i915_gem_context.c 61.8 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2011-2012 Intel Corporation
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
 */

/*
 * This file implements HW context support. On gen5+ a HW context consists of an
 * opaque GPU object which is referenced at times of context saves and restores.
 * With RC6 enabled, the context is also referenced as the GPU enters and exists
 * from RC6 (GPU has it's own internal power context, except on gen5). Though
 * something like a context does exist for the media ring, the code only
 * supports contexts for the render ring.
 *
 * In software, there is a distinction between contexts created by the user,
 * and the default HW context. The default HW context is used by GPU clients
 * that do not request setup of their own hardware context. The default
 * context's state is never restored to help prevent programming errors. This
 * would happen if a client ran and piggy-backed off another clients GPU state.
 * The default context only exists to give the GPU some offset to load as the
 * current to invoke a save of the context we actually care about. In fact, the
 * code could likely be constructed, albeit in a more complicated fashion, to
 * never use the default context, though that limits the driver's ability to
 * swap out, and/or destroy other contexts.
 *
 * All other contexts are created as a request by the GPU client. These contexts
 * store GPU state, and thus allow GPU clients to not re-emit state (and
 * potentially query certain state) at any time. The kernel driver makes
 * certain that the appropriate commands are inserted.
 *
 * The context life cycle is semi-complicated in that context BOs may live
 * longer than the context itself because of the way the hardware, and object
 * tracking works. Below is a very crude representation of the state machine
 * describing the context life.
 *                                         refcount     pincount     active
 * S0: initial state                          0            0           0
 * S1: context created                        1            0           0
 * S2: context is currently running           2            1           X
 * S3: GPU referenced, but not current        2            0           1
 * S4: context is current, but destroyed      1            1           0
 * S5: like S3, but destroyed                 1            0           1
 *
 * The most common (but not all) transitions:
 * S0->S1: client creates a context
 * S1->S2: client submits execbuf with context
 * S2->S3: other clients submits execbuf with context
 * S3->S1: context object was retired
 * S3->S2: clients submits another execbuf
 * S2->S4: context destroy called with current context
 * S3->S5->S0: destroy path
 * S4->S5->S0: destroy path on current context
 *
 * There are two confusing terms used above:
 *  The "current context" means the context which is currently running on the
D
Damien Lespiau 已提交
55
 *  GPU. The GPU has loaded its state already and has stored away the gtt
56 57 58 59 60 61 62 63 64 65 66
 *  offset of the BO. The GPU is not actively referencing the data at this
 *  offset, but it will on the next context switch. The only way to avoid this
 *  is to do a GPU reset.
 *
 *  An "active context' is one which was previously the "current context" and is
 *  on the active list waiting for the next context switch to occur. Until this
 *  happens, the object must remain at the same gtt offset. It is therefore
 *  possible to destroy a context, but it is still active.
 *
 */

67
#include <linux/log2.h>
68
#include <linux/nospec.h>
69

70
#include "gt/gen6_ppgtt.h"
71
#include "gt/intel_context.h"
72
#include "gt/intel_context_param.h"
73
#include "gt/intel_engine_heartbeat.h"
74
#include "gt/intel_engine_user.h"
75
#include "gt/intel_execlists_submission.h" /* virtual_engine */
76
#include "gt/intel_gpu_commands.h"
77
#include "gt/intel_ring.h"
78

79
#include "i915_gem_context.h"
80
#include "i915_globals.h"
81
#include "i915_trace.h"
82
#include "i915_user_extensions.h"
83

84 85
#define ALL_L3_SLICES(dev) (1 << NUM_L3_SLICES(dev)) - 1

86
static struct i915_global_gem_context {
87
	struct i915_global base;
88 89 90 91 92 93 94 95 96 97 98 99 100
	struct kmem_cache *slab_luts;
} global;

struct i915_lut_handle *i915_lut_handle_alloc(void)
{
	return kmem_cache_alloc(global.slab_luts, GFP_KERNEL);
}

void i915_lut_handle_free(struct i915_lut_handle *lut)
{
	return kmem_cache_free(global.slab_luts, lut);
}

101
static void lut_close(struct i915_gem_context *ctx)
102
{
103 104 105
	struct radix_tree_iter iter;
	void __rcu **slot;

106
	mutex_lock(&ctx->lut_mutex);
107
	rcu_read_lock();
108 109
	radix_tree_for_each_slot(slot, &ctx->handles_vma, &iter, 0) {
		struct i915_vma *vma = rcu_dereference_raw(*slot);
110 111 112 113 114
		struct drm_i915_gem_object *obj = vma->obj;
		struct i915_lut_handle *lut;

		if (!kref_get_unless_zero(&obj->base.refcount))
			continue;
115

116
		spin_lock(&obj->lut_lock);
117 118 119
		list_for_each_entry(lut, &obj->lut_list, obj_link) {
			if (lut->ctx != ctx)
				continue;
120

121 122 123 124 125 126
			if (lut->handle != iter.index)
				continue;

			list_del(&lut->obj_link);
			break;
		}
127
		spin_unlock(&obj->lut_lock);
128 129 130 131

		if (&lut->obj_link != &obj->lut_list) {
			i915_lut_handle_free(lut);
			radix_tree_iter_delete(&ctx->handles_vma, &iter, slot);
C
Chris Wilson 已提交
132
			i915_vma_close(vma);
133 134 135 136
			i915_gem_object_put(obj);
		}

		i915_gem_object_put(obj);
137
	}
138
	rcu_read_unlock();
139
	mutex_unlock(&ctx->lut_mutex);
140 141
}

142
static struct intel_context *
143 144 145 146
lookup_user_engine(struct i915_gem_context *ctx,
		   unsigned long flags,
		   const struct i915_engine_class_instance *ci)
#define LOOKUP_USER_INDEX BIT(0)
147
{
148
	int idx;
149

150
	if (!!(flags & LOOKUP_USER_INDEX) != i915_gem_context_user_engines(ctx))
151 152
		return ERR_PTR(-EINVAL);

153 154 155 156 157 158 159 160 161
	if (!i915_gem_context_user_engines(ctx)) {
		struct intel_engine_cs *engine;

		engine = intel_engine_lookup_user(ctx->i915,
						  ci->engine_class,
						  ci->engine_instance);
		if (!engine)
			return ERR_PTR(-EINVAL);

162
		idx = engine->legacy_idx;
163 164 165 166 167
	} else {
		idx = ci->engine_instance;
	}

	return i915_gem_context_get_engine(ctx, idx);
168 169
}

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
static struct i915_address_space *
context_get_vm_rcu(struct i915_gem_context *ctx)
{
	GEM_BUG_ON(!rcu_access_pointer(ctx->vm));

	do {
		struct i915_address_space *vm;

		/*
		 * We do not allow downgrading from full-ppgtt [to a shared
		 * global gtt], so ctx->vm cannot become NULL.
		 */
		vm = rcu_dereference(ctx->vm);
		if (!kref_get_unless_zero(&vm->ref))
			continue;

		/*
		 * This ppgtt may have be reallocated between
		 * the read and the kref, and reassigned to a third
		 * context. In order to avoid inadvertent sharing
		 * of this ppgtt with that third context (and not
		 * src), we have to confirm that we have the same
		 * ppgtt after passing through the strong memory
		 * barrier implied by a successful
		 * kref_get_unless_zero().
		 *
		 * Once we have acquired the current ppgtt of ctx,
		 * we no longer care if it is released from ctx, as
		 * it cannot be reallocated elsewhere.
		 */

		if (vm == rcu_access_pointer(ctx->vm))
			return rcu_pointer_handoff(vm);

		i915_vm_put(vm);
	} while (1);
}

208 209 210
static void intel_context_set_gem(struct intel_context *ce,
				  struct i915_gem_context *ctx)
{
211 212
	GEM_BUG_ON(rcu_access_pointer(ce->gem_context));
	RCU_INIT_POINTER(ce->gem_context, ctx);
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232

	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags))
		ce->ring = __intel_context_ring_size(SZ_16K);

	if (rcu_access_pointer(ctx->vm)) {
		struct i915_address_space *vm;

		rcu_read_lock();
		vm = context_get_vm_rcu(ctx); /* hmm */
		rcu_read_unlock();

		i915_vm_put(ce->vm);
		ce->vm = vm;
	}

	GEM_BUG_ON(ce->timeline);
	if (ctx->timeline)
		ce->timeline = intel_timeline_get(ctx->timeline);

	if (ctx->sched.priority >= I915_PRIORITY_NORMAL &&
233
	    intel_engine_has_timeslices(ce->engine))
234 235 236
		__set_bit(CONTEXT_USE_SEMAPHORES, &ce->flags);
}

237
static void __free_engines(struct i915_gem_engines *e, unsigned int count)
238
{
239 240 241 242 243 244 245 246 247 248 249 250 251 252
	while (count--) {
		if (!e->engines[count])
			continue;

		intel_context_put(e->engines[count]);
	}
	kfree(e);
}

static void free_engines(struct i915_gem_engines *e)
{
	__free_engines(e, e->num_engines);
}

253
static void free_engines_rcu(struct rcu_head *rcu)
254
{
255 256 257 258 259
	struct i915_gem_engines *engines =
		container_of(rcu, struct i915_gem_engines, rcu);

	i915_sw_fence_fini(&engines->fence);
	free_engines(engines);
260 261
}

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
static int __i915_sw_fence_call
engines_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
	struct i915_gem_engines *engines =
		container_of(fence, typeof(*engines), fence);

	switch (state) {
	case FENCE_COMPLETE:
		if (!list_empty(&engines->link)) {
			struct i915_gem_context *ctx = engines->ctx;
			unsigned long flags;

			spin_lock_irqsave(&ctx->stale.lock, flags);
			list_del(&engines->link);
			spin_unlock_irqrestore(&ctx->stale.lock, flags);
		}
		i915_gem_context_put(engines->ctx);
		break;

	case FENCE_FREE:
		init_rcu_head(&engines->rcu);
		call_rcu(&engines->rcu, free_engines_rcu);
		break;
	}

	return NOTIFY_DONE;
}

static struct i915_gem_engines *alloc_engines(unsigned int count)
{
	struct i915_gem_engines *e;

	e = kzalloc(struct_size(e, engines, count), GFP_KERNEL);
	if (!e)
		return NULL;

	i915_sw_fence_init(&e->fence, engines_notify);
	return e;
}

302 303
static struct i915_gem_engines *default_engines(struct i915_gem_context *ctx)
{
304
	const struct intel_gt *gt = &ctx->i915->gt;
305 306 307 308
	struct intel_engine_cs *engine;
	struct i915_gem_engines *e;
	enum intel_engine_id id;

309
	e = alloc_engines(I915_NUM_ENGINES);
310 311 312
	if (!e)
		return ERR_PTR(-ENOMEM);

313
	for_each_engine(engine, gt, id) {
314 315
		struct intel_context *ce;

316 317 318 319 320 321
		if (engine->legacy_idx == INVALID_ENGINE)
			continue;

		GEM_BUG_ON(engine->legacy_idx >= I915_NUM_ENGINES);
		GEM_BUG_ON(e->engines[engine->legacy_idx]);

322
		ce = intel_context_create(engine);
323
		if (IS_ERR(ce)) {
324
			__free_engines(e, e->num_engines + 1);
325 326
			return ERR_CAST(ce);
		}
327

328 329
		intel_context_set_gem(ce, ctx);

330 331
		e->engines[engine->legacy_idx] = ce;
		e->num_engines = max(e->num_engines, engine->legacy_idx);
332
	}
333
	e->num_engines++;
334 335 336 337

	return e;
}

338
void i915_gem_context_release(struct kref *ref)
339
{
340
	struct i915_gem_context *ctx = container_of(ref, typeof(*ctx), ref);
341

342 343
	trace_i915_context_free(ctx);
	GEM_BUG_ON(!i915_gem_context_is_closed(ctx));
344

345
	mutex_destroy(&ctx->engines_mutex);
346
	mutex_destroy(&ctx->lut_mutex);
347

348
	if (ctx->timeline)
349
		intel_timeline_put(ctx->timeline);
350

351
	put_pid(ctx->pid);
352
	mutex_destroy(&ctx->mutex);
353

354
	kfree_rcu(ctx, rcu);
355 356
}

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
static inline struct i915_gem_engines *
__context_engines_static(const struct i915_gem_context *ctx)
{
	return rcu_dereference_protected(ctx->engines, true);
}

static void __reset_context(struct i915_gem_context *ctx,
			    struct intel_engine_cs *engine)
{
	intel_gt_handle_error(engine->gt, engine->mask, 0,
			      "context closure in %s", ctx->name);
}

static bool __cancel_engine(struct intel_engine_cs *engine)
{
	/*
	 * Send a "high priority pulse" down the engine to cause the
	 * current request to be momentarily preempted. (If it fails to
	 * be preempted, it will be reset). As we have marked our context
	 * as banned, any incomplete request, including any running, will
	 * be skipped following the preemption.
	 *
	 * If there is no hangchecking (one of the reasons why we try to
	 * cancel the context) and no forced preemption, there may be no
	 * means by which we reset the GPU and evict the persistent hog.
	 * Ergo if we are unable to inject a preemptive pulse that can
	 * kill the banned context, we fallback to doing a local reset
	 * instead.
	 */
386
	return intel_engine_pulse(engine) == 0;
387 388
}

389 390
static bool
__active_engine(struct i915_request *rq, struct intel_engine_cs **active)
391 392
{
	struct intel_engine_cs *engine, *locked;
393
	bool ret = false;
394 395 396 397

	/*
	 * Serialise with __i915_request_submit() so that it sees
	 * is-banned?, or we know the request is already inflight.
398 399 400
	 *
	 * Note that rq->engine is unstable, and so we double
	 * check that we have acquired the lock on the final engine.
401 402 403 404 405 406
	 */
	locked = READ_ONCE(rq->engine);
	spin_lock_irq(&locked->active.lock);
	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
		spin_unlock(&locked->active.lock);
		locked = engine;
407
		spin_lock(&locked->active.lock);
408 409
	}

410
	if (i915_request_is_active(rq)) {
411
		if (!__i915_request_is_complete(rq))
412 413 414
			*active = locked;
		ret = true;
	}
415 416 417

	spin_unlock_irq(&locked->active.lock);

418
	return ret;
419 420
}

421 422 423 424 425
static struct intel_engine_cs *active_engine(struct intel_context *ce)
{
	struct intel_engine_cs *engine = NULL;
	struct i915_request *rq;

426 427 428
	if (intel_context_has_inflight(ce))
		return intel_context_inflight(ce);

429 430 431
	if (!ce->timeline)
		return NULL;

432 433 434 435 436
	/*
	 * rq->link is only SLAB_TYPESAFE_BY_RCU, we need to hold a reference
	 * to the request to prevent it being transferred to a new timeline
	 * (and onto a new timeline->requests list).
	 */
437
	rcu_read_lock();
438 439 440 441 442 443
	list_for_each_entry_reverse(rq, &ce->timeline->requests, link) {
		bool found;

		/* timeline is already completed upto this point? */
		if (!i915_request_get_rcu(rq))
			break;
444 445

		/* Check with the backend if the request is inflight */
446 447 448 449 450 451
		found = true;
		if (likely(rcu_access_pointer(rq->timeline) == ce->timeline))
			found = __active_engine(rq, &engine);

		i915_request_put(rq);
		if (found)
452 453
			break;
	}
454
	rcu_read_unlock();
455 456 457 458

	return engine;
}

459
static void kill_engines(struct i915_gem_engines *engines, bool ban)
460 461 462 463 464 465 466 467 468 469 470
{
	struct i915_gem_engines_iter it;
	struct intel_context *ce;

	/*
	 * Map the user's engine back to the actual engines; one virtual
	 * engine will be mapped to multiple engines, and using ctx->engine[]
	 * the same engine may be have multiple instances in the user's map.
	 * However, we only care about pending requests, so only include
	 * engines on which there are incomplete requests.
	 */
471
	for_each_gem_engine(ce, engines, it) {
472 473
		struct intel_engine_cs *engine;

474
		if (ban && intel_context_set_banned(ce))
475 476
			continue;

477 478 479 480 481 482 483 484
		/*
		 * Check the current active state of this context; if we
		 * are currently executing on the GPU we need to evict
		 * ourselves. On the other hand, if we haven't yet been
		 * submitted to the GPU or if everything is complete,
		 * we have nothing to do.
		 */
		engine = active_engine(ce);
485 486

		/* First attempt to gracefully cancel the context */
487
		if (engine && !__cancel_engine(engine) && ban)
488 489 490 491 492
			/*
			 * If we are unable to send a preemptive pulse to bump
			 * the context from the GPU, we have to resort to a full
			 * reset. We hope the collateral damage is worth it.
			 */
493 494 495 496
			__reset_context(engines->ctx, engine);
	}
}

497
static void kill_context(struct i915_gem_context *ctx)
498
{
499 500
	bool ban = (!i915_gem_context_is_persistent(ctx) ||
		    !ctx->i915->params.enable_hangcheck);
501 502
	struct i915_gem_engines *pos, *next;

503 504
	spin_lock_irq(&ctx->stale.lock);
	GEM_BUG_ON(!i915_gem_context_is_closed(ctx));
505
	list_for_each_entry_safe(pos, next, &ctx->stale.engines, link) {
506 507
		if (!i915_sw_fence_await(&pos->fence)) {
			list_del_init(&pos->link);
508
			continue;
509
		}
510

511
		spin_unlock_irq(&ctx->stale.lock);
512

513
		kill_engines(pos, ban);
514

515 516
		spin_lock_irq(&ctx->stale.lock);
		GEM_BUG_ON(i915_sw_fence_signaled(&pos->fence));
517 518 519 520
		list_safe_reset_next(pos, next, link);
		list_del_init(&pos->link); /* decouple from FENCE_COMPLETE */

		i915_sw_fence_complete(&pos->fence);
521
	}
522
	spin_unlock_irq(&ctx->stale.lock);
523 524
}

525 526 527 528 529 530 531 532 533 534 535
static void engines_idle_release(struct i915_gem_context *ctx,
				 struct i915_gem_engines *engines)
{
	struct i915_gem_engines_iter it;
	struct intel_context *ce;

	INIT_LIST_HEAD(&engines->link);

	engines->ctx = i915_gem_context_get(ctx);

	for_each_gem_engine(ce, engines, it) {
536
		int err;
537 538

		/* serialises with execbuf */
539
		set_bit(CONTEXT_CLOSED_BIT, &ce->flags);
540 541 542
		if (!intel_context_pin_if_active(ce))
			continue;

543 544 545 546
		/* Wait until context is finally scheduled out and retired */
		err = i915_sw_fence_await_active(&engines->fence,
						 &ce->active,
						 I915_ACTIVE_AWAIT_BARRIER);
547
		intel_context_unpin(ce);
548
		if (err)
549 550 551 552 553 554 555 556 557 558
			goto kill;
	}

	spin_lock_irq(&ctx->stale.lock);
	if (!i915_gem_context_is_closed(ctx))
		list_add_tail(&engines->link, &ctx->stale.engines);
	spin_unlock_irq(&ctx->stale.lock);

kill:
	if (list_empty(&engines->link)) /* raced, already closed */
559
		kill_engines(engines, true);
560 561

	i915_sw_fence_commit(&engines->fence);
562 563
}

564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
static void set_closed_name(struct i915_gem_context *ctx)
{
	char *s;

	/* Replace '[]' with '<>' to indicate closed in debug prints */

	s = strrchr(ctx->name, '[');
	if (!s)
		return;

	*s = '<';

	s = strchr(s + 1, ']');
	if (s)
		*s = '>';
}

581 582
static void context_close(struct i915_gem_context *ctx)
{
583
	struct i915_address_space *vm;
584

585 586 587
	/* Flush any concurrent set_engines() */
	mutex_lock(&ctx->engines_mutex);
	engines_idle_release(ctx, rcu_replace_pointer(ctx->engines, NULL, 1));
588
	i915_gem_context_set_closed(ctx);
589
	mutex_unlock(&ctx->engines_mutex);
590

591 592
	mutex_lock(&ctx->mutex);

593 594
	set_closed_name(ctx);

595 596 597 598
	vm = i915_gem_context_vm(ctx);
	if (vm)
		i915_vm_close(vm);

599
	ctx->file_priv = ERR_PTR(-EBADF);
600

601 602 603 604 605
	/*
	 * The LUT uses the VMA as a backpointer to unref the object,
	 * so we need to clear the LUT before we close all the VMA (inside
	 * the ppgtt).
	 */
606 607
	lut_close(ctx);

608 609 610 611
	spin_lock(&ctx->i915->gem.contexts.lock);
	list_del(&ctx->link);
	spin_unlock(&ctx->i915->gem.contexts.lock);

612
	mutex_unlock(&ctx->mutex);
613 614 615 616 617 618 619 620

	/*
	 * If the user has disabled hangchecking, we can not be sure that
	 * the batches will ever complete after the context is closed,
	 * keeping the context and all resources pinned forever. So in this
	 * case we opt to forcibly kill off all remaining requests on
	 * context close.
	 */
621
	kill_context(ctx);
622

623 624 625
	i915_gem_context_put(ctx);
}

626 627 628 629 630 631 632 633 634 635 636
static int __context_set_persistence(struct i915_gem_context *ctx, bool state)
{
	if (i915_gem_context_is_persistent(ctx) == state)
		return 0;

	if (state) {
		/*
		 * Only contexts that are short-lived [that will expire or be
		 * reset] are allowed to survive past termination. We require
		 * hangcheck to ensure that the persistent requests are healthy.
		 */
637
		if (!ctx->i915->params.enable_hangcheck)
638 639 640 641 642 643 644 645
			return -EINVAL;

		i915_gem_context_set_persistence(ctx);
	} else {
		/* To cancel a context we use "preempt-to-idle" */
		if (!(ctx->i915->caps.scheduler & I915_SCHEDULER_CAP_PREEMPTION))
			return -ENODEV;

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
		/*
		 * If the cancel fails, we then need to reset, cleanly!
		 *
		 * If the per-engine reset fails, all hope is lost! We resort
		 * to a full GPU reset in that unlikely case, but realistically
		 * if the engine could not reset, the full reset does not fare
		 * much better. The damage has been done.
		 *
		 * However, if we cannot reset an engine by itself, we cannot
		 * cleanup a hanging persistent context without causing
		 * colateral damage, and we should not pretend we can by
		 * exposing the interface.
		 */
		if (!intel_has_reset_engine(&ctx->i915->gt))
			return -ENODEV;

662 663 664 665 666 667
		i915_gem_context_clear_persistence(ctx);
	}

	return 0;
}

668
static struct i915_gem_context *
669
__create_context(struct drm_i915_private *i915)
670
{
671
	struct i915_gem_context *ctx;
672 673
	struct i915_gem_engines *e;
	int err;
674
	int i;
675

676
	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
677
	if (!ctx)
678
		return ERR_PTR(-ENOMEM);
679

680
	kref_init(&ctx->ref);
681
	ctx->i915 = i915;
682
	ctx->sched.priority = I915_USER_PRIORITY(I915_PRIORITY_NORMAL);
683
	mutex_init(&ctx->mutex);
684
	INIT_LIST_HEAD(&ctx->link);
685

686 687 688
	spin_lock_init(&ctx->stale.lock);
	INIT_LIST_HEAD(&ctx->stale.engines);

689 690 691 692 693 694 695
	mutex_init(&ctx->engines_mutex);
	e = default_engines(ctx);
	if (IS_ERR(e)) {
		err = PTR_ERR(e);
		goto err_free;
	}
	RCU_INIT_POINTER(ctx->engines, e);
696

697
	INIT_RADIX_TREE(&ctx->handles_vma, GFP_KERNEL);
698
	mutex_init(&ctx->lut_mutex);
699

700 701 702
	/* NB: Mark all slices as needing a remap so that when the context first
	 * loads it will restore whatever remap state already exists. If there
	 * is no remap info, it will be a NOP. */
703
	ctx->remap_slice = ALL_L3_SLICES(i915);
704

705
	i915_gem_context_set_bannable(ctx);
706
	i915_gem_context_set_recoverable(ctx);
707
	__context_set_persistence(ctx, true /* cgroup hook? */);
708

709 710 711
	for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp); i++)
		ctx->hang_timestamp[i] = jiffies - CONTEXT_FAST_HANG_JIFFIES;

712
	return ctx;
713 714 715 716

err_free:
	kfree(ctx);
	return ERR_PTR(err);
717 718
}

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
static inline struct i915_gem_engines *
__context_engines_await(const struct i915_gem_context *ctx)
{
	struct i915_gem_engines *engines;

	rcu_read_lock();
	do {
		engines = rcu_dereference(ctx->engines);
		GEM_BUG_ON(!engines);

		if (unlikely(!i915_sw_fence_await(&engines->fence)))
			continue;

		if (likely(engines == rcu_access_pointer(ctx->engines)))
			break;

		i915_sw_fence_complete(&engines->fence);
	} while (1);
	rcu_read_unlock();

	return engines;
}

742
static int
743
context_apply_all(struct i915_gem_context *ctx,
744
		  int (*fn)(struct intel_context *ce, void *data),
745 746 747
		  void *data)
{
	struct i915_gem_engines_iter it;
748
	struct i915_gem_engines *e;
749
	struct intel_context *ce;
750
	int err = 0;
751

752 753
	e = __context_engines_await(ctx);
	for_each_gem_engine(ce, e, it) {
754 755 756 757
		err = fn(ce, data);
		if (err)
			break;
	}
758
	i915_sw_fence_complete(&e->fence);
759 760

	return err;
761 762
}

763
static int __apply_ppgtt(struct intel_context *ce, void *vm)
764 765 766
{
	i915_vm_put(ce->vm);
	ce->vm = i915_vm_get(vm);
767
	return 0;
768 769
}

770 771
static struct i915_address_space *
__set_ppgtt(struct i915_gem_context *ctx, struct i915_address_space *vm)
772
{
773
	struct i915_address_space *old;
774

775 776 777
	old = rcu_replace_pointer(ctx->vm,
				  i915_vm_open(vm),
				  lockdep_is_held(&ctx->mutex));
778 779
	GEM_BUG_ON(old && i915_vm_is_4lvl(vm) != i915_vm_is_4lvl(old));

780
	context_apply_all(ctx, __apply_ppgtt, vm);
781

782 783 784 785
	return old;
}

static void __assign_ppgtt(struct i915_gem_context *ctx,
786
			   struct i915_address_space *vm)
787
{
788
	if (vm == rcu_access_pointer(ctx->vm))
789 790
		return;

791 792
	vm = __set_ppgtt(ctx, vm);
	if (vm)
793
		i915_vm_close(vm);
794 795
}

796 797 798 799 800 801 802 803 804 805 806
static void __set_timeline(struct intel_timeline **dst,
			   struct intel_timeline *src)
{
	struct intel_timeline *old = *dst;

	*dst = src ? intel_timeline_get(src) : NULL;

	if (old)
		intel_timeline_put(old);
}

807
static int __apply_timeline(struct intel_context *ce, void *timeline)
808 809
{
	__set_timeline(&ce->timeline, timeline);
810
	return 0;
811 812 813 814 815 816 817 818 819
}

static void __assign_timeline(struct i915_gem_context *ctx,
			      struct intel_timeline *timeline)
{
	__set_timeline(&ctx->timeline, timeline);
	context_apply_all(ctx, __apply_timeline, timeline);
}

820
static struct i915_gem_context *
821
i915_gem_create_context(struct drm_i915_private *i915, unsigned int flags)
822
{
823
	struct i915_gem_context *ctx;
824

825
	if (flags & I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE &&
826
	    !HAS_EXECLISTS(i915))
827 828
		return ERR_PTR(-EINVAL);

829
	ctx = __create_context(i915);
830
	if (IS_ERR(ctx))
831
		return ctx;
832

833
	if (HAS_FULL_PPGTT(i915)) {
834
		struct i915_ppgtt *ppgtt;
835

836
		ppgtt = i915_ppgtt_create(&i915->gt);
837
		if (IS_ERR(ppgtt)) {
838 839
			drm_dbg(&i915->drm, "PPGTT setup failed (%ld)\n",
				PTR_ERR(ppgtt));
840
			context_close(ctx);
841
			return ERR_CAST(ppgtt);
842 843
		}

844
		mutex_lock(&ctx->mutex);
845
		__assign_ppgtt(ctx, &ppgtt->vm);
846 847
		mutex_unlock(&ctx->mutex);

848
		i915_vm_put(&ppgtt->vm);
849
	}
850

851
	if (flags & I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE) {
852
		struct intel_timeline *timeline;
853

854
		timeline = intel_timeline_create(&i915->gt);
855 856 857 858 859
		if (IS_ERR(timeline)) {
			context_close(ctx);
			return ERR_CAST(timeline);
		}

860 861
		__assign_timeline(ctx, timeline);
		intel_timeline_put(timeline);
862 863
	}

864 865
	trace_i915_context_create(ctx);

866
	return ctx;
867 868
}

869
static void init_contexts(struct i915_gem_contexts *gc)
870
{
871 872
	spin_lock_init(&gc->lock);
	INIT_LIST_HEAD(&gc->list);
873 874
}

875
void i915_gem_init__contexts(struct drm_i915_private *i915)
876
{
877
	init_contexts(&i915->gem.contexts);
878 879
}

880
static int gem_context_register(struct i915_gem_context *ctx,
881 882
				struct drm_i915_file_private *fpriv,
				u32 *id)
883
{
884
	struct drm_i915_private *i915 = ctx->i915;
885
	struct i915_address_space *vm;
886 887 888
	int ret;

	ctx->file_priv = fpriv;
889 890 891 892 893 894

	mutex_lock(&ctx->mutex);
	vm = i915_gem_context_vm(ctx);
	if (vm)
		WRITE_ONCE(vm->file, fpriv); /* XXX */
	mutex_unlock(&ctx->mutex);
895 896

	ctx->pid = get_task_pid(current, PIDTYPE_PID);
897 898
	snprintf(ctx->name, sizeof(ctx->name), "%s[%d]",
		 current->comm, pid_nr(ctx->pid));
899 900

	/* And finally expose ourselves to userspace via the idr */
901 902
	ret = xa_alloc(&fpriv->context_xa, id, ctx, xa_limit_32b, GFP_KERNEL);
	if (ret)
903 904 905 906 907 908 909
		goto err_pid;

	spin_lock(&i915->gem.contexts.lock);
	list_add_tail(&ctx->link, &i915->gem.contexts.list);
	spin_unlock(&i915->gem.contexts.lock);

	return 0;
910

911 912
err_pid:
	put_pid(fetch_and_zero(&ctx->pid));
913 914 915
	return ret;
}

916 917
int i915_gem_context_open(struct drm_i915_private *i915,
			  struct drm_file *file)
918 919
{
	struct drm_i915_file_private *file_priv = file->driver_priv;
920
	struct i915_gem_context *ctx;
921
	int err;
922
	u32 id;
923

924
	xa_init_flags(&file_priv->context_xa, XA_FLAGS_ALLOC);
925

926 927
	/* 0 reserved for invalid/unassigned ppgtt */
	xa_init_flags(&file_priv->vm_xa, XA_FLAGS_ALLOC1);
928

929
	ctx = i915_gem_create_context(i915, 0);
930
	if (IS_ERR(ctx)) {
931 932
		err = PTR_ERR(ctx);
		goto err;
933 934
	}

935
	err = gem_context_register(ctx, file_priv, &id);
936
	if (err < 0)
937 938
		goto err_ctx;

939
	GEM_BUG_ON(id);
940
	return 0;
941 942 943

err_ctx:
	context_close(ctx);
944
err:
945
	xa_destroy(&file_priv->vm_xa);
946
	xa_destroy(&file_priv->context_xa);
947
	return err;
948 949
}

950
void i915_gem_context_close(struct drm_file *file)
951
{
952
	struct drm_i915_file_private *file_priv = file->driver_priv;
953
	struct i915_address_space *vm;
954 955
	struct i915_gem_context *ctx;
	unsigned long idx;
956

957 958 959
	xa_for_each(&file_priv->context_xa, idx, ctx)
		context_close(ctx);
	xa_destroy(&file_priv->context_xa);
960

961 962 963
	xa_for_each(&file_priv->vm_xa, idx, vm)
		i915_vm_put(vm);
	xa_destroy(&file_priv->vm_xa);
964 965 966 967 968 969 970 971
}

int i915_gem_vm_create_ioctl(struct drm_device *dev, void *data,
			     struct drm_file *file)
{
	struct drm_i915_private *i915 = to_i915(dev);
	struct drm_i915_gem_vm_control *args = data;
	struct drm_i915_file_private *file_priv = file->driver_priv;
972
	struct i915_ppgtt *ppgtt;
973
	u32 id;
974 975 976 977 978 979 980 981
	int err;

	if (!HAS_FULL_PPGTT(i915))
		return -ENODEV;

	if (args->flags)
		return -EINVAL;

982
	ppgtt = i915_ppgtt_create(&i915->gt);
983 984 985 986 987 988 989 990 991 992 993 994 995
	if (IS_ERR(ppgtt))
		return PTR_ERR(ppgtt);

	ppgtt->vm.file = file_priv;

	if (args->extensions) {
		err = i915_user_extensions(u64_to_user_ptr(args->extensions),
					   NULL, 0,
					   ppgtt);
		if (err)
			goto err_put;
	}

996 997
	err = xa_alloc(&file_priv->vm_xa, &id, &ppgtt->vm,
		       xa_limit_32b, GFP_KERNEL);
998 999 1000
	if (err)
		goto err_put;

1001 1002
	GEM_BUG_ON(id == 0); /* reserved for invalid/unassigned ppgtt */
	args->vm_id = id;
1003 1004 1005
	return 0;

err_put:
1006
	i915_vm_put(&ppgtt->vm);
1007 1008 1009 1010 1011 1012 1013 1014
	return err;
}

int i915_gem_vm_destroy_ioctl(struct drm_device *dev, void *data,
			      struct drm_file *file)
{
	struct drm_i915_file_private *file_priv = file->driver_priv;
	struct drm_i915_gem_vm_control *args = data;
1015
	struct i915_address_space *vm;
1016 1017 1018 1019 1020 1021 1022

	if (args->flags)
		return -EINVAL;

	if (args->extensions)
		return -EINVAL;

1023
	vm = xa_erase(&file_priv->vm_xa, args->vm_id);
1024
	if (!vm)
1025 1026
		return -ENOENT;

1027
	i915_vm_put(vm);
1028
	return 0;
1029 1030
}

1031 1032 1033 1034 1035 1036
struct context_barrier_task {
	struct i915_active base;
	void (*task)(void *data);
	void *data;
};

1037
__i915_active_call
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
static void cb_retire(struct i915_active *base)
{
	struct context_barrier_task *cb = container_of(base, typeof(*cb), base);

	if (cb->task)
		cb->task(cb->data);

	i915_active_fini(&cb->base);
	kfree(cb);
}

1049
I915_SELFTEST_DECLARE(static intel_engine_mask_t context_barrier_inject_fault);
1050
static int context_barrier_task(struct i915_gem_context *ctx,
1051
				intel_engine_mask_t engines,
1052
				bool (*skip)(struct intel_context *ce, void *data),
1053
				int (*pin)(struct intel_context *ce, struct i915_gem_ww_ctx *ww, void *data),
1054
				int (*emit)(struct i915_request *rq, void *data),
1055 1056 1057 1058
				void (*task)(void *data),
				void *data)
{
	struct context_barrier_task *cb;
1059
	struct i915_gem_engines_iter it;
1060
	struct i915_gem_engines *e;
1061
	struct i915_gem_ww_ctx ww;
1062
	struct intel_context *ce;
1063 1064 1065 1066 1067 1068 1069 1070
	int err = 0;

	GEM_BUG_ON(!task);

	cb = kmalloc(sizeof(*cb), GFP_KERNEL);
	if (!cb)
		return -ENOMEM;

1071
	i915_active_init(&cb->base, NULL, cb_retire);
1072 1073 1074 1075 1076
	err = i915_active_acquire(&cb->base);
	if (err) {
		kfree(cb);
		return err;
	}
1077

1078 1079 1080 1081 1082 1083 1084
	e = __context_engines_await(ctx);
	if (!e) {
		i915_active_release(&cb->base);
		return -ENOENT;
	}

	for_each_gem_engine(ce, e, it) {
1085 1086 1087
		struct i915_request *rq;

		if (I915_SELFTEST_ONLY(context_barrier_inject_fault &
1088
				       ce->engine->mask)) {
1089 1090 1091 1092
			err = -ENXIO;
			break;
		}

1093 1094 1095 1096
		if (!(ce->engine->mask & engines))
			continue;

		if (skip && skip(ce, data))
1097 1098
			continue;

1099 1100
		i915_gem_ww_ctx_init(&ww, true);
retry:
1101
		err = intel_context_pin_ww(ce, &ww);
1102 1103 1104 1105 1106 1107 1108 1109 1110
		if (err)
			goto err;

		if (pin)
			err = pin(ce, &ww, data);
		if (err)
			goto err_unpin;

		rq = i915_request_create(ce);
1111 1112
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
1113
			goto err_unpin;
1114 1115
		}

1116 1117 1118 1119
		err = 0;
		if (emit)
			err = emit(rq, data);
		if (err == 0)
1120
			err = i915_active_add_request(&cb->base, rq);
1121

1122
		i915_request_add(rq);
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
err_unpin:
		intel_context_unpin(ce);
err:
		if (err == -EDEADLK) {
			err = i915_gem_ww_ctx_backoff(&ww);
			if (!err)
				goto retry;
		}
		i915_gem_ww_ctx_fini(&ww);

1133 1134 1135
		if (err)
			break;
	}
1136
	i915_sw_fence_complete(&e->fence);
1137 1138 1139 1140 1141 1142 1143 1144 1145

	cb->task = err ? NULL : task; /* caller needs to unwind instead */
	cb->data = data;

	i915_active_release(&cb->base);

	return err;
}

1146 1147
static int get_ppgtt(struct drm_i915_file_private *file_priv,
		     struct i915_gem_context *ctx,
1148 1149
		     struct drm_i915_gem_context_param *args)
{
1150
	struct i915_address_space *vm;
1151 1152
	int err;
	u32 id;
1153

1154
	if (!rcu_access_pointer(ctx->vm))
1155 1156
		return -ENODEV;

1157
	rcu_read_lock();
1158
	vm = context_get_vm_rcu(ctx);
1159
	rcu_read_unlock();
1160 1161 1162 1163
	if (!vm)
		return -ENODEV;

	err = xa_alloc(&file_priv->vm_xa, &id, vm, xa_limit_32b, GFP_KERNEL);
1164
	if (err)
1165 1166
		goto err_put;

1167
	i915_vm_open(vm);
1168

1169 1170
	GEM_BUG_ON(id == 0); /* reserved for invalid/unassigned ppgtt */
	args->value = id;
1171 1172 1173
	args->size = 0;

err_put:
1174
	i915_vm_put(vm);
1175
	return err;
1176 1177 1178 1179
}

static void set_ppgtt_barrier(void *data)
{
1180
	struct i915_address_space *old = data;
1181

1182 1183
	if (INTEL_GEN(old->i915) < 8)
		gen6_ppgtt_unpin_all(i915_vm_to_ppgtt(old));
1184

1185
	i915_vm_close(old);
1186 1187
}

1188 1189 1190 1191 1192 1193
static int pin_ppgtt_update(struct intel_context *ce, struct i915_gem_ww_ctx *ww, void *data)
{
	struct i915_address_space *vm = ce->vm;

	if (!HAS_LOGICAL_RING_CONTEXTS(vm->i915))
		/* ppGTT is not part of the legacy context image */
1194
		return gen6_ppgtt_pin(i915_vm_to_ppgtt(vm), ww);
1195 1196 1197 1198

	return 0;
}

1199 1200
static int emit_ppgtt_update(struct i915_request *rq, void *data)
{
1201
	struct i915_address_space *vm = rq->context->vm;
1202
	struct intel_engine_cs *engine = rq->engine;
1203
	u32 base = engine->mmio_base;
1204 1205 1206
	u32 *cs;
	int i;

1207
	if (i915_vm_is_4lvl(vm)) {
1208
		struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1209
		const dma_addr_t pd_daddr = px_dma(ppgtt->pd);
1210 1211 1212 1213 1214 1215 1216

		cs = intel_ring_begin(rq, 6);
		if (IS_ERR(cs))
			return PTR_ERR(cs);

		*cs++ = MI_LOAD_REGISTER_IMM(2);

1217
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0));
1218
		*cs++ = upper_32_bits(pd_daddr);
1219
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0));
1220 1221 1222 1223 1224
		*cs++ = lower_32_bits(pd_daddr);

		*cs++ = MI_NOOP;
		intel_ring_advance(rq, cs);
	} else if (HAS_LOGICAL_RING_CONTEXTS(engine->i915)) {
1225
		struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1226 1227 1228 1229 1230 1231
		int err;

		/* Magic required to prevent forcewake errors! */
		err = engine->emit_flush(rq, EMIT_INVALIDATE);
		if (err)
			return err;
1232

1233 1234 1235 1236
		cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
		if (IS_ERR(cs))
			return PTR_ERR(cs);

1237
		*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
1238 1239 1240
		for (i = GEN8_3LVL_PDPES; i--; ) {
			const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1241
			*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
1242
			*cs++ = upper_32_bits(pd_daddr);
1243
			*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
1244 1245 1246 1247 1248 1249 1250 1251 1252
			*cs++ = lower_32_bits(pd_daddr);
		}
		*cs++ = MI_NOOP;
		intel_ring_advance(rq, cs);
	}

	return 0;
}

1253 1254 1255
static bool skip_ppgtt_update(struct intel_context *ce, void *data)
{
	if (HAS_LOGICAL_RING_CONTEXTS(ce->engine->i915))
1256 1257 1258
		return !ce->state;
	else
		return !atomic_read(&ce->pin_count);
1259 1260
}

1261 1262
static int set_ppgtt(struct drm_i915_file_private *file_priv,
		     struct i915_gem_context *ctx,
1263 1264
		     struct drm_i915_gem_context_param *args)
{
1265
	struct i915_address_space *vm, *old;
1266 1267 1268 1269 1270
	int err;

	if (args->size)
		return -EINVAL;

1271
	if (!rcu_access_pointer(ctx->vm))
1272 1273 1274 1275 1276
		return -ENODEV;

	if (upper_32_bits(args->value))
		return -ENOENT;

1277
	rcu_read_lock();
1278
	vm = xa_load(&file_priv->vm_xa, args->value);
1279 1280 1281
	if (vm && !kref_get_unless_zero(&vm->ref))
		vm = NULL;
	rcu_read_unlock();
1282
	if (!vm)
1283 1284
		return -ENOENT;

1285
	err = mutex_lock_interruptible(&ctx->mutex);
1286 1287 1288
	if (err)
		goto out;

1289 1290
	if (i915_gem_context_is_closed(ctx)) {
		err = -ENOENT;
1291
		goto unlock;
1292 1293 1294
	}

	if (vm == rcu_access_pointer(ctx->vm))
1295 1296
		goto unlock;

1297 1298
	old = __set_ppgtt(ctx, vm);

1299 1300 1301 1302 1303 1304 1305 1306 1307
	/* Teardown the existing obj:vma cache, it will have to be rebuilt. */
	lut_close(ctx);

	/*
	 * We need to flush any requests using the current ppgtt before
	 * we release it as the requests do not hold a reference themselves,
	 * only indirectly through the context.
	 */
	err = context_barrier_task(ctx, ALL_ENGINES,
1308
				   skip_ppgtt_update,
1309
				   pin_ppgtt_update,
1310 1311 1312 1313
				   emit_ppgtt_update,
				   set_ppgtt_barrier,
				   old);
	if (err) {
1314 1315
		i915_vm_close(__set_ppgtt(ctx, old));
		i915_vm_close(old);
1316
		lut_close(ctx); /* force a rebuild of the old obj:vma cache */
1317 1318 1319
	}

unlock:
1320
	mutex_unlock(&ctx->mutex);
1321
out:
1322
	i915_vm_put(vm);
1323 1324 1325
	return err;
}

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
static int __apply_ringsize(struct intel_context *ce, void *sz)
{
	return intel_context_set_ring_size(ce, (unsigned long)sz);
}

static int set_ringsize(struct i915_gem_context *ctx,
			struct drm_i915_gem_context_param *args)
{
	if (!HAS_LOGICAL_RING_CONTEXTS(ctx->i915))
		return -ENODEV;

	if (args->size)
		return -EINVAL;

	if (!IS_ALIGNED(args->value, I915_GTT_PAGE_SIZE))
		return -EINVAL;

	if (args->value < I915_GTT_PAGE_SIZE)
		return -EINVAL;

	if (args->value > 128 * I915_GTT_PAGE_SIZE)
		return -EINVAL;

	return context_apply_all(ctx,
				 __apply_ringsize,
				 __intel_context_ring_size(args->value));
}

static int __get_ringsize(struct intel_context *ce, void *arg)
{
	long sz;

	sz = intel_context_get_ring_size(ce);
	GEM_BUG_ON(sz > INT_MAX);

	return sz; /* stop on first engine */
}

static int get_ringsize(struct i915_gem_context *ctx,
			struct drm_i915_gem_context_param *args)
{
	int sz;

	if (!HAS_LOGICAL_RING_CONTEXTS(ctx->i915))
		return -ENODEV;

	if (args->size)
		return -EINVAL;

	sz = context_apply_all(ctx, __get_ringsize, NULL);
	if (sz < 0)
		return sz;

	args->value = sz;
	return 0;
}

1383
int
1384
i915_gem_user_to_context_sseu(struct intel_gt *gt,
1385 1386
			      const struct drm_i915_gem_context_param_sseu *user,
			      struct intel_sseu *context)
1387
{
1388 1389
	const struct sseu_dev_info *device = &gt->info.sseu;
	struct drm_i915_private *i915 = gt->i915;
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486

	/* No zeros in any field. */
	if (!user->slice_mask || !user->subslice_mask ||
	    !user->min_eus_per_subslice || !user->max_eus_per_subslice)
		return -EINVAL;

	/* Max > min. */
	if (user->max_eus_per_subslice < user->min_eus_per_subslice)
		return -EINVAL;

	/*
	 * Some future proofing on the types since the uAPI is wider than the
	 * current internal implementation.
	 */
	if (overflows_type(user->slice_mask, context->slice_mask) ||
	    overflows_type(user->subslice_mask, context->subslice_mask) ||
	    overflows_type(user->min_eus_per_subslice,
			   context->min_eus_per_subslice) ||
	    overflows_type(user->max_eus_per_subslice,
			   context->max_eus_per_subslice))
		return -EINVAL;

	/* Check validity against hardware. */
	if (user->slice_mask & ~device->slice_mask)
		return -EINVAL;

	if (user->subslice_mask & ~device->subslice_mask[0])
		return -EINVAL;

	if (user->max_eus_per_subslice > device->max_eus_per_subslice)
		return -EINVAL;

	context->slice_mask = user->slice_mask;
	context->subslice_mask = user->subslice_mask;
	context->min_eus_per_subslice = user->min_eus_per_subslice;
	context->max_eus_per_subslice = user->max_eus_per_subslice;

	/* Part specific restrictions. */
	if (IS_GEN(i915, 11)) {
		unsigned int hw_s = hweight8(device->slice_mask);
		unsigned int hw_ss_per_s = hweight8(device->subslice_mask[0]);
		unsigned int req_s = hweight8(context->slice_mask);
		unsigned int req_ss = hweight8(context->subslice_mask);

		/*
		 * Only full subslice enablement is possible if more than one
		 * slice is turned on.
		 */
		if (req_s > 1 && req_ss != hw_ss_per_s)
			return -EINVAL;

		/*
		 * If more than four (SScount bitfield limit) subslices are
		 * requested then the number has to be even.
		 */
		if (req_ss > 4 && (req_ss & 1))
			return -EINVAL;

		/*
		 * If only one slice is enabled and subslice count is below the
		 * device full enablement, it must be at most half of the all
		 * available subslices.
		 */
		if (req_s == 1 && req_ss < hw_ss_per_s &&
		    req_ss > (hw_ss_per_s / 2))
			return -EINVAL;

		/* ABI restriction - VME use case only. */

		/* All slices or one slice only. */
		if (req_s != 1 && req_s != hw_s)
			return -EINVAL;

		/*
		 * Half subslices or full enablement only when one slice is
		 * enabled.
		 */
		if (req_s == 1 &&
		    (req_ss != hw_ss_per_s && req_ss != (hw_ss_per_s / 2)))
			return -EINVAL;

		/* No EU configuration changes. */
		if ((user->min_eus_per_subslice !=
		     device->max_eus_per_subslice) ||
		    (user->max_eus_per_subslice !=
		     device->max_eus_per_subslice))
			return -EINVAL;
	}

	return 0;
}

static int set_sseu(struct i915_gem_context *ctx,
		    struct drm_i915_gem_context_param *args)
{
	struct drm_i915_private *i915 = ctx->i915;
	struct drm_i915_gem_context_param_sseu user_sseu;
1487
	struct intel_context *ce;
1488
	struct intel_sseu sseu;
1489
	unsigned long lookup;
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
	int ret;

	if (args->size < sizeof(user_sseu))
		return -EINVAL;

	if (!IS_GEN(i915, 11))
		return -ENODEV;

	if (copy_from_user(&user_sseu, u64_to_user_ptr(args->value),
			   sizeof(user_sseu)))
		return -EFAULT;

1502
	if (user_sseu.rsvd)
1503 1504
		return -EINVAL;

1505 1506 1507 1508 1509 1510 1511 1512
	if (user_sseu.flags & ~(I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX))
		return -EINVAL;

	lookup = 0;
	if (user_sseu.flags & I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX)
		lookup |= LOOKUP_USER_INDEX;

	ce = lookup_user_engine(ctx, lookup, &user_sseu.engine);
1513 1514
	if (IS_ERR(ce))
		return PTR_ERR(ce);
1515 1516

	/* Only render engine supports RPCS configuration. */
1517 1518 1519 1520
	if (ce->engine->class != RENDER_CLASS) {
		ret = -ENODEV;
		goto out_ce;
	}
1521

1522
	ret = i915_gem_user_to_context_sseu(ce->engine->gt, &user_sseu, &sseu);
1523
	if (ret)
1524
		goto out_ce;
1525

1526
	ret = intel_context_reconfigure_sseu(ce, sseu);
1527
	if (ret)
1528
		goto out_ce;
1529 1530 1531

	args->size = sizeof(user_sseu);

1532 1533 1534
out_ce:
	intel_context_put(ce);
	return ret;
1535 1536
}

1537 1538 1539 1540 1541
struct set_engines {
	struct i915_gem_context *ctx;
	struct i915_gem_engines *engines;
};

1542 1543 1544 1545 1546 1547
static int
set_engines__load_balance(struct i915_user_extension __user *base, void *data)
{
	struct i915_context_engines_load_balance __user *ext =
		container_of_user(base, typeof(*ext), base);
	const struct set_engines *set = data;
1548
	struct drm_i915_private *i915 = set->ctx->i915;
1549 1550 1551 1552 1553 1554 1555
	struct intel_engine_cs *stack[16];
	struct intel_engine_cs **siblings;
	struct intel_context *ce;
	u16 num_siblings, idx;
	unsigned int n;
	int err;

1556
	if (!HAS_EXECLISTS(i915))
1557 1558
		return -ENODEV;

1559
	if (intel_uc_uses_guc_submission(&i915->gt.uc))
1560 1561 1562 1563 1564 1565
		return -ENODEV; /* not implement yet */

	if (get_user(idx, &ext->engine_index))
		return -EFAULT;

	if (idx >= set->engines->num_engines) {
1566 1567
		drm_dbg(&i915->drm, "Invalid placement value, %d >= %d\n",
			idx, set->engines->num_engines);
1568 1569 1570 1571 1572
		return -EINVAL;
	}

	idx = array_index_nospec(idx, set->engines->num_engines);
	if (set->engines->engines[idx]) {
1573 1574
		drm_dbg(&i915->drm,
			"Invalid placement[%d], already occupied\n", idx);
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
		return -EEXIST;
	}

	if (get_user(num_siblings, &ext->num_siblings))
		return -EFAULT;

	err = check_user_mbz(&ext->flags);
	if (err)
		return err;

	err = check_user_mbz(&ext->mbz64);
	if (err)
		return err;

	siblings = stack;
	if (num_siblings > ARRAY_SIZE(stack)) {
		siblings = kmalloc_array(num_siblings,
					 sizeof(*siblings),
					 GFP_KERNEL);
		if (!siblings)
			return -ENOMEM;
	}

	for (n = 0; n < num_siblings; n++) {
		struct i915_engine_class_instance ci;

		if (copy_from_user(&ci, &ext->engines[n], sizeof(ci))) {
			err = -EFAULT;
			goto out_siblings;
		}

1606
		siblings[n] = intel_engine_lookup_user(i915,
1607 1608 1609
						       ci.engine_class,
						       ci.engine_instance);
		if (!siblings[n]) {
1610 1611 1612
			drm_dbg(&i915->drm,
				"Invalid sibling[%d]: { class:%d, inst:%d }\n",
				n, ci.engine_class, ci.engine_instance);
1613 1614 1615 1616 1617
			err = -EINVAL;
			goto out_siblings;
		}
	}

1618
	ce = intel_execlists_create_virtual(siblings, n);
1619 1620 1621 1622 1623
	if (IS_ERR(ce)) {
		err = PTR_ERR(ce);
		goto out_siblings;
	}

1624 1625
	intel_context_set_gem(ce, set->ctx);

1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
	if (cmpxchg(&set->engines->engines[idx], NULL, ce)) {
		intel_context_put(ce);
		err = -EEXIST;
		goto out_siblings;
	}

out_siblings:
	if (siblings != stack)
		kfree(siblings);

	return err;
}

1639 1640 1641 1642 1643 1644
static int
set_engines__bond(struct i915_user_extension __user *base, void *data)
{
	struct i915_context_engines_bond __user *ext =
		container_of_user(base, typeof(*ext), base);
	const struct set_engines *set = data;
1645
	struct drm_i915_private *i915 = set->ctx->i915;
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
	struct i915_engine_class_instance ci;
	struct intel_engine_cs *virtual;
	struct intel_engine_cs *master;
	u16 idx, num_bonds;
	int err, n;

	if (get_user(idx, &ext->virtual_index))
		return -EFAULT;

	if (idx >= set->engines->num_engines) {
1656 1657 1658
		drm_dbg(&i915->drm,
			"Invalid index for virtual engine: %d >= %d\n",
			idx, set->engines->num_engines);
1659 1660 1661 1662 1663
		return -EINVAL;
	}

	idx = array_index_nospec(idx, set->engines->num_engines);
	if (!set->engines->engines[idx]) {
1664
		drm_dbg(&i915->drm, "Invalid engine at %d\n", idx);
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
		return -EINVAL;
	}
	virtual = set->engines->engines[idx]->engine;

	err = check_user_mbz(&ext->flags);
	if (err)
		return err;

	for (n = 0; n < ARRAY_SIZE(ext->mbz64); n++) {
		err = check_user_mbz(&ext->mbz64[n]);
		if (err)
			return err;
	}

	if (copy_from_user(&ci, &ext->master, sizeof(ci)))
		return -EFAULT;

1682
	master = intel_engine_lookup_user(i915,
1683 1684
					  ci.engine_class, ci.engine_instance);
	if (!master) {
1685 1686 1687
		drm_dbg(&i915->drm,
			"Unrecognised master engine: { class:%u, instance:%u }\n",
			ci.engine_class, ci.engine_instance);
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
		return -EINVAL;
	}

	if (get_user(num_bonds, &ext->num_bonds))
		return -EFAULT;

	for (n = 0; n < num_bonds; n++) {
		struct intel_engine_cs *bond;

		if (copy_from_user(&ci, &ext->engines[n], sizeof(ci)))
			return -EFAULT;

1700
		bond = intel_engine_lookup_user(i915,
1701 1702 1703
						ci.engine_class,
						ci.engine_instance);
		if (!bond) {
1704 1705 1706
			drm_dbg(&i915->drm,
				"Unrecognised engine[%d] for bonding: { class:%d, instance: %d }\n",
				n, ci.engine_class, ci.engine_instance);
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
			return -EINVAL;
		}

		/*
		 * A non-virtual engine has no siblings to choose between; and
		 * a submit fence will always be directed to the one engine.
		 */
		if (intel_engine_is_virtual(virtual)) {
			err = intel_virtual_engine_attach_bond(virtual,
							       master,
							       bond);
			if (err)
				return err;
		}
	}

	return 0;
}

1726
static const i915_user_extension_fn set_engines__extensions[] = {
1727
	[I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE] = set_engines__load_balance,
1728
	[I915_CONTEXT_ENGINES_EXT_BOND] = set_engines__bond,
1729 1730 1731 1732 1733 1734
};

static int
set_engines(struct i915_gem_context *ctx,
	    const struct drm_i915_gem_context_param *args)
{
1735
	struct drm_i915_private *i915 = ctx->i915;
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
	struct i915_context_param_engines __user *user =
		u64_to_user_ptr(args->value);
	struct set_engines set = { .ctx = ctx };
	unsigned int num_engines, n;
	u64 extensions;
	int err;

	if (!args->size) { /* switch back to legacy user_ring_map */
		if (!i915_gem_context_user_engines(ctx))
			return 0;

		set.engines = default_engines(ctx);
		if (IS_ERR(set.engines))
			return PTR_ERR(set.engines);

		goto replace;
	}

	BUILD_BUG_ON(!IS_ALIGNED(sizeof(*user), sizeof(*user->engines)));
	if (args->size < sizeof(*user) ||
	    !IS_ALIGNED(args->size, sizeof(*user->engines))) {
1757 1758
		drm_dbg(&i915->drm, "Invalid size for engine array: %d\n",
			args->size);
1759 1760 1761 1762 1763 1764 1765 1766
		return -EINVAL;
	}

	/*
	 * Note that I915_EXEC_RING_MASK limits execbuf to only using the
	 * first 64 engines defined here.
	 */
	num_engines = (args->size - sizeof(*user)) / sizeof(*user->engines);
1767
	set.engines = alloc_engines(num_engines);
1768 1769 1770 1771 1772 1773
	if (!set.engines)
		return -ENOMEM;

	for (n = 0; n < num_engines; n++) {
		struct i915_engine_class_instance ci;
		struct intel_engine_cs *engine;
1774
		struct intel_context *ce;
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790

		if (copy_from_user(&ci, &user->engines[n], sizeof(ci))) {
			__free_engines(set.engines, n);
			return -EFAULT;
		}

		if (ci.engine_class == (u16)I915_ENGINE_CLASS_INVALID &&
		    ci.engine_instance == (u16)I915_ENGINE_CLASS_INVALID_NONE) {
			set.engines->engines[n] = NULL;
			continue;
		}

		engine = intel_engine_lookup_user(ctx->i915,
						  ci.engine_class,
						  ci.engine_instance);
		if (!engine) {
1791 1792 1793
			drm_dbg(&i915->drm,
				"Invalid engine[%d]: { class:%d, instance:%d }\n",
				n, ci.engine_class, ci.engine_instance);
1794 1795 1796 1797
			__free_engines(set.engines, n);
			return -ENOENT;
		}

1798
		ce = intel_context_create(engine);
1799
		if (IS_ERR(ce)) {
1800
			__free_engines(set.engines, n);
1801
			return PTR_ERR(ce);
1802
		}
1803

1804 1805
		intel_context_set_gem(ce, ctx);

1806
		set.engines->engines[n] = ce;
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
	}
	set.engines->num_engines = num_engines;

	err = -EFAULT;
	if (!get_user(extensions, &user->extensions))
		err = i915_user_extensions(u64_to_user_ptr(extensions),
					   set_engines__extensions,
					   ARRAY_SIZE(set_engines__extensions),
					   &set);
	if (err) {
		free_engines(set.engines);
		return err;
	}

replace:
	mutex_lock(&ctx->engines_mutex);
1823 1824 1825 1826 1827
	if (i915_gem_context_is_closed(ctx)) {
		mutex_unlock(&ctx->engines_mutex);
		free_engines(set.engines);
		return -ENOENT;
	}
1828 1829 1830 1831
	if (args->size)
		i915_gem_context_set_user_engines(ctx);
	else
		i915_gem_context_clear_user_engines(ctx);
1832
	set.engines = rcu_replace_pointer(ctx->engines, set.engines, 1);
1833 1834
	mutex_unlock(&ctx->engines_mutex);

1835
	/* Keep track of old engine sets for kill_context() */
1836
	engines_idle_release(ctx, set.engines);
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846

	return 0;
}

static struct i915_gem_engines *
__copy_engines(struct i915_gem_engines *e)
{
	struct i915_gem_engines *copy;
	unsigned int n;

1847
	copy = alloc_engines(e->num_engines);
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
	if (!copy)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < e->num_engines; n++) {
		if (e->engines[n])
			copy->engines[n] = intel_context_get(e->engines[n]);
		else
			copy->engines[n] = NULL;
	}
	copy->num_engines = n;

	return copy;
}

static int
get_engines(struct i915_gem_context *ctx,
	    struct drm_i915_gem_context_param *args)
{
	struct i915_context_param_engines __user *user;
	struct i915_gem_engines *e;
	size_t n, count, size;
	int err = 0;

	err = mutex_lock_interruptible(&ctx->engines_mutex);
	if (err)
		return err;

	e = NULL;
	if (i915_gem_context_user_engines(ctx))
		e = __copy_engines(i915_gem_context_engines(ctx));
	mutex_unlock(&ctx->engines_mutex);
	if (IS_ERR_OR_NULL(e)) {
		args->size = 0;
		return PTR_ERR_OR_ZERO(e);
	}

	count = e->num_engines;

	/* Be paranoid in case we have an impedance mismatch */
	if (!check_struct_size(user, engines, count, &size)) {
		err = -EINVAL;
		goto err_free;
	}
	if (overflows_type(size, args->size)) {
		err = -EINVAL;
		goto err_free;
	}

	if (!args->size) {
		args->size = size;
		goto err_free;
	}

	if (args->size < size) {
		err = -EINVAL;
		goto err_free;
	}

	user = u64_to_user_ptr(args->value);
	if (put_user(0, &user->extensions)) {
		err = -EFAULT;
		goto err_free;
	}

	for (n = 0; n < count; n++) {
		struct i915_engine_class_instance ci = {
			.engine_class = I915_ENGINE_CLASS_INVALID,
			.engine_instance = I915_ENGINE_CLASS_INVALID_NONE,
		};

		if (e->engines[n]) {
			ci.engine_class = e->engines[n]->engine->uabi_class;
1920
			ci.engine_instance = e->engines[n]->engine->uabi_instance;
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
		}

		if (copy_to_user(&user->engines[n], &ci, sizeof(ci))) {
			err = -EFAULT;
			goto err_free;
		}
	}

	args->size = size;

err_free:
1932
	free_engines(e);
1933 1934 1935
	return err;
}

1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
static int
set_persistence(struct i915_gem_context *ctx,
		const struct drm_i915_gem_context_param *args)
{
	if (args->size)
		return -EINVAL;

	return __context_set_persistence(ctx, args->value);
}

1946
static int __apply_priority(struct intel_context *ce, void *arg)
1947 1948 1949
{
	struct i915_gem_context *ctx = arg;

1950
	if (!intel_engine_has_timeslices(ce->engine))
1951
		return 0;
1952 1953 1954 1955 1956

	if (ctx->sched.priority >= I915_PRIORITY_NORMAL)
		intel_context_set_use_semaphores(ce);
	else
		intel_context_clear_use_semaphores(ce);
1957 1958

	return 0;
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
}

static int set_priority(struct i915_gem_context *ctx,
			const struct drm_i915_gem_context_param *args)
{
	s64 priority = args->value;

	if (args->size)
		return -EINVAL;

	if (!(ctx->i915->caps.scheduler & I915_SCHEDULER_CAP_PRIORITY))
		return -ENODEV;

	if (priority > I915_CONTEXT_MAX_USER_PRIORITY ||
	    priority < I915_CONTEXT_MIN_USER_PRIORITY)
		return -EINVAL;

	if (priority > I915_CONTEXT_DEFAULT_PRIORITY &&
	    !capable(CAP_SYS_NICE))
		return -EPERM;

	ctx->sched.priority = I915_USER_PRIORITY(priority);
	context_apply_all(ctx, __apply_priority, ctx);

	return 0;
}

1986 1987
static int ctx_setparam(struct drm_i915_file_private *fpriv,
			struct i915_gem_context *ctx,
1988
			struct drm_i915_gem_context_param *args)
1989
{
1990
	int ret = 0;
1991 1992

	switch (args->param) {
1993
	case I915_CONTEXT_PARAM_NO_ZEROMAP:
1994
		if (args->size)
1995
			ret = -EINVAL;
1996 1997 1998 1999
		else if (args->value)
			set_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags);
		else
			clear_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags);
2000
		break;
2001

2002
	case I915_CONTEXT_PARAM_NO_ERROR_CAPTURE:
2003
		if (args->size)
2004
			ret = -EINVAL;
2005 2006 2007 2008
		else if (args->value)
			i915_gem_context_set_no_error_capture(ctx);
		else
			i915_gem_context_clear_no_error_capture(ctx);
2009
		break;
2010

2011 2012 2013 2014 2015
	case I915_CONTEXT_PARAM_BANNABLE:
		if (args->size)
			ret = -EINVAL;
		else if (!capable(CAP_SYS_ADMIN) && !args->value)
			ret = -EPERM;
2016 2017
		else if (args->value)
			i915_gem_context_set_bannable(ctx);
2018
		else
2019
			i915_gem_context_clear_bannable(ctx);
2020
		break;
2021

2022 2023 2024 2025 2026 2027 2028 2029 2030
	case I915_CONTEXT_PARAM_RECOVERABLE:
		if (args->size)
			ret = -EINVAL;
		else if (args->value)
			i915_gem_context_set_recoverable(ctx);
		else
			i915_gem_context_clear_recoverable(ctx);
		break;

2031
	case I915_CONTEXT_PARAM_PRIORITY:
2032
		ret = set_priority(ctx, args);
2033
		break;
2034

2035 2036 2037
	case I915_CONTEXT_PARAM_SSEU:
		ret = set_sseu(ctx, args);
		break;
2038 2039

	case I915_CONTEXT_PARAM_VM:
2040
		ret = set_ppgtt(fpriv, ctx, args);
2041 2042
		break;

2043 2044 2045 2046
	case I915_CONTEXT_PARAM_ENGINES:
		ret = set_engines(ctx, args);
		break;

2047 2048 2049 2050
	case I915_CONTEXT_PARAM_PERSISTENCE:
		ret = set_persistence(ctx, args);
		break;

2051 2052 2053 2054
	case I915_CONTEXT_PARAM_RINGSIZE:
		ret = set_ringsize(ctx, args);
		break;

2055
	case I915_CONTEXT_PARAM_BAN_PERIOD:
2056 2057 2058 2059 2060
	default:
		ret = -EINVAL;
		break;
	}

2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
	return ret;
}

struct create_ext {
	struct i915_gem_context *ctx;
	struct drm_i915_file_private *fpriv;
};

static int create_setparam(struct i915_user_extension __user *ext, void *data)
{
	struct drm_i915_gem_context_create_ext_setparam local;
	const struct create_ext *arg = data;

	if (copy_from_user(&local, ext, sizeof(local)))
		return -EFAULT;

	if (local.param.ctx_id)
		return -EINVAL;

2080
	return ctx_setparam(arg->fpriv, arg->ctx, &local.param);
2081 2082
}

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
static int copy_ring_size(struct intel_context *dst,
			  struct intel_context *src)
{
	long sz;

	sz = intel_context_get_ring_size(src);
	if (sz < 0)
		return sz;

	return intel_context_set_ring_size(dst, sz);
}

2095 2096 2097 2098 2099 2100 2101 2102
static int clone_engines(struct i915_gem_context *dst,
			 struct i915_gem_context *src)
{
	struct i915_gem_engines *e = i915_gem_context_lock_engines(src);
	struct i915_gem_engines *clone;
	bool user_engines;
	unsigned long n;

2103
	clone = alloc_engines(e->num_engines);
2104 2105 2106 2107
	if (!clone)
		goto err_unlock;

	for (n = 0; n < e->num_engines; n++) {
2108 2109
		struct intel_engine_cs *engine;

2110 2111 2112 2113
		if (!e->engines[n]) {
			clone->engines[n] = NULL;
			continue;
		}
2114
		engine = e->engines[n]->engine;
2115

2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
		/*
		 * Virtual engines are singletons; they can only exist
		 * inside a single context, because they embed their
		 * HW context... As each virtual context implies a single
		 * timeline (each engine can only dequeue a single request
		 * at any time), it would be surprising for two contexts
		 * to use the same engine. So let's create a copy of
		 * the virtual engine instead.
		 */
		if (intel_engine_is_virtual(engine))
			clone->engines[n] =
2127
				intel_execlists_clone_virtual(engine);
2128
		else
2129
			clone->engines[n] = intel_context_create(engine);
2130
		if (IS_ERR_OR_NULL(clone->engines[n])) {
2131 2132 2133
			__free_engines(clone, n);
			goto err_unlock;
		}
2134 2135

		intel_context_set_gem(clone->engines[n], dst);
2136 2137 2138 2139 2140 2141

		/* Copy across the preferred ringsize */
		if (copy_ring_size(clone->engines[n], e->engines[n])) {
			__free_engines(clone, n + 1);
			goto err_unlock;
		}
2142 2143 2144 2145 2146 2147
	}
	clone->num_engines = n;

	user_engines = i915_gem_context_user_engines(src);
	i915_gem_context_unlock_engines(src);

2148
	/* Serialised by constructor */
2149
	engines_idle_release(dst, rcu_replace_pointer(dst->engines, clone, 1));
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
	if (user_engines)
		i915_gem_context_set_user_engines(dst);
	else
		i915_gem_context_clear_user_engines(dst);
	return 0;

err_unlock:
	i915_gem_context_unlock_engines(src);
	return -ENOMEM;
}

static int clone_flags(struct i915_gem_context *dst,
		       struct i915_gem_context *src)
{
	dst->user_flags = src->user_flags;
	return 0;
}

static int clone_schedattr(struct i915_gem_context *dst,
			   struct i915_gem_context *src)
{
	dst->sched = src->sched;
	return 0;
}

static int clone_sseu(struct i915_gem_context *dst,
		      struct i915_gem_context *src)
{
	struct i915_gem_engines *e = i915_gem_context_lock_engines(src);
	struct i915_gem_engines *clone;
	unsigned long n;
	int err;

2183 2184
	/* no locking required; sole access under constructor*/
	clone = __context_engines_static(dst);
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
	if (e->num_engines != clone->num_engines) {
		err = -EINVAL;
		goto unlock;
	}

	for (n = 0; n < e->num_engines; n++) {
		struct intel_context *ce = e->engines[n];

		if (clone->engines[n]->engine->class != ce->engine->class) {
			/* Must have compatible engine maps! */
			err = -EINVAL;
			goto unlock;
		}

		/* serialises with set_sseu */
		err = intel_context_lock_pinned(ce);
		if (err)
			goto unlock;

		clone->engines[n]->sseu = ce->sseu;
		intel_context_unlock_pinned(ce);
	}

	err = 0;
unlock:
	i915_gem_context_unlock_engines(src);
	return err;
}

static int clone_timeline(struct i915_gem_context *dst,
			  struct i915_gem_context *src)
{
2217 2218
	if (src->timeline)
		__assign_timeline(dst, src->timeline);
2219 2220 2221 2222 2223 2224 2225

	return 0;
}

static int clone_vm(struct i915_gem_context *dst,
		    struct i915_gem_context *src)
{
2226
	struct i915_address_space *vm;
2227
	int err = 0;
2228

2229 2230
	if (!rcu_access_pointer(src->vm))
		return 0;
2231

2232 2233
	rcu_read_lock();
	vm = context_get_vm_rcu(src);
2234 2235
	rcu_read_unlock();

2236 2237 2238 2239 2240
	if (!mutex_lock_interruptible(&dst->mutex)) {
		__assign_ppgtt(dst, vm);
		mutex_unlock(&dst->mutex);
	} else {
		err = -EINTR;
2241 2242
	}

2243
	i915_vm_put(vm);
2244
	return err;
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
}

static int create_clone(struct i915_user_extension __user *ext, void *data)
{
	static int (* const fn[])(struct i915_gem_context *dst,
				  struct i915_gem_context *src) = {
#define MAP(x, y) [ilog2(I915_CONTEXT_CLONE_##x)] = y
		MAP(ENGINES, clone_engines),
		MAP(FLAGS, clone_flags),
		MAP(SCHEDATTR, clone_schedattr),
		MAP(SSEU, clone_sseu),
		MAP(TIMELINE, clone_timeline),
		MAP(VM, clone_vm),
#undef MAP
	};
	struct drm_i915_gem_context_create_ext_clone local;
	const struct create_ext *arg = data;
	struct i915_gem_context *dst = arg->ctx;
	struct i915_gem_context *src;
	int err, bit;

	if (copy_from_user(&local, ext, sizeof(local)))
		return -EFAULT;

	BUILD_BUG_ON(GENMASK(BITS_PER_TYPE(local.flags) - 1, ARRAY_SIZE(fn)) !=
		     I915_CONTEXT_CLONE_UNKNOWN);

	if (local.flags & I915_CONTEXT_CLONE_UNKNOWN)
		return -EINVAL;

	if (local.rsvd)
		return -EINVAL;

	rcu_read_lock();
	src = __i915_gem_context_lookup_rcu(arg->fpriv, local.clone_id);
	rcu_read_unlock();
	if (!src)
		return -ENOENT;

	GEM_BUG_ON(src == dst);

	for (bit = 0; bit < ARRAY_SIZE(fn); bit++) {
		if (!(local.flags & BIT(bit)))
			continue;

		err = fn[bit](dst, src);
		if (err)
			return err;
	}

	return 0;
}

2298 2299
static const i915_user_extension_fn create_extensions[] = {
	[I915_CONTEXT_CREATE_EXT_SETPARAM] = create_setparam,
2300
	[I915_CONTEXT_CREATE_EXT_CLONE] = create_clone,
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
};

static bool client_is_banned(struct drm_i915_file_private *file_priv)
{
	return atomic_read(&file_priv->ban_score) >= I915_CLIENT_SCORE_BANNED;
}

int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
				  struct drm_file *file)
{
	struct drm_i915_private *i915 = to_i915(dev);
	struct drm_i915_gem_context_create_ext *args = data;
	struct create_ext ext_data;
	int ret;
2315
	u32 id;
2316 2317 2318 2319 2320 2321 2322

	if (!DRIVER_CAPS(i915)->has_logical_contexts)
		return -ENODEV;

	if (args->flags & I915_CONTEXT_CREATE_FLAGS_UNKNOWN)
		return -EINVAL;

2323
	ret = intel_gt_terminally_wedged(&i915->gt);
2324 2325 2326 2327 2328
	if (ret)
		return ret;

	ext_data.fpriv = file->driver_priv;
	if (client_is_banned(ext_data.fpriv)) {
2329 2330 2331
		drm_dbg(&i915->drm,
			"client %s[%d] banned from creating ctx\n",
			current->comm, task_pid_nr(current));
2332 2333 2334
		return -EIO;
	}

2335
	ext_data.ctx = i915_gem_create_context(i915, args->flags);
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
	if (IS_ERR(ext_data.ctx))
		return PTR_ERR(ext_data.ctx);

	if (args->flags & I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS) {
		ret = i915_user_extensions(u64_to_user_ptr(args->extensions),
					   create_extensions,
					   ARRAY_SIZE(create_extensions),
					   &ext_data);
		if (ret)
			goto err_ctx;
	}

2348
	ret = gem_context_register(ext_data.ctx, ext_data.fpriv, &id);
2349 2350 2351
	if (ret < 0)
		goto err_ctx;

2352
	args->ctx_id = id;
2353
	drm_dbg(&i915->drm, "HW context %d created\n", args->ctx_id);
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374

	return 0;

err_ctx:
	context_close(ext_data.ctx);
	return ret;
}

int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
				   struct drm_file *file)
{
	struct drm_i915_gem_context_destroy *args = data;
	struct drm_i915_file_private *file_priv = file->driver_priv;
	struct i915_gem_context *ctx;

	if (args->pad != 0)
		return -EINVAL;

	if (!args->ctx_id)
		return -ENOENT;

2375
	ctx = xa_erase(&file_priv->context_xa, args->ctx_id);
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
	if (!ctx)
		return -ENOENT;

	context_close(ctx);
	return 0;
}

static int get_sseu(struct i915_gem_context *ctx,
		    struct drm_i915_gem_context_param *args)
{
	struct drm_i915_gem_context_param_sseu user_sseu;
	struct intel_context *ce;
2388
	unsigned long lookup;
2389
	int err;
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399

	if (args->size == 0)
		goto out;
	else if (args->size < sizeof(user_sseu))
		return -EINVAL;

	if (copy_from_user(&user_sseu, u64_to_user_ptr(args->value),
			   sizeof(user_sseu)))
		return -EFAULT;

2400
	if (user_sseu.rsvd)
2401 2402
		return -EINVAL;

2403 2404 2405 2406 2407 2408 2409 2410
	if (user_sseu.flags & ~(I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX))
		return -EINVAL;

	lookup = 0;
	if (user_sseu.flags & I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX)
		lookup |= LOOKUP_USER_INDEX;

	ce = lookup_user_engine(ctx, lookup, &user_sseu.engine);
2411 2412 2413
	if (IS_ERR(ce))
		return PTR_ERR(ce);

2414 2415 2416 2417 2418 2419
	err = intel_context_lock_pinned(ce); /* serialises with set_sseu */
	if (err) {
		intel_context_put(ce);
		return err;
	}

2420 2421 2422 2423 2424
	user_sseu.slice_mask = ce->sseu.slice_mask;
	user_sseu.subslice_mask = ce->sseu.subslice_mask;
	user_sseu.min_eus_per_subslice = ce->sseu.min_eus_per_subslice;
	user_sseu.max_eus_per_subslice = ce->sseu.max_eus_per_subslice;

2425 2426
	intel_context_unlock_pinned(ce);
	intel_context_put(ce);
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457

	if (copy_to_user(u64_to_user_ptr(args->value), &user_sseu,
			 sizeof(user_sseu)))
		return -EFAULT;

out:
	args->size = sizeof(user_sseu);

	return 0;
}

int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
				    struct drm_file *file)
{
	struct drm_i915_file_private *file_priv = file->driver_priv;
	struct drm_i915_gem_context_param *args = data;
	struct i915_gem_context *ctx;
	int ret = 0;

	ctx = i915_gem_context_lookup(file_priv, args->ctx_id);
	if (!ctx)
		return -ENOENT;

	switch (args->param) {
	case I915_CONTEXT_PARAM_NO_ZEROMAP:
		args->size = 0;
		args->value = test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags);
		break;

	case I915_CONTEXT_PARAM_GTT_SIZE:
		args->size = 0;
2458 2459 2460
		rcu_read_lock();
		if (rcu_access_pointer(ctx->vm))
			args->value = rcu_dereference(ctx->vm)->total;
2461 2462
		else
			args->value = to_i915(dev)->ggtt.vm.total;
2463
		rcu_read_unlock();
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
		break;

	case I915_CONTEXT_PARAM_NO_ERROR_CAPTURE:
		args->size = 0;
		args->value = i915_gem_context_no_error_capture(ctx);
		break;

	case I915_CONTEXT_PARAM_BANNABLE:
		args->size = 0;
		args->value = i915_gem_context_is_bannable(ctx);
		break;

	case I915_CONTEXT_PARAM_RECOVERABLE:
		args->size = 0;
		args->value = i915_gem_context_is_recoverable(ctx);
		break;

	case I915_CONTEXT_PARAM_PRIORITY:
		args->size = 0;
		args->value = ctx->sched.priority >> I915_USER_PRIORITY_SHIFT;
		break;

	case I915_CONTEXT_PARAM_SSEU:
		ret = get_sseu(ctx, args);
		break;

	case I915_CONTEXT_PARAM_VM:
2491
		ret = get_ppgtt(file_priv, ctx, args);
2492 2493
		break;

2494 2495 2496 2497
	case I915_CONTEXT_PARAM_ENGINES:
		ret = get_engines(ctx, args);
		break;

2498 2499 2500 2501 2502
	case I915_CONTEXT_PARAM_PERSISTENCE:
		args->size = 0;
		args->value = i915_gem_context_is_persistent(ctx);
		break;

2503 2504 2505 2506
	case I915_CONTEXT_PARAM_RINGSIZE:
		ret = get_ringsize(ctx, args);
		break;

2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
	case I915_CONTEXT_PARAM_BAN_PERIOD:
	default:
		ret = -EINVAL;
		break;
	}

	i915_gem_context_put(ctx);
	return ret;
}

int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
				    struct drm_file *file)
{
	struct drm_i915_file_private *file_priv = file->driver_priv;
	struct drm_i915_gem_context_param *args = data;
	struct i915_gem_context *ctx;
	int ret;

	ctx = i915_gem_context_lookup(file_priv, args->ctx_id);
	if (!ctx)
		return -ENOENT;

2529
	ret = ctx_setparam(file_priv, ctx, args);
2530

2531
	i915_gem_context_put(ctx);
2532 2533
	return ret;
}
2534 2535 2536 2537

int i915_gem_context_reset_stats_ioctl(struct drm_device *dev,
				       void *data, struct drm_file *file)
{
2538
	struct drm_i915_private *i915 = to_i915(dev);
2539
	struct drm_i915_reset_stats *args = data;
2540
	struct i915_gem_context *ctx;
2541 2542 2543 2544 2545
	int ret;

	if (args->flags || args->pad)
		return -EINVAL;

2546 2547 2548 2549 2550
	ret = -ENOENT;
	rcu_read_lock();
	ctx = __i915_gem_context_lookup_rcu(file->driver_priv, args->ctx_id);
	if (!ctx)
		goto out;
2551

2552 2553 2554 2555 2556 2557
	/*
	 * We opt for unserialised reads here. This may result in tearing
	 * in the extremely unlikely event of a GPU hang on this context
	 * as we are querying them. If we need that extra layer of protection,
	 * we should wrap the hangstats with a seqlock.
	 */
2558 2559

	if (capable(CAP_SYS_ADMIN))
2560
		args->reset_count = i915_reset_count(&i915->gpu_error);
2561 2562 2563
	else
		args->reset_count = 0;

2564 2565
	args->batch_active = atomic_read(&ctx->guilty_count);
	args->batch_pending = atomic_read(&ctx->active_count);
2566

2567 2568 2569 2570
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
2571
}
2572

2573 2574 2575 2576 2577 2578 2579
/* GEM context-engines iterator: for_each_gem_engine() */
struct intel_context *
i915_gem_engines_iter_next(struct i915_gem_engines_iter *it)
{
	const struct i915_gem_engines *e = it->engines;
	struct intel_context *ctx;

2580 2581 2582
	if (unlikely(!e))
		return NULL;

2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
	do {
		if (it->idx >= e->num_engines)
			return NULL;

		ctx = e->engines[it->idx++];
	} while (!ctx);

	return ctx;
}

2593 2594
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_context.c"
2595
#include "selftests/i915_gem_context.c"
2596
#endif
2597

2598
static void i915_global_gem_context_shrink(void)
2599
{
2600
	kmem_cache_shrink(global.slab_luts);
2601 2602
}

2603
static void i915_global_gem_context_exit(void)
2604
{
2605
	kmem_cache_destroy(global.slab_luts);
2606 2607
}

2608 2609 2610
static struct i915_global_gem_context global = { {
	.shrink = i915_global_gem_context_shrink,
	.exit = i915_global_gem_context_exit,
2611 2612
} };

2613
int __init i915_global_gem_context_init(void)
2614
{
2615 2616 2617 2618 2619 2620
	global.slab_luts = KMEM_CACHE(i915_lut_handle, 0);
	if (!global.slab_luts)
		return -ENOMEM;

	i915_global_register(&global.base);
	return 0;
2621
}