in 10^(-6) which
	 * turns the bytes/us input value into MB/s values, but
	 * make sure to use usecs, as the register values written
373 374
	 * are in 2 usec increments in the ITR registers, and make sure
	 * to use the smoothed values that the countdown timer gives us.
375
	 */
376
	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
377
	bytes_per_int = rc->total_bytes / usecs;
378

379
	switch (new_latency_range) {
380 381 382 383 384 385 386 387 388 389 390
	case I40E_LOWEST_LATENCY:
		if (bytes_per_int > 10)
			new_latency_range = I40E_LOW_LATENCY;
		break;
	case I40E_LOW_LATENCY:
		if (bytes_per_int > 20)
			new_latency_range = I40E_BULK_LATENCY;
		else if (bytes_per_int <= 10)
			new_latency_range = I40E_LOWEST_LATENCY;
		break;
	case I40E_BULK_LATENCY:
391
	case I40E_ULTRA_LATENCY:
392 393 394
	default:
		if (bytes_per_int <= 20)
			new_latency_range = I40E_LOW_LATENCY;
395 396
		break;
	}
397 398 399 400 401 402 403 404 405 406 407 408

	/* this is to adjust RX more aggressively when streaming small
	 * packets.  The value of 40000 was picked as it is just beyond
	 * what the hardware can receive per second if in low latency
	 * mode.
	 */
#define RX_ULTRA_PACKET_RATE 40000

	if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
	    (&qv->rx == rc))
		new_latency_range = I40E_ULTRA_LATENCY;

409
	rc->latency_range = new_latency_range;
410 411 412

	switch (new_latency_range) {
	case I40E_LOWEST_LATENCY:
413
		new_itr = I40E_ITR_50K;
414 415 416 417 418
		break;
	case I40E_LOW_LATENCY:
		new_itr = I40E_ITR_20K;
		break;
	case I40E_BULK_LATENCY:
419 420 421
		new_itr = I40E_ITR_18K;
		break;
	case I40E_ULTRA_LATENCY:
422 423 424 425 426 427 428 429
		new_itr = I40E_ITR_8K;
		break;
	default:
		break;
	}

	rc->total_bytes = 0;
	rc->total_packets = 0;
430 431 432 433 434 435 436

	if (new_itr != rc->itr) {
		rc->itr = new_itr;
		return true;
	}

	return false;
437 438
}

J
Jesse Brandeburg 已提交
439
/**
440 441 442 443 444 445 446 447 448 449 450 451 452
 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
 * @tx_ring: the tx ring to set up
 *
 * Return 0 on success, negative on error
 **/
int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
{
	struct device *dev = tx_ring->dev;
	int bi_size;

	if (!dev)
		return -ENOMEM;

453 454
	/* warn if we are about to overwrite the pointer */
	WARN_ON(tx_ring->tx_bi);
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!tx_ring->tx_bi)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
	tx_ring->size = ALIGN(tx_ring->size, 4096);
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
			 tx_ring->size);
		goto err;
	}

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	return 0;

err:
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40evf_clean_rx_ring - Free Rx buffers
 * @rx_ring: ring to be cleaned
 **/
void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!rx_ring->rx_bi)
		return;

494 495 496 497 498
	if (rx_ring->skb) {
		dev_kfree_skb(rx_ring->skb);
		rx_ring->skb = NULL;
	}

499 500
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
501 502 503 504 505
		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];

		if (!rx_bi->page)
			continue;

506 507 508 509 510 511 512 513 514 515 516 517 518 519
		/* Invalidate cache lines that may have been written to by
		 * device so that we avoid corrupting memory.
		 */
		dma_sync_single_range_for_cpu(rx_ring->dev,
					      rx_bi->dma,
					      rx_bi->page_offset,
					      I40E_RXBUFFER_2048,
					      DMA_FROM_DEVICE);

		/* free resources associated with mapping */
		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
				     PAGE_SIZE,
				     DMA_FROM_DEVICE,
				     I40E_RX_DMA_ATTR);
520
		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
521 522 523

		rx_bi->page = NULL;
		rx_bi->page_offset = 0;
524 525 526 527 528 529 530 531
	}

	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

532
	rx_ring->next_to_alloc = 0;
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * i40evf_free_rx_resources - Free Rx resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
{
	i40evf_clean_rx_ring(rx_ring);
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;

	if (rx_ring->desc) {
		dma_free_coherent(rx_ring->dev, rx_ring->size,
				  rx_ring->desc, rx_ring->dma);
		rx_ring->desc = NULL;
	}
}

/**
 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	int bi_size;

567 568
	/* warn if we are about to overwrite the pointer */
	WARN_ON(rx_ring->rx_bi);
569 570 571 572 573
	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!rx_ring->rx_bi)
		goto err;

574
	u64_stats_init(&rx_ring->syncp);
575

576
	/* Round up to nearest 4K */
577
	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
578 579 580 581 582 583 584 585 586 587
	rx_ring->size = ALIGN(rx_ring->size, 4096);
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);

	if (!rx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
			 rx_ring->size);
		goto err;
	}

588
	rx_ring->next_to_alloc = 0;
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;
err:
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_release_rx_desc - Store the new tail and head values
 * @rx_ring: ring to bump
 * @val: new head index
 **/
static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
{
	rx_ring->next_to_use = val;
607 608 609 610

	/* update next to alloc since we have filled the ring */
	rx_ring->next_to_alloc = val;

611 612 613 614 615 616 617 618 619 620
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64).
	 */
	wmb();
	writel(val, rx_ring->tail);
}

/**
621 622 623
 * i40e_alloc_mapped_page - recycle or make a new page
 * @rx_ring: ring to use
 * @bi: rx_buffer struct to modify
624
 *
625 626
 * Returns true if the page was successfully allocated or
 * reused.
627
 **/
628 629
static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
				   struct i40e_rx_buffer *bi)
630
{
631 632
	struct page *page = bi->page;
	dma_addr_t dma;
633

634 635 636 637 638
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page)) {
		rx_ring->rx_stats.page_reuse_count++;
		return true;
	}
639

640 641 642 643 644 645
	/* alloc new page for storage */
	page = dev_alloc_page();
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
	}
646

647
	/* map page for use */
648 649 650 651
	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
				 PAGE_SIZE,
				 DMA_FROM_DEVICE,
				 I40E_RX_DMA_ATTR);
652

653 654
	/* if mapping failed free memory back to system since
	 * there isn't much point in holding memory we can't use
655
	 */
656 657 658 659
	if (dma_mapping_error(rx_ring->dev, dma)) {
		__free_pages(page, 0);
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
660 661
	}

662 663 664
	bi->dma = dma;
	bi->page = page;
	bi->page_offset = 0;
665 666

	/* initialize pagecnt_bias to 1 representing we fully own page */
667
	bi->pagecnt_bias = 1;
668

669 670
	return true;
}
671

672 673 674 675 676 677 678 679 680 681
/**
 * i40e_receive_skb - Send a completed packet up the stack
 * @rx_ring:  rx ring in play
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
 **/
static void i40e_receive_skb(struct i40e_ring *rx_ring,
			     struct sk_buff *skb, u16 vlan_tag)
{
	struct i40e_q_vector *q_vector = rx_ring->q_vector;
682

683 684 685 686 687
	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
	    (vlan_tag & VLAN_VID_MASK))
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);

	napi_gro_receive(&q_vector->napi, skb);
688 689 690
}

/**
691
 * i40evf_alloc_rx_buffers - Replace used receive buffers
692 693
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
694
 *
695
 * Returns false if all allocations were successful, true if any fail
696
 **/
697
bool i40evf_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
698
{
699
	u16 ntu = rx_ring->next_to_use;
700 701 702 703 704
	union i40e_rx_desc *rx_desc;
	struct i40e_rx_buffer *bi;

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
705
		return false;
706

707 708
	rx_desc = I40E_RX_DESC(rx_ring, ntu);
	bi = &rx_ring->rx_bi[ntu];
709

710 711 712
	do {
		if (!i40e_alloc_mapped_page(rx_ring, bi))
			goto no_buffers;
713

714 715 716 717 718 719
		/* sync the buffer for use by the device */
		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
						 bi->page_offset,
						 I40E_RXBUFFER_2048,
						 DMA_FROM_DEVICE);

720 721 722 723
		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
724

725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
		rx_desc++;
		bi++;
		ntu++;
		if (unlikely(ntu == rx_ring->count)) {
			rx_desc = I40E_RX_DESC(rx_ring, 0);
			bi = rx_ring->rx_bi;
			ntu = 0;
		}

		/* clear the status bits for the next_to_use descriptor */
		rx_desc->wb.qword1.status_error_len = 0;

		cleaned_count--;
	} while (cleaned_count);

	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
742 743 744

	return false;

745
no_buffers:
746 747
	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
748 749 750 751 752

	/* make sure to come back via polling to try again after
	 * allocation failure
	 */
	return true;
753 754 755 756 757 758
}

/**
 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
 * @vsi: the VSI we care about
 * @skb: skb currently being received and modified
759
 * @rx_desc: the receive descriptor
760 761 762
 **/
static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
				    struct sk_buff *skb,
763
				    union i40e_rx_desc *rx_desc)
764
{
765 766
	struct i40e_rx_ptype_decoded decoded;
	u32 rx_error, rx_status;
767
	bool ipv4, ipv6;
768 769 770 771 772 773 774 775 776 777
	u8 ptype;
	u64 qword;

	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
		   I40E_RXD_QW1_ERROR_SHIFT;
	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
		    I40E_RXD_QW1_STATUS_SHIFT;
	decoded = decode_rx_desc_ptype(ptype);
778 779 780

	skb->ip_summed = CHECKSUM_NONE;

781 782
	skb_checksum_none_assert(skb);

783
	/* Rx csum enabled and ip headers found? */
784 785 786 787
	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
		return;

	/* did the hardware decode the packet and checksum? */
788
	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
789 790 791 792
		return;

	/* both known and outer_ip must be set for the below code to work */
	if (!(decoded.known && decoded.outer_ip))
793 794
		return;

795 796 797 798
	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
799 800

	if (ipv4 &&
801 802
	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
803 804
		goto checksum_fail;

J
Jesse Brandeburg 已提交
805
	/* likely incorrect csum if alternate IP extension headers found */
806
	if (ipv6 &&
807
	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
808
		/* don't increment checksum err here, non-fatal err */
809 810
		return;

811
	/* there was some L4 error, count error and punt packet to the stack */
812
	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
813 814 815 816 817 818
		goto checksum_fail;

	/* handle packets that were not able to be checksummed due
	 * to arrival speed, in this case the stack can compute
	 * the csum.
	 */
819
	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
820 821
		return;

822 823 824
	/* If there is an outer header present that might contain a checksum
	 * we need to bump the checksum level by 1 to reflect the fact that
	 * we are indicating we validated the inner checksum.
825
	 */
826 827 828 829 830 831 832 833 834 835 836 837 838
	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
		skb->csum_level = 1;

	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
	switch (decoded.inner_prot) {
	case I40E_RX_PTYPE_INNER_PROT_TCP:
	case I40E_RX_PTYPE_INNER_PROT_UDP:
	case I40E_RX_PTYPE_INNER_PROT_SCTP:
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		/* fall though */
	default:
		break;
	}
839 840 841 842 843

	return;

checksum_fail:
	vsi->back->hw_csum_rx_error++;
844 845 846
}

/**
847
 * i40e_ptype_to_htype - get a hash type
848 849 850 851
 * @ptype: the ptype value from the descriptor
 *
 * Returns a hash type to be used by skb_set_hash
 **/
852
static inline int i40e_ptype_to_htype(u8 ptype)
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
{
	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);

	if (!decoded.known)
		return PKT_HASH_TYPE_NONE;

	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
		return PKT_HASH_TYPE_L4;
	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
		return PKT_HASH_TYPE_L3;
	else
		return PKT_HASH_TYPE_L2;
}

869 870 871 872 873 874 875 876 877 878 879
/**
 * i40e_rx_hash - set the hash value in the skb
 * @ring: descriptor ring
 * @rx_desc: specific descriptor
 **/
static inline void i40e_rx_hash(struct i40e_ring *ring,
				union i40e_rx_desc *rx_desc,
				struct sk_buff *skb,
				u8 rx_ptype)
{
	u32 hash;
880
	const __le64 rss_mask =
881 882 883 884 885 886 887 888 889 890 891 892
		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);

	if (ring->netdev->features & NETIF_F_RXHASH)
		return;

	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
	}
}

893
/**
894 895 896 897 898
 * i40evf_process_skb_fields - Populate skb header fields from Rx descriptor
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being populated
 * @rx_ptype: the packet type decoded by hardware
899
 *
900 901 902
 * This function checks the ring, descriptor, and packet information in
 * order to populate the hash, checksum, VLAN, protocol, and
 * other fields within the skb.
903
 **/
904 905 906 907
static inline
void i40evf_process_skb_fields(struct i40e_ring *rx_ring,
			       union i40e_rx_desc *rx_desc, struct sk_buff *skb,
			       u8 rx_ptype)
908
{
909
	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
910

911
	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
912

913
	skb_record_rx_queue(skb, rx_ring->queue_index);
914 915 916

	/* modifies the skb - consumes the enet header */
	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
917
}
918

919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
/**
 * i40e_cleanup_headers - Correct empty headers
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @skb: pointer to current skb being fixed
 *
 * Also address the case where we are pulling data in on pages only
 * and as such no data is present in the skb header.
 *
 * In addition if skb is not at least 60 bytes we need to pad it so that
 * it is large enough to qualify as a valid Ethernet frame.
 *
 * Returns true if an error was encountered and skb was freed.
 **/
static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
{
	/* if eth_skb_pad returns an error the skb was freed */
	if (eth_skb_pad(skb))
		return true;
937

938 939
	return false;
}
940

941 942 943 944 945 946 947 948 949 950 951 952
/**
 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
 * @rx_ring: rx descriptor ring to store buffers on
 * @old_buff: donor buffer to have page reused
 *
 * Synchronizes page for reuse by the adapter
 **/
static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
			       struct i40e_rx_buffer *old_buff)
{
	struct i40e_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;
953

954
	new_buff = &rx_ring->rx_bi[nta];
955

956 957 958
	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
959

960
	/* transfer page from old buffer to new buffer */
961 962 963 964
	new_buff->dma		= old_buff->dma;
	new_buff->page		= old_buff->page;
	new_buff->page_offset	= old_buff->page_offset;
	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
965 966 967
}

/**
968
 * i40e_page_is_reusable - check if any reuse is possible
969
 * @page: page struct to check
970 971 972
 *
 * A page is not reusable if it was allocated under low memory
 * conditions, or it's not in the same NUMA node as this CPU.
973
 */
974
static inline bool i40e_page_is_reusable(struct page *page)
975
{
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
	return (page_to_nid(page) == numa_mem_id()) &&
		!page_is_pfmemalloc(page);
}

/**
 * i40e_can_reuse_rx_page - Determine if this page can be reused by
 * the adapter for another receive
 *
 * @rx_buffer: buffer containing the page
 *
 * If page is reusable, rx_buffer->page_offset is adjusted to point to
 * an unused region in the page.
 *
 * For small pages, @truesize will be a constant value, half the size
 * of the memory at page.  We'll attempt to alternate between high and
 * low halves of the page, with one half ready for use by the hardware
 * and the other half being consumed by the stack.  We use the page
 * ref count to determine whether the stack has finished consuming the
 * portion of this page that was passed up with a previous packet.  If
 * the page ref count is >1, we'll assume the "other" half page is
 * still busy, and this page cannot be reused.
 *
 * For larger pages, @truesize will be the actual space used by the
 * received packet (adjusted upward to an even multiple of the cache
 * line size).  This will advance through the page by the amount
 * actually consumed by the received packets while there is still
 * space for a buffer.  Each region of larger pages will be used at
 * most once, after which the page will not be reused.
 *
 * In either case, if the page is reusable its refcount is increased.
 **/
1007
static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1008 1009 1010 1011
{
#if (PAGE_SIZE >= 8192)
	unsigned int last_offset = PAGE_SIZE - I40E_RXBUFFER_2048;
#endif
1012 1013
	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
	struct page *page = rx_buffer->page;
1014 1015 1016 1017 1018 1019 1020

	/* Is any reuse possible? */
	if (unlikely(!i40e_page_is_reusable(page)))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
1021
	if (unlikely((page_count(page) - pagecnt_bias) > 1))
1022 1023 1024 1025 1026 1027
		return false;
#else
	if (rx_buffer->page_offset > last_offset)
		return false;
#endif

1028 1029 1030 1031
	/* If we have drained the page fragment pool we need to update
	 * the pagecnt_bias and page count so that we fully restock the
	 * number of references the driver holds.
	 */
1032
	if (unlikely(!pagecnt_bias)) {
1033 1034 1035
		page_ref_add(page, USHRT_MAX);
		rx_buffer->pagecnt_bias = USHRT_MAX;
	}
1036 1037

	return true;
1038 1039 1040 1041 1042 1043 1044
}

/**
 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: buffer containing page to add
 * @skb: sk_buff to place the data into
1045
 * @size: packet length from rx_desc
1046 1047 1048 1049 1050 1051 1052 1053 1054
 *
 * This function will add the data contained in rx_buffer->page to the skb.
 * This is done either through a direct copy if the data in the buffer is
 * less than the skb header size, otherwise it will just attach the page as
 * a frag to the skb.
 *
 * The function will then update the page offset if necessary and return
 * true if the buffer can be reused by the adapter.
 **/
1055
static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1056
			     struct i40e_rx_buffer *rx_buffer,
1057 1058
			     struct sk_buff *skb,
			     unsigned int size)
1059 1060
{
	struct page *page = rx_buffer->page;
1061
	unsigned char *va = page_address(page) + rx_buffer->page_offset;
1062 1063 1064 1065
#if (PAGE_SIZE < 8192)
	unsigned int truesize = I40E_RXBUFFER_2048;
#else
	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
1066
#endif
1067 1068 1069 1070
	unsigned int pull_len;

	if (unlikely(skb_is_nonlinear(skb)))
		goto add_tail_frag;
1071

1072 1073 1074
	/* will the data fit in the skb we allocated? if so, just
	 * copy it as it is pretty small anyway
	 */
1075
	if (size <= I40E_RX_HDR_SIZE) {
1076
		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
1077

1078 1079 1080 1081 1082
		/* page is to be freed, increase pagecnt_bias instead of
		 * decreasing page count.
		 */
		rx_buffer->pagecnt_bias++;
		return;
1083 1084
	}

1085 1086 1087 1088 1089
	/* we need the header to contain the greater of either
	 * ETH_HLEN or 60 bytes if the skb->len is less than
	 * 60 for skb_pad.
	 */
	pull_len = eth_get_headlen(va, I40E_RX_HDR_SIZE);
1090

1091 1092 1093 1094
	/* align pull length to size of long to optimize
	 * memcpy performance
	 */
	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
1095

1096 1097 1098
	/* update all of the pointers */
	va += pull_len;
	size -= pull_len;
1099

1100 1101 1102
add_tail_frag:
	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
			(unsigned long)va & ~PAGE_MASK, size, truesize);
1103

1104 1105 1106 1107 1108 1109
	/* page is being used so we must update the page offset */
#if (PAGE_SIZE < 8192)
	rx_buffer->page_offset ^= truesize;
#else
	rx_buffer->page_offset += truesize;
#endif
1110 1111
}

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
/**
 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
 * @rx_ring: rx descriptor ring to transact packets on
 * @size: size of buffer to add to skb
 *
 * This function will pull an Rx buffer from the ring and synchronize it
 * for use by the CPU.
 */
static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
						 const unsigned int size)
{
	struct i40e_rx_buffer *rx_buffer;

	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
	prefetchw(rx_buffer->page);

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
				      size,
				      DMA_FROM_DEVICE);

1135 1136 1137
	/* We have pulled a buffer for use, so decrement pagecnt_bias */
	rx_buffer->pagecnt_bias--;

1138 1139 1140
	return rx_buffer;
}

1141 1142 1143
/**
 * i40evf_fetch_rx_buffer - Allocate skb and populate it
 * @rx_ring: rx descriptor ring to transact packets on
1144
 * @rx_buffer: rx buffer to pull data from
1145
 * @size: size of buffer to add to skb
1146 1147 1148 1149 1150 1151 1152 1153
 *
 * This function allocates an skb on the fly, and populates it with the page
 * data from the current receive descriptor, taking care to set up the skb
 * correctly, as well as handling calling the page recycle function if
 * necessary.
 */
static inline
struct sk_buff *i40evf_fetch_rx_buffer(struct i40e_ring *rx_ring,
1154
				       struct i40e_rx_buffer *rx_buffer,
1155 1156
				       struct sk_buff *skb,
				       unsigned int size)
1157 1158
{
	if (likely(!skb)) {
1159 1160
		void *page_addr = page_address(rx_buffer->page) +
				  rx_buffer->page_offset;
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

		/* prefetch first cache line of first page */
		prefetch(page_addr);
#if L1_CACHE_BYTES < 128
		prefetch(page_addr + L1_CACHE_BYTES);
#endif

		/* allocate a skb to store the frags */
		skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
				       I40E_RX_HDR_SIZE,
				       GFP_ATOMIC | __GFP_NOWARN);
		if (unlikely(!skb)) {
			rx_ring->rx_stats.alloc_buff_failed++;
1174
			rx_buffer->pagecnt_bias++;
1175 1176 1177 1178 1179
			return NULL;
		}
	}

	/* pull page into skb */
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
	i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);

	return skb;
}

/**
 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: rx buffer to pull data from
 *
 * This function will clean up the contents of the rx_buffer.  It will
 * either recycle the bufer or unmap it and free the associated resources.
 */
static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
			       struct i40e_rx_buffer *rx_buffer)
{
	if (i40e_can_reuse_rx_page(rx_buffer)) {
1197 1198 1199 1200 1201
		/* hand second half of page back to the ring */
		i40e_reuse_rx_page(rx_ring, rx_buffer);
		rx_ring->rx_stats.page_reuse_count++;
	} else {
		/* we are not reusing the buffer so unmap it */
1202 1203
		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, PAGE_SIZE,
				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
1204 1205
		__page_frag_cache_drain(rx_buffer->page,
					rx_buffer->pagecnt_bias);
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
	}

	/* clear contents of buffer_info */
	rx_buffer->page = NULL;
}

/**
 * i40e_is_non_eop - process handling of non-EOP buffers
 * @rx_ring: Rx ring being processed
 * @rx_desc: Rx descriptor for current buffer
 * @skb: Current socket buffer containing buffer in progress
 *
 * This function updates next to clean.  If the buffer is an EOP buffer
 * this function exits returning false, otherwise it will place the
 * sk_buff in the next buffer to be chained and return true indicating
 * that this is in fact a non-EOP buffer.
 **/
static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
			    union i40e_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(I40E_RX_DESC(rx_ring, ntc));

	/* if we are the last buffer then there is nothing else to do */
#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
		return false;

	rx_ring->rx_stats.non_eop_descs++;

	return true;
1243 1244 1245
}

/**
1246 1247 1248 1249 1250 1251 1252 1253
 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
 * @rx_ring: rx descriptor ring to transact packets on
 * @budget: Total limit on number of packets to process
 *
 * This function provides a "bounce buffer" approach to Rx interrupt
 * processing.  The advantage to this is that on systems that have
 * expensive overhead for IOMMU access this provides a means of avoiding
 * it by maintaining the mapping of the page to the system.
1254
 *
1255
 * Returns amount of work completed
1256
 **/
1257
static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1258 1259
{
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1260
	struct sk_buff *skb = rx_ring->skb;
1261
	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1262
	bool failure = false;
1263

1264
	while (likely(total_rx_packets < budget)) {
1265
		struct i40e_rx_buffer *rx_buffer;
1266
		union i40e_rx_desc *rx_desc;
1267
		unsigned int size;
1268
		u16 vlan_tag;
1269 1270 1271
		u8 rx_ptype;
		u64 qword;

1272 1273
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1274
			failure = failure ||
1275
				  i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
1276 1277 1278
			cleaned_count = 0;
		}

1279 1280 1281 1282 1283
		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);

		/* status_error_len will always be zero for unused descriptors
		 * because it's cleared in cleanup, and overlaps with hdr_addr
		 * which is always zero because packet split isn't used, if the
1284
		 * hardware wrote DD then the length will be non-zero
1285
		 */
1286 1287 1288 1289
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
		if (!size)
1290 1291
			break;

1292
		/* This memory barrier is needed to keep us from reading
1293 1294
		 * any other fields out of the rx_desc until we have
		 * verified the descriptor has been written back.
1295
		 */
1296
		dma_rmb();
1297

1298 1299 1300
		rx_buffer = i40e_get_rx_buffer(rx_ring, size);

		skb = i40evf_fetch_rx_buffer(rx_ring, rx_buffer, skb, size);
1301 1302
		if (!skb)
			break;
1303

1304
		i40e_put_rx_buffer(rx_ring, rx_buffer);
1305 1306
		cleaned_count++;

1307
		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
1308 1309
			continue;

1310 1311 1312 1313 1314 1315
		/* ERR_MASK will only have valid bits if EOP set, and
		 * what we are doing here is actually checking
		 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
		 * the error field
		 */
		if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1316
			dev_kfree_skb_any(skb);
1317
			skb = NULL;
1318 1319 1320
			continue;
		}

1321 1322
		if (i40e_cleanup_headers(rx_ring, skb)) {
			skb = NULL;
1323
			continue;
1324
		}
1325

1326 1327 1328
		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;

1329 1330 1331 1332
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
			   I40E_RXD_QW1_PTYPE_SHIFT;

1333 1334
		/* populate checksum, VLAN, and protocol */
		i40evf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1335 1336


1337 1338 1339
		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;

1340
		i40e_receive_skb(rx_ring, skb, vlan_tag);
1341
		skb = NULL;
1342

1343 1344 1345
		/* update budget accounting */
		total_rx_packets++;
	}
1346

1347 1348
	rx_ring->skb = skb;

1349 1350 1351 1352 1353 1354 1355
	u64_stats_update_begin(&rx_ring->syncp);
	rx_ring->stats.packets += total_rx_packets;
	rx_ring->stats.bytes += total_rx_bytes;
	u64_stats_update_end(&rx_ring->syncp);
	rx_ring->q_vector->rx.total_packets += total_rx_packets;
	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;

1356
	/* guarantee a trip back through this routine if there was a failure */
1357
	return failure ? budget : total_rx_packets;
1358 1359
}

1360 1361 1362 1363 1364
static u32 i40e_buildreg_itr(const int type, const u16 itr)
{
	u32 val;

	val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
1365 1366 1367
	      /* Don't clear PBA because that can cause lost interrupts that
	       * came in while we were cleaning/polling
	       */
1368 1369 1370 1371 1372 1373 1374 1375
	      (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
	      (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);

	return val;
}

/* a small macro to shorten up some long lines */
#define INTREG I40E_VFINT_DYN_CTLN1
1376
static inline int get_rx_itr(struct i40e_vsi *vsi, int idx)
1377 1378 1379
{
	struct i40evf_adapter *adapter = vsi->back;

1380
	return adapter->rx_rings[idx].rx_itr_setting;
1381 1382
}

1383
static inline int get_tx_itr(struct i40e_vsi *vsi, int idx)
1384 1385 1386
{
	struct i40evf_adapter *adapter = vsi->back;

1387
	return adapter->tx_rings[idx].tx_itr_setting;
1388
}
1389

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
/**
 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
 * @vsi: the VSI we care about
 * @q_vector: q_vector for which itr is being updated and interrupt enabled
 *
 **/
static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
					  struct i40e_q_vector *q_vector)
{
	struct i40e_hw *hw = &vsi->back->hw;
1400 1401
	bool rx = false, tx = false;
	u32 rxval, txval;
1402
	int vector;
1403 1404
	int idx = q_vector->v_idx;
	int rx_itr_setting, tx_itr_setting;
1405 1406

	vector = (q_vector->v_idx + vsi->base_vector);
1407 1408 1409 1410

	/* avoid dynamic calculation if in countdown mode OR if
	 * all dynamic is disabled
	 */
1411 1412
	rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);

1413 1414
	rx_itr_setting = get_rx_itr(vsi, idx);
	tx_itr_setting = get_tx_itr(vsi, idx);
1415

1416
	if (q_vector->itr_countdown > 0 ||
1417 1418
	    (!ITR_IS_DYNAMIC(rx_itr_setting) &&
	     !ITR_IS_DYNAMIC(tx_itr_setting))) {
1419 1420 1421
		goto enable_int;
	}

1422
	if (ITR_IS_DYNAMIC(rx_itr_setting)) {
1423 1424
		rx = i40e_set_new_dynamic_itr(&q_vector->rx);
		rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1425
	}
J
Jesse Brandeburg 已提交
1426

1427
	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
1428 1429 1430
		tx = i40e_set_new_dynamic_itr(&q_vector->tx);
		txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
	}
J
Jesse Brandeburg 已提交
1431

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
	if (rx || tx) {
		/* get the higher of the two ITR adjustments and
		 * use the same value for both ITR registers
		 * when in adaptive mode (Rx and/or Tx)
		 */
		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);

		q_vector->tx.itr = q_vector->rx.itr = itr;
		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
		tx = true;
		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
		rx = true;
1444
	}
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458

	/* only need to enable the interrupt once, but need
	 * to possibly update both ITR values
	 */
	if (rx) {
		/* set the INTENA_MSK_MASK so that this first write
		 * won't actually enable the interrupt, instead just
		 * updating the ITR (it's bit 31 PF and VF)
		 */
		rxval |= BIT(31);
		/* don't check _DOWN because interrupt isn't being enabled */
		wr32(hw, INTREG(vector - 1), rxval);
	}

1459
enable_int:
1460 1461
	if (!test_bit(__I40E_DOWN, &vsi->state))
		wr32(hw, INTREG(vector - 1), txval);
1462 1463 1464 1465 1466

	if (q_vector->itr_countdown)
		q_vector->itr_countdown--;
	else
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1467 1468
}

1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
/**
 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
 * @napi: napi struct with our devices info in it
 * @budget: amount of work driver is allowed to do this pass, in packets
 *
 * This function will clean all queues associated with a q_vector.
 *
 * Returns the amount of work done
 **/
int i40evf_napi_poll(struct napi_struct *napi, int budget)
{
	struct i40e_q_vector *q_vector =
			       container_of(napi, struct i40e_q_vector, napi);
	struct i40e_vsi *vsi = q_vector->vsi;
	struct i40e_ring *ring;
	bool clean_complete = true;
1485
	bool arm_wb = false;
1486
	int budget_per_ring;
1487
	int work_done = 0;
1488 1489 1490 1491 1492 1493 1494 1495 1496

	if (test_bit(__I40E_DOWN, &vsi->state)) {
		napi_complete(napi);
		return 0;
	}

	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
1497
	i40e_for_each_ring(ring, q_vector->tx) {
1498
		if (!i40e_clean_tx_irq(vsi, ring, budget)) {
1499 1500 1501 1502
			clean_complete = false;
			continue;
		}
		arm_wb |= ring->arm_wb;
1503
		ring->arm_wb = false;
1504
	}
1505

1506 1507 1508 1509
	/* Handle case where we are called by netpoll with a budget of 0 */
	if (budget <= 0)
		goto tx_only;

1510 1511 1512 1513 1514
	/* We attempt to distribute budget to each Rx queue fairly, but don't
	 * allow the budget to go below 1 because that would exit polling early.
	 */
	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);

1515
	i40e_for_each_ring(ring, q_vector->rx) {
1516
		int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
1517 1518

		work_done += cleaned;
1519 1520 1521
		/* if we clean as many as budgeted, we must not be done */
		if (cleaned >= budget_per_ring)
			clean_complete = false;
1522
	}
1523 1524

	/* If work not completed, return budget and polling will return */
1525
	if (!clean_complete) {
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
		const cpumask_t *aff_mask = &q_vector->affinity_mask;
		int cpu_id = smp_processor_id();

		/* It is possible that the interrupt affinity has changed but,
		 * if the cpu is pegged at 100%, polling will never exit while
		 * traffic continues and the interrupt will be stuck on this
		 * cpu.  We check to make sure affinity is correct before we
		 * continue to poll, otherwise we must stop polling so the
		 * interrupt can move to the correct cpu.
		 */
		if (likely(cpumask_test_cpu(cpu_id, aff_mask))) {
1537
tx_only:
1538 1539 1540 1541 1542
			if (arm_wb) {
				q_vector->tx.ring[0].tx_stats.tx_force_wb++;
				i40e_enable_wb_on_itr(vsi, q_vector);
			}
			return budget;
1543
		}
1544
	}
1545

1546 1547 1548
	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
		q_vector->arm_wb_state = false;

1549
	/* Work is done so exit the polling mode and re-enable the interrupt */
1550
	napi_complete_done(napi, work_done);
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560

	/* If we're prematurely stopping polling to fix the interrupt
	 * affinity we want to make sure polling starts back up so we
	 * issue a call to i40evf_force_wb which triggers a SW interrupt.
	 */
	if (!clean_complete)
		i40evf_force_wb(vsi, q_vector);
	else
		i40e_update_enable_itr(vsi, q_vector);

1561
	return min(work_done, budget - 1);
1562 1563 1564
}

/**
1565
 * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 * @flags:   the tx flags to be set
 *
 * Checks the skb and set up correspondingly several generic transmit flags
 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
 *
 * Returns error code indicate the frame should be dropped upon error and the
 * otherwise  returns 0 to indicate the flags has been set properly.
 **/
1576 1577 1578
static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
					       struct i40e_ring *tx_ring,
					       u32 *flags)
1579 1580 1581 1582
{
	__be16 protocol = skb->protocol;
	u32  tx_flags = 0;

1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
	if (protocol == htons(ETH_P_8021Q) &&
	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
		/* When HW VLAN acceleration is turned off by the user the
		 * stack sets the protocol to 8021q so that the driver
		 * can take any steps required to support the SW only
		 * VLAN handling.  In our case the driver doesn't need
		 * to take any further steps so just set the protocol
		 * to the encapsulated ethertype.
		 */
		skb->protocol = vlan_get_protocol(skb);
		goto out;
	}

1596
	/* if we have a HW VLAN tag being added, default to the HW one */
1597 1598
	if (skb_vlan_tag_present(skb)) {
		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1599 1600 1601 1602
		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
	/* else if it is a SW VLAN, check the next protocol and store the tag */
	} else if (protocol == htons(ETH_P_8021Q)) {
		struct vlan_hdr *vhdr, _vhdr;
J
Jesse Brandeburg 已提交
1603

1604 1605 1606 1607 1608 1609 1610 1611 1612
		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
		if (!vhdr)
			return -EINVAL;

		protocol = vhdr->h_vlan_encapsulated_proto;
		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
	}

1613
out:
1614 1615 1616 1617 1618 1619
	*flags = tx_flags;
	return 0;
}

/**
 * i40e_tso - set up the tso context descriptor
1620
 * @first:    pointer to first Tx buffer for xmit
1621
 * @hdr_len:  ptr to the size of the packet header
1622
 * @cd_type_cmd_tso_mss: Quad Word 1
1623 1624 1625
 *
 * Returns 0 if no TSO can happen, 1 if tso is going, or error
 **/
1626 1627
static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
		    u64 *cd_type_cmd_tso_mss)
1628
{
1629
	struct sk_buff *skb = first->skb;
1630
	u64 cd_cmd, cd_tso_len, cd_mss;
1631 1632 1633 1634 1635
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
1636 1637
	union {
		struct tcphdr *tcp;
1638
		struct udphdr *udp;
1639 1640 1641
		unsigned char *hdr;
	} l4;
	u32 paylen, l4_offset;
1642
	u16 gso_segs, gso_size;
1643 1644
	int err;

1645 1646 1647
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

1648 1649 1650
	if (!skb_is_gso(skb))
		return 0;

1651 1652 1653
	err = skb_cow_head(skb, 0);
	if (err < 0)
		return err;
1654

1655 1656
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
1657

1658 1659 1660 1661
	/* initialize outer IP header fields */
	if (ip.v4->version == 4) {
		ip.v4->tot_len = 0;
		ip.v4->check = 0;
1662
	} else {
1663 1664 1665
		ip.v6->payload_len = 0;
	}

1666
	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1667
					 SKB_GSO_GRE_CSUM |
1668
					 SKB_GSO_IPXIP4 |
1669
					 SKB_GSO_IPXIP6 |
1670
					 SKB_GSO_UDP_TUNNEL |
1671
					 SKB_GSO_UDP_TUNNEL_CSUM)) {
1672 1673 1674 1675
		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
			l4.udp->len = 0;

1676 1677 1678 1679
			/* determine offset of outer transport header */
			l4_offset = l4.hdr - skb->data;

			/* remove payload length from outer checksum */
1680
			paylen = skb->len - l4_offset;
1681 1682
			csum_replace_by_diff(&l4.udp->check,
					     (__force __wsum)htonl(paylen));
1683 1684
		}

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
		/* reset pointers to inner headers */
		ip.hdr = skb_inner_network_header(skb);
		l4.hdr = skb_inner_transport_header(skb);

		/* initialize inner IP header fields */
		if (ip.v4->version == 4) {
			ip.v4->tot_len = 0;
			ip.v4->check = 0;
		} else {
			ip.v6->payload_len = 0;
		}
1696 1697
	}

1698 1699 1700 1701
	/* determine offset of inner transport header */
	l4_offset = l4.hdr - skb->data;

	/* remove payload length from inner checksum */
1702
	paylen = skb->len - l4_offset;
1703
	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
1704 1705 1706

	/* compute length of segmentation header */
	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1707

1708 1709 1710 1711 1712 1713 1714 1715
	/* pull values out of skb_shinfo */
	gso_size = skb_shinfo(skb)->gso_size;
	gso_segs = skb_shinfo(skb)->gso_segs;

	/* update GSO size and bytecount with header size */
	first->gso_segs = gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

1716 1717 1718
	/* find the field values */
	cd_cmd = I40E_TX_CTX_DESC_TSO;
	cd_tso_len = skb->len - *hdr_len;
1719
	cd_mss = gso_size;
1720 1721 1722
	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1723 1724 1725 1726 1727 1728
	return 1;
}

/**
 * i40e_tx_enable_csum - Enable Tx checksum offloads
 * @skb: send buffer
1729
 * @tx_flags: pointer to Tx flags currently set
1730 1731
 * @td_cmd: Tx descriptor command bits to set
 * @td_offset: Tx descriptor header offsets to set
1732
 * @tx_ring: Tx descriptor ring
1733 1734
 * @cd_tunneling: ptr to context desc bits
 **/
1735 1736 1737 1738
static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
			       u32 *td_cmd, u32 *td_offset,
			       struct i40e_ring *tx_ring,
			       u32 *cd_tunneling)
1739
{
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
	union {
		struct tcphdr *tcp;
		struct udphdr *udp;
		unsigned char *hdr;
	} l4;
1750
	unsigned char *exthdr;
1751
	u32 offset, cmd = 0;
1752
	__be16 frag_off;
1753 1754
	u8 l4_proto = 0;

1755 1756 1757
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

1758 1759
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
1760

1761 1762 1763
	/* compute outer L2 header size */
	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;

1764
	if (skb->encapsulation) {
1765
		u32 tunnel = 0;
1766 1767
		/* define outer network header type */
		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1768 1769 1770 1771
			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
				  I40E_TX_CTX_EXT_IP_IPV4 :
				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;

1772 1773
			l4_proto = ip.v4->protocol;
		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1774
			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
1775 1776

			exthdr = ip.hdr + sizeof(*ip.v6);
1777
			l4_proto = ip.v6->nexthdr;
1778 1779 1780
			if (l4.hdr != exthdr)
				ipv6_skip_exthdr(skb, exthdr - skb->data,
						 &l4_proto, &frag_off);
1781 1782 1783 1784
		}

		/* define outer transport */
		switch (l4_proto) {
1785
		case IPPROTO_UDP:
1786
			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
1787
			*tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1788
			break;
1789
		case IPPROTO_GRE:
1790
			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
1791 1792
			*tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
			break;
1793 1794 1795 1796 1797
		case IPPROTO_IPIP:
		case IPPROTO_IPV6:
			*tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
			l4.hdr = skb_inner_network_header(skb);
			break;
1798
		default:
1799 1800 1801 1802 1803
			if (*tx_flags & I40E_TX_FLAGS_TSO)
				return -1;

			skb_checksum_help(skb);
			return 0;
1804
		}
1805

1806 1807 1808 1809 1810 1811 1812
		/* compute outer L3 header size */
		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;

		/* switch IP header pointer from outer to inner header */
		ip.hdr = skb_inner_network_header(skb);

1813 1814 1815 1816
		/* compute tunnel header size */
		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;

1817 1818
		/* indicate if we need to offload outer UDP header */
		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
1819
		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1820 1821 1822
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;

1823 1824 1825
		/* record tunnel offload values */
		*cd_tunneling |= tunnel;

1826 1827
		/* switch L4 header pointer from outer to inner */
		l4.hdr = skb_inner_transport_header(skb);
1828
		l4_proto = 0;
1829

1830 1831 1832 1833 1834
		/* reset type as we transition from outer to inner headers */
		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
		if (ip.v4->version == 4)
			*tx_flags |= I40E_TX_FLAGS_IPV4;
		if (ip.v6->version == 6)
1835
			*tx_flags |= I40E_TX_FLAGS_IPV6;
1836 1837 1838
	}

	/* Enable IP checksum offloads */
1839
	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1840
		l4_proto = ip.v4->protocol;
1841 1842 1843
		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
1844 1845 1846
		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
		       I40E_TX_DESC_CMD_IIPT_IPV4;
1847
	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1848
		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1849 1850 1851 1852 1853 1854

		exthdr = ip.hdr + sizeof(*ip.v6);
		l4_proto = ip.v6->nexthdr;
		if (l4.hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data,
					 &l4_proto, &frag_off);
1855
	}
1856

1857 1858
	/* compute inner L3 header size */
	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1859 1860

	/* Enable L4 checksum offloads */
1861
	switch (l4_proto) {
1862 1863
	case IPPROTO_TCP:
		/* enable checksum offloads */
1864 1865
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1866 1867 1868
		break;
	case IPPROTO_SCTP:
		/* enable SCTP checksum offload */
1869 1870 1871
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
		offset |= (sizeof(struct sctphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1872 1873 1874
		break;
	case IPPROTO_UDP:
		/* enable UDP checksum offload */
1875 1876 1877
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
		offset |= (sizeof(struct udphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1878 1879
		break;
	default:
1880 1881 1882 1883
		if (*tx_flags & I40E_TX_FLAGS_TSO)
			return -1;
		skb_checksum_help(skb);
		return 0;
1884
	}
1885 1886 1887

	*td_cmd |= cmd;
	*td_offset |= offset;
1888 1889

	return 1;
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
}

/**
 * i40e_create_tx_ctx Build the Tx context descriptor
 * @tx_ring:  ring to create the descriptor on
 * @cd_type_cmd_tso_mss: Quad Word 1
 * @cd_tunneling: Quad Word 0 - bits 0-31
 * @cd_l2tag2: Quad Word 0 - bits 32-63
 **/
static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
			       const u64 cd_type_cmd_tso_mss,
			       const u32 cd_tunneling, const u32 cd_l2tag2)
{
	struct i40e_tx_context_desc *context_desc;
	int i = tx_ring->next_to_use;

1906 1907
	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
	    !cd_tunneling && !cd_l2tag2)
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
		return;

	/* grab the next descriptor */
	context_desc = I40E_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	/* cpu_to_le32 and assign to struct fields */
	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1919
	context_desc->rsvd = cpu_to_le16(0);
1920 1921 1922
	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
}

J
Jesse Brandeburg 已提交
1923
/**
1924
 * __i40evf_chk_linearize - Check if there are more than 8 buffers per packet
1925 1926
 * @skb:      send buffer
 *
1927 1928 1929 1930 1931 1932 1933 1934
 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
 * and so we need to figure out the cases where we need to linearize the skb.
 *
 * For TSO we need to count the TSO header and segment payload separately.
 * As such we need to check cases where we have 7 fragments or more as we
 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
 * the segment payload in the first descriptor, and another 7 for the
 * fragments.
1935
 **/
1936
bool __i40evf_chk_linearize(struct sk_buff *skb)
1937
{
1938
	const struct skb_frag_struct *frag, *stale;
1939
	int nr_frags, sum;
1940

1941
	/* no need to check if number of frags is less than 7 */
1942
	nr_frags = skb_shinfo(skb)->nr_frags;
1943
	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
1944
		return false;
1945

1946
	/* We need to walk through the list and validate that each group
1947
	 * of 6 fragments totals at least gso_size.
1948
	 */
1949
	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
1950 1951 1952 1953 1954 1955 1956 1957
	frag = &skb_shinfo(skb)->frags[0];

	/* Initialize size to the negative value of gso_size minus 1.  We
	 * use this as the worst case scenerio in which the frag ahead
	 * of us only provides one byte which is why we are limited to 6
	 * descriptors for a single transmit as the header and previous
	 * fragment are already consuming 2 descriptors.
	 */
1958
	sum = 1 - skb_shinfo(skb)->gso_size;
1959

1960 1961 1962 1963 1964 1965
	/* Add size of frags 0 through 4 to create our initial sum */
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
1966 1967 1968 1969 1970 1971

	/* Walk through fragments adding latest fragment, testing it, and
	 * then removing stale fragments from the sum.
	 */
	stale = &skb_shinfo(skb)->frags[0];
	for (;;) {
1972
		sum += skb_frag_size(frag++);
1973 1974 1975 1976 1977

		/* if sum is negative we failed to make sufficient progress */
		if (sum < 0)
			return true;

1978
		if (!nr_frags--)
1979 1980
			break;

1981
		sum -= skb_frag_size(stale++);
1982 1983
	}

1984
	return false;
1985 1986
}

1987 1988 1989 1990 1991 1992 1993
/**
 * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
 * @tx_ring: the ring to be checked
 * @size:    the size buffer we want to assure is available
 *
 * Returns -EBUSY if a stop is needed, else 0
 **/
1994
int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
{
	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
	/* Memory barrier before checking head and tail */
	smp_mb();

	/* Check again in a case another CPU has just made room available. */
	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
		return -EBUSY;

	/* A reprieve! - use start_queue because it doesn't call schedule */
	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
	++tx_ring->tx_stats.restart_queue;
	return 0;
}

2010
/**
2011
 * i40evf_tx_map - Build the Tx descriptor
2012 2013 2014 2015 2016 2017 2018 2019
 * @tx_ring:  ring to send buffer on
 * @skb:      send buffer
 * @first:    first buffer info buffer to use
 * @tx_flags: collected send information
 * @hdr_len:  size of the packet header
 * @td_cmd:   the command field in the descriptor
 * @td_offset: offset for checksum or crc
 **/
2020 2021 2022
static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
				 struct i40e_tx_buffer *first, u32 tx_flags,
				 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
{
	unsigned int data_len = skb->data_len;
	unsigned int size = skb_headlen(skb);
	struct skb_frag_struct *frag;
	struct i40e_tx_buffer *tx_bi;
	struct i40e_tx_desc *tx_desc;
	u16 i = tx_ring->next_to_use;
	u32 td_tag = 0;
	dma_addr_t dma;

	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
			 I40E_TX_FLAGS_VLAN_SHIFT;
	}

	first->tx_flags = tx_flags;

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);

	tx_desc = I40E_TX_DESC(tx_ring, i);
	tx_bi = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2047 2048
		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;

2049 2050 2051 2052 2053 2054 2055
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_bi, len, size);
		dma_unmap_addr_set(tx_bi, dma, dma);

2056 2057
		/* align size to end of page */
		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
2058 2059 2060 2061 2062
		tx_desc->buffer_addr = cpu_to_le64(dma);

		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
			tx_desc->cmd_type_offset_bsz =
				build_ctob(td_cmd, td_offset,
2063
					   max_data, td_tag);
2064 2065 2066

			tx_desc++;
			i++;
2067

2068 2069 2070 2071 2072
			if (i == tx_ring->count) {
				tx_desc = I40E_TX_DESC(tx_ring, 0);
				i = 0;
			}

2073 2074
			dma += max_data;
			size -= max_data;
2075

2076
			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
			tx_desc->buffer_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;

		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
							  size, td_tag);

		tx_desc++;
		i++;
2088

2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
		if (i == tx_ring->count) {
			tx_desc = I40E_TX_DESC(tx_ring, 0);
			i = 0;
		}

		size = skb_frag_size(frag);
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
				       DMA_TO_DEVICE);

		tx_bi = &tx_ring->tx_bi[i];
	}

2103
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
2104 2105 2106 2107 2108 2109 2110

	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

2111
	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2112

2113 2114
	/* write last descriptor with RS and EOP bits */
	td_cmd |= I40E_TXD_CMD;
2115
	tx_desc->cmd_type_offset_bsz =
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
			build_ctob(td_cmd, td_offset, size, td_tag);

	/* Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.
	 *
	 * We also use this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

	/* set next_to_watch value indicating a packet is present */
	first->next_to_watch = tx_desc;
2128

2129
	/* notify HW of packet */
2130
	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
2131
		writel(i, tx_ring->tail);
2132 2133 2134 2135 2136

		/* we need this if more than one processor can write to our tail
		 * at a time, it synchronizes IO on IA64/Altix systems
		 */
		mmiowb();
2137
	}
2138

2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
	return;

dma_error:
	dev_info(tx_ring->dev, "TX DMA map failed\n");

	/* clear dma mappings for failed tx_bi map */
	for (;;) {
		tx_bi = &tx_ring->tx_bi[i];
		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
		if (tx_bi == first)
			break;
		if (i == 0)
			i = tx_ring->count;
		i--;
	}

	tx_ring->next_to_use = i;
}

/**
 * i40e_xmit_frame_ring - Sends buffer on Tx ring
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
					struct i40e_ring *tx_ring)
{
	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
	u32 cd_tunneling = 0, cd_l2tag2 = 0;
	struct i40e_tx_buffer *first;
	u32 td_offset = 0;
	u32 tx_flags = 0;
	__be16 protocol;
	u32 td_cmd = 0;
	u8 hdr_len = 0;
2176
	int tso, count;
J
Jesse Brandeburg 已提交
2177

2178 2179 2180
	/* prefetch the data, we'll need it later */
	prefetch(skb->data);

2181
	count = i40e_xmit_descriptor_count(skb);
2182
	if (i40e_chk_linearize(skb, count)) {
2183 2184 2185 2186
		if (__skb_linearize(skb)) {
			dev_kfree_skb_any(skb);
			return NETDEV_TX_OK;
		}
2187
		count = i40e_txd_use_count(skb->len);
2188 2189
		tx_ring->tx_stats.tx_linearize++;
	}
2190 2191 2192 2193 2194 2195 2196 2197 2198

	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
	 *       + 4 desc gap to avoid the cache line where head is,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time
	 */
	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
		tx_ring->tx_stats.tx_busy++;
2199
		return NETDEV_TX_BUSY;
2200
	}
2201

2202 2203 2204 2205 2206 2207
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_bi[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

2208
	/* prepare the xmit flags */
2209
	if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2210 2211 2212
		goto out_drop;

	/* obtain protocol of skb */
2213
	protocol = vlan_get_protocol(skb);
2214 2215 2216 2217 2218 2219 2220

	/* setup IPv4/IPv6 offloads */
	if (protocol == htons(ETH_P_IP))
		tx_flags |= I40E_TX_FLAGS_IPV4;
	else if (protocol == htons(ETH_P_IPV6))
		tx_flags |= I40E_TX_FLAGS_IPV6;

2221
	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
2222 2223 2224 2225 2226 2227 2228

	if (tso < 0)
		goto out_drop;
	else if (tso)
		tx_flags |= I40E_TX_FLAGS_TSO;

	/* Always offload the checksum, since it's in the data descriptor */
2229 2230 2231 2232
	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
				  tx_ring, &cd_tunneling);
	if (tso < 0)
		goto out_drop;
2233

2234 2235 2236 2237 2238
	skb_tx_timestamp(skb);

	/* always enable CRC insertion offload */
	td_cmd |= I40E_TX_DESC_CMD_ICRC;

2239 2240 2241
	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
			   cd_tunneling, cd_l2tag2);

2242 2243
	i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
		      td_cmd, td_offset);
2244 2245 2246 2247

	return NETDEV_TX_OK;

out_drop:
2248 2249
	dev_kfree_skb_any(first->skb);
	first->skb = NULL;
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
	return NETDEV_TX_OK;
}

/**
 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
 * @skb:    send buffer
 * @netdev: network interface device structure
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
	struct i40evf_adapter *adapter = netdev_priv(netdev);
2263
	struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276

	/* hardware can't handle really short frames, hardware padding works
	 * beyond this point
	 */
	if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
		if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
			return NETDEV_TX_OK;
		skb->len = I40E_MIN_TX_LEN;
		skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
	}

	return i40e_xmit_frame_ring(skb, tx_ring);
}