i40e_txrx.c 60.5 KB
Newer Older
1 2 3
/*******************************************************************************
 *
 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
4
 * Copyright(c) 2013 - 2016 Intel Corporation.
5 6 7 8 9 10 11 12 13 14
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
15 16 17
 * You should have received a copy of the GNU General Public License along
 * with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
18 19 20 21 22 23 24 25 26
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information:
 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 ******************************************************************************/

27
#include <linux/prefetch.h>
28
#include <net/busy_poll.h>
29

30
#include "i40evf.h"
31
#include "i40e_prototype.h"
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
				u32 td_tag)
{
	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
}

#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)

/**
 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 * @ring:      the ring that owns the buffer
 * @tx_buffer: the buffer to free
 **/
static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
					    struct i40e_tx_buffer *tx_buffer)
{
	if (tx_buffer->skb) {
54
		dev_kfree_skb_any(tx_buffer->skb);
55 56 57 58 59 60 61 62 63 64 65
		if (dma_unmap_len(tx_buffer, len))
			dma_unmap_single(ring->dev,
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
					 DMA_TO_DEVICE);
	} else if (dma_unmap_len(tx_buffer, len)) {
		dma_unmap_page(ring->dev,
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
			       DMA_TO_DEVICE);
	}
66 67 68 69

	if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
		kfree(tx_buffer->raw_buf);

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
	dma_unmap_len_set(tx_buffer, len, 0);
	/* tx_buffer must be completely set up in the transmit path */
}

/**
 * i40evf_clean_tx_ring - Free any empty Tx buffers
 * @tx_ring: ring to be cleaned
 **/
void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!tx_ring->tx_bi)
		return;

	/* Free all the Tx ring sk_buffs */
	for (i = 0; i < tx_ring->count; i++)
		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);

	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	if (!tx_ring->netdev)
		return;

	/* cleanup Tx queue statistics */
	netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
						  tx_ring->queue_index));
}

/**
 * i40evf_free_tx_resources - Free Tx resources per queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
{
	i40evf_clean_tx_ring(tx_ring);
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;

	if (tx_ring->desc) {
		dma_free_coherent(tx_ring->dev, tx_ring->size,
				  tx_ring->desc, tx_ring->dma);
		tx_ring->desc = NULL;
	}
}

J
Jesse Brandeburg 已提交
129
/**
130 131
 * i40evf_get_tx_pending - how many Tx descriptors not processed
 * @tx_ring: the ring of descriptors
132
 * @in_sw: is tx_pending being checked in SW or HW
J
Jesse Brandeburg 已提交
133
 *
134 135
 * Since there is no access to the ring head register
 * in XL710, we need to use our local copies
J
Jesse Brandeburg 已提交
136
 **/
137
u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw)
J
Jesse Brandeburg 已提交
138
{
139
	u32 head, tail;
J
Jesse Brandeburg 已提交
140

141 142 143 144
	if (!in_sw)
		head = i40e_get_head(ring);
	else
		head = ring->next_to_clean;
145 146 147 148 149 150 151
	tail = readl(ring->tail);

	if (head != tail)
		return (head < tail) ?
			tail - head : (tail + ring->count - head);

	return 0;
J
Jesse Brandeburg 已提交
152 153
}

154 155
#define WB_STRIDE 0x3

156 157
/**
 * i40e_clean_tx_irq - Reclaim resources after transmit completes
158 159 160
 * @vsi: the VSI we care about
 * @tx_ring: Tx ring to clean
 * @napi_budget: Used to determine if we are in netpoll
161 162 163
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 **/
164 165
static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
			      struct i40e_ring *tx_ring, int napi_budget)
166 167 168
{
	u16 i = tx_ring->next_to_clean;
	struct i40e_tx_buffer *tx_buf;
169
	struct i40e_tx_desc *tx_head;
170
	struct i40e_tx_desc *tx_desc;
171 172
	unsigned int total_bytes = 0, total_packets = 0;
	unsigned int budget = vsi->work_limit;
173 174 175 176 177

	tx_buf = &tx_ring->tx_bi[i];
	tx_desc = I40E_TX_DESC(tx_ring, i);
	i -= tx_ring->count;

178 179
	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));

180 181 182 183 184 185 186 187 188 189
	do {
		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;

		/* prevent any other reads prior to eop_desc */
		read_barrier_depends();

190 191
		/* we have caught up to head, no work left to do */
		if (tx_head == tx_desc)
192 193 194 195 196 197 198 199 200 201
			break;

		/* clear next_to_watch to prevent false hangs */
		tx_buf->next_to_watch = NULL;

		/* update the statistics for this packet */
		total_bytes += tx_buf->bytecount;
		total_packets += tx_buf->gso_segs;

		/* free the skb */
202
		napi_consume_skb(tx_buf->skb, napi_budget);
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buf, dma),
				 dma_unmap_len(tx_buf, len),
				 DMA_TO_DEVICE);

		/* clear tx_buffer data */
		tx_buf->skb = NULL;
		dma_unmap_len_set(tx_buf, len, 0);

		/* unmap remaining buffers */
		while (tx_desc != eop_desc) {

			tx_buf++;
			tx_desc++;
			i++;
			if (unlikely(!i)) {
				i -= tx_ring->count;
				tx_buf = tx_ring->tx_bi;
				tx_desc = I40E_TX_DESC(tx_ring, 0);
			}

			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buf, len)) {
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buf, dma),
					       dma_unmap_len(tx_buf, len),
					       DMA_TO_DEVICE);
				dma_unmap_len_set(tx_buf, len, 0);
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buf++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buf = tx_ring->tx_bi;
			tx_desc = I40E_TX_DESC(tx_ring, 0);
		}

246 247
		prefetch(tx_desc);

248 249 250 251 252 253 254 255 256 257 258 259 260
		/* update budget accounting */
		budget--;
	} while (likely(budget));

	i += tx_ring->count;
	tx_ring->next_to_clean = i;
	u64_stats_update_begin(&tx_ring->syncp);
	tx_ring->stats.bytes += total_bytes;
	tx_ring->stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->syncp);
	tx_ring->q_vector->tx.total_bytes += total_bytes;
	tx_ring->q_vector->tx.total_packets += total_packets;

261 262 263 264 265 266 267
	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
		unsigned int j = 0;
		/* check to see if there are < 4 descriptors
		 * waiting to be written back, then kick the hardware to force
		 * them to be written back in case we stay in NAPI.
		 * In this mode on X722 we do not enable Interrupt.
		 */
268
		j = i40evf_get_tx_pending(tx_ring, false);
269 270 271

		if (budget &&
		    ((j / (WB_STRIDE + 1)) == 0) && (j > 0) &&
272
		    !test_bit(__I40E_DOWN, &vsi->state) &&
273 274 275 276
		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
			tx_ring->arm_wb = true;
	}

277 278 279 280 281 282 283 284 285 286 287 288 289
	netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
						      tx_ring->queue_index),
				  total_packets, total_bytes);

#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
290
		   !test_bit(__I40E_DOWN, &vsi->state)) {
291 292 293 294 295 296
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);
			++tx_ring->tx_stats.restart_queue;
		}
	}

297
	return !!budget;
298 299
}

300
/**
301
 * i40evf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
302
 * @vsi: the VSI we care about
303
 * @q_vector: the vector on which to enable writeback
304 305
 *
 **/
306 307
static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
				  struct i40e_q_vector *q_vector)
308
{
309
	u16 flags = q_vector->tx.ring[0].flags;
310
	u32 val;
311

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
		return;

	if (q_vector->arm_wb_state)
		return;

	val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
	      I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */

	wr32(&vsi->back->hw,
	     I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
				  vsi->base_vector - 1), val);
	q_vector->arm_wb_state = true;
}

/**
 * i40evf_force_wb - Issue SW Interrupt so HW does a wb
 * @vsi: the VSI we care about
 * @q_vector: the vector  on which to force writeback
 *
 **/
void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
{
	u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
		  I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
		  I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
		  I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
		  /* allow 00 to be written to the index */;

	wr32(&vsi->back->hw,
	     I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
	     val);
344 345
}

346 347 348 349
/**
 * i40e_set_new_dynamic_itr - Find new ITR level
 * @rc: structure containing ring performance data
 *
350 351
 * Returns true if ITR changed, false if not
 *
352 353 354 355 356 357 358 359
 * Stores a new ITR value based on packets and byte counts during
 * the last interrupt.  The advantage of per interrupt computation
 * is faster updates and more accurate ITR for the current traffic
 * pattern.  Constants in this function were computed based on
 * theoretical maximum wire speed and thresholds were set based on
 * testing data as well as attempting to minimize response time
 * while increasing bulk throughput.
 **/
360
static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
361 362
{
	enum i40e_latency_range new_latency_range = rc->latency_range;
363
	struct i40e_q_vector *qv = rc->ring->q_vector;
364 365
	u32 new_itr = rc->itr;
	int bytes_per_int;
366
	int usecs;
367 368

	if (rc->total_packets == 0 || !rc->itr)
369
		return false;
370 371

	/* simple throttlerate management
372
	 *   0-10MB/s   lowest (50000 ints/s)
373
	 *  10-20MB/s   low    (20000 ints/s)
374 375
	 *  20-1249MB/s bulk   (18000 ints/s)
	 *  > 40000 Rx packets per second (8000 ints/s)
376 377 378 379
	 *
	 * The math works out because the divisor is in 10^(-6) which
	 * turns the bytes/us input value into MB/s values, but
	 * make sure to use usecs, as the register values written
380 381
	 * are in 2 usec increments in the ITR registers, and make sure
	 * to use the smoothed values that the countdown timer gives us.
382
	 */
383
	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
384
	bytes_per_int = rc->total_bytes / usecs;
385

386
	switch (new_latency_range) {
387 388 389 390 391 392 393 394 395 396 397
	case I40E_LOWEST_LATENCY:
		if (bytes_per_int > 10)
			new_latency_range = I40E_LOW_LATENCY;
		break;
	case I40E_LOW_LATENCY:
		if (bytes_per_int > 20)
			new_latency_range = I40E_BULK_LATENCY;
		else if (bytes_per_int <= 10)
			new_latency_range = I40E_LOWEST_LATENCY;
		break;
	case I40E_BULK_LATENCY:
398
	case I40E_ULTRA_LATENCY:
399 400 401
	default:
		if (bytes_per_int <= 20)
			new_latency_range = I40E_LOW_LATENCY;
402 403
		break;
	}
404 405 406 407 408 409 410 411 412 413 414 415

	/* this is to adjust RX more aggressively when streaming small
	 * packets.  The value of 40000 was picked as it is just beyond
	 * what the hardware can receive per second if in low latency
	 * mode.
	 */
#define RX_ULTRA_PACKET_RATE 40000

	if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
	    (&qv->rx == rc))
		new_latency_range = I40E_ULTRA_LATENCY;

416
	rc->latency_range = new_latency_range;
417 418 419

	switch (new_latency_range) {
	case I40E_LOWEST_LATENCY:
420
		new_itr = I40E_ITR_50K;
421 422 423 424 425
		break;
	case I40E_LOW_LATENCY:
		new_itr = I40E_ITR_20K;
		break;
	case I40E_BULK_LATENCY:
426 427 428
		new_itr = I40E_ITR_18K;
		break;
	case I40E_ULTRA_LATENCY:
429 430 431 432 433 434 435 436
		new_itr = I40E_ITR_8K;
		break;
	default:
		break;
	}

	rc->total_bytes = 0;
	rc->total_packets = 0;
437 438 439 440 441 442 443

	if (new_itr != rc->itr) {
		rc->itr = new_itr;
		return true;
	}

	return false;
444 445
}

J
Jesse Brandeburg 已提交
446
/**
447 448 449 450 451 452 453 454 455 456 457 458 459
 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
 * @tx_ring: the tx ring to set up
 *
 * Return 0 on success, negative on error
 **/
int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
{
	struct device *dev = tx_ring->dev;
	int bi_size;

	if (!dev)
		return -ENOMEM;

460 461
	/* warn if we are about to overwrite the pointer */
	WARN_ON(tx_ring->tx_bi);
462 463 464 465 466 467 468
	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!tx_ring->tx_bi)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
469 470 471 472
	/* add u32 for head writeback, align after this takes care of
	 * guaranteeing this is at least one cache line in size
	 */
	tx_ring->size += sizeof(u32);
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
	tx_ring->size = ALIGN(tx_ring->size, 4096);
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
			 tx_ring->size);
		goto err;
	}

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	return 0;

err:
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40evf_clean_rx_ring - Free Rx buffers
 * @rx_ring: ring to be cleaned
 **/
void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!rx_ring->rx_bi)
		return;

	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
508 509
		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];

510 511 512 513
		if (rx_bi->skb) {
			dev_kfree_skb(rx_bi->skb);
			rx_bi->skb = NULL;
		}
514 515 516 517 518 519 520 521
		if (!rx_bi->page)
			continue;

		dma_unmap_page(dev, rx_bi->dma, PAGE_SIZE, DMA_FROM_DEVICE);
		__free_pages(rx_bi->page, 0);

		rx_bi->page = NULL;
		rx_bi->page_offset = 0;
522 523 524 525 526 527 528 529
	}

	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

530
	rx_ring->next_to_alloc = 0;
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * i40evf_free_rx_resources - Free Rx resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
{
	i40evf_clean_rx_ring(rx_ring);
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;

	if (rx_ring->desc) {
		dma_free_coherent(rx_ring->dev, rx_ring->size,
				  rx_ring->desc, rx_ring->dma);
		rx_ring->desc = NULL;
	}
}

/**
 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	int bi_size;

565 566
	/* warn if we are about to overwrite the pointer */
	WARN_ON(rx_ring->rx_bi);
567 568 569 570 571
	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!rx_ring->rx_bi)
		goto err;

572
	u64_stats_init(&rx_ring->syncp);
573

574
	/* Round up to nearest 4K */
575
	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
576 577 578 579 580 581 582 583 584 585
	rx_ring->size = ALIGN(rx_ring->size, 4096);
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);

	if (!rx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
			 rx_ring->size);
		goto err;
	}

586
	rx_ring->next_to_alloc = 0;
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;
err:
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_release_rx_desc - Store the new tail and head values
 * @rx_ring: ring to bump
 * @val: new head index
 **/
static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
{
	rx_ring->next_to_use = val;
605 606 607 608

	/* update next to alloc since we have filled the ring */
	rx_ring->next_to_alloc = val;

609 610 611 612 613 614 615 616 617 618
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64).
	 */
	wmb();
	writel(val, rx_ring->tail);
}

/**
619 620 621
 * i40e_alloc_mapped_page - recycle or make a new page
 * @rx_ring: ring to use
 * @bi: rx_buffer struct to modify
622
 *
623 624
 * Returns true if the page was successfully allocated or
 * reused.
625
 **/
626 627
static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
				   struct i40e_rx_buffer *bi)
628
{
629 630
	struct page *page = bi->page;
	dma_addr_t dma;
631

632 633 634 635 636
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page)) {
		rx_ring->rx_stats.page_reuse_count++;
		return true;
	}
637

638 639 640 641 642 643
	/* alloc new page for storage */
	page = dev_alloc_page();
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
	}
644

645 646
	/* map page for use */
	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
647

648 649
	/* if mapping failed free memory back to system since
	 * there isn't much point in holding memory we can't use
650
	 */
651 652 653 654
	if (dma_mapping_error(rx_ring->dev, dma)) {
		__free_pages(page, 0);
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
655 656
	}

657 658 659
	bi->dma = dma;
	bi->page = page;
	bi->page_offset = 0;
660

661 662
	return true;
}
663

664 665 666 667 668 669 670 671 672 673
/**
 * i40e_receive_skb - Send a completed packet up the stack
 * @rx_ring:  rx ring in play
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
 **/
static void i40e_receive_skb(struct i40e_ring *rx_ring,
			     struct sk_buff *skb, u16 vlan_tag)
{
	struct i40e_q_vector *q_vector = rx_ring->q_vector;
674

675 676 677 678 679
	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
	    (vlan_tag & VLAN_VID_MASK))
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);

	napi_gro_receive(&q_vector->napi, skb);
680 681 682
}

/**
683
 * i40evf_alloc_rx_buffers - Replace used receive buffers
684 685
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
686
 *
687
 * Returns false if all allocations were successful, true if any fail
688
 **/
689
bool i40evf_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
690
{
691
	u16 ntu = rx_ring->next_to_use;
692 693 694 695 696
	union i40e_rx_desc *rx_desc;
	struct i40e_rx_buffer *bi;

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
697
		return false;
698

699 700
	rx_desc = I40E_RX_DESC(rx_ring, ntu);
	bi = &rx_ring->rx_bi[ntu];
701

702 703 704
	do {
		if (!i40e_alloc_mapped_page(rx_ring, bi))
			goto no_buffers;
705

706 707 708 709
		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
710
		rx_desc->read.hdr_addr = 0;
711

712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
		rx_desc++;
		bi++;
		ntu++;
		if (unlikely(ntu == rx_ring->count)) {
			rx_desc = I40E_RX_DESC(rx_ring, 0);
			bi = rx_ring->rx_bi;
			ntu = 0;
		}

		/* clear the status bits for the next_to_use descriptor */
		rx_desc->wb.qword1.status_error_len = 0;

		cleaned_count--;
	} while (cleaned_count);

	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
729 730 731

	return false;

732
no_buffers:
733 734
	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
735 736 737 738 739

	/* make sure to come back via polling to try again after
	 * allocation failure
	 */
	return true;
740 741 742 743 744 745
}

/**
 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
 * @vsi: the VSI we care about
 * @skb: skb currently being received and modified
746 747 748
 * @rx_desc: the receive descriptor
 *
 * skb->protocol must be set before this function is called
749 750 751
 **/
static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
				    struct sk_buff *skb,
752
				    union i40e_rx_desc *rx_desc)
753
{
754
	struct i40e_rx_ptype_decoded decoded;
755
	bool ipv4, ipv6, tunnel = false;
756 757 758 759 760 761 762 763 764 765 766
	u32 rx_error, rx_status;
	u8 ptype;
	u64 qword;

	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
		   I40E_RXD_QW1_ERROR_SHIFT;
	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
		    I40E_RXD_QW1_STATUS_SHIFT;
	decoded = decode_rx_desc_ptype(ptype);
767 768 769

	skb->ip_summed = CHECKSUM_NONE;

770 771
	skb_checksum_none_assert(skb);

772
	/* Rx csum enabled and ip headers found? */
773 774 775 776
	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
		return;

	/* did the hardware decode the packet and checksum? */
777
	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
778 779 780 781
		return;

	/* both known and outer_ip must be set for the below code to work */
	if (!(decoded.known && decoded.outer_ip))
782 783
		return;

784 785 786 787
	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
788 789

	if (ipv4 &&
790 791
	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
792 793
		goto checksum_fail;

J
Jesse Brandeburg 已提交
794
	/* likely incorrect csum if alternate IP extension headers found */
795
	if (ipv6 &&
796
	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
797
		/* don't increment checksum err here, non-fatal err */
798 799
		return;

800
	/* there was some L4 error, count error and punt packet to the stack */
801
	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
802 803 804 805 806 807
		goto checksum_fail;

	/* handle packets that were not able to be checksummed due
	 * to arrival speed, in this case the stack can compute
	 * the csum.
	 */
808
	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
809 810
		return;

811 812 813 814 815
	/* The hardware supported by this driver does not validate outer
	 * checksums for tunneled VXLAN or GENEVE frames.  I don't agree
	 * with it but the specification states that you "MAY validate", it
	 * doesn't make it a hard requirement so if we have validated the
	 * inner checksum report CHECKSUM_UNNECESSARY.
816
	 */
817 818 819 820
	if (decoded.inner_prot & (I40E_RX_PTYPE_INNER_PROT_TCP |
				  I40E_RX_PTYPE_INNER_PROT_UDP |
				  I40E_RX_PTYPE_INNER_PROT_SCTP))
		tunnel = true;
821

822
	skb->ip_summed = CHECKSUM_UNNECESSARY;
823
	skb->csum_level = tunnel ? 1 : 0;
824 825 826 827 828

	return;

checksum_fail:
	vsi->back->hw_csum_rx_error++;
829 830 831
}

/**
832
 * i40e_ptype_to_htype - get a hash type
833 834 835 836
 * @ptype: the ptype value from the descriptor
 *
 * Returns a hash type to be used by skb_set_hash
 **/
837
static inline int i40e_ptype_to_htype(u8 ptype)
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
{
	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);

	if (!decoded.known)
		return PKT_HASH_TYPE_NONE;

	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
		return PKT_HASH_TYPE_L4;
	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
		return PKT_HASH_TYPE_L3;
	else
		return PKT_HASH_TYPE_L2;
}

854 855 856 857 858 859 860 861 862 863 864
/**
 * i40e_rx_hash - set the hash value in the skb
 * @ring: descriptor ring
 * @rx_desc: specific descriptor
 **/
static inline void i40e_rx_hash(struct i40e_ring *ring,
				union i40e_rx_desc *rx_desc,
				struct sk_buff *skb,
				u8 rx_ptype)
{
	u32 hash;
865
	const __le64 rss_mask =
866 867 868 869 870 871 872 873 874 875 876 877
		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);

	if (ring->netdev->features & NETIF_F_RXHASH)
		return;

	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
	}
}

878
/**
879 880 881 882 883
 * i40evf_process_skb_fields - Populate skb header fields from Rx descriptor
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being populated
 * @rx_ptype: the packet type decoded by hardware
884
 *
885 886 887
 * This function checks the ring, descriptor, and packet information in
 * order to populate the hash, checksum, VLAN, protocol, and
 * other fields within the skb.
888
 **/
889 890 891 892
static inline
void i40evf_process_skb_fields(struct i40e_ring *rx_ring,
			       union i40e_rx_desc *rx_desc, struct sk_buff *skb,
			       u8 rx_ptype)
893
{
894
	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
895

896 897
	/* modifies the skb - consumes the enet header */
	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
898

899
	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
900

901 902
	skb_record_rx_queue(skb, rx_ring->queue_index);
}
903

904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
/**
 * i40e_pull_tail - i40e specific version of skb_pull_tail
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @skb: pointer to current skb being adjusted
 *
 * This function is an i40e specific version of __pskb_pull_tail.  The
 * main difference between this version and the original function is that
 * this function can make several assumptions about the state of things
 * that allow for significant optimizations versus the standard function.
 * As a result we can do things like drop a frag and maintain an accurate
 * truesize for the skb.
 */
static void i40e_pull_tail(struct i40e_ring *rx_ring, struct sk_buff *skb)
{
	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
	unsigned char *va;
	unsigned int pull_len;
921

922 923 924 925 926
	/* it is valid to use page_address instead of kmap since we are
	 * working with pages allocated out of the lomem pool per
	 * alloc_page(GFP_ATOMIC)
	 */
	va = skb_frag_address(frag);
927

928 929 930 931
	/* we need the header to contain the greater of either ETH_HLEN or
	 * 60 bytes if the skb->len is less than 60 for skb_pad.
	 */
	pull_len = eth_get_headlen(va, I40E_RX_HDR_SIZE);
932

933 934
	/* align pull length to size of long to optimize memcpy performance */
	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
935

936 937 938 939 940 941
	/* update all of the pointers */
	skb_frag_size_sub(frag, pull_len);
	frag->page_offset += pull_len;
	skb->data_len -= pull_len;
	skb->tail += pull_len;
}
942

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
/**
 * i40e_cleanup_headers - Correct empty headers
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @skb: pointer to current skb being fixed
 *
 * Also address the case where we are pulling data in on pages only
 * and as such no data is present in the skb header.
 *
 * In addition if skb is not at least 60 bytes we need to pad it so that
 * it is large enough to qualify as a valid Ethernet frame.
 *
 * Returns true if an error was encountered and skb was freed.
 **/
static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
{
	/* place header in linear portion of buffer */
	if (skb_is_nonlinear(skb))
		i40e_pull_tail(rx_ring, skb);
961

962 963 964
	/* if eth_skb_pad returns an error the skb was freed */
	if (eth_skb_pad(skb))
		return true;
965

966 967
	return false;
}
968

969 970 971 972 973 974 975 976 977 978 979 980
/**
 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
 * @rx_ring: rx descriptor ring to store buffers on
 * @old_buff: donor buffer to have page reused
 *
 * Synchronizes page for reuse by the adapter
 **/
static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
			       struct i40e_rx_buffer *old_buff)
{
	struct i40e_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;
981

982
	new_buff = &rx_ring->rx_bi[nta];
983

984 985 986
	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
987

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
	/* transfer page from old buffer to new buffer */
	*new_buff = *old_buff;
}

/**
 * i40e_page_is_reserved - check if reuse is possible
 * @page: page struct to check
 */
static inline bool i40e_page_is_reserved(struct page *page)
{
	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
}

/**
 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: buffer containing page to add
 * @rx_desc: descriptor containing length of buffer written by hardware
 * @skb: sk_buff to place the data into
 *
 * This function will add the data contained in rx_buffer->page to the skb.
 * This is done either through a direct copy if the data in the buffer is
 * less than the skb header size, otherwise it will just attach the page as
 * a frag to the skb.
 *
 * The function will then update the page offset if necessary and return
 * true if the buffer can be reused by the adapter.
 **/
static bool i40e_add_rx_frag(struct i40e_ring *rx_ring,
			     struct i40e_rx_buffer *rx_buffer,
			     union i40e_rx_desc *rx_desc,
			     struct sk_buff *skb)
{
	struct page *page = rx_buffer->page;
	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	unsigned int size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
			    I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
#if (PAGE_SIZE < 8192)
	unsigned int truesize = I40E_RXBUFFER_2048;
#else
	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
	unsigned int last_offset = PAGE_SIZE - I40E_RXBUFFER_2048;
1030
#endif
1031

1032 1033 1034 1035 1036
	/* will the data fit in the skb we allocated? if so, just
	 * copy it as it is pretty small anyway
	 */
	if ((size <= I40E_RX_HDR_SIZE) && !skb_is_nonlinear(skb)) {
		unsigned char *va = page_address(page) + rx_buffer->page_offset;
1037

1038
		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
1039

1040 1041 1042
		/* page is not reserved, we can reuse buffer as-is */
		if (likely(!i40e_page_is_reserved(page)))
			return true;
1043

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
		/* this page cannot be reused so discard it */
		__free_pages(page, 0);
		return false;
	}

	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
			rx_buffer->page_offset, size, truesize);

	/* avoid re-using remote pages */
	if (unlikely(i40e_page_is_reserved(page)))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
	if (unlikely(page_count(page) != 1))
		return false;

	/* flip page offset to other buffer */
	rx_buffer->page_offset ^= truesize;
#else
	/* move offset up to the next cache line */
	rx_buffer->page_offset += truesize;

	if (rx_buffer->page_offset > last_offset)
		return false;
#endif

	/* Even if we own the page, we are not allowed to use atomic_set()
	 * This would break get_page_unless_zero() users.
	 */
	get_page(rx_buffer->page);

	return true;
}

/**
 * i40evf_fetch_rx_buffer - Allocate skb and populate it
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_desc: descriptor containing info written by hardware
 *
 * This function allocates an skb on the fly, and populates it with the page
 * data from the current receive descriptor, taking care to set up the skb
 * correctly, as well as handling calling the page recycle function if
 * necessary.
 */
static inline
struct sk_buff *i40evf_fetch_rx_buffer(struct i40e_ring *rx_ring,
				       union i40e_rx_desc *rx_desc)
{
	struct i40e_rx_buffer *rx_buffer;
	struct sk_buff *skb;
	struct page *page;

	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
	page = rx_buffer->page;
	prefetchw(page);

	skb = rx_buffer->skb;

	if (likely(!skb)) {
		void *page_addr = page_address(page) + rx_buffer->page_offset;

		/* prefetch first cache line of first page */
		prefetch(page_addr);
#if L1_CACHE_BYTES < 128
		prefetch(page_addr + L1_CACHE_BYTES);
#endif

		/* allocate a skb to store the frags */
		skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
				       I40E_RX_HDR_SIZE,
				       GFP_ATOMIC | __GFP_NOWARN);
		if (unlikely(!skb)) {
			rx_ring->rx_stats.alloc_buff_failed++;
			return NULL;
		}

		/* we will be copying header into skb->data in
		 * pskb_may_pull so it is in our interest to prefetch
		 * it now to avoid a possible cache miss
		 */
		prefetchw(skb->data);
	} else {
		rx_buffer->skb = NULL;
	}

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
				      I40E_RXBUFFER_2048,
				      DMA_FROM_DEVICE);

	/* pull page into skb */
	if (i40e_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
		/* hand second half of page back to the ring */
		i40e_reuse_rx_page(rx_ring, rx_buffer);
		rx_ring->rx_stats.page_reuse_count++;
	} else {
		/* we are not reusing the buffer so unmap it */
		dma_unmap_page(rx_ring->dev, rx_buffer->dma, PAGE_SIZE,
			       DMA_FROM_DEVICE);
	}

	/* clear contents of buffer_info */
	rx_buffer->page = NULL;

	return skb;
}

/**
 * i40e_is_non_eop - process handling of non-EOP buffers
 * @rx_ring: Rx ring being processed
 * @rx_desc: Rx descriptor for current buffer
 * @skb: Current socket buffer containing buffer in progress
 *
 * This function updates next to clean.  If the buffer is an EOP buffer
 * this function exits returning false, otherwise it will place the
 * sk_buff in the next buffer to be chained and return true indicating
 * that this is in fact a non-EOP buffer.
 **/
static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
			    union i40e_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(I40E_RX_DESC(rx_ring, ntc));

	/* if we are the last buffer then there is nothing else to do */
#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
		return false;

	/* place skb in next buffer to be received */
	rx_ring->rx_bi[ntc].skb = skb;
	rx_ring->rx_stats.non_eop_descs++;

	return true;
1187 1188 1189
}

/**
1190 1191 1192 1193 1194 1195 1196 1197
 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
 * @rx_ring: rx descriptor ring to transact packets on
 * @budget: Total limit on number of packets to process
 *
 * This function provides a "bounce buffer" approach to Rx interrupt
 * processing.  The advantage to this is that on systems that have
 * expensive overhead for IOMMU access this provides a means of avoiding
 * it by maintaining the mapping of the page to the system.
1198
 *
1199
 * Returns amount of work completed
1200
 **/
1201
static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1202 1203 1204
{
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1205
	bool failure = false;
1206

1207 1208
	while (likely(total_rx_packets < budget)) {
		union i40e_rx_desc *rx_desc;
1209
		struct sk_buff *skb;
1210
		u32 rx_status;
1211
		u16 vlan_tag;
1212 1213 1214
		u8 rx_ptype;
		u64 qword;

1215 1216
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1217
			failure = failure ||
1218
				  i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
1219 1220 1221
			cleaned_count = 0;
		}

1222 1223
		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);

1224
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1225 1226
		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
			   I40E_RXD_QW1_PTYPE_SHIFT;
1227
		rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1228
			    I40E_RXD_QW1_STATUS_SHIFT;
1229

1230
		if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1231 1232
			break;

1233 1234 1235 1236 1237 1238 1239 1240
		/* status_error_len will always be zero for unused descriptors
		 * because it's cleared in cleanup, and overlaps with hdr_addr
		 * which is always zero because packet split isn't used, if the
		 * hardware wrote DD then it will be non-zero
		 */
		if (!rx_desc->wb.qword1.status_error_len)
			break;

1241 1242 1243 1244
		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * DD bit is set.
		 */
1245
		dma_rmb();
1246

1247 1248 1249
		skb = i40evf_fetch_rx_buffer(rx_ring, rx_desc);
		if (!skb)
			break;
1250 1251 1252

		cleaned_count++;

1253
		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
1254 1255
			continue;

1256 1257 1258 1259 1260 1261
		/* ERR_MASK will only have valid bits if EOP set, and
		 * what we are doing here is actually checking
		 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
		 * the error field
		 */
		if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1262 1263 1264 1265
			dev_kfree_skb_any(skb);
			continue;
		}

1266 1267 1268
		if (i40e_cleanup_headers(rx_ring, skb))
			continue;

1269 1270 1271
		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;

1272 1273
		/* populate checksum, VLAN, and protocol */
		i40evf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1274 1275


1276 1277 1278
		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;

1279 1280
		i40e_receive_skb(rx_ring, skb, vlan_tag);

1281 1282 1283
		/* update budget accounting */
		total_rx_packets++;
	}
1284 1285 1286 1287 1288 1289 1290 1291

	u64_stats_update_begin(&rx_ring->syncp);
	rx_ring->stats.packets += total_rx_packets;
	rx_ring->stats.bytes += total_rx_bytes;
	u64_stats_update_end(&rx_ring->syncp);
	rx_ring->q_vector->rx.total_packets += total_rx_packets;
	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;

1292
	/* guarantee a trip back through this routine if there was a failure */
1293
	return failure ? budget : total_rx_packets;
1294 1295
}

1296 1297 1298 1299 1300
static u32 i40e_buildreg_itr(const int type, const u16 itr)
{
	u32 val;

	val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
1301 1302 1303
	      /* Don't clear PBA because that can cause lost interrupts that
	       * came in while we were cleaning/polling
	       */
1304 1305 1306 1307 1308 1309 1310 1311 1312
	      (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
	      (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);

	return val;
}

/* a small macro to shorten up some long lines */
#define INTREG I40E_VFINT_DYN_CTLN1

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
/**
 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
 * @vsi: the VSI we care about
 * @q_vector: q_vector for which itr is being updated and interrupt enabled
 *
 **/
static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
					  struct i40e_q_vector *q_vector)
{
	struct i40e_hw *hw = &vsi->back->hw;
1323 1324
	bool rx = false, tx = false;
	u32 rxval, txval;
1325 1326 1327
	int vector;

	vector = (q_vector->v_idx + vsi->base_vector);
1328 1329 1330 1331

	/* avoid dynamic calculation if in countdown mode OR if
	 * all dynamic is disabled
	 */
1332 1333
	rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);

1334 1335 1336 1337 1338 1339
	if (q_vector->itr_countdown > 0 ||
	    (!ITR_IS_DYNAMIC(vsi->rx_itr_setting) &&
	     !ITR_IS_DYNAMIC(vsi->tx_itr_setting))) {
		goto enable_int;
	}

1340
	if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
1341 1342
		rx = i40e_set_new_dynamic_itr(&q_vector->rx);
		rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1343
	}
J
Jesse Brandeburg 已提交
1344

1345
	if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
1346 1347 1348
		tx = i40e_set_new_dynamic_itr(&q_vector->tx);
		txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
	}
J
Jesse Brandeburg 已提交
1349

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	if (rx || tx) {
		/* get the higher of the two ITR adjustments and
		 * use the same value for both ITR registers
		 * when in adaptive mode (Rx and/or Tx)
		 */
		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);

		q_vector->tx.itr = q_vector->rx.itr = itr;
		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
		tx = true;
		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
		rx = true;
1362
	}
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376

	/* only need to enable the interrupt once, but need
	 * to possibly update both ITR values
	 */
	if (rx) {
		/* set the INTENA_MSK_MASK so that this first write
		 * won't actually enable the interrupt, instead just
		 * updating the ITR (it's bit 31 PF and VF)
		 */
		rxval |= BIT(31);
		/* don't check _DOWN because interrupt isn't being enabled */
		wr32(hw, INTREG(vector - 1), rxval);
	}

1377
enable_int:
1378 1379
	if (!test_bit(__I40E_DOWN, &vsi->state))
		wr32(hw, INTREG(vector - 1), txval);
1380 1381 1382 1383 1384

	if (q_vector->itr_countdown)
		q_vector->itr_countdown--;
	else
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1385 1386
}

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
/**
 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
 * @napi: napi struct with our devices info in it
 * @budget: amount of work driver is allowed to do this pass, in packets
 *
 * This function will clean all queues associated with a q_vector.
 *
 * Returns the amount of work done
 **/
int i40evf_napi_poll(struct napi_struct *napi, int budget)
{
	struct i40e_q_vector *q_vector =
			       container_of(napi, struct i40e_q_vector, napi);
	struct i40e_vsi *vsi = q_vector->vsi;
	struct i40e_ring *ring;
	bool clean_complete = true;
1403
	bool arm_wb = false;
1404
	int budget_per_ring;
1405
	int work_done = 0;
1406 1407 1408 1409 1410 1411 1412 1413 1414

	if (test_bit(__I40E_DOWN, &vsi->state)) {
		napi_complete(napi);
		return 0;
	}

	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
1415
	i40e_for_each_ring(ring, q_vector->tx) {
1416
		if (!i40e_clean_tx_irq(vsi, ring, budget)) {
1417 1418 1419 1420
			clean_complete = false;
			continue;
		}
		arm_wb |= ring->arm_wb;
1421
		ring->arm_wb = false;
1422
	}
1423

1424 1425 1426 1427
	/* Handle case where we are called by netpoll with a budget of 0 */
	if (budget <= 0)
		goto tx_only;

1428 1429 1430 1431 1432
	/* We attempt to distribute budget to each Rx queue fairly, but don't
	 * allow the budget to go below 1 because that would exit polling early.
	 */
	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);

1433
	i40e_for_each_ring(ring, q_vector->rx) {
1434
		int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
1435 1436

		work_done += cleaned;
1437 1438 1439
		/* if we clean as many as budgeted, we must not be done */
		if (cleaned >= budget_per_ring)
			clean_complete = false;
1440
	}
1441 1442

	/* If work not completed, return budget and polling will return */
1443
	if (!clean_complete) {
1444
tx_only:
1445 1446
		if (arm_wb) {
			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1447
			i40e_enable_wb_on_itr(vsi, q_vector);
1448
		}
1449
		return budget;
1450
	}
1451

1452 1453 1454
	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
		q_vector->arm_wb_state = false;

1455
	/* Work is done so exit the polling mode and re-enable the interrupt */
1456
	napi_complete_done(napi, work_done);
1457
	i40e_update_enable_itr(vsi, q_vector);
1458 1459 1460 1461
	return 0;
}

/**
1462
 * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 * @flags:   the tx flags to be set
 *
 * Checks the skb and set up correspondingly several generic transmit flags
 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
 *
 * Returns error code indicate the frame should be dropped upon error and the
 * otherwise  returns 0 to indicate the flags has been set properly.
 **/
1473 1474 1475
static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
					       struct i40e_ring *tx_ring,
					       u32 *flags)
1476 1477 1478 1479
{
	__be16 protocol = skb->protocol;
	u32  tx_flags = 0;

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
	if (protocol == htons(ETH_P_8021Q) &&
	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
		/* When HW VLAN acceleration is turned off by the user the
		 * stack sets the protocol to 8021q so that the driver
		 * can take any steps required to support the SW only
		 * VLAN handling.  In our case the driver doesn't need
		 * to take any further steps so just set the protocol
		 * to the encapsulated ethertype.
		 */
		skb->protocol = vlan_get_protocol(skb);
		goto out;
	}

1493
	/* if we have a HW VLAN tag being added, default to the HW one */
1494 1495
	if (skb_vlan_tag_present(skb)) {
		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1496 1497 1498 1499
		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
	/* else if it is a SW VLAN, check the next protocol and store the tag */
	} else if (protocol == htons(ETH_P_8021Q)) {
		struct vlan_hdr *vhdr, _vhdr;
J
Jesse Brandeburg 已提交
1500

1501 1502 1503 1504 1505 1506 1507 1508 1509
		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
		if (!vhdr)
			return -EINVAL;

		protocol = vhdr->h_vlan_encapsulated_proto;
		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
	}

1510
out:
1511 1512 1513 1514 1515 1516 1517 1518
	*flags = tx_flags;
	return 0;
}

/**
 * i40e_tso - set up the tso context descriptor
 * @skb:      ptr to the skb we're sending
 * @hdr_len:  ptr to the size of the packet header
1519
 * @cd_type_cmd_tso_mss: Quad Word 1
1520 1521 1522
 *
 * Returns 0 if no TSO can happen, 1 if tso is going, or error
 **/
1523
static int i40e_tso(struct sk_buff *skb, u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
1524
{
1525
	u64 cd_cmd, cd_tso_len, cd_mss;
1526 1527 1528 1529 1530
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
1531 1532
	union {
		struct tcphdr *tcp;
1533
		struct udphdr *udp;
1534 1535 1536
		unsigned char *hdr;
	} l4;
	u32 paylen, l4_offset;
1537 1538
	int err;

1539 1540 1541
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

1542 1543 1544
	if (!skb_is_gso(skb))
		return 0;

1545 1546 1547
	err = skb_cow_head(skb, 0);
	if (err < 0)
		return err;
1548

1549 1550
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
1551

1552 1553 1554 1555
	/* initialize outer IP header fields */
	if (ip.v4->version == 4) {
		ip.v4->tot_len = 0;
		ip.v4->check = 0;
1556
	} else {
1557 1558 1559
		ip.v6->payload_len = 0;
	}

1560
	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1561
					 SKB_GSO_GRE_CSUM |
1562
					 SKB_GSO_IPXIP4 |
1563
					 SKB_GSO_IPXIP6 |
1564
					 SKB_GSO_UDP_TUNNEL |
1565
					 SKB_GSO_UDP_TUNNEL_CSUM)) {
1566 1567 1568 1569
		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
			l4.udp->len = 0;

1570 1571 1572 1573
			/* determine offset of outer transport header */
			l4_offset = l4.hdr - skb->data;

			/* remove payload length from outer checksum */
1574 1575
			paylen = skb->len - l4_offset;
			csum_replace_by_diff(&l4.udp->check, htonl(paylen));
1576 1577
		}

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
		/* reset pointers to inner headers */
		ip.hdr = skb_inner_network_header(skb);
		l4.hdr = skb_inner_transport_header(skb);

		/* initialize inner IP header fields */
		if (ip.v4->version == 4) {
			ip.v4->tot_len = 0;
			ip.v4->check = 0;
		} else {
			ip.v6->payload_len = 0;
		}
1589 1590
	}

1591 1592 1593 1594
	/* determine offset of inner transport header */
	l4_offset = l4.hdr - skb->data;

	/* remove payload length from inner checksum */
1595 1596
	paylen = skb->len - l4_offset;
	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
1597 1598 1599

	/* compute length of segmentation header */
	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1600 1601 1602 1603 1604

	/* find the field values */
	cd_cmd = I40E_TX_CTX_DESC_TSO;
	cd_tso_len = skb->len - *hdr_len;
	cd_mss = skb_shinfo(skb)->gso_size;
1605 1606 1607
	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1608 1609 1610 1611 1612 1613
	return 1;
}

/**
 * i40e_tx_enable_csum - Enable Tx checksum offloads
 * @skb: send buffer
1614
 * @tx_flags: pointer to Tx flags currently set
1615 1616
 * @td_cmd: Tx descriptor command bits to set
 * @td_offset: Tx descriptor header offsets to set
1617
 * @tx_ring: Tx descriptor ring
1618 1619
 * @cd_tunneling: ptr to context desc bits
 **/
1620 1621 1622 1623
static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
			       u32 *td_cmd, u32 *td_offset,
			       struct i40e_ring *tx_ring,
			       u32 *cd_tunneling)
1624
{
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
	union {
		struct tcphdr *tcp;
		struct udphdr *udp;
		unsigned char *hdr;
	} l4;
1635
	unsigned char *exthdr;
1636
	u32 offset, cmd = 0;
1637
	__be16 frag_off;
1638 1639
	u8 l4_proto = 0;

1640 1641 1642
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

1643 1644
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
1645

1646 1647 1648
	/* compute outer L2 header size */
	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;

1649
	if (skb->encapsulation) {
1650
		u32 tunnel = 0;
1651 1652
		/* define outer network header type */
		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1653 1654 1655 1656
			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
				  I40E_TX_CTX_EXT_IP_IPV4 :
				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;

1657 1658
			l4_proto = ip.v4->protocol;
		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1659
			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
1660 1661

			exthdr = ip.hdr + sizeof(*ip.v6);
1662
			l4_proto = ip.v6->nexthdr;
1663 1664 1665
			if (l4.hdr != exthdr)
				ipv6_skip_exthdr(skb, exthdr - skb->data,
						 &l4_proto, &frag_off);
1666 1667 1668 1669
		}

		/* define outer transport */
		switch (l4_proto) {
1670
		case IPPROTO_UDP:
1671
			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
1672
			*tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1673
			break;
1674
		case IPPROTO_GRE:
1675
			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
1676 1677
			*tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
			break;
1678 1679 1680 1681 1682
		case IPPROTO_IPIP:
		case IPPROTO_IPV6:
			*tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
			l4.hdr = skb_inner_network_header(skb);
			break;
1683
		default:
1684 1685 1686 1687 1688
			if (*tx_flags & I40E_TX_FLAGS_TSO)
				return -1;

			skb_checksum_help(skb);
			return 0;
1689
		}
1690

1691 1692 1693 1694 1695 1696 1697
		/* compute outer L3 header size */
		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;

		/* switch IP header pointer from outer to inner header */
		ip.hdr = skb_inner_network_header(skb);

1698 1699 1700 1701
		/* compute tunnel header size */
		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;

1702 1703
		/* indicate if we need to offload outer UDP header */
		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
1704
		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1705 1706 1707
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;

1708 1709 1710
		/* record tunnel offload values */
		*cd_tunneling |= tunnel;

1711 1712
		/* switch L4 header pointer from outer to inner */
		l4.hdr = skb_inner_transport_header(skb);
1713
		l4_proto = 0;
1714

1715 1716 1717 1718 1719
		/* reset type as we transition from outer to inner headers */
		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
		if (ip.v4->version == 4)
			*tx_flags |= I40E_TX_FLAGS_IPV4;
		if (ip.v6->version == 6)
1720
			*tx_flags |= I40E_TX_FLAGS_IPV6;
1721 1722 1723
	}

	/* Enable IP checksum offloads */
1724
	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1725
		l4_proto = ip.v4->protocol;
1726 1727 1728
		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
1729 1730 1731
		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
		       I40E_TX_DESC_CMD_IIPT_IPV4;
1732
	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1733
		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1734 1735 1736 1737 1738 1739

		exthdr = ip.hdr + sizeof(*ip.v6);
		l4_proto = ip.v6->nexthdr;
		if (l4.hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data,
					 &l4_proto, &frag_off);
1740
	}
1741

1742 1743
	/* compute inner L3 header size */
	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1744 1745

	/* Enable L4 checksum offloads */
1746
	switch (l4_proto) {
1747 1748
	case IPPROTO_TCP:
		/* enable checksum offloads */
1749 1750
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1751 1752 1753
		break;
	case IPPROTO_SCTP:
		/* enable SCTP checksum offload */
1754 1755 1756
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
		offset |= (sizeof(struct sctphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1757 1758 1759
		break;
	case IPPROTO_UDP:
		/* enable UDP checksum offload */
1760 1761 1762
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
		offset |= (sizeof(struct udphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1763 1764
		break;
	default:
1765 1766 1767 1768
		if (*tx_flags & I40E_TX_FLAGS_TSO)
			return -1;
		skb_checksum_help(skb);
		return 0;
1769
	}
1770 1771 1772

	*td_cmd |= cmd;
	*td_offset |= offset;
1773 1774

	return 1;
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
}

/**
 * i40e_create_tx_ctx Build the Tx context descriptor
 * @tx_ring:  ring to create the descriptor on
 * @cd_type_cmd_tso_mss: Quad Word 1
 * @cd_tunneling: Quad Word 0 - bits 0-31
 * @cd_l2tag2: Quad Word 0 - bits 32-63
 **/
static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
			       const u64 cd_type_cmd_tso_mss,
			       const u32 cd_tunneling, const u32 cd_l2tag2)
{
	struct i40e_tx_context_desc *context_desc;
	int i = tx_ring->next_to_use;

1791 1792
	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
	    !cd_tunneling && !cd_l2tag2)
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
		return;

	/* grab the next descriptor */
	context_desc = I40E_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	/* cpu_to_le32 and assign to struct fields */
	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1804
	context_desc->rsvd = cpu_to_le16(0);
1805 1806 1807
	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
}

J
Jesse Brandeburg 已提交
1808
/**
1809
 * __i40evf_chk_linearize - Check if there are more than 8 buffers per packet
1810 1811
 * @skb:      send buffer
 *
1812 1813 1814 1815 1816 1817 1818 1819
 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
 * and so we need to figure out the cases where we need to linearize the skb.
 *
 * For TSO we need to count the TSO header and segment payload separately.
 * As such we need to check cases where we have 7 fragments or more as we
 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
 * the segment payload in the first descriptor, and another 7 for the
 * fragments.
1820
 **/
1821
bool __i40evf_chk_linearize(struct sk_buff *skb)
1822
{
1823
	const struct skb_frag_struct *frag, *stale;
1824
	int nr_frags, sum;
1825

1826
	/* no need to check if number of frags is less than 7 */
1827
	nr_frags = skb_shinfo(skb)->nr_frags;
1828
	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
1829
		return false;
1830

1831 1832
	/* We need to walk through the list and validate that each group
	 * of 6 fragments totals at least gso_size.  However we don't need
1833 1834
	 * to perform such validation on the last 6 since the last 6 cannot
	 * inherit any data from a descriptor after them.
1835
	 */
1836
	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
1837 1838 1839 1840 1841 1842 1843 1844
	frag = &skb_shinfo(skb)->frags[0];

	/* Initialize size to the negative value of gso_size minus 1.  We
	 * use this as the worst case scenerio in which the frag ahead
	 * of us only provides one byte which is why we are limited to 6
	 * descriptors for a single transmit as the header and previous
	 * fragment are already consuming 2 descriptors.
	 */
1845
	sum = 1 - skb_shinfo(skb)->gso_size;
1846

1847 1848 1849 1850 1851 1852
	/* Add size of frags 0 through 4 to create our initial sum */
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
1853 1854 1855 1856 1857 1858

	/* Walk through fragments adding latest fragment, testing it, and
	 * then removing stale fragments from the sum.
	 */
	stale = &skb_shinfo(skb)->frags[0];
	for (;;) {
1859
		sum += skb_frag_size(frag++);
1860 1861 1862 1863 1864 1865 1866 1867 1868

		/* if sum is negative we failed to make sufficient progress */
		if (sum < 0)
			return true;

		/* use pre-decrement to avoid processing last fragment */
		if (!--nr_frags)
			break;

1869
		sum -= skb_frag_size(stale++);
1870 1871
	}

1872
	return false;
1873 1874
}

1875 1876 1877 1878 1879 1880 1881
/**
 * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
 * @tx_ring: the ring to be checked
 * @size:    the size buffer we want to assure is available
 *
 * Returns -EBUSY if a stop is needed, else 0
 **/
1882
int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
{
	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
	/* Memory barrier before checking head and tail */
	smp_mb();

	/* Check again in a case another CPU has just made room available. */
	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
		return -EBUSY;

	/* A reprieve! - use start_queue because it doesn't call schedule */
	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
	++tx_ring->tx_stats.restart_queue;
	return 0;
}

1898
/**
1899
 * i40evf_tx_map - Build the Tx descriptor
1900 1901 1902 1903 1904 1905 1906 1907
 * @tx_ring:  ring to send buffer on
 * @skb:      send buffer
 * @first:    first buffer info buffer to use
 * @tx_flags: collected send information
 * @hdr_len:  size of the packet header
 * @td_cmd:   the command field in the descriptor
 * @td_offset: offset for checksum or crc
 **/
1908 1909 1910
static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
				 struct i40e_tx_buffer *first, u32 tx_flags,
				 const u8 hdr_len, u32 td_cmd, u32 td_offset)
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
{
	unsigned int data_len = skb->data_len;
	unsigned int size = skb_headlen(skb);
	struct skb_frag_struct *frag;
	struct i40e_tx_buffer *tx_bi;
	struct i40e_tx_desc *tx_desc;
	u16 i = tx_ring->next_to_use;
	u32 td_tag = 0;
	dma_addr_t dma;
	u16 gso_segs;
1921 1922 1923
	u16 desc_count = 0;
	bool tail_bump = true;
	bool do_rs = false;
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947

	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
			 I40E_TX_FLAGS_VLAN_SHIFT;
	}

	if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
		gso_segs = skb_shinfo(skb)->gso_segs;
	else
		gso_segs = 1;

	/* multiply data chunks by size of headers */
	first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
	first->gso_segs = gso_segs;
	first->skb = skb;
	first->tx_flags = tx_flags;

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);

	tx_desc = I40E_TX_DESC(tx_ring, i);
	tx_bi = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1948 1949
		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;

1950 1951 1952 1953 1954 1955 1956
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_bi, len, size);
		dma_unmap_addr_set(tx_bi, dma, dma);

1957 1958
		/* align size to end of page */
		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
1959 1960 1961 1962 1963
		tx_desc->buffer_addr = cpu_to_le64(dma);

		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
			tx_desc->cmd_type_offset_bsz =
				build_ctob(td_cmd, td_offset,
1964
					   max_data, td_tag);
1965 1966 1967

			tx_desc++;
			i++;
1968 1969
			desc_count++;

1970 1971 1972 1973 1974
			if (i == tx_ring->count) {
				tx_desc = I40E_TX_DESC(tx_ring, 0);
				i = 0;
			}

1975 1976
			dma += max_data;
			size -= max_data;
1977

1978
			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
			tx_desc->buffer_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;

		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
							  size, td_tag);

		tx_desc++;
		i++;
1990 1991
		desc_count++;

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
		if (i == tx_ring->count) {
			tx_desc = I40E_TX_DESC(tx_ring, 0);
			i = 0;
		}

		size = skb_frag_size(frag);
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
				       DMA_TO_DEVICE);

		tx_bi = &tx_ring->tx_bi[i];
	}

	/* set next_to_watch value indicating a packet is present */
	first->next_to_watch = tx_desc;

	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

2015 2016 2017
	netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
						 tx_ring->queue_index),
						 first->bytecount);
2018
	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066

	/* Algorithm to optimize tail and RS bit setting:
	 * if xmit_more is supported
	 *	if xmit_more is true
	 *		do not update tail and do not mark RS bit.
	 *	if xmit_more is false and last xmit_more was false
	 *		if every packet spanned less than 4 desc
	 *			then set RS bit on 4th packet and update tail
	 *			on every packet
	 *		else
	 *			update tail and set RS bit on every packet.
	 *	if xmit_more is false and last_xmit_more was true
	 *		update tail and set RS bit.
	 *
	 * Optimization: wmb to be issued only in case of tail update.
	 * Also optimize the Descriptor WB path for RS bit with the same
	 * algorithm.
	 *
	 * Note: If there are less than 4 packets
	 * pending and interrupts were disabled the service task will
	 * trigger a force WB.
	 */
	if (skb->xmit_more  &&
	    !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
						    tx_ring->queue_index))) {
		tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
		tail_bump = false;
	} else if (!skb->xmit_more &&
		   !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
						       tx_ring->queue_index)) &&
		   (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
		   (tx_ring->packet_stride < WB_STRIDE) &&
		   (desc_count < WB_STRIDE)) {
		tx_ring->packet_stride++;
	} else {
		tx_ring->packet_stride = 0;
		tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
		do_rs = true;
	}
	if (do_rs)
		tx_ring->packet_stride = 0;

	tx_desc->cmd_type_offset_bsz =
			build_ctob(td_cmd, td_offset, size, td_tag) |
			cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
						  I40E_TX_DESC_CMD_EOP) <<
						  I40E_TXD_QW1_CMD_SHIFT);

2067
	/* notify HW of packet */
2068
	if (!tail_bump)
2069
		prefetchw(tx_desc + 1);
2070

2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
	if (tail_bump) {
		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64).
		 */
		wmb();
		writel(i, tx_ring->tail);
	}

2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
	return;

dma_error:
	dev_info(tx_ring->dev, "TX DMA map failed\n");

	/* clear dma mappings for failed tx_bi map */
	for (;;) {
		tx_bi = &tx_ring->tx_bi[i];
		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
		if (tx_bi == first)
			break;
		if (i == 0)
			i = tx_ring->count;
		i--;
	}

	tx_ring->next_to_use = i;
}

/**
 * i40e_xmit_frame_ring - Sends buffer on Tx ring
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
					struct i40e_ring *tx_ring)
{
	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
	u32 cd_tunneling = 0, cd_l2tag2 = 0;
	struct i40e_tx_buffer *first;
	u32 td_offset = 0;
	u32 tx_flags = 0;
	__be16 protocol;
	u32 td_cmd = 0;
	u8 hdr_len = 0;
2118
	int tso, count;
J
Jesse Brandeburg 已提交
2119

2120 2121 2122
	/* prefetch the data, we'll need it later */
	prefetch(skb->data);

2123
	count = i40e_xmit_descriptor_count(skb);
2124 2125 2126
	if (i40e_chk_linearize(skb, count)) {
		if (__skb_linearize(skb))
			goto out_drop;
2127
		count = i40e_txd_use_count(skb->len);
2128 2129
		tx_ring->tx_stats.tx_linearize++;
	}
2130 2131 2132 2133 2134 2135 2136 2137 2138

	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
	 *       + 4 desc gap to avoid the cache line where head is,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time
	 */
	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
		tx_ring->tx_stats.tx_busy++;
2139
		return NETDEV_TX_BUSY;
2140
	}
2141 2142

	/* prepare the xmit flags */
2143
	if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2144 2145 2146
		goto out_drop;

	/* obtain protocol of skb */
2147
	protocol = vlan_get_protocol(skb);
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157

	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_bi[tx_ring->next_to_use];

	/* setup IPv4/IPv6 offloads */
	if (protocol == htons(ETH_P_IP))
		tx_flags |= I40E_TX_FLAGS_IPV4;
	else if (protocol == htons(ETH_P_IPV6))
		tx_flags |= I40E_TX_FLAGS_IPV6;

2158
	tso = i40e_tso(skb, &hdr_len, &cd_type_cmd_tso_mss);
2159 2160 2161 2162 2163 2164 2165

	if (tso < 0)
		goto out_drop;
	else if (tso)
		tx_flags |= I40E_TX_FLAGS_TSO;

	/* Always offload the checksum, since it's in the data descriptor */
2166 2167 2168 2169
	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
				  tx_ring, &cd_tunneling);
	if (tso < 0)
		goto out_drop;
2170

2171 2172 2173 2174 2175
	skb_tx_timestamp(skb);

	/* always enable CRC insertion offload */
	td_cmd |= I40E_TX_DESC_CMD_ICRC;

2176 2177 2178
	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
			   cd_tunneling, cd_l2tag2);

2179 2180
	i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
		      td_cmd, td_offset);
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198

	return NETDEV_TX_OK;

out_drop:
	dev_kfree_skb_any(skb);
	return NETDEV_TX_OK;
}

/**
 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
 * @skb:    send buffer
 * @netdev: network interface device structure
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
	struct i40evf_adapter *adapter = netdev_priv(netdev);
2199
	struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212

	/* hardware can't handle really short frames, hardware padding works
	 * beyond this point
	 */
	if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
		if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
			return NETDEV_TX_OK;
		skb->len = I40E_MIN_TX_LEN;
		skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
	}

	return i40e_xmit_frame_ring(skb, tx_ring);
}