i40e_txrx.c 61.8 KB
Newer Older
1 2 3
/*******************************************************************************
 *
 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
4
 * Copyright(c) 2013 - 2016 Intel Corporation.
5 6 7 8 9 10 11 12 13 14
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
15 16 17
 * You should have received a copy of the GNU General Public License along
 * with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
18 19 20 21 22 23 24 25 26
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information:
 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 ******************************************************************************/

27
#include <linux/prefetch.h>
28
#include <net/busy_poll.h>
29

30
#include "i40evf.h"
31
#include "i40e_prototype.h"
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
				u32 td_tag)
{
	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
}

#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)

/**
 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 * @ring:      the ring that owns the buffer
 * @tx_buffer: the buffer to free
 **/
static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
					    struct i40e_tx_buffer *tx_buffer)
{
	if (tx_buffer->skb) {
54 55 56 57
		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
			kfree(tx_buffer->raw_buf);
		else
			dev_kfree_skb_any(tx_buffer->skb);
58 59 60 61 62 63 64 65 66 67 68
		if (dma_unmap_len(tx_buffer, len))
			dma_unmap_single(ring->dev,
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
					 DMA_TO_DEVICE);
	} else if (dma_unmap_len(tx_buffer, len)) {
		dma_unmap_page(ring->dev,
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
			       DMA_TO_DEVICE);
	}
69

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
	dma_unmap_len_set(tx_buffer, len, 0);
	/* tx_buffer must be completely set up in the transmit path */
}

/**
 * i40evf_clean_tx_ring - Free any empty Tx buffers
 * @tx_ring: ring to be cleaned
 **/
void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!tx_ring->tx_bi)
		return;

	/* Free all the Tx ring sk_buffs */
	for (i = 0; i < tx_ring->count; i++)
		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);

	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	if (!tx_ring->netdev)
		return;

	/* cleanup Tx queue statistics */
106
	netdev_tx_reset_queue(txring_txq(tx_ring));
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
}

/**
 * i40evf_free_tx_resources - Free Tx resources per queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
{
	i40evf_clean_tx_ring(tx_ring);
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;

	if (tx_ring->desc) {
		dma_free_coherent(tx_ring->dev, tx_ring->size,
				  tx_ring->desc, tx_ring->dma);
		tx_ring->desc = NULL;
	}
}

J
Jesse Brandeburg 已提交
128
/**
129 130
 * i40evf_get_tx_pending - how many Tx descriptors not processed
 * @tx_ring: the ring of descriptors
131
 * @in_sw: is tx_pending being checked in SW or HW
J
Jesse Brandeburg 已提交
132
 *
133 134
 * Since there is no access to the ring head register
 * in XL710, we need to use our local copies
J
Jesse Brandeburg 已提交
135
 **/
136
u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw)
J
Jesse Brandeburg 已提交
137
{
138
	u32 head, tail;
J
Jesse Brandeburg 已提交
139

140
	head = ring->next_to_clean;
141 142 143 144 145 146 147
	tail = readl(ring->tail);

	if (head != tail)
		return (head < tail) ?
			tail - head : (tail + ring->count - head);

	return 0;
J
Jesse Brandeburg 已提交
148 149
}

150
#define WB_STRIDE 4
151

152 153
/**
 * i40e_clean_tx_irq - Reclaim resources after transmit completes
154 155 156
 * @vsi: the VSI we care about
 * @tx_ring: Tx ring to clean
 * @napi_budget: Used to determine if we are in netpoll
157 158 159
 *
 * Returns true if there's any budget left (e.g. the clean is finished)
 **/
160 161
static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
			      struct i40e_ring *tx_ring, int napi_budget)
162 163 164 165
{
	u16 i = tx_ring->next_to_clean;
	struct i40e_tx_buffer *tx_buf;
	struct i40e_tx_desc *tx_desc;
166 167
	unsigned int total_bytes = 0, total_packets = 0;
	unsigned int budget = vsi->work_limit;
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

	tx_buf = &tx_ring->tx_bi[i];
	tx_desc = I40E_TX_DESC(tx_ring, i);
	i -= tx_ring->count;

	do {
		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;

		/* prevent any other reads prior to eop_desc */
		read_barrier_depends();

183 184 185
		/* if the descriptor isn't done, no work yet to do */
		if (!(eop_desc->cmd_type_offset_bsz &
		      cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE)))
186 187 188 189 190 191 192 193 194 195
			break;

		/* clear next_to_watch to prevent false hangs */
		tx_buf->next_to_watch = NULL;

		/* update the statistics for this packet */
		total_bytes += tx_buf->bytecount;
		total_packets += tx_buf->gso_segs;

		/* free the skb */
196
		napi_consume_skb(tx_buf->skb, napi_budget);
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buf, dma),
				 dma_unmap_len(tx_buf, len),
				 DMA_TO_DEVICE);

		/* clear tx_buffer data */
		tx_buf->skb = NULL;
		dma_unmap_len_set(tx_buf, len, 0);

		/* unmap remaining buffers */
		while (tx_desc != eop_desc) {

			tx_buf++;
			tx_desc++;
			i++;
			if (unlikely(!i)) {
				i -= tx_ring->count;
				tx_buf = tx_ring->tx_bi;
				tx_desc = I40E_TX_DESC(tx_ring, 0);
			}

			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buf, len)) {
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buf, dma),
					       dma_unmap_len(tx_buf, len),
					       DMA_TO_DEVICE);
				dma_unmap_len_set(tx_buf, len, 0);
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buf++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buf = tx_ring->tx_bi;
			tx_desc = I40E_TX_DESC(tx_ring, 0);
		}

240 241
		prefetch(tx_desc);

242 243 244 245 246 247 248 249 250 251 252 253 254
		/* update budget accounting */
		budget--;
	} while (likely(budget));

	i += tx_ring->count;
	tx_ring->next_to_clean = i;
	u64_stats_update_begin(&tx_ring->syncp);
	tx_ring->stats.bytes += total_bytes;
	tx_ring->stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->syncp);
	tx_ring->q_vector->tx.total_bytes += total_bytes;
	tx_ring->q_vector->tx.total_packets += total_packets;

255 256 257 258 259 260
	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
		/* check to see if there are < 4 descriptors
		 * waiting to be written back, then kick the hardware to force
		 * them to be written back in case we stay in NAPI.
		 * In this mode on X722 we do not enable Interrupt.
		 */
261
		unsigned int j = i40evf_get_tx_pending(tx_ring, false);
262 263

		if (budget &&
264
		    ((j / WB_STRIDE) == 0) && (j > 0) &&
265
		    !test_bit(__I40E_DOWN, &vsi->state) &&
266 267 268 269
		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
			tx_ring->arm_wb = true;
	}

270 271
	/* notify netdev of completed buffers */
	netdev_tx_completed_queue(txring_txq(tx_ring),
272 273 274 275 276 277 278 279 280 281 282
				  total_packets, total_bytes);

#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
283
		   !test_bit(__I40E_DOWN, &vsi->state)) {
284 285 286 287 288 289
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);
			++tx_ring->tx_stats.restart_queue;
		}
	}

290
	return !!budget;
291 292
}

293
/**
294
 * i40evf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
295
 * @vsi: the VSI we care about
296
 * @q_vector: the vector on which to enable writeback
297 298
 *
 **/
299 300
static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
				  struct i40e_q_vector *q_vector)
301
{
302
	u16 flags = q_vector->tx.ring[0].flags;
303
	u32 val;
304

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
		return;

	if (q_vector->arm_wb_state)
		return;

	val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
	      I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */

	wr32(&vsi->back->hw,
	     I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
				  vsi->base_vector - 1), val);
	q_vector->arm_wb_state = true;
}

/**
 * i40evf_force_wb - Issue SW Interrupt so HW does a wb
 * @vsi: the VSI we care about
 * @q_vector: the vector  on which to force writeback
 *
 **/
void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
{
	u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
		  I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
		  I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
		  I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
		  /* allow 00 to be written to the index */;

	wr32(&vsi->back->hw,
	     I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
	     val);
337 338
}

339 340 341 342
/**
 * i40e_set_new_dynamic_itr - Find new ITR level
 * @rc: structure containing ring performance data
 *
343 344
 * Returns true if ITR changed, false if not
 *
345 346 347 348 349 350 351 352
 * Stores a new ITR value based on packets and byte counts during
 * the last interrupt.  The advantage of per interrupt computation
 * is faster updates and more accurate ITR for the current traffic
 * pattern.  Constants in this function were computed based on
 * theoretical maximum wire speed and thresholds were set based on
 * testing data as well as attempting to minimize response time
 * while increasing bulk throughput.
 **/
353
static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
354 355
{
	enum i40e_latency_range new_latency_range = rc->latency_range;
356
	struct i40e_q_vector *qv = rc->ring->q_vector;
357 358
	u32 new_itr = rc->itr;
	int bytes_per_int;
359
	int usecs;
360 361

	if (rc->total_packets == 0 || !rc->itr)
362
		return false;
363 364

	/* simple throttlerate management
365
	 *   0-10MB/s   lowest (50000 ints/s)
366
	 *  10-20MB/s   low    (20000 ints/s)
367 368
	 *  20-1249MB/s bulk   (18000 ints/s)
	 *  > 40000 Rx packets per second (8000 ints/s)
369 370 371 372
	 *
	 * The math works out because the divisor is in 10^(-6) which
	 * turns the bytes/us input value into MB/s values, but
	 * make sure to use usecs, as the register values written
373 374
	 * are in 2 usec increments in the ITR registers, and make sure
	 * to use the smoothed values that the countdown timer gives us.
375
	 */
376
	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
377
	bytes_per_int = rc->total_bytes / usecs;
378

379
	switch (new_latency_range) {
380 381 382 383 384 385 386 387 388 389 390
	case I40E_LOWEST_LATENCY:
		if (bytes_per_int > 10)
			new_latency_range = I40E_LOW_LATENCY;
		break;
	case I40E_LOW_LATENCY:
		if (bytes_per_int > 20)
			new_latency_range = I40E_BULK_LATENCY;
		else if (bytes_per_int <= 10)
			new_latency_range = I40E_LOWEST_LATENCY;
		break;
	case I40E_BULK_LATENCY:
391
	case I40E_ULTRA_LATENCY:
392 393 394
	default:
		if (bytes_per_int <= 20)
			new_latency_range = I40E_LOW_LATENCY;
395 396
		break;
	}
397 398 399 400 401 402 403 404 405 406 407 408

	/* this is to adjust RX more aggressively when streaming small
	 * packets.  The value of 40000 was picked as it is just beyond
	 * what the hardware can receive per second if in low latency
	 * mode.
	 */
#define RX_ULTRA_PACKET_RATE 40000

	if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
	    (&qv->rx == rc))
		new_latency_range = I40E_ULTRA_LATENCY;

409
	rc->latency_range = new_latency_range;
410 411 412

	switch (new_latency_range) {
	case I40E_LOWEST_LATENCY:
413
		new_itr = I40E_ITR_50K;
414 415 416 417 418
		break;
	case I40E_LOW_LATENCY:
		new_itr = I40E_ITR_20K;
		break;
	case I40E_BULK_LATENCY:
419 420 421
		new_itr = I40E_ITR_18K;
		break;
	case I40E_ULTRA_LATENCY:
422 423 424 425 426 427 428 429
		new_itr = I40E_ITR_8K;
		break;
	default:
		break;
	}

	rc->total_bytes = 0;
	rc->total_packets = 0;
430 431 432 433 434 435 436

	if (new_itr != rc->itr) {
		rc->itr = new_itr;
		return true;
	}

	return false;
437 438
}

J
Jesse Brandeburg 已提交
439
/**
440 441 442 443 444 445 446 447 448 449 450 451 452
 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
 * @tx_ring: the tx ring to set up
 *
 * Return 0 on success, negative on error
 **/
int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
{
	struct device *dev = tx_ring->dev;
	int bi_size;

	if (!dev)
		return -ENOMEM;

453 454
	/* warn if we are about to overwrite the pointer */
	WARN_ON(tx_ring->tx_bi);
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!tx_ring->tx_bi)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
	tx_ring->size = ALIGN(tx_ring->size, 4096);
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
			 tx_ring->size);
		goto err;
	}

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
	return 0;

err:
	kfree(tx_ring->tx_bi);
	tx_ring->tx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40evf_clean_rx_ring - Free Rx buffers
 * @rx_ring: ring to be cleaned
 **/
void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
{
	unsigned long bi_size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!rx_ring->rx_bi)
		return;

494 495 496 497 498
	if (rx_ring->skb) {
		dev_kfree_skb(rx_ring->skb);
		rx_ring->skb = NULL;
	}

499 500
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
501 502 503 504 505
		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];

		if (!rx_bi->page)
			continue;

506 507 508 509 510 511 512 513 514 515 516 517 518 519
		/* Invalidate cache lines that may have been written to by
		 * device so that we avoid corrupting memory.
		 */
		dma_sync_single_range_for_cpu(rx_ring->dev,
					      rx_bi->dma,
					      rx_bi->page_offset,
					      I40E_RXBUFFER_2048,
					      DMA_FROM_DEVICE);

		/* free resources associated with mapping */
		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
				     PAGE_SIZE,
				     DMA_FROM_DEVICE,
				     I40E_RX_DMA_ATTR);
520
		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
521 522 523

		rx_bi->page = NULL;
		rx_bi->page_offset = 0;
524 525 526 527 528 529 530 531
	}

	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_bi, 0, bi_size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

532
	rx_ring->next_to_alloc = 0;
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * i40evf_free_rx_resources - Free Rx resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
{
	i40evf_clean_rx_ring(rx_ring);
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;

	if (rx_ring->desc) {
		dma_free_coherent(rx_ring->dev, rx_ring->size,
				  rx_ring->desc, rx_ring->dma);
		rx_ring->desc = NULL;
	}
}

/**
 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	int bi_size;

567 568
	/* warn if we are about to overwrite the pointer */
	WARN_ON(rx_ring->rx_bi);
569 570 571 572 573
	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
	if (!rx_ring->rx_bi)
		goto err;

574
	u64_stats_init(&rx_ring->syncp);
575

576
	/* Round up to nearest 4K */
577
	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
578 579 580 581 582 583 584 585 586 587
	rx_ring->size = ALIGN(rx_ring->size, 4096);
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);

	if (!rx_ring->desc) {
		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
			 rx_ring->size);
		goto err;
	}

588
	rx_ring->next_to_alloc = 0;
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;
err:
	kfree(rx_ring->rx_bi);
	rx_ring->rx_bi = NULL;
	return -ENOMEM;
}

/**
 * i40e_release_rx_desc - Store the new tail and head values
 * @rx_ring: ring to bump
 * @val: new head index
 **/
static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
{
	rx_ring->next_to_use = val;
607 608 609 610

	/* update next to alloc since we have filled the ring */
	rx_ring->next_to_alloc = val;

611 612 613 614 615 616 617 618 619 620
	/* Force memory writes to complete before letting h/w
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
	 * such as IA-64).
	 */
	wmb();
	writel(val, rx_ring->tail);
}

/**
621 622 623
 * i40e_alloc_mapped_page - recycle or make a new page
 * @rx_ring: ring to use
 * @bi: rx_buffer struct to modify
624
 *
625 626
 * Returns true if the page was successfully allocated or
 * reused.
627
 **/
628 629
static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
				   struct i40e_rx_buffer *bi)
630
{
631 632
	struct page *page = bi->page;
	dma_addr_t dma;
633

634 635 636 637 638
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page)) {
		rx_ring->rx_stats.page_reuse_count++;
		return true;
	}
639

640 641 642 643 644 645
	/* alloc new page for storage */
	page = dev_alloc_page();
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
	}
646

647
	/* map page for use */
648 649 650 651
	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
				 PAGE_SIZE,
				 DMA_FROM_DEVICE,
				 I40E_RX_DMA_ATTR);
652

653 654
	/* if mapping failed free memory back to system since
	 * there isn't much point in holding memory we can't use
655
	 */
656 657 658 659
	if (dma_mapping_error(rx_ring->dev, dma)) {
		__free_pages(page, 0);
		rx_ring->rx_stats.alloc_page_failed++;
		return false;
660 661
	}

662 663 664
	bi->dma = dma;
	bi->page = page;
	bi->page_offset = 0;
665
	bi->pagecnt_bias = 1;
666

667 668
	return true;
}
669

670 671 672 673 674 675 676 677 678 679
/**
 * i40e_receive_skb - Send a completed packet up the stack
 * @rx_ring:  rx ring in play
 * @skb: packet to send up
 * @vlan_tag: vlan tag for packet
 **/
static void i40e_receive_skb(struct i40e_ring *rx_ring,
			     struct sk_buff *skb, u16 vlan_tag)
{
	struct i40e_q_vector *q_vector = rx_ring->q_vector;
680

681 682 683 684 685
	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
	    (vlan_tag & VLAN_VID_MASK))
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);

	napi_gro_receive(&q_vector->napi, skb);
686 687 688
}

/**
689
 * i40evf_alloc_rx_buffers - Replace used receive buffers
690 691
 * @rx_ring: ring to place buffers on
 * @cleaned_count: number of buffers to replace
692
 *
693
 * Returns false if all allocations were successful, true if any fail
694
 **/
695
bool i40evf_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
696
{
697
	u16 ntu = rx_ring->next_to_use;
698 699 700 701 702
	union i40e_rx_desc *rx_desc;
	struct i40e_rx_buffer *bi;

	/* do nothing if no valid netdev defined */
	if (!rx_ring->netdev || !cleaned_count)
703
		return false;
704

705 706
	rx_desc = I40E_RX_DESC(rx_ring, ntu);
	bi = &rx_ring->rx_bi[ntu];
707

708 709 710
	do {
		if (!i40e_alloc_mapped_page(rx_ring, bi))
			goto no_buffers;
711

712 713 714 715 716 717
		/* sync the buffer for use by the device */
		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
						 bi->page_offset,
						 I40E_RXBUFFER_2048,
						 DMA_FROM_DEVICE);

718 719 720 721
		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
722

723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
		rx_desc++;
		bi++;
		ntu++;
		if (unlikely(ntu == rx_ring->count)) {
			rx_desc = I40E_RX_DESC(rx_ring, 0);
			bi = rx_ring->rx_bi;
			ntu = 0;
		}

		/* clear the status bits for the next_to_use descriptor */
		rx_desc->wb.qword1.status_error_len = 0;

		cleaned_count--;
	} while (cleaned_count);

	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
740 741 742

	return false;

743
no_buffers:
744 745
	if (rx_ring->next_to_use != ntu)
		i40e_release_rx_desc(rx_ring, ntu);
746 747 748 749 750

	/* make sure to come back via polling to try again after
	 * allocation failure
	 */
	return true;
751 752 753 754 755 756
}

/**
 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
 * @vsi: the VSI we care about
 * @skb: skb currently being received and modified
757
 * @rx_desc: the receive descriptor
758 759 760
 **/
static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
				    struct sk_buff *skb,
761
				    union i40e_rx_desc *rx_desc)
762
{
763 764
	struct i40e_rx_ptype_decoded decoded;
	u32 rx_error, rx_status;
765
	bool ipv4, ipv6;
766 767 768 769 770 771 772 773 774 775
	u8 ptype;
	u64 qword;

	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
		   I40E_RXD_QW1_ERROR_SHIFT;
	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
		    I40E_RXD_QW1_STATUS_SHIFT;
	decoded = decode_rx_desc_ptype(ptype);
776 777 778

	skb->ip_summed = CHECKSUM_NONE;

779 780
	skb_checksum_none_assert(skb);

781
	/* Rx csum enabled and ip headers found? */
782 783 784 785
	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
		return;

	/* did the hardware decode the packet and checksum? */
786
	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
787 788 789 790
		return;

	/* both known and outer_ip must be set for the below code to work */
	if (!(decoded.known && decoded.outer_ip))
791 792
		return;

793 794 795 796
	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
797 798

	if (ipv4 &&
799 800
	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
801 802
		goto checksum_fail;

J
Jesse Brandeburg 已提交
803
	/* likely incorrect csum if alternate IP extension headers found */
804
	if (ipv6 &&
805
	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
806
		/* don't increment checksum err here, non-fatal err */
807 808
		return;

809
	/* there was some L4 error, count error and punt packet to the stack */
810
	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
811 812 813 814 815 816
		goto checksum_fail;

	/* handle packets that were not able to be checksummed due
	 * to arrival speed, in this case the stack can compute
	 * the csum.
	 */
817
	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
818 819
		return;

820 821 822
	/* If there is an outer header present that might contain a checksum
	 * we need to bump the checksum level by 1 to reflect the fact that
	 * we are indicating we validated the inner checksum.
823
	 */
824 825 826 827 828 829 830 831 832 833 834 835 836
	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
		skb->csum_level = 1;

	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
	switch (decoded.inner_prot) {
	case I40E_RX_PTYPE_INNER_PROT_TCP:
	case I40E_RX_PTYPE_INNER_PROT_UDP:
	case I40E_RX_PTYPE_INNER_PROT_SCTP:
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		/* fall though */
	default:
		break;
	}
837 838 839 840 841

	return;

checksum_fail:
	vsi->back->hw_csum_rx_error++;
842 843 844
}

/**
845
 * i40e_ptype_to_htype - get a hash type
846 847 848 849
 * @ptype: the ptype value from the descriptor
 *
 * Returns a hash type to be used by skb_set_hash
 **/
850
static inline int i40e_ptype_to_htype(u8 ptype)
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
{
	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);

	if (!decoded.known)
		return PKT_HASH_TYPE_NONE;

	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
		return PKT_HASH_TYPE_L4;
	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
		return PKT_HASH_TYPE_L3;
	else
		return PKT_HASH_TYPE_L2;
}

867 868 869 870 871 872 873 874 875 876 877
/**
 * i40e_rx_hash - set the hash value in the skb
 * @ring: descriptor ring
 * @rx_desc: specific descriptor
 **/
static inline void i40e_rx_hash(struct i40e_ring *ring,
				union i40e_rx_desc *rx_desc,
				struct sk_buff *skb,
				u8 rx_ptype)
{
	u32 hash;
878
	const __le64 rss_mask =
879 880 881 882 883 884 885 886 887 888 889 890
		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);

	if (ring->netdev->features & NETIF_F_RXHASH)
		return;

	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
	}
}

891
/**
892 893 894 895 896
 * i40evf_process_skb_fields - Populate skb header fields from Rx descriptor
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being populated
 * @rx_ptype: the packet type decoded by hardware
897
 *
898 899 900
 * This function checks the ring, descriptor, and packet information in
 * order to populate the hash, checksum, VLAN, protocol, and
 * other fields within the skb.
901
 **/
902 903 904 905
static inline
void i40evf_process_skb_fields(struct i40e_ring *rx_ring,
			       union i40e_rx_desc *rx_desc, struct sk_buff *skb,
			       u8 rx_ptype)
906
{
907
	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
908

909
	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
910

911
	skb_record_rx_queue(skb, rx_ring->queue_index);
912 913 914

	/* modifies the skb - consumes the enet header */
	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
915
}
916

917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
/**
 * i40e_cleanup_headers - Correct empty headers
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @skb: pointer to current skb being fixed
 *
 * Also address the case where we are pulling data in on pages only
 * and as such no data is present in the skb header.
 *
 * In addition if skb is not at least 60 bytes we need to pad it so that
 * it is large enough to qualify as a valid Ethernet frame.
 *
 * Returns true if an error was encountered and skb was freed.
 **/
static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
{
	/* if eth_skb_pad returns an error the skb was freed */
	if (eth_skb_pad(skb))
		return true;
935

936 937
	return false;
}
938

939 940 941 942 943 944 945 946 947 948 949 950
/**
 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
 * @rx_ring: rx descriptor ring to store buffers on
 * @old_buff: donor buffer to have page reused
 *
 * Synchronizes page for reuse by the adapter
 **/
static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
			       struct i40e_rx_buffer *old_buff)
{
	struct i40e_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;
951

952
	new_buff = &rx_ring->rx_bi[nta];
953

954 955 956
	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
957

958
	/* transfer page from old buffer to new buffer */
959 960 961 962
	new_buff->dma		= old_buff->dma;
	new_buff->page		= old_buff->page;
	new_buff->page_offset	= old_buff->page_offset;
	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
963 964 965
}

/**
966
 * i40e_page_is_reusable - check if any reuse is possible
967
 * @page: page struct to check
968 969 970
 *
 * A page is not reusable if it was allocated under low memory
 * conditions, or it's not in the same NUMA node as this CPU.
971
 */
972
static inline bool i40e_page_is_reusable(struct page *page)
973
{
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
	return (page_to_nid(page) == numa_mem_id()) &&
		!page_is_pfmemalloc(page);
}

/**
 * i40e_can_reuse_rx_page - Determine if this page can be reused by
 * the adapter for another receive
 *
 * @rx_buffer: buffer containing the page
 * @page: page address from rx_buffer
 * @truesize: actual size of the buffer in this page
 *
 * If page is reusable, rx_buffer->page_offset is adjusted to point to
 * an unused region in the page.
 *
 * For small pages, @truesize will be a constant value, half the size
 * of the memory at page.  We'll attempt to alternate between high and
 * low halves of the page, with one half ready for use by the hardware
 * and the other half being consumed by the stack.  We use the page
 * ref count to determine whether the stack has finished consuming the
 * portion of this page that was passed up with a previous packet.  If
 * the page ref count is >1, we'll assume the "other" half page is
 * still busy, and this page cannot be reused.
 *
 * For larger pages, @truesize will be the actual space used by the
 * received packet (adjusted upward to an even multiple of the cache
 * line size).  This will advance through the page by the amount
 * actually consumed by the received packets while there is still
 * space for a buffer.  Each region of larger pages will be used at
 * most once, after which the page will not be reused.
 *
 * In either case, if the page is reusable its refcount is increased.
 **/
static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
				   struct page *page,
				   const unsigned int truesize)
{
#if (PAGE_SIZE >= 8192)
	unsigned int last_offset = PAGE_SIZE - I40E_RXBUFFER_2048;
#endif
1014
	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias--;
1015 1016 1017 1018 1019 1020 1021

	/* Is any reuse possible? */
	if (unlikely(!i40e_page_is_reusable(page)))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
1022
	if (unlikely(page_count(page) != pagecnt_bias))
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
		return false;

	/* flip page offset to other buffer */
	rx_buffer->page_offset ^= truesize;
#else
	/* move offset up to the next cache line */
	rx_buffer->page_offset += truesize;

	if (rx_buffer->page_offset > last_offset)
		return false;
#endif

1035 1036 1037 1038 1039 1040 1041 1042
	/* If we have drained the page fragment pool we need to update
	 * the pagecnt_bias and page count so that we fully restock the
	 * number of references the driver holds.
	 */
	if (unlikely(pagecnt_bias == 1)) {
		page_ref_add(page, USHRT_MAX);
		rx_buffer->pagecnt_bias = USHRT_MAX;
	}
1043 1044

	return true;
1045 1046 1047 1048 1049 1050
}

/**
 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: buffer containing page to add
1051
 * @size: packet length from rx_desc
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
 * @skb: sk_buff to place the data into
 *
 * This function will add the data contained in rx_buffer->page to the skb.
 * This is done either through a direct copy if the data in the buffer is
 * less than the skb header size, otherwise it will just attach the page as
 * a frag to the skb.
 *
 * The function will then update the page offset if necessary and return
 * true if the buffer can be reused by the adapter.
 **/
static bool i40e_add_rx_frag(struct i40e_ring *rx_ring,
			     struct i40e_rx_buffer *rx_buffer,
1064
			     unsigned int size,
1065 1066 1067
			     struct sk_buff *skb)
{
	struct page *page = rx_buffer->page;
1068
	unsigned char *va = page_address(page) + rx_buffer->page_offset;
1069 1070 1071 1072
#if (PAGE_SIZE < 8192)
	unsigned int truesize = I40E_RXBUFFER_2048;
#else
	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
1073
#endif
1074 1075 1076 1077
	unsigned int pull_len;

	if (unlikely(skb_is_nonlinear(skb)))
		goto add_tail_frag;
1078

1079 1080 1081
	/* will the data fit in the skb we allocated? if so, just
	 * copy it as it is pretty small anyway
	 */
1082
	if (size <= I40E_RX_HDR_SIZE) {
1083
		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
1084

1085 1086
		/* page is reusable, we can reuse buffer as-is */
		if (likely(i40e_page_is_reusable(page)))
1087
			return true;
1088

1089 1090 1091 1092
		/* this page cannot be reused so discard it */
		return false;
	}

1093 1094 1095 1096 1097
	/* we need the header to contain the greater of either
	 * ETH_HLEN or 60 bytes if the skb->len is less than
	 * 60 for skb_pad.
	 */
	pull_len = eth_get_headlen(va, I40E_RX_HDR_SIZE);
1098

1099 1100 1101 1102
	/* align pull length to size of long to optimize
	 * memcpy performance
	 */
	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
1103

1104 1105 1106
	/* update all of the pointers */
	va += pull_len;
	size -= pull_len;
1107

1108 1109 1110
add_tail_frag:
	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
			(unsigned long)va & ~PAGE_MASK, size, truesize);
1111

1112
	return i40e_can_reuse_rx_page(rx_buffer, page, truesize);
1113 1114
}

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
/**
 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
 * @rx_ring: rx descriptor ring to transact packets on
 * @size: size of buffer to add to skb
 *
 * This function will pull an Rx buffer from the ring and synchronize it
 * for use by the CPU.
 */
static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
						 const unsigned int size)
{
	struct i40e_rx_buffer *rx_buffer;

	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
	prefetchw(rx_buffer->page);

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
				      size,
				      DMA_FROM_DEVICE);

	return rx_buffer;
}

1141 1142 1143
/**
 * i40evf_fetch_rx_buffer - Allocate skb and populate it
 * @rx_ring: rx descriptor ring to transact packets on
1144
 * @rx_buffer: rx buffer to pull data from
1145
 * @size: size of buffer to add to skb
1146 1147 1148 1149 1150 1151 1152 1153
 *
 * This function allocates an skb on the fly, and populates it with the page
 * data from the current receive descriptor, taking care to set up the skb
 * correctly, as well as handling calling the page recycle function if
 * necessary.
 */
static inline
struct sk_buff *i40evf_fetch_rx_buffer(struct i40e_ring *rx_ring,
1154
				       struct i40e_rx_buffer *rx_buffer,
1155 1156
				       struct sk_buff *skb,
				       unsigned int size)
1157 1158
{
	if (likely(!skb)) {
1159 1160
		void *page_addr = page_address(rx_buffer->page) +
				  rx_buffer->page_offset;
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178

		/* prefetch first cache line of first page */
		prefetch(page_addr);
#if L1_CACHE_BYTES < 128
		prefetch(page_addr + L1_CACHE_BYTES);
#endif

		/* allocate a skb to store the frags */
		skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
				       I40E_RX_HDR_SIZE,
				       GFP_ATOMIC | __GFP_NOWARN);
		if (unlikely(!skb)) {
			rx_ring->rx_stats.alloc_buff_failed++;
			return NULL;
		}
	}

	/* pull page into skb */
1179
	if (i40e_add_rx_frag(rx_ring, rx_buffer, size, skb)) {
1180 1181 1182 1183 1184
		/* hand second half of page back to the ring */
		i40e_reuse_rx_page(rx_ring, rx_buffer);
		rx_ring->rx_stats.page_reuse_count++;
	} else {
		/* we are not reusing the buffer so unmap it */
1185 1186
		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, PAGE_SIZE,
				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
1187 1188
		__page_frag_cache_drain(rx_buffer->page,
					rx_buffer->pagecnt_bias);
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
	}

	/* clear contents of buffer_info */
	rx_buffer->page = NULL;

	return skb;
}

/**
 * i40e_is_non_eop - process handling of non-EOP buffers
 * @rx_ring: Rx ring being processed
 * @rx_desc: Rx descriptor for current buffer
 * @skb: Current socket buffer containing buffer in progress
 *
 * This function updates next to clean.  If the buffer is an EOP buffer
 * this function exits returning false, otherwise it will place the
 * sk_buff in the next buffer to be chained and return true indicating
 * that this is in fact a non-EOP buffer.
 **/
static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
			    union i40e_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(I40E_RX_DESC(rx_ring, ntc));

	/* if we are the last buffer then there is nothing else to do */
#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
		return false;

	rx_ring->rx_stats.non_eop_descs++;

	return true;
1228 1229 1230
}

/**
1231 1232 1233 1234 1235 1236 1237 1238
 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
 * @rx_ring: rx descriptor ring to transact packets on
 * @budget: Total limit on number of packets to process
 *
 * This function provides a "bounce buffer" approach to Rx interrupt
 * processing.  The advantage to this is that on systems that have
 * expensive overhead for IOMMU access this provides a means of avoiding
 * it by maintaining the mapping of the page to the system.
1239
 *
1240
 * Returns amount of work completed
1241
 **/
1242
static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1243 1244
{
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1245
	struct sk_buff *skb = rx_ring->skb;
1246
	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1247
	bool failure = false;
1248

1249
	while (likely(total_rx_packets < budget)) {
1250
		struct i40e_rx_buffer *rx_buffer;
1251
		union i40e_rx_desc *rx_desc;
1252
		unsigned int size;
1253
		u16 vlan_tag;
1254 1255 1256
		u8 rx_ptype;
		u64 qword;

1257 1258
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1259
			failure = failure ||
1260
				  i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
1261 1262 1263
			cleaned_count = 0;
		}

1264 1265 1266 1267 1268
		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);

		/* status_error_len will always be zero for unused descriptors
		 * because it's cleared in cleanup, and overlaps with hdr_addr
		 * which is always zero because packet split isn't used, if the
1269
		 * hardware wrote DD then the length will be non-zero
1270
		 */
1271 1272 1273 1274
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
		if (!size)
1275 1276
			break;

1277
		/* This memory barrier is needed to keep us from reading
1278 1279
		 * any other fields out of the rx_desc until we have
		 * verified the descriptor has been written back.
1280
		 */
1281
		dma_rmb();
1282

1283 1284 1285
		rx_buffer = i40e_get_rx_buffer(rx_ring, size);

		skb = i40evf_fetch_rx_buffer(rx_ring, rx_buffer, skb, size);
1286 1287
		if (!skb)
			break;
1288 1289 1290

		cleaned_count++;

1291
		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
1292 1293
			continue;

1294 1295 1296 1297 1298 1299
		/* ERR_MASK will only have valid bits if EOP set, and
		 * what we are doing here is actually checking
		 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
		 * the error field
		 */
		if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1300
			dev_kfree_skb_any(skb);
1301
			skb = NULL;
1302 1303 1304
			continue;
		}

1305 1306
		if (i40e_cleanup_headers(rx_ring, skb)) {
			skb = NULL;
1307
			continue;
1308
		}
1309

1310 1311 1312
		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;

1313 1314 1315 1316
		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
			   I40E_RXD_QW1_PTYPE_SHIFT;

1317 1318
		/* populate checksum, VLAN, and protocol */
		i40evf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1319 1320


1321 1322 1323
		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;

1324
		i40e_receive_skb(rx_ring, skb, vlan_tag);
1325
		skb = NULL;
1326

1327 1328 1329
		/* update budget accounting */
		total_rx_packets++;
	}
1330

1331 1332
	rx_ring->skb = skb;

1333 1334 1335 1336 1337 1338 1339
	u64_stats_update_begin(&rx_ring->syncp);
	rx_ring->stats.packets += total_rx_packets;
	rx_ring->stats.bytes += total_rx_bytes;
	u64_stats_update_end(&rx_ring->syncp);
	rx_ring->q_vector->rx.total_packets += total_rx_packets;
	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;

1340
	/* guarantee a trip back through this routine if there was a failure */
1341
	return failure ? budget : total_rx_packets;
1342 1343
}

1344 1345 1346 1347 1348
static u32 i40e_buildreg_itr(const int type, const u16 itr)
{
	u32 val;

	val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
1349 1350 1351
	      /* Don't clear PBA because that can cause lost interrupts that
	       * came in while we were cleaning/polling
	       */
1352 1353 1354 1355 1356 1357 1358 1359
	      (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
	      (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);

	return val;
}

/* a small macro to shorten up some long lines */
#define INTREG I40E_VFINT_DYN_CTLN1
1360
static inline int get_rx_itr(struct i40e_vsi *vsi, int idx)
1361 1362 1363
{
	struct i40evf_adapter *adapter = vsi->back;

1364
	return adapter->rx_rings[idx].rx_itr_setting;
1365 1366
}

1367
static inline int get_tx_itr(struct i40e_vsi *vsi, int idx)
1368 1369 1370
{
	struct i40evf_adapter *adapter = vsi->back;

1371
	return adapter->tx_rings[idx].tx_itr_setting;
1372
}
1373

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
/**
 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
 * @vsi: the VSI we care about
 * @q_vector: q_vector for which itr is being updated and interrupt enabled
 *
 **/
static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
					  struct i40e_q_vector *q_vector)
{
	struct i40e_hw *hw = &vsi->back->hw;
1384 1385
	bool rx = false, tx = false;
	u32 rxval, txval;
1386
	int vector;
1387 1388
	int idx = q_vector->v_idx;
	int rx_itr_setting, tx_itr_setting;
1389 1390

	vector = (q_vector->v_idx + vsi->base_vector);
1391 1392 1393 1394

	/* avoid dynamic calculation if in countdown mode OR if
	 * all dynamic is disabled
	 */
1395 1396
	rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);

1397 1398
	rx_itr_setting = get_rx_itr(vsi, idx);
	tx_itr_setting = get_tx_itr(vsi, idx);
1399

1400
	if (q_vector->itr_countdown > 0 ||
1401 1402
	    (!ITR_IS_DYNAMIC(rx_itr_setting) &&
	     !ITR_IS_DYNAMIC(tx_itr_setting))) {
1403 1404 1405
		goto enable_int;
	}

1406
	if (ITR_IS_DYNAMIC(rx_itr_setting)) {
1407 1408
		rx = i40e_set_new_dynamic_itr(&q_vector->rx);
		rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1409
	}
J
Jesse Brandeburg 已提交
1410

1411
	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
1412 1413 1414
		tx = i40e_set_new_dynamic_itr(&q_vector->tx);
		txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
	}
J
Jesse Brandeburg 已提交
1415

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
	if (rx || tx) {
		/* get the higher of the two ITR adjustments and
		 * use the same value for both ITR registers
		 * when in adaptive mode (Rx and/or Tx)
		 */
		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);

		q_vector->tx.itr = q_vector->rx.itr = itr;
		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
		tx = true;
		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
		rx = true;
1428
	}
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442

	/* only need to enable the interrupt once, but need
	 * to possibly update both ITR values
	 */
	if (rx) {
		/* set the INTENA_MSK_MASK so that this first write
		 * won't actually enable the interrupt, instead just
		 * updating the ITR (it's bit 31 PF and VF)
		 */
		rxval |= BIT(31);
		/* don't check _DOWN because interrupt isn't being enabled */
		wr32(hw, INTREG(vector - 1), rxval);
	}

1443
enable_int:
1444 1445
	if (!test_bit(__I40E_DOWN, &vsi->state))
		wr32(hw, INTREG(vector - 1), txval);
1446 1447 1448 1449 1450

	if (q_vector->itr_countdown)
		q_vector->itr_countdown--;
	else
		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1451 1452
}

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
/**
 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
 * @napi: napi struct with our devices info in it
 * @budget: amount of work driver is allowed to do this pass, in packets
 *
 * This function will clean all queues associated with a q_vector.
 *
 * Returns the amount of work done
 **/
int i40evf_napi_poll(struct napi_struct *napi, int budget)
{
	struct i40e_q_vector *q_vector =
			       container_of(napi, struct i40e_q_vector, napi);
	struct i40e_vsi *vsi = q_vector->vsi;
	struct i40e_ring *ring;
	bool clean_complete = true;
1469
	bool arm_wb = false;
1470
	int budget_per_ring;
1471
	int work_done = 0;
1472 1473 1474 1475 1476 1477 1478 1479 1480

	if (test_bit(__I40E_DOWN, &vsi->state)) {
		napi_complete(napi);
		return 0;
	}

	/* Since the actual Tx work is minimal, we can give the Tx a larger
	 * budget and be more aggressive about cleaning up the Tx descriptors.
	 */
1481
	i40e_for_each_ring(ring, q_vector->tx) {
1482
		if (!i40e_clean_tx_irq(vsi, ring, budget)) {
1483 1484 1485 1486
			clean_complete = false;
			continue;
		}
		arm_wb |= ring->arm_wb;
1487
		ring->arm_wb = false;
1488
	}
1489

1490 1491 1492 1493
	/* Handle case where we are called by netpoll with a budget of 0 */
	if (budget <= 0)
		goto tx_only;

1494 1495 1496 1497 1498
	/* We attempt to distribute budget to each Rx queue fairly, but don't
	 * allow the budget to go below 1 because that would exit polling early.
	 */
	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);

1499
	i40e_for_each_ring(ring, q_vector->rx) {
1500
		int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
1501 1502

		work_done += cleaned;
1503 1504 1505
		/* if we clean as many as budgeted, we must not be done */
		if (cleaned >= budget_per_ring)
			clean_complete = false;
1506
	}
1507 1508

	/* If work not completed, return budget and polling will return */
1509
	if (!clean_complete) {
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
		const cpumask_t *aff_mask = &q_vector->affinity_mask;
		int cpu_id = smp_processor_id();

		/* It is possible that the interrupt affinity has changed but,
		 * if the cpu is pegged at 100%, polling will never exit while
		 * traffic continues and the interrupt will be stuck on this
		 * cpu.  We check to make sure affinity is correct before we
		 * continue to poll, otherwise we must stop polling so the
		 * interrupt can move to the correct cpu.
		 */
		if (likely(cpumask_test_cpu(cpu_id, aff_mask))) {
1521
tx_only:
1522 1523 1524 1525 1526
			if (arm_wb) {
				q_vector->tx.ring[0].tx_stats.tx_force_wb++;
				i40e_enable_wb_on_itr(vsi, q_vector);
			}
			return budget;
1527
		}
1528
	}
1529

1530 1531 1532
	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
		q_vector->arm_wb_state = false;

1533
	/* Work is done so exit the polling mode and re-enable the interrupt */
1534
	napi_complete_done(napi, work_done);
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544

	/* If we're prematurely stopping polling to fix the interrupt
	 * affinity we want to make sure polling starts back up so we
	 * issue a call to i40evf_force_wb which triggers a SW interrupt.
	 */
	if (!clean_complete)
		i40evf_force_wb(vsi, q_vector);
	else
		i40e_update_enable_itr(vsi, q_vector);

1545
	return min(work_done, budget - 1);
1546 1547 1548
}

/**
1549
 * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 * @flags:   the tx flags to be set
 *
 * Checks the skb and set up correspondingly several generic transmit flags
 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
 *
 * Returns error code indicate the frame should be dropped upon error and the
 * otherwise  returns 0 to indicate the flags has been set properly.
 **/
1560 1561 1562
static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
					       struct i40e_ring *tx_ring,
					       u32 *flags)
1563 1564 1565 1566
{
	__be16 protocol = skb->protocol;
	u32  tx_flags = 0;

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
	if (protocol == htons(ETH_P_8021Q) &&
	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
		/* When HW VLAN acceleration is turned off by the user the
		 * stack sets the protocol to 8021q so that the driver
		 * can take any steps required to support the SW only
		 * VLAN handling.  In our case the driver doesn't need
		 * to take any further steps so just set the protocol
		 * to the encapsulated ethertype.
		 */
		skb->protocol = vlan_get_protocol(skb);
		goto out;
	}

1580
	/* if we have a HW VLAN tag being added, default to the HW one */
1581 1582
	if (skb_vlan_tag_present(skb)) {
		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1583 1584 1585 1586
		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
	/* else if it is a SW VLAN, check the next protocol and store the tag */
	} else if (protocol == htons(ETH_P_8021Q)) {
		struct vlan_hdr *vhdr, _vhdr;
J
Jesse Brandeburg 已提交
1587

1588 1589 1590 1591 1592 1593 1594 1595 1596
		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
		if (!vhdr)
			return -EINVAL;

		protocol = vhdr->h_vlan_encapsulated_proto;
		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
	}

1597
out:
1598 1599 1600 1601 1602 1603
	*flags = tx_flags;
	return 0;
}

/**
 * i40e_tso - set up the tso context descriptor
1604
 * @first:    pointer to first Tx buffer for xmit
1605
 * @hdr_len:  ptr to the size of the packet header
1606
 * @cd_type_cmd_tso_mss: Quad Word 1
1607 1608 1609
 *
 * Returns 0 if no TSO can happen, 1 if tso is going, or error
 **/
1610 1611
static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
		    u64 *cd_type_cmd_tso_mss)
1612
{
1613
	struct sk_buff *skb = first->skb;
1614
	u64 cd_cmd, cd_tso_len, cd_mss;
1615 1616 1617 1618 1619
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
1620 1621
	union {
		struct tcphdr *tcp;
1622
		struct udphdr *udp;
1623 1624 1625
		unsigned char *hdr;
	} l4;
	u32 paylen, l4_offset;
1626
	u16 gso_segs, gso_size;
1627 1628
	int err;

1629 1630 1631
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

1632 1633 1634
	if (!skb_is_gso(skb))
		return 0;

1635 1636 1637
	err = skb_cow_head(skb, 0);
	if (err < 0)
		return err;
1638

1639 1640
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
1641

1642 1643 1644 1645
	/* initialize outer IP header fields */
	if (ip.v4->version == 4) {
		ip.v4->tot_len = 0;
		ip.v4->check = 0;
1646
	} else {
1647 1648 1649
		ip.v6->payload_len = 0;
	}

1650
	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1651
					 SKB_GSO_GRE_CSUM |
1652
					 SKB_GSO_IPXIP4 |
1653
					 SKB_GSO_IPXIP6 |
1654
					 SKB_GSO_UDP_TUNNEL |
1655
					 SKB_GSO_UDP_TUNNEL_CSUM)) {
1656 1657 1658 1659
		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
			l4.udp->len = 0;

1660 1661 1662 1663
			/* determine offset of outer transport header */
			l4_offset = l4.hdr - skb->data;

			/* remove payload length from outer checksum */
1664
			paylen = skb->len - l4_offset;
1665 1666
			csum_replace_by_diff(&l4.udp->check,
					     (__force __wsum)htonl(paylen));
1667 1668
		}

1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
		/* reset pointers to inner headers */
		ip.hdr = skb_inner_network_header(skb);
		l4.hdr = skb_inner_transport_header(skb);

		/* initialize inner IP header fields */
		if (ip.v4->version == 4) {
			ip.v4->tot_len = 0;
			ip.v4->check = 0;
		} else {
			ip.v6->payload_len = 0;
		}
1680 1681
	}

1682 1683 1684 1685
	/* determine offset of inner transport header */
	l4_offset = l4.hdr - skb->data;

	/* remove payload length from inner checksum */
1686
	paylen = skb->len - l4_offset;
1687
	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
1688 1689 1690

	/* compute length of segmentation header */
	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1691

1692 1693 1694 1695 1696 1697 1698 1699
	/* pull values out of skb_shinfo */
	gso_size = skb_shinfo(skb)->gso_size;
	gso_segs = skb_shinfo(skb)->gso_segs;

	/* update GSO size and bytecount with header size */
	first->gso_segs = gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

1700 1701 1702
	/* find the field values */
	cd_cmd = I40E_TX_CTX_DESC_TSO;
	cd_tso_len = skb->len - *hdr_len;
1703
	cd_mss = gso_size;
1704 1705 1706
	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1707 1708 1709 1710 1711 1712
	return 1;
}

/**
 * i40e_tx_enable_csum - Enable Tx checksum offloads
 * @skb: send buffer
1713
 * @tx_flags: pointer to Tx flags currently set
1714 1715
 * @td_cmd: Tx descriptor command bits to set
 * @td_offset: Tx descriptor header offsets to set
1716
 * @tx_ring: Tx descriptor ring
1717 1718
 * @cd_tunneling: ptr to context desc bits
 **/
1719 1720 1721 1722
static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
			       u32 *td_cmd, u32 *td_offset,
			       struct i40e_ring *tx_ring,
			       u32 *cd_tunneling)
1723
{
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
	union {
		struct tcphdr *tcp;
		struct udphdr *udp;
		unsigned char *hdr;
	} l4;
1734
	unsigned char *exthdr;
1735
	u32 offset, cmd = 0;
1736
	__be16 frag_off;
1737 1738
	u8 l4_proto = 0;

1739 1740 1741
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

1742 1743
	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_transport_header(skb);
1744

1745 1746 1747
	/* compute outer L2 header size */
	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;

1748
	if (skb->encapsulation) {
1749
		u32 tunnel = 0;
1750 1751
		/* define outer network header type */
		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1752 1753 1754 1755
			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
				  I40E_TX_CTX_EXT_IP_IPV4 :
				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;

1756 1757
			l4_proto = ip.v4->protocol;
		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1758
			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
1759 1760

			exthdr = ip.hdr + sizeof(*ip.v6);
1761
			l4_proto = ip.v6->nexthdr;
1762 1763 1764
			if (l4.hdr != exthdr)
				ipv6_skip_exthdr(skb, exthdr - skb->data,
						 &l4_proto, &frag_off);
1765 1766 1767 1768
		}

		/* define outer transport */
		switch (l4_proto) {
1769
		case IPPROTO_UDP:
1770
			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
1771
			*tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1772
			break;
1773
		case IPPROTO_GRE:
1774
			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
1775 1776
			*tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
			break;
1777 1778 1779 1780 1781
		case IPPROTO_IPIP:
		case IPPROTO_IPV6:
			*tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
			l4.hdr = skb_inner_network_header(skb);
			break;
1782
		default:
1783 1784 1785 1786 1787
			if (*tx_flags & I40E_TX_FLAGS_TSO)
				return -1;

			skb_checksum_help(skb);
			return 0;
1788
		}
1789

1790 1791 1792 1793 1794 1795 1796
		/* compute outer L3 header size */
		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;

		/* switch IP header pointer from outer to inner header */
		ip.hdr = skb_inner_network_header(skb);

1797 1798 1799 1800
		/* compute tunnel header size */
		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;

1801 1802
		/* indicate if we need to offload outer UDP header */
		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
1803
		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1804 1805 1806
		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;

1807 1808 1809
		/* record tunnel offload values */
		*cd_tunneling |= tunnel;

1810 1811
		/* switch L4 header pointer from outer to inner */
		l4.hdr = skb_inner_transport_header(skb);
1812
		l4_proto = 0;
1813

1814 1815 1816 1817 1818
		/* reset type as we transition from outer to inner headers */
		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
		if (ip.v4->version == 4)
			*tx_flags |= I40E_TX_FLAGS_IPV4;
		if (ip.v6->version == 6)
1819
			*tx_flags |= I40E_TX_FLAGS_IPV6;
1820 1821 1822
	}

	/* Enable IP checksum offloads */
1823
	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1824
		l4_proto = ip.v4->protocol;
1825 1826 1827
		/* the stack computes the IP header already, the only time we
		 * need the hardware to recompute it is in the case of TSO.
		 */
1828 1829 1830
		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
		       I40E_TX_DESC_CMD_IIPT_IPV4;
1831
	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1832
		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1833 1834 1835 1836 1837 1838

		exthdr = ip.hdr + sizeof(*ip.v6);
		l4_proto = ip.v6->nexthdr;
		if (l4.hdr != exthdr)
			ipv6_skip_exthdr(skb, exthdr - skb->data,
					 &l4_proto, &frag_off);
1839
	}
1840

1841 1842
	/* compute inner L3 header size */
	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1843 1844

	/* Enable L4 checksum offloads */
1845
	switch (l4_proto) {
1846 1847
	case IPPROTO_TCP:
		/* enable checksum offloads */
1848 1849
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1850 1851 1852
		break;
	case IPPROTO_SCTP:
		/* enable SCTP checksum offload */
1853 1854 1855
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
		offset |= (sizeof(struct sctphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1856 1857 1858
		break;
	case IPPROTO_UDP:
		/* enable UDP checksum offload */
1859 1860 1861
		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
		offset |= (sizeof(struct udphdr) >> 2) <<
			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1862 1863
		break;
	default:
1864 1865 1866 1867
		if (*tx_flags & I40E_TX_FLAGS_TSO)
			return -1;
		skb_checksum_help(skb);
		return 0;
1868
	}
1869 1870 1871

	*td_cmd |= cmd;
	*td_offset |= offset;
1872 1873

	return 1;
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
}

/**
 * i40e_create_tx_ctx Build the Tx context descriptor
 * @tx_ring:  ring to create the descriptor on
 * @cd_type_cmd_tso_mss: Quad Word 1
 * @cd_tunneling: Quad Word 0 - bits 0-31
 * @cd_l2tag2: Quad Word 0 - bits 32-63
 **/
static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
			       const u64 cd_type_cmd_tso_mss,
			       const u32 cd_tunneling, const u32 cd_l2tag2)
{
	struct i40e_tx_context_desc *context_desc;
	int i = tx_ring->next_to_use;

1890 1891
	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
	    !cd_tunneling && !cd_l2tag2)
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
		return;

	/* grab the next descriptor */
	context_desc = I40E_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	/* cpu_to_le32 and assign to struct fields */
	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1903
	context_desc->rsvd = cpu_to_le16(0);
1904 1905 1906
	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
}

J
Jesse Brandeburg 已提交
1907
/**
1908
 * __i40evf_chk_linearize - Check if there are more than 8 buffers per packet
1909 1910
 * @skb:      send buffer
 *
1911 1912 1913 1914 1915 1916 1917 1918
 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
 * and so we need to figure out the cases where we need to linearize the skb.
 *
 * For TSO we need to count the TSO header and segment payload separately.
 * As such we need to check cases where we have 7 fragments or more as we
 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
 * the segment payload in the first descriptor, and another 7 for the
 * fragments.
1919
 **/
1920
bool __i40evf_chk_linearize(struct sk_buff *skb)
1921
{
1922
	const struct skb_frag_struct *frag, *stale;
1923
	int nr_frags, sum;
1924

1925
	/* no need to check if number of frags is less than 7 */
1926
	nr_frags = skb_shinfo(skb)->nr_frags;
1927
	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
1928
		return false;
1929

1930
	/* We need to walk through the list and validate that each group
1931
	 * of 6 fragments totals at least gso_size.
1932
	 */
1933
	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
1934 1935 1936 1937 1938 1939 1940 1941
	frag = &skb_shinfo(skb)->frags[0];

	/* Initialize size to the negative value of gso_size minus 1.  We
	 * use this as the worst case scenerio in which the frag ahead
	 * of us only provides one byte which is why we are limited to 6
	 * descriptors for a single transmit as the header and previous
	 * fragment are already consuming 2 descriptors.
	 */
1942
	sum = 1 - skb_shinfo(skb)->gso_size;
1943

1944 1945 1946 1947 1948 1949
	/* Add size of frags 0 through 4 to create our initial sum */
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
	sum += skb_frag_size(frag++);
1950 1951 1952 1953 1954 1955

	/* Walk through fragments adding latest fragment, testing it, and
	 * then removing stale fragments from the sum.
	 */
	stale = &skb_shinfo(skb)->frags[0];
	for (;;) {
1956
		sum += skb_frag_size(frag++);
1957 1958 1959 1960 1961

		/* if sum is negative we failed to make sufficient progress */
		if (sum < 0)
			return true;

1962
		if (!nr_frags--)
1963 1964
			break;

1965
		sum -= skb_frag_size(stale++);
1966 1967
	}

1968
	return false;
1969 1970
}

1971 1972 1973 1974 1975 1976 1977
/**
 * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
 * @tx_ring: the ring to be checked
 * @size:    the size buffer we want to assure is available
 *
 * Returns -EBUSY if a stop is needed, else 0
 **/
1978
int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
{
	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
	/* Memory barrier before checking head and tail */
	smp_mb();

	/* Check again in a case another CPU has just made room available. */
	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
		return -EBUSY;

	/* A reprieve! - use start_queue because it doesn't call schedule */
	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
	++tx_ring->tx_stats.restart_queue;
	return 0;
}

1994
/**
1995
 * i40evf_tx_map - Build the Tx descriptor
1996 1997 1998 1999 2000 2001 2002 2003
 * @tx_ring:  ring to send buffer on
 * @skb:      send buffer
 * @first:    first buffer info buffer to use
 * @tx_flags: collected send information
 * @hdr_len:  size of the packet header
 * @td_cmd:   the command field in the descriptor
 * @td_offset: offset for checksum or crc
 **/
2004 2005 2006
static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
				 struct i40e_tx_buffer *first, u32 tx_flags,
				 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
{
	unsigned int data_len = skb->data_len;
	unsigned int size = skb_headlen(skb);
	struct skb_frag_struct *frag;
	struct i40e_tx_buffer *tx_bi;
	struct i40e_tx_desc *tx_desc;
	u16 i = tx_ring->next_to_use;
	u32 td_tag = 0;
	dma_addr_t dma;

	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
			 I40E_TX_FLAGS_VLAN_SHIFT;
	}

	first->tx_flags = tx_flags;

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);

	tx_desc = I40E_TX_DESC(tx_ring, i);
	tx_bi = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2031 2032
		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;

2033 2034 2035 2036 2037 2038 2039
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_bi, len, size);
		dma_unmap_addr_set(tx_bi, dma, dma);

2040 2041
		/* align size to end of page */
		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
2042 2043 2044 2045 2046
		tx_desc->buffer_addr = cpu_to_le64(dma);

		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
			tx_desc->cmd_type_offset_bsz =
				build_ctob(td_cmd, td_offset,
2047
					   max_data, td_tag);
2048 2049 2050

			tx_desc++;
			i++;
2051

2052 2053 2054 2055 2056
			if (i == tx_ring->count) {
				tx_desc = I40E_TX_DESC(tx_ring, 0);
				i = 0;
			}

2057 2058
			dma += max_data;
			size -= max_data;
2059

2060
			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
			tx_desc->buffer_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;

		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
							  size, td_tag);

		tx_desc++;
		i++;
2072

2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
		if (i == tx_ring->count) {
			tx_desc = I40E_TX_DESC(tx_ring, 0);
			i = 0;
		}

		size = skb_frag_size(frag);
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
				       DMA_TO_DEVICE);

		tx_bi = &tx_ring->tx_bi[i];
	}

2087
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
2088 2089 2090 2091 2092 2093 2094

	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

2095
	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2096

2097 2098
	/* write last descriptor with RS and EOP bits */
	td_cmd |= I40E_TXD_CMD;
2099
	tx_desc->cmd_type_offset_bsz =
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
			build_ctob(td_cmd, td_offset, size, td_tag);

	/* Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.
	 *
	 * We also use this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

	/* set next_to_watch value indicating a packet is present */
	first->next_to_watch = tx_desc;
2112

2113
	/* notify HW of packet */
2114
	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
2115
		writel(i, tx_ring->tail);
2116 2117 2118 2119 2120

		/* we need this if more than one processor can write to our tail
		 * at a time, it synchronizes IO on IA64/Altix systems
		 */
		mmiowb();
2121
	}
2122

2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
	return;

dma_error:
	dev_info(tx_ring->dev, "TX DMA map failed\n");

	/* clear dma mappings for failed tx_bi map */
	for (;;) {
		tx_bi = &tx_ring->tx_bi[i];
		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
		if (tx_bi == first)
			break;
		if (i == 0)
			i = tx_ring->count;
		i--;
	}

	tx_ring->next_to_use = i;
}

/**
 * i40e_xmit_frame_ring - Sends buffer on Tx ring
 * @skb:     send buffer
 * @tx_ring: ring to send buffer on
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
					struct i40e_ring *tx_ring)
{
	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
	u32 cd_tunneling = 0, cd_l2tag2 = 0;
	struct i40e_tx_buffer *first;
	u32 td_offset = 0;
	u32 tx_flags = 0;
	__be16 protocol;
	u32 td_cmd = 0;
	u8 hdr_len = 0;
2160
	int tso, count;
J
Jesse Brandeburg 已提交
2161

2162 2163 2164
	/* prefetch the data, we'll need it later */
	prefetch(skb->data);

2165
	count = i40e_xmit_descriptor_count(skb);
2166
	if (i40e_chk_linearize(skb, count)) {
2167 2168 2169 2170
		if (__skb_linearize(skb)) {
			dev_kfree_skb_any(skb);
			return NETDEV_TX_OK;
		}
2171
		count = i40e_txd_use_count(skb->len);
2172 2173
		tx_ring->tx_stats.tx_linearize++;
	}
2174 2175 2176 2177 2178 2179 2180 2181 2182

	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
	 *       + 4 desc gap to avoid the cache line where head is,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time
	 */
	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
		tx_ring->tx_stats.tx_busy++;
2183
		return NETDEV_TX_BUSY;
2184
	}
2185

2186 2187 2188 2189 2190 2191
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_bi[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

2192
	/* prepare the xmit flags */
2193
	if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2194 2195 2196
		goto out_drop;

	/* obtain protocol of skb */
2197
	protocol = vlan_get_protocol(skb);
2198 2199 2200 2201 2202 2203 2204

	/* setup IPv4/IPv6 offloads */
	if (protocol == htons(ETH_P_IP))
		tx_flags |= I40E_TX_FLAGS_IPV4;
	else if (protocol == htons(ETH_P_IPV6))
		tx_flags |= I40E_TX_FLAGS_IPV6;

2205
	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
2206 2207 2208 2209 2210 2211 2212

	if (tso < 0)
		goto out_drop;
	else if (tso)
		tx_flags |= I40E_TX_FLAGS_TSO;

	/* Always offload the checksum, since it's in the data descriptor */
2213 2214 2215 2216
	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
				  tx_ring, &cd_tunneling);
	if (tso < 0)
		goto out_drop;
2217

2218 2219 2220 2221 2222
	skb_tx_timestamp(skb);

	/* always enable CRC insertion offload */
	td_cmd |= I40E_TX_DESC_CMD_ICRC;

2223 2224 2225
	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
			   cd_tunneling, cd_l2tag2);

2226 2227
	i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
		      td_cmd, td_offset);
2228 2229 2230 2231

	return NETDEV_TX_OK;

out_drop:
2232 2233
	dev_kfree_skb_any(first->skb);
	first->skb = NULL;
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
	return NETDEV_TX_OK;
}

/**
 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
 * @skb:    send buffer
 * @netdev: network interface device structure
 *
 * Returns NETDEV_TX_OK if sent, else an error code
 **/
netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
	struct i40evf_adapter *adapter = netdev_priv(netdev);
2247
	struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260

	/* hardware can't handle really short frames, hardware padding works
	 * beyond this point
	 */
	if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
		if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
			return NETDEV_TX_OK;
		skb->len = I40E_MIN_TX_LEN;
		skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
	}

	return i40e_xmit_frame_ring(skb, tx_ring);
}