i915_gem_context.c 62.7 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2011-2012 Intel Corporation
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
 */

/*
 * This file implements HW context support. On gen5+ a HW context consists of an
 * opaque GPU object which is referenced at times of context saves and restores.
 * With RC6 enabled, the context is also referenced as the GPU enters and exists
 * from RC6 (GPU has it's own internal power context, except on gen5). Though
 * something like a context does exist for the media ring, the code only
 * supports contexts for the render ring.
 *
 * In software, there is a distinction between contexts created by the user,
 * and the default HW context. The default HW context is used by GPU clients
 * that do not request setup of their own hardware context. The default
 * context's state is never restored to help prevent programming errors. This
 * would happen if a client ran and piggy-backed off another clients GPU state.
 * The default context only exists to give the GPU some offset to load as the
 * current to invoke a save of the context we actually care about. In fact, the
 * code could likely be constructed, albeit in a more complicated fashion, to
 * never use the default context, though that limits the driver's ability to
 * swap out, and/or destroy other contexts.
 *
 * All other contexts are created as a request by the GPU client. These contexts
 * store GPU state, and thus allow GPU clients to not re-emit state (and
 * potentially query certain state) at any time. The kernel driver makes
 * certain that the appropriate commands are inserted.
 *
 * The context life cycle is semi-complicated in that context BOs may live
 * longer than the context itself because of the way the hardware, and object
 * tracking works. Below is a very crude representation of the state machine
 * describing the context life.
 *                                         refcount     pincount     active
 * S0: initial state                          0            0           0
 * S1: context created                        1            0           0
 * S2: context is currently running           2            1           X
 * S3: GPU referenced, but not current        2            0           1
 * S4: context is current, but destroyed      1            1           0
 * S5: like S3, but destroyed                 1            0           1
 *
 * The most common (but not all) transitions:
 * S0->S1: client creates a context
 * S1->S2: client submits execbuf with context
 * S2->S3: other clients submits execbuf with context
 * S3->S1: context object was retired
 * S3->S2: clients submits another execbuf
 * S2->S4: context destroy called with current context
 * S3->S5->S0: destroy path
 * S4->S5->S0: destroy path on current context
 *
 * There are two confusing terms used above:
 *  The "current context" means the context which is currently running on the
D
Damien Lespiau 已提交
55
 *  GPU. The GPU has loaded its state already and has stored away the gtt
56 57 58 59 60 61 62 63 64 65 66
 *  offset of the BO. The GPU is not actively referencing the data at this
 *  offset, but it will on the next context switch. The only way to avoid this
 *  is to do a GPU reset.
 *
 *  An "active context' is one which was previously the "current context" and is
 *  on the active list waiting for the next context switch to occur. Until this
 *  happens, the object must remain at the same gtt offset. It is therefore
 *  possible to destroy a context, but it is still active.
 *
 */

67
#include <linux/log2.h>
68
#include <linux/nospec.h>
69

70
#include "gt/gen6_ppgtt.h"
71
#include "gt/intel_context.h"
72
#include "gt/intel_context_param.h"
73
#include "gt/intel_engine_heartbeat.h"
74
#include "gt/intel_engine_user.h"
75
#include "gt/intel_ring.h"
76

77
#include "i915_gem_context.h"
78
#include "i915_globals.h"
79
#include "i915_trace.h"
80
#include "i915_user_extensions.h"
81

82 83
#define ALL_L3_SLICES(dev) (1 << NUM_L3_SLICES(dev)) - 1

84
static struct i915_global_gem_context {
85
	struct i915_global base;
86 87 88 89 90 91 92 93 94 95 96 97 98
	struct kmem_cache *slab_luts;
} global;

struct i915_lut_handle *i915_lut_handle_alloc(void)
{
	return kmem_cache_alloc(global.slab_luts, GFP_KERNEL);
}

void i915_lut_handle_free(struct i915_lut_handle *lut)
{
	return kmem_cache_free(global.slab_luts, lut);
}

99
static void lut_close(struct i915_gem_context *ctx)
100
{
101 102 103
	struct radix_tree_iter iter;
	void __rcu **slot;

104
	mutex_lock(&ctx->lut_mutex);
105
	rcu_read_lock();
106 107
	radix_tree_for_each_slot(slot, &ctx->handles_vma, &iter, 0) {
		struct i915_vma *vma = rcu_dereference_raw(*slot);
108 109 110 111 112
		struct drm_i915_gem_object *obj = vma->obj;
		struct i915_lut_handle *lut;

		if (!kref_get_unless_zero(&obj->base.refcount))
			continue;
113

114
		spin_lock(&obj->lut_lock);
115 116 117
		list_for_each_entry(lut, &obj->lut_list, obj_link) {
			if (lut->ctx != ctx)
				continue;
118

119 120 121 122 123 124
			if (lut->handle != iter.index)
				continue;

			list_del(&lut->obj_link);
			break;
		}
125
		spin_unlock(&obj->lut_lock);
126 127 128 129

		if (&lut->obj_link != &obj->lut_list) {
			i915_lut_handle_free(lut);
			radix_tree_iter_delete(&ctx->handles_vma, &iter, slot);
C
Chris Wilson 已提交
130
			i915_vma_close(vma);
131 132 133 134
			i915_gem_object_put(obj);
		}

		i915_gem_object_put(obj);
135
	}
136
	rcu_read_unlock();
137
	mutex_unlock(&ctx->lut_mutex);
138 139
}

140
static struct intel_context *
141 142 143 144
lookup_user_engine(struct i915_gem_context *ctx,
		   unsigned long flags,
		   const struct i915_engine_class_instance *ci)
#define LOOKUP_USER_INDEX BIT(0)
145
{
146
	int idx;
147

148
	if (!!(flags & LOOKUP_USER_INDEX) != i915_gem_context_user_engines(ctx))
149 150
		return ERR_PTR(-EINVAL);

151 152 153 154 155 156 157 158 159
	if (!i915_gem_context_user_engines(ctx)) {
		struct intel_engine_cs *engine;

		engine = intel_engine_lookup_user(ctx->i915,
						  ci->engine_class,
						  ci->engine_instance);
		if (!engine)
			return ERR_PTR(-EINVAL);

160
		idx = engine->legacy_idx;
161 162 163 164 165
	} else {
		idx = ci->engine_instance;
	}

	return i915_gem_context_get_engine(ctx, idx);
166 167
}

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
static struct i915_address_space *
context_get_vm_rcu(struct i915_gem_context *ctx)
{
	GEM_BUG_ON(!rcu_access_pointer(ctx->vm));

	do {
		struct i915_address_space *vm;

		/*
		 * We do not allow downgrading from full-ppgtt [to a shared
		 * global gtt], so ctx->vm cannot become NULL.
		 */
		vm = rcu_dereference(ctx->vm);
		if (!kref_get_unless_zero(&vm->ref))
			continue;

		/*
		 * This ppgtt may have be reallocated between
		 * the read and the kref, and reassigned to a third
		 * context. In order to avoid inadvertent sharing
		 * of this ppgtt with that third context (and not
		 * src), we have to confirm that we have the same
		 * ppgtt after passing through the strong memory
		 * barrier implied by a successful
		 * kref_get_unless_zero().
		 *
		 * Once we have acquired the current ppgtt of ctx,
		 * we no longer care if it is released from ctx, as
		 * it cannot be reallocated elsewhere.
		 */

		if (vm == rcu_access_pointer(ctx->vm))
			return rcu_pointer_handoff(vm);

		i915_vm_put(vm);
	} while (1);
}

206 207 208
static void intel_context_set_gem(struct intel_context *ce,
				  struct i915_gem_context *ctx)
{
209 210
	GEM_BUG_ON(rcu_access_pointer(ce->gem_context));
	RCU_INIT_POINTER(ce->gem_context, ctx);
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230

	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags))
		ce->ring = __intel_context_ring_size(SZ_16K);

	if (rcu_access_pointer(ctx->vm)) {
		struct i915_address_space *vm;

		rcu_read_lock();
		vm = context_get_vm_rcu(ctx); /* hmm */
		rcu_read_unlock();

		i915_vm_put(ce->vm);
		ce->vm = vm;
	}

	GEM_BUG_ON(ce->timeline);
	if (ctx->timeline)
		ce->timeline = intel_timeline_get(ctx->timeline);

	if (ctx->sched.priority >= I915_PRIORITY_NORMAL &&
231
	    intel_engine_has_timeslices(ce->engine))
232 233 234
		__set_bit(CONTEXT_USE_SEMAPHORES, &ce->flags);
}

235
static void __free_engines(struct i915_gem_engines *e, unsigned int count)
236
{
237 238 239 240 241 242 243 244 245 246 247 248 249 250
	while (count--) {
		if (!e->engines[count])
			continue;

		intel_context_put(e->engines[count]);
	}
	kfree(e);
}

static void free_engines(struct i915_gem_engines *e)
{
	__free_engines(e, e->num_engines);
}

251
static void free_engines_rcu(struct rcu_head *rcu)
252
{
253 254 255 256 257
	struct i915_gem_engines *engines =
		container_of(rcu, struct i915_gem_engines, rcu);

	i915_sw_fence_fini(&engines->fence);
	free_engines(engines);
258 259
}

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
static int __i915_sw_fence_call
engines_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
	struct i915_gem_engines *engines =
		container_of(fence, typeof(*engines), fence);

	switch (state) {
	case FENCE_COMPLETE:
		if (!list_empty(&engines->link)) {
			struct i915_gem_context *ctx = engines->ctx;
			unsigned long flags;

			spin_lock_irqsave(&ctx->stale.lock, flags);
			list_del(&engines->link);
			spin_unlock_irqrestore(&ctx->stale.lock, flags);
		}
		i915_gem_context_put(engines->ctx);
		break;

	case FENCE_FREE:
		init_rcu_head(&engines->rcu);
		call_rcu(&engines->rcu, free_engines_rcu);
		break;
	}

	return NOTIFY_DONE;
}

static struct i915_gem_engines *alloc_engines(unsigned int count)
{
	struct i915_gem_engines *e;

	e = kzalloc(struct_size(e, engines, count), GFP_KERNEL);
	if (!e)
		return NULL;

	i915_sw_fence_init(&e->fence, engines_notify);
	return e;
}

300 301
static struct i915_gem_engines *default_engines(struct i915_gem_context *ctx)
{
302
	const struct intel_gt *gt = &ctx->i915->gt;
303 304 305 306
	struct intel_engine_cs *engine;
	struct i915_gem_engines *e;
	enum intel_engine_id id;

307
	e = alloc_engines(I915_NUM_ENGINES);
308 309 310
	if (!e)
		return ERR_PTR(-ENOMEM);

311
	for_each_engine(engine, gt, id) {
312 313
		struct intel_context *ce;

314 315 316 317 318 319
		if (engine->legacy_idx == INVALID_ENGINE)
			continue;

		GEM_BUG_ON(engine->legacy_idx >= I915_NUM_ENGINES);
		GEM_BUG_ON(e->engines[engine->legacy_idx]);

320
		ce = intel_context_create(engine);
321
		if (IS_ERR(ce)) {
322
			__free_engines(e, e->num_engines + 1);
323 324
			return ERR_CAST(ce);
		}
325

326 327
		intel_context_set_gem(ce, ctx);

328 329
		e->engines[engine->legacy_idx] = ce;
		e->num_engines = max(e->num_engines, engine->legacy_idx);
330
	}
331
	e->num_engines++;
332 333 334 335 336 337

	return e;
}

static void i915_gem_context_free(struct i915_gem_context *ctx)
{
338
	GEM_BUG_ON(!i915_gem_context_is_closed(ctx));
339

340 341 342 343
	spin_lock(&ctx->i915->gem.contexts.lock);
	list_del(&ctx->link);
	spin_unlock(&ctx->i915->gem.contexts.lock);

344
	mutex_destroy(&ctx->engines_mutex);
345
	mutex_destroy(&ctx->lut_mutex);
346

347
	if (ctx->timeline)
348
		intel_timeline_put(ctx->timeline);
349

350
	put_pid(ctx->pid);
351
	mutex_destroy(&ctx->mutex);
352

353
	kfree_rcu(ctx, rcu);
354 355
}

356
static void contexts_free_all(struct llist_node *list)
357
{
358
	struct i915_gem_context *ctx, *cn;
359

360
	llist_for_each_entry_safe(ctx, cn, list, free_link)
361 362 363
		i915_gem_context_free(ctx);
}

364
static void contexts_flush_free(struct i915_gem_contexts *gc)
365
{
366
	contexts_free_all(llist_del_all(&gc->free_list));
367 368
}

369 370
static void contexts_free_worker(struct work_struct *work)
{
371 372
	struct i915_gem_contexts *gc =
		container_of(work, typeof(*gc), free_work);
373

374
	contexts_flush_free(gc);
375 376 377 378 379
}

void i915_gem_context_release(struct kref *ref)
{
	struct i915_gem_context *ctx = container_of(ref, typeof(*ctx), ref);
380
	struct i915_gem_contexts *gc = &ctx->i915->gem.contexts;
381 382

	trace_i915_context_free(ctx);
383 384
	if (llist_add(&ctx->free_link, &gc->free_list))
		schedule_work(&gc->free_work);
385 386
}

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
static inline struct i915_gem_engines *
__context_engines_static(const struct i915_gem_context *ctx)
{
	return rcu_dereference_protected(ctx->engines, true);
}

static void __reset_context(struct i915_gem_context *ctx,
			    struct intel_engine_cs *engine)
{
	intel_gt_handle_error(engine->gt, engine->mask, 0,
			      "context closure in %s", ctx->name);
}

static bool __cancel_engine(struct intel_engine_cs *engine)
{
	/*
	 * Send a "high priority pulse" down the engine to cause the
	 * current request to be momentarily preempted. (If it fails to
	 * be preempted, it will be reset). As we have marked our context
	 * as banned, any incomplete request, including any running, will
	 * be skipped following the preemption.
	 *
	 * If there is no hangchecking (one of the reasons why we try to
	 * cancel the context) and no forced preemption, there may be no
	 * means by which we reset the GPU and evict the persistent hog.
	 * Ergo if we are unable to inject a preemptive pulse that can
	 * kill the banned context, we fallback to doing a local reset
	 * instead.
	 */
416
	return intel_engine_pulse(engine) == 0;
417 418
}

419 420
static bool
__active_engine(struct i915_request *rq, struct intel_engine_cs **active)
421 422
{
	struct intel_engine_cs *engine, *locked;
423
	bool ret = false;
424 425 426 427

	/*
	 * Serialise with __i915_request_submit() so that it sees
	 * is-banned?, or we know the request is already inflight.
428 429 430
	 *
	 * Note that rq->engine is unstable, and so we double
	 * check that we have acquired the lock on the final engine.
431 432 433 434 435 436
	 */
	locked = READ_ONCE(rq->engine);
	spin_lock_irq(&locked->active.lock);
	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
		spin_unlock(&locked->active.lock);
		locked = engine;
437
		spin_lock(&locked->active.lock);
438 439
	}

440 441
	if (i915_request_is_active(rq)) {
		if (!i915_request_completed(rq))
442 443 444
			*active = locked;
		ret = true;
	}
445 446 447

	spin_unlock_irq(&locked->active.lock);

448
	return ret;
449 450
}

451 452 453 454 455 456 457 458
static struct intel_engine_cs *active_engine(struct intel_context *ce)
{
	struct intel_engine_cs *engine = NULL;
	struct i915_request *rq;

	if (!ce->timeline)
		return NULL;

459 460 461 462 463
	/*
	 * rq->link is only SLAB_TYPESAFE_BY_RCU, we need to hold a reference
	 * to the request to prevent it being transferred to a new timeline
	 * (and onto a new timeline->requests list).
	 */
464
	rcu_read_lock();
465 466 467 468 469 470
	list_for_each_entry_reverse(rq, &ce->timeline->requests, link) {
		bool found;

		/* timeline is already completed upto this point? */
		if (!i915_request_get_rcu(rq))
			break;
471 472

		/* Check with the backend if the request is inflight */
473 474 475 476 477 478
		found = true;
		if (likely(rcu_access_pointer(rq->timeline) == ce->timeline))
			found = __active_engine(rq, &engine);

		i915_request_put(rq);
		if (found)
479 480
			break;
	}
481
	rcu_read_unlock();
482 483 484 485

	return engine;
}

486
static void kill_engines(struct i915_gem_engines *engines, bool ban)
487 488 489 490 491 492 493 494 495 496 497
{
	struct i915_gem_engines_iter it;
	struct intel_context *ce;

	/*
	 * Map the user's engine back to the actual engines; one virtual
	 * engine will be mapped to multiple engines, and using ctx->engine[]
	 * the same engine may be have multiple instances in the user's map.
	 * However, we only care about pending requests, so only include
	 * engines on which there are incomplete requests.
	 */
498
	for_each_gem_engine(ce, engines, it) {
499 500
		struct intel_engine_cs *engine;

501
		if (ban && intel_context_set_banned(ce))
502 503
			continue;

504 505 506 507 508 509 510 511
		/*
		 * Check the current active state of this context; if we
		 * are currently executing on the GPU we need to evict
		 * ourselves. On the other hand, if we haven't yet been
		 * submitted to the GPU or if everything is complete,
		 * we have nothing to do.
		 */
		engine = active_engine(ce);
512 513

		/* First attempt to gracefully cancel the context */
514
		if (engine && !__cancel_engine(engine) && ban)
515 516 517 518 519
			/*
			 * If we are unable to send a preemptive pulse to bump
			 * the context from the GPU, we have to resort to a full
			 * reset. We hope the collateral damage is worth it.
			 */
520 521 522 523
			__reset_context(engines->ctx, engine);
	}
}

524
static void kill_context(struct i915_gem_context *ctx)
525
{
526 527
	bool ban = (!i915_gem_context_is_persistent(ctx) ||
		    !ctx->i915->params.enable_hangcheck);
528 529
	struct i915_gem_engines *pos, *next;

530 531
	spin_lock_irq(&ctx->stale.lock);
	GEM_BUG_ON(!i915_gem_context_is_closed(ctx));
532
	list_for_each_entry_safe(pos, next, &ctx->stale.engines, link) {
533 534
		if (!i915_sw_fence_await(&pos->fence)) {
			list_del_init(&pos->link);
535
			continue;
536
		}
537

538
		spin_unlock_irq(&ctx->stale.lock);
539

540
		kill_engines(pos, ban);
541

542 543
		spin_lock_irq(&ctx->stale.lock);
		GEM_BUG_ON(i915_sw_fence_signaled(&pos->fence));
544 545 546 547
		list_safe_reset_next(pos, next, link);
		list_del_init(&pos->link); /* decouple from FENCE_COMPLETE */

		i915_sw_fence_complete(&pos->fence);
548
	}
549
	spin_unlock_irq(&ctx->stale.lock);
550 551
}

552 553 554 555 556 557 558 559 560 561 562
static void engines_idle_release(struct i915_gem_context *ctx,
				 struct i915_gem_engines *engines)
{
	struct i915_gem_engines_iter it;
	struct intel_context *ce;

	INIT_LIST_HEAD(&engines->link);

	engines->ctx = i915_gem_context_get(ctx);

	for_each_gem_engine(ce, engines, it) {
563
		int err;
564 565

		/* serialises with execbuf */
566
		set_bit(CONTEXT_CLOSED_BIT, &ce->flags);
567 568 569
		if (!intel_context_pin_if_active(ce))
			continue;

570 571 572 573
		/* Wait until context is finally scheduled out and retired */
		err = i915_sw_fence_await_active(&engines->fence,
						 &ce->active,
						 I915_ACTIVE_AWAIT_BARRIER);
574
		intel_context_unpin(ce);
575
		if (err)
576 577 578 579 580 581 582 583 584 585
			goto kill;
	}

	spin_lock_irq(&ctx->stale.lock);
	if (!i915_gem_context_is_closed(ctx))
		list_add_tail(&engines->link, &ctx->stale.engines);
	spin_unlock_irq(&ctx->stale.lock);

kill:
	if (list_empty(&engines->link)) /* raced, already closed */
586
		kill_engines(engines, true);
587 588

	i915_sw_fence_commit(&engines->fence);
589 590
}

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
static void set_closed_name(struct i915_gem_context *ctx)
{
	char *s;

	/* Replace '[]' with '<>' to indicate closed in debug prints */

	s = strrchr(ctx->name, '[');
	if (!s)
		return;

	*s = '<';

	s = strchr(s + 1, ']');
	if (s)
		*s = '>';
}

608 609
static void context_close(struct i915_gem_context *ctx)
{
610
	struct i915_address_space *vm;
611

612 613 614
	/* Flush any concurrent set_engines() */
	mutex_lock(&ctx->engines_mutex);
	engines_idle_release(ctx, rcu_replace_pointer(ctx->engines, NULL, 1));
615
	i915_gem_context_set_closed(ctx);
616
	mutex_unlock(&ctx->engines_mutex);
617

618 619
	mutex_lock(&ctx->mutex);

620 621
	set_closed_name(ctx);

622 623 624 625
	vm = i915_gem_context_vm(ctx);
	if (vm)
		i915_vm_close(vm);

626
	ctx->file_priv = ERR_PTR(-EBADF);
627

628 629 630 631 632
	/*
	 * The LUT uses the VMA as a backpointer to unref the object,
	 * so we need to clear the LUT before we close all the VMA (inside
	 * the ppgtt).
	 */
633 634
	lut_close(ctx);

635
	mutex_unlock(&ctx->mutex);
636 637 638 639 640 641 642 643

	/*
	 * If the user has disabled hangchecking, we can not be sure that
	 * the batches will ever complete after the context is closed,
	 * keeping the context and all resources pinned forever. So in this
	 * case we opt to forcibly kill off all remaining requests on
	 * context close.
	 */
644
	kill_context(ctx);
645

646 647 648
	i915_gem_context_put(ctx);
}

649 650 651 652 653 654 655 656 657 658 659
static int __context_set_persistence(struct i915_gem_context *ctx, bool state)
{
	if (i915_gem_context_is_persistent(ctx) == state)
		return 0;

	if (state) {
		/*
		 * Only contexts that are short-lived [that will expire or be
		 * reset] are allowed to survive past termination. We require
		 * hangcheck to ensure that the persistent requests are healthy.
		 */
660
		if (!ctx->i915->params.enable_hangcheck)
661 662 663 664 665 666 667 668
			return -EINVAL;

		i915_gem_context_set_persistence(ctx);
	} else {
		/* To cancel a context we use "preempt-to-idle" */
		if (!(ctx->i915->caps.scheduler & I915_SCHEDULER_CAP_PREEMPTION))
			return -ENODEV;

669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
		/*
		 * If the cancel fails, we then need to reset, cleanly!
		 *
		 * If the per-engine reset fails, all hope is lost! We resort
		 * to a full GPU reset in that unlikely case, but realistically
		 * if the engine could not reset, the full reset does not fare
		 * much better. The damage has been done.
		 *
		 * However, if we cannot reset an engine by itself, we cannot
		 * cleanup a hanging persistent context without causing
		 * colateral damage, and we should not pretend we can by
		 * exposing the interface.
		 */
		if (!intel_has_reset_engine(&ctx->i915->gt))
			return -ENODEV;

685 686 687 688 689 690
		i915_gem_context_clear_persistence(ctx);
	}

	return 0;
}

691
static struct i915_gem_context *
692
__create_context(struct drm_i915_private *i915)
693
{
694
	struct i915_gem_context *ctx;
695 696
	struct i915_gem_engines *e;
	int err;
697
	int i;
698

699
	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
700
	if (!ctx)
701
		return ERR_PTR(-ENOMEM);
702

703
	kref_init(&ctx->ref);
704
	ctx->i915 = i915;
705
	ctx->sched.priority = I915_USER_PRIORITY(I915_PRIORITY_NORMAL);
706
	mutex_init(&ctx->mutex);
707
	INIT_LIST_HEAD(&ctx->link);
708

709 710 711
	spin_lock_init(&ctx->stale.lock);
	INIT_LIST_HEAD(&ctx->stale.engines);

712 713 714 715 716 717 718
	mutex_init(&ctx->engines_mutex);
	e = default_engines(ctx);
	if (IS_ERR(e)) {
		err = PTR_ERR(e);
		goto err_free;
	}
	RCU_INIT_POINTER(ctx->engines, e);
719

720
	INIT_RADIX_TREE(&ctx->handles_vma, GFP_KERNEL);
721
	mutex_init(&ctx->lut_mutex);
722

723 724 725
	/* NB: Mark all slices as needing a remap so that when the context first
	 * loads it will restore whatever remap state already exists. If there
	 * is no remap info, it will be a NOP. */
726
	ctx->remap_slice = ALL_L3_SLICES(i915);
727

728
	i915_gem_context_set_bannable(ctx);
729
	i915_gem_context_set_recoverable(ctx);
730
	__context_set_persistence(ctx, true /* cgroup hook? */);
731

732 733 734
	for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp); i++)
		ctx->hang_timestamp[i] = jiffies - CONTEXT_FAST_HANG_JIFFIES;

735
	return ctx;
736 737 738 739

err_free:
	kfree(ctx);
	return ERR_PTR(err);
740 741
}

742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
static inline struct i915_gem_engines *
__context_engines_await(const struct i915_gem_context *ctx)
{
	struct i915_gem_engines *engines;

	rcu_read_lock();
	do {
		engines = rcu_dereference(ctx->engines);
		GEM_BUG_ON(!engines);

		if (unlikely(!i915_sw_fence_await(&engines->fence)))
			continue;

		if (likely(engines == rcu_access_pointer(ctx->engines)))
			break;

		i915_sw_fence_complete(&engines->fence);
	} while (1);
	rcu_read_unlock();

	return engines;
}

765
static int
766
context_apply_all(struct i915_gem_context *ctx,
767
		  int (*fn)(struct intel_context *ce, void *data),
768 769 770
		  void *data)
{
	struct i915_gem_engines_iter it;
771
	struct i915_gem_engines *e;
772
	struct intel_context *ce;
773
	int err = 0;
774

775 776
	e = __context_engines_await(ctx);
	for_each_gem_engine(ce, e, it) {
777 778 779 780
		err = fn(ce, data);
		if (err)
			break;
	}
781
	i915_sw_fence_complete(&e->fence);
782 783

	return err;
784 785
}

786
static int __apply_ppgtt(struct intel_context *ce, void *vm)
787 788 789
{
	i915_vm_put(ce->vm);
	ce->vm = i915_vm_get(vm);
790
	return 0;
791 792
}

793 794
static struct i915_address_space *
__set_ppgtt(struct i915_gem_context *ctx, struct i915_address_space *vm)
795
{
796
	struct i915_address_space *old;
797

798 799 800
	old = rcu_replace_pointer(ctx->vm,
				  i915_vm_open(vm),
				  lockdep_is_held(&ctx->mutex));
801 802
	GEM_BUG_ON(old && i915_vm_is_4lvl(vm) != i915_vm_is_4lvl(old));

803
	context_apply_all(ctx, __apply_ppgtt, vm);
804

805 806 807 808
	return old;
}

static void __assign_ppgtt(struct i915_gem_context *ctx,
809
			   struct i915_address_space *vm)
810
{
811
	if (vm == rcu_access_pointer(ctx->vm))
812 813
		return;

814 815
	vm = __set_ppgtt(ctx, vm);
	if (vm)
816
		i915_vm_close(vm);
817 818
}

819 820 821 822 823 824 825 826 827 828 829
static void __set_timeline(struct intel_timeline **dst,
			   struct intel_timeline *src)
{
	struct intel_timeline *old = *dst;

	*dst = src ? intel_timeline_get(src) : NULL;

	if (old)
		intel_timeline_put(old);
}

830
static int __apply_timeline(struct intel_context *ce, void *timeline)
831 832
{
	__set_timeline(&ce->timeline, timeline);
833
	return 0;
834 835 836 837 838 839 840 841 842
}

static void __assign_timeline(struct i915_gem_context *ctx,
			      struct intel_timeline *timeline)
{
	__set_timeline(&ctx->timeline, timeline);
	context_apply_all(ctx, __apply_timeline, timeline);
}

843
static struct i915_gem_context *
844
i915_gem_create_context(struct drm_i915_private *i915, unsigned int flags)
845
{
846
	struct i915_gem_context *ctx;
847

848
	if (flags & I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE &&
849
	    !HAS_EXECLISTS(i915))
850 851
		return ERR_PTR(-EINVAL);

852 853
	/* Reap the stale contexts */
	contexts_flush_free(&i915->gem.contexts);
854

855
	ctx = __create_context(i915);
856
	if (IS_ERR(ctx))
857
		return ctx;
858

859
	if (HAS_FULL_PPGTT(i915)) {
860
		struct i915_ppgtt *ppgtt;
861

862
		ppgtt = i915_ppgtt_create(&i915->gt);
863
		if (IS_ERR(ppgtt)) {
864 865
			drm_dbg(&i915->drm, "PPGTT setup failed (%ld)\n",
				PTR_ERR(ppgtt));
866
			context_close(ctx);
867
			return ERR_CAST(ppgtt);
868 869
		}

870
		mutex_lock(&ctx->mutex);
871
		__assign_ppgtt(ctx, &ppgtt->vm);
872 873
		mutex_unlock(&ctx->mutex);

874
		i915_vm_put(&ppgtt->vm);
875
	}
876

877
	if (flags & I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE) {
878
		struct intel_timeline *timeline;
879

880
		timeline = intel_timeline_create(&i915->gt);
881 882 883 884 885
		if (IS_ERR(timeline)) {
			context_close(ctx);
			return ERR_CAST(timeline);
		}

886 887
		__assign_timeline(ctx, timeline);
		intel_timeline_put(timeline);
888 889
	}

890 891
	trace_i915_context_create(ctx);

892
	return ctx;
893 894
}

895
static void init_contexts(struct i915_gem_contexts *gc)
896
{
897 898
	spin_lock_init(&gc->lock);
	INIT_LIST_HEAD(&gc->list);
899

900 901
	INIT_WORK(&gc->free_work, contexts_free_worker);
	init_llist_head(&gc->free_list);
902 903
}

904
void i915_gem_init__contexts(struct drm_i915_private *i915)
905
{
906
	init_contexts(&i915->gem.contexts);
907 908
}

909
void i915_gem_driver_release__contexts(struct drm_i915_private *i915)
910
{
911
	flush_work(&i915->gem.contexts.free_work);
912
	rcu_barrier(); /* and flush the left over RCU frees */
913 914
}

915
static int gem_context_register(struct i915_gem_context *ctx,
916 917
				struct drm_i915_file_private *fpriv,
				u32 *id)
918
{
919
	struct drm_i915_private *i915 = ctx->i915;
920
	struct i915_address_space *vm;
921 922 923
	int ret;

	ctx->file_priv = fpriv;
924 925 926 927 928 929

	mutex_lock(&ctx->mutex);
	vm = i915_gem_context_vm(ctx);
	if (vm)
		WRITE_ONCE(vm->file, fpriv); /* XXX */
	mutex_unlock(&ctx->mutex);
930 931

	ctx->pid = get_task_pid(current, PIDTYPE_PID);
932 933
	snprintf(ctx->name, sizeof(ctx->name), "%s[%d]",
		 current->comm, pid_nr(ctx->pid));
934 935

	/* And finally expose ourselves to userspace via the idr */
936 937
	ret = xa_alloc(&fpriv->context_xa, id, ctx, xa_limit_32b, GFP_KERNEL);
	if (ret)
938 939 940 941 942 943 944
		goto err_pid;

	spin_lock(&i915->gem.contexts.lock);
	list_add_tail(&ctx->link, &i915->gem.contexts.list);
	spin_unlock(&i915->gem.contexts.lock);

	return 0;
945

946 947
err_pid:
	put_pid(fetch_and_zero(&ctx->pid));
948 949 950
	return ret;
}

951 952
int i915_gem_context_open(struct drm_i915_private *i915,
			  struct drm_file *file)
953 954
{
	struct drm_i915_file_private *file_priv = file->driver_priv;
955
	struct i915_gem_context *ctx;
956
	int err;
957
	u32 id;
958

959
	xa_init_flags(&file_priv->context_xa, XA_FLAGS_ALLOC);
960

961 962
	/* 0 reserved for invalid/unassigned ppgtt */
	xa_init_flags(&file_priv->vm_xa, XA_FLAGS_ALLOC1);
963

964
	ctx = i915_gem_create_context(i915, 0);
965
	if (IS_ERR(ctx)) {
966 967
		err = PTR_ERR(ctx);
		goto err;
968 969
	}

970
	err = gem_context_register(ctx, file_priv, &id);
971
	if (err < 0)
972 973
		goto err_ctx;

974
	GEM_BUG_ON(id);
975
	return 0;
976 977 978

err_ctx:
	context_close(ctx);
979
err:
980
	xa_destroy(&file_priv->vm_xa);
981
	xa_destroy(&file_priv->context_xa);
982
	return err;
983 984
}

985
void i915_gem_context_close(struct drm_file *file)
986
{
987
	struct drm_i915_file_private *file_priv = file->driver_priv;
988
	struct drm_i915_private *i915 = file_priv->dev_priv;
989
	struct i915_address_space *vm;
990 991
	struct i915_gem_context *ctx;
	unsigned long idx;
992

993 994 995
	xa_for_each(&file_priv->context_xa, idx, ctx)
		context_close(ctx);
	xa_destroy(&file_priv->context_xa);
996

997 998 999
	xa_for_each(&file_priv->vm_xa, idx, vm)
		i915_vm_put(vm);
	xa_destroy(&file_priv->vm_xa);
1000 1001

	contexts_flush_free(&i915->gem.contexts);
1002 1003 1004 1005 1006 1007 1008 1009
}

int i915_gem_vm_create_ioctl(struct drm_device *dev, void *data,
			     struct drm_file *file)
{
	struct drm_i915_private *i915 = to_i915(dev);
	struct drm_i915_gem_vm_control *args = data;
	struct drm_i915_file_private *file_priv = file->driver_priv;
1010
	struct i915_ppgtt *ppgtt;
1011
	u32 id;
1012 1013 1014 1015 1016 1017 1018 1019
	int err;

	if (!HAS_FULL_PPGTT(i915))
		return -ENODEV;

	if (args->flags)
		return -EINVAL;

1020
	ppgtt = i915_ppgtt_create(&i915->gt);
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
	if (IS_ERR(ppgtt))
		return PTR_ERR(ppgtt);

	ppgtt->vm.file = file_priv;

	if (args->extensions) {
		err = i915_user_extensions(u64_to_user_ptr(args->extensions),
					   NULL, 0,
					   ppgtt);
		if (err)
			goto err_put;
	}

1034 1035
	err = xa_alloc(&file_priv->vm_xa, &id, &ppgtt->vm,
		       xa_limit_32b, GFP_KERNEL);
1036 1037 1038
	if (err)
		goto err_put;

1039 1040
	GEM_BUG_ON(id == 0); /* reserved for invalid/unassigned ppgtt */
	args->vm_id = id;
1041 1042 1043
	return 0;

err_put:
1044
	i915_vm_put(&ppgtt->vm);
1045 1046 1047 1048 1049 1050 1051 1052
	return err;
}

int i915_gem_vm_destroy_ioctl(struct drm_device *dev, void *data,
			      struct drm_file *file)
{
	struct drm_i915_file_private *file_priv = file->driver_priv;
	struct drm_i915_gem_vm_control *args = data;
1053
	struct i915_address_space *vm;
1054 1055 1056 1057 1058 1059 1060

	if (args->flags)
		return -EINVAL;

	if (args->extensions)
		return -EINVAL;

1061
	vm = xa_erase(&file_priv->vm_xa, args->vm_id);
1062
	if (!vm)
1063 1064
		return -ENOENT;

1065
	i915_vm_put(vm);
1066
	return 0;
1067 1068
}

1069 1070 1071 1072 1073 1074
struct context_barrier_task {
	struct i915_active base;
	void (*task)(void *data);
	void *data;
};

1075
__i915_active_call
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
static void cb_retire(struct i915_active *base)
{
	struct context_barrier_task *cb = container_of(base, typeof(*cb), base);

	if (cb->task)
		cb->task(cb->data);

	i915_active_fini(&cb->base);
	kfree(cb);
}

1087
I915_SELFTEST_DECLARE(static intel_engine_mask_t context_barrier_inject_fault);
1088
static int context_barrier_task(struct i915_gem_context *ctx,
1089
				intel_engine_mask_t engines,
1090
				bool (*skip)(struct intel_context *ce, void *data),
1091
				int (*pin)(struct intel_context *ce, struct i915_gem_ww_ctx *ww, void *data),
1092
				int (*emit)(struct i915_request *rq, void *data),
1093 1094 1095 1096
				void (*task)(void *data),
				void *data)
{
	struct context_barrier_task *cb;
1097
	struct i915_gem_engines_iter it;
1098
	struct i915_gem_engines *e;
1099
	struct i915_gem_ww_ctx ww;
1100
	struct intel_context *ce;
1101 1102 1103 1104 1105 1106 1107 1108
	int err = 0;

	GEM_BUG_ON(!task);

	cb = kmalloc(sizeof(*cb), GFP_KERNEL);
	if (!cb)
		return -ENOMEM;

1109
	i915_active_init(&cb->base, NULL, cb_retire);
1110 1111 1112 1113 1114
	err = i915_active_acquire(&cb->base);
	if (err) {
		kfree(cb);
		return err;
	}
1115

1116 1117 1118 1119 1120 1121 1122
	e = __context_engines_await(ctx);
	if (!e) {
		i915_active_release(&cb->base);
		return -ENOENT;
	}

	for_each_gem_engine(ce, e, it) {
1123 1124 1125
		struct i915_request *rq;

		if (I915_SELFTEST_ONLY(context_barrier_inject_fault &
1126
				       ce->engine->mask)) {
1127 1128 1129 1130
			err = -ENXIO;
			break;
		}

1131 1132 1133 1134
		if (!(ce->engine->mask & engines))
			continue;

		if (skip && skip(ce, data))
1135 1136
			continue;

1137 1138
		i915_gem_ww_ctx_init(&ww, true);
retry:
1139
		err = intel_context_pin_ww(ce, &ww);
1140 1141 1142 1143 1144 1145 1146 1147 1148
		if (err)
			goto err;

		if (pin)
			err = pin(ce, &ww, data);
		if (err)
			goto err_unpin;

		rq = i915_request_create(ce);
1149 1150
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
1151
			goto err_unpin;
1152 1153
		}

1154 1155 1156 1157
		err = 0;
		if (emit)
			err = emit(rq, data);
		if (err == 0)
1158
			err = i915_active_add_request(&cb->base, rq);
1159

1160
		i915_request_add(rq);
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
err_unpin:
		intel_context_unpin(ce);
err:
		if (err == -EDEADLK) {
			err = i915_gem_ww_ctx_backoff(&ww);
			if (!err)
				goto retry;
		}
		i915_gem_ww_ctx_fini(&ww);

1171 1172 1173
		if (err)
			break;
	}
1174
	i915_sw_fence_complete(&e->fence);
1175 1176 1177 1178 1179 1180 1181 1182 1183

	cb->task = err ? NULL : task; /* caller needs to unwind instead */
	cb->data = data;

	i915_active_release(&cb->base);

	return err;
}

1184 1185
static int get_ppgtt(struct drm_i915_file_private *file_priv,
		     struct i915_gem_context *ctx,
1186 1187
		     struct drm_i915_gem_context_param *args)
{
1188
	struct i915_address_space *vm;
1189 1190
	int err;
	u32 id;
1191

1192
	if (!rcu_access_pointer(ctx->vm))
1193 1194
		return -ENODEV;

1195
	rcu_read_lock();
1196
	vm = context_get_vm_rcu(ctx);
1197
	rcu_read_unlock();
1198 1199 1200 1201
	if (!vm)
		return -ENODEV;

	err = xa_alloc(&file_priv->vm_xa, &id, vm, xa_limit_32b, GFP_KERNEL);
1202
	if (err)
1203 1204
		goto err_put;

1205
	i915_vm_open(vm);
1206

1207 1208
	GEM_BUG_ON(id == 0); /* reserved for invalid/unassigned ppgtt */
	args->value = id;
1209 1210 1211
	args->size = 0;

err_put:
1212
	i915_vm_put(vm);
1213
	return err;
1214 1215 1216 1217
}

static void set_ppgtt_barrier(void *data)
{
1218
	struct i915_address_space *old = data;
1219

1220 1221
	if (INTEL_GEN(old->i915) < 8)
		gen6_ppgtt_unpin_all(i915_vm_to_ppgtt(old));
1222

1223
	i915_vm_close(old);
1224 1225
}

1226 1227 1228 1229 1230 1231
static int pin_ppgtt_update(struct intel_context *ce, struct i915_gem_ww_ctx *ww, void *data)
{
	struct i915_address_space *vm = ce->vm;

	if (!HAS_LOGICAL_RING_CONTEXTS(vm->i915))
		/* ppGTT is not part of the legacy context image */
1232
		return gen6_ppgtt_pin(i915_vm_to_ppgtt(vm), ww);
1233 1234 1235 1236

	return 0;
}

1237 1238
static int emit_ppgtt_update(struct i915_request *rq, void *data)
{
1239
	struct i915_address_space *vm = rq->context->vm;
1240
	struct intel_engine_cs *engine = rq->engine;
1241
	u32 base = engine->mmio_base;
1242 1243 1244
	u32 *cs;
	int i;

1245
	if (i915_vm_is_4lvl(vm)) {
1246
		struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1247
		const dma_addr_t pd_daddr = px_dma(ppgtt->pd);
1248 1249 1250 1251 1252 1253 1254

		cs = intel_ring_begin(rq, 6);
		if (IS_ERR(cs))
			return PTR_ERR(cs);

		*cs++ = MI_LOAD_REGISTER_IMM(2);

1255
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0));
1256
		*cs++ = upper_32_bits(pd_daddr);
1257
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0));
1258 1259 1260 1261 1262
		*cs++ = lower_32_bits(pd_daddr);

		*cs++ = MI_NOOP;
		intel_ring_advance(rq, cs);
	} else if (HAS_LOGICAL_RING_CONTEXTS(engine->i915)) {
1263
		struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1264 1265 1266 1267 1268 1269
		int err;

		/* Magic required to prevent forcewake errors! */
		err = engine->emit_flush(rq, EMIT_INVALIDATE);
		if (err)
			return err;
1270

1271 1272 1273 1274
		cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
		if (IS_ERR(cs))
			return PTR_ERR(cs);

1275
		*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
1276 1277 1278
		for (i = GEN8_3LVL_PDPES; i--; ) {
			const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1279
			*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
1280
			*cs++ = upper_32_bits(pd_daddr);
1281
			*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
1282 1283 1284 1285 1286 1287 1288 1289 1290
			*cs++ = lower_32_bits(pd_daddr);
		}
		*cs++ = MI_NOOP;
		intel_ring_advance(rq, cs);
	}

	return 0;
}

1291 1292 1293
static bool skip_ppgtt_update(struct intel_context *ce, void *data)
{
	if (HAS_LOGICAL_RING_CONTEXTS(ce->engine->i915))
1294 1295 1296
		return !ce->state;
	else
		return !atomic_read(&ce->pin_count);
1297 1298
}

1299 1300
static int set_ppgtt(struct drm_i915_file_private *file_priv,
		     struct i915_gem_context *ctx,
1301 1302
		     struct drm_i915_gem_context_param *args)
{
1303
	struct i915_address_space *vm, *old;
1304 1305 1306 1307 1308
	int err;

	if (args->size)
		return -EINVAL;

1309
	if (!rcu_access_pointer(ctx->vm))
1310 1311 1312 1313 1314
		return -ENODEV;

	if (upper_32_bits(args->value))
		return -ENOENT;

1315
	rcu_read_lock();
1316
	vm = xa_load(&file_priv->vm_xa, args->value);
1317 1318 1319
	if (vm && !kref_get_unless_zero(&vm->ref))
		vm = NULL;
	rcu_read_unlock();
1320
	if (!vm)
1321 1322
		return -ENOENT;

1323
	err = mutex_lock_interruptible(&ctx->mutex);
1324 1325 1326
	if (err)
		goto out;

1327 1328
	if (i915_gem_context_is_closed(ctx)) {
		err = -ENOENT;
1329
		goto unlock;
1330 1331 1332
	}

	if (vm == rcu_access_pointer(ctx->vm))
1333 1334
		goto unlock;

1335 1336
	old = __set_ppgtt(ctx, vm);

1337 1338 1339 1340 1341 1342 1343 1344 1345
	/* Teardown the existing obj:vma cache, it will have to be rebuilt. */
	lut_close(ctx);

	/*
	 * We need to flush any requests using the current ppgtt before
	 * we release it as the requests do not hold a reference themselves,
	 * only indirectly through the context.
	 */
	err = context_barrier_task(ctx, ALL_ENGINES,
1346
				   skip_ppgtt_update,
1347
				   pin_ppgtt_update,
1348 1349 1350 1351
				   emit_ppgtt_update,
				   set_ppgtt_barrier,
				   old);
	if (err) {
1352 1353
		i915_vm_close(__set_ppgtt(ctx, old));
		i915_vm_close(old);
1354
		lut_close(ctx); /* force a rebuild of the old obj:vma cache */
1355 1356 1357
	}

unlock:
1358
	mutex_unlock(&ctx->mutex);
1359
out:
1360
	i915_vm_put(vm);
1361 1362 1363
	return err;
}

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
static int __apply_ringsize(struct intel_context *ce, void *sz)
{
	return intel_context_set_ring_size(ce, (unsigned long)sz);
}

static int set_ringsize(struct i915_gem_context *ctx,
			struct drm_i915_gem_context_param *args)
{
	if (!HAS_LOGICAL_RING_CONTEXTS(ctx->i915))
		return -ENODEV;

	if (args->size)
		return -EINVAL;

	if (!IS_ALIGNED(args->value, I915_GTT_PAGE_SIZE))
		return -EINVAL;

	if (args->value < I915_GTT_PAGE_SIZE)
		return -EINVAL;

	if (args->value > 128 * I915_GTT_PAGE_SIZE)
		return -EINVAL;

	return context_apply_all(ctx,
				 __apply_ringsize,
				 __intel_context_ring_size(args->value));
}

static int __get_ringsize(struct intel_context *ce, void *arg)
{
	long sz;

	sz = intel_context_get_ring_size(ce);
	GEM_BUG_ON(sz > INT_MAX);

	return sz; /* stop on first engine */
}

static int get_ringsize(struct i915_gem_context *ctx,
			struct drm_i915_gem_context_param *args)
{
	int sz;

	if (!HAS_LOGICAL_RING_CONTEXTS(ctx->i915))
		return -ENODEV;

	if (args->size)
		return -EINVAL;

	sz = context_apply_all(ctx, __get_ringsize, NULL);
	if (sz < 0)
		return sz;

	args->value = sz;
	return 0;
}

1421
int
1422
i915_gem_user_to_context_sseu(struct intel_gt *gt,
1423 1424
			      const struct drm_i915_gem_context_param_sseu *user,
			      struct intel_sseu *context)
1425
{
1426 1427
	const struct sseu_dev_info *device = &gt->info.sseu;
	struct drm_i915_private *i915 = gt->i915;
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524

	/* No zeros in any field. */
	if (!user->slice_mask || !user->subslice_mask ||
	    !user->min_eus_per_subslice || !user->max_eus_per_subslice)
		return -EINVAL;

	/* Max > min. */
	if (user->max_eus_per_subslice < user->min_eus_per_subslice)
		return -EINVAL;

	/*
	 * Some future proofing on the types since the uAPI is wider than the
	 * current internal implementation.
	 */
	if (overflows_type(user->slice_mask, context->slice_mask) ||
	    overflows_type(user->subslice_mask, context->subslice_mask) ||
	    overflows_type(user->min_eus_per_subslice,
			   context->min_eus_per_subslice) ||
	    overflows_type(user->max_eus_per_subslice,
			   context->max_eus_per_subslice))
		return -EINVAL;

	/* Check validity against hardware. */
	if (user->slice_mask & ~device->slice_mask)
		return -EINVAL;

	if (user->subslice_mask & ~device->subslice_mask[0])
		return -EINVAL;

	if (user->max_eus_per_subslice > device->max_eus_per_subslice)
		return -EINVAL;

	context->slice_mask = user->slice_mask;
	context->subslice_mask = user->subslice_mask;
	context->min_eus_per_subslice = user->min_eus_per_subslice;
	context->max_eus_per_subslice = user->max_eus_per_subslice;

	/* Part specific restrictions. */
	if (IS_GEN(i915, 11)) {
		unsigned int hw_s = hweight8(device->slice_mask);
		unsigned int hw_ss_per_s = hweight8(device->subslice_mask[0]);
		unsigned int req_s = hweight8(context->slice_mask);
		unsigned int req_ss = hweight8(context->subslice_mask);

		/*
		 * Only full subslice enablement is possible if more than one
		 * slice is turned on.
		 */
		if (req_s > 1 && req_ss != hw_ss_per_s)
			return -EINVAL;

		/*
		 * If more than four (SScount bitfield limit) subslices are
		 * requested then the number has to be even.
		 */
		if (req_ss > 4 && (req_ss & 1))
			return -EINVAL;

		/*
		 * If only one slice is enabled and subslice count is below the
		 * device full enablement, it must be at most half of the all
		 * available subslices.
		 */
		if (req_s == 1 && req_ss < hw_ss_per_s &&
		    req_ss > (hw_ss_per_s / 2))
			return -EINVAL;

		/* ABI restriction - VME use case only. */

		/* All slices or one slice only. */
		if (req_s != 1 && req_s != hw_s)
			return -EINVAL;

		/*
		 * Half subslices or full enablement only when one slice is
		 * enabled.
		 */
		if (req_s == 1 &&
		    (req_ss != hw_ss_per_s && req_ss != (hw_ss_per_s / 2)))
			return -EINVAL;

		/* No EU configuration changes. */
		if ((user->min_eus_per_subslice !=
		     device->max_eus_per_subslice) ||
		    (user->max_eus_per_subslice !=
		     device->max_eus_per_subslice))
			return -EINVAL;
	}

	return 0;
}

static int set_sseu(struct i915_gem_context *ctx,
		    struct drm_i915_gem_context_param *args)
{
	struct drm_i915_private *i915 = ctx->i915;
	struct drm_i915_gem_context_param_sseu user_sseu;
1525
	struct intel_context *ce;
1526
	struct intel_sseu sseu;
1527
	unsigned long lookup;
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
	int ret;

	if (args->size < sizeof(user_sseu))
		return -EINVAL;

	if (!IS_GEN(i915, 11))
		return -ENODEV;

	if (copy_from_user(&user_sseu, u64_to_user_ptr(args->value),
			   sizeof(user_sseu)))
		return -EFAULT;

1540
	if (user_sseu.rsvd)
1541 1542
		return -EINVAL;

1543 1544 1545 1546 1547 1548 1549 1550
	if (user_sseu.flags & ~(I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX))
		return -EINVAL;

	lookup = 0;
	if (user_sseu.flags & I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX)
		lookup |= LOOKUP_USER_INDEX;

	ce = lookup_user_engine(ctx, lookup, &user_sseu.engine);
1551 1552
	if (IS_ERR(ce))
		return PTR_ERR(ce);
1553 1554

	/* Only render engine supports RPCS configuration. */
1555 1556 1557 1558
	if (ce->engine->class != RENDER_CLASS) {
		ret = -ENODEV;
		goto out_ce;
	}
1559

1560
	ret = i915_gem_user_to_context_sseu(ce->engine->gt, &user_sseu, &sseu);
1561
	if (ret)
1562
		goto out_ce;
1563

1564
	ret = intel_context_reconfigure_sseu(ce, sseu);
1565
	if (ret)
1566
		goto out_ce;
1567 1568 1569

	args->size = sizeof(user_sseu);

1570 1571 1572
out_ce:
	intel_context_put(ce);
	return ret;
1573 1574
}

1575 1576 1577 1578 1579
struct set_engines {
	struct i915_gem_context *ctx;
	struct i915_gem_engines *engines;
};

1580 1581 1582 1583 1584 1585
static int
set_engines__load_balance(struct i915_user_extension __user *base, void *data)
{
	struct i915_context_engines_load_balance __user *ext =
		container_of_user(base, typeof(*ext), base);
	const struct set_engines *set = data;
1586
	struct drm_i915_private *i915 = set->ctx->i915;
1587 1588 1589 1590 1591 1592 1593
	struct intel_engine_cs *stack[16];
	struct intel_engine_cs **siblings;
	struct intel_context *ce;
	u16 num_siblings, idx;
	unsigned int n;
	int err;

1594
	if (!HAS_EXECLISTS(i915))
1595 1596
		return -ENODEV;

1597
	if (intel_uc_uses_guc_submission(&i915->gt.uc))
1598 1599 1600 1601 1602 1603
		return -ENODEV; /* not implement yet */

	if (get_user(idx, &ext->engine_index))
		return -EFAULT;

	if (idx >= set->engines->num_engines) {
1604 1605
		drm_dbg(&i915->drm, "Invalid placement value, %d >= %d\n",
			idx, set->engines->num_engines);
1606 1607 1608 1609 1610
		return -EINVAL;
	}

	idx = array_index_nospec(idx, set->engines->num_engines);
	if (set->engines->engines[idx]) {
1611 1612
		drm_dbg(&i915->drm,
			"Invalid placement[%d], already occupied\n", idx);
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
		return -EEXIST;
	}

	if (get_user(num_siblings, &ext->num_siblings))
		return -EFAULT;

	err = check_user_mbz(&ext->flags);
	if (err)
		return err;

	err = check_user_mbz(&ext->mbz64);
	if (err)
		return err;

	siblings = stack;
	if (num_siblings > ARRAY_SIZE(stack)) {
		siblings = kmalloc_array(num_siblings,
					 sizeof(*siblings),
					 GFP_KERNEL);
		if (!siblings)
			return -ENOMEM;
	}

	for (n = 0; n < num_siblings; n++) {
		struct i915_engine_class_instance ci;

		if (copy_from_user(&ci, &ext->engines[n], sizeof(ci))) {
			err = -EFAULT;
			goto out_siblings;
		}

1644
		siblings[n] = intel_engine_lookup_user(i915,
1645 1646 1647
						       ci.engine_class,
						       ci.engine_instance);
		if (!siblings[n]) {
1648 1649 1650
			drm_dbg(&i915->drm,
				"Invalid sibling[%d]: { class:%d, inst:%d }\n",
				n, ci.engine_class, ci.engine_instance);
1651 1652 1653 1654 1655
			err = -EINVAL;
			goto out_siblings;
		}
	}

1656
	ce = intel_execlists_create_virtual(siblings, n);
1657 1658 1659 1660 1661
	if (IS_ERR(ce)) {
		err = PTR_ERR(ce);
		goto out_siblings;
	}

1662 1663
	intel_context_set_gem(ce, set->ctx);

1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
	if (cmpxchg(&set->engines->engines[idx], NULL, ce)) {
		intel_context_put(ce);
		err = -EEXIST;
		goto out_siblings;
	}

out_siblings:
	if (siblings != stack)
		kfree(siblings);

	return err;
}

1677 1678 1679 1680 1681 1682
static int
set_engines__bond(struct i915_user_extension __user *base, void *data)
{
	struct i915_context_engines_bond __user *ext =
		container_of_user(base, typeof(*ext), base);
	const struct set_engines *set = data;
1683
	struct drm_i915_private *i915 = set->ctx->i915;
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
	struct i915_engine_class_instance ci;
	struct intel_engine_cs *virtual;
	struct intel_engine_cs *master;
	u16 idx, num_bonds;
	int err, n;

	if (get_user(idx, &ext->virtual_index))
		return -EFAULT;

	if (idx >= set->engines->num_engines) {
1694 1695 1696
		drm_dbg(&i915->drm,
			"Invalid index for virtual engine: %d >= %d\n",
			idx, set->engines->num_engines);
1697 1698 1699 1700 1701
		return -EINVAL;
	}

	idx = array_index_nospec(idx, set->engines->num_engines);
	if (!set->engines->engines[idx]) {
1702
		drm_dbg(&i915->drm, "Invalid engine at %d\n", idx);
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
		return -EINVAL;
	}
	virtual = set->engines->engines[idx]->engine;

	err = check_user_mbz(&ext->flags);
	if (err)
		return err;

	for (n = 0; n < ARRAY_SIZE(ext->mbz64); n++) {
		err = check_user_mbz(&ext->mbz64[n]);
		if (err)
			return err;
	}

	if (copy_from_user(&ci, &ext->master, sizeof(ci)))
		return -EFAULT;

1720
	master = intel_engine_lookup_user(i915,
1721 1722
					  ci.engine_class, ci.engine_instance);
	if (!master) {
1723 1724 1725
		drm_dbg(&i915->drm,
			"Unrecognised master engine: { class:%u, instance:%u }\n",
			ci.engine_class, ci.engine_instance);
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
		return -EINVAL;
	}

	if (get_user(num_bonds, &ext->num_bonds))
		return -EFAULT;

	for (n = 0; n < num_bonds; n++) {
		struct intel_engine_cs *bond;

		if (copy_from_user(&ci, &ext->engines[n], sizeof(ci)))
			return -EFAULT;

1738
		bond = intel_engine_lookup_user(i915,
1739 1740 1741
						ci.engine_class,
						ci.engine_instance);
		if (!bond) {
1742 1743 1744
			drm_dbg(&i915->drm,
				"Unrecognised engine[%d] for bonding: { class:%d, instance: %d }\n",
				n, ci.engine_class, ci.engine_instance);
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
			return -EINVAL;
		}

		/*
		 * A non-virtual engine has no siblings to choose between; and
		 * a submit fence will always be directed to the one engine.
		 */
		if (intel_engine_is_virtual(virtual)) {
			err = intel_virtual_engine_attach_bond(virtual,
							       master,
							       bond);
			if (err)
				return err;
		}
	}

	return 0;
}

1764
static const i915_user_extension_fn set_engines__extensions[] = {
1765
	[I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE] = set_engines__load_balance,
1766
	[I915_CONTEXT_ENGINES_EXT_BOND] = set_engines__bond,
1767 1768 1769 1770 1771 1772
};

static int
set_engines(struct i915_gem_context *ctx,
	    const struct drm_i915_gem_context_param *args)
{
1773
	struct drm_i915_private *i915 = ctx->i915;
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	struct i915_context_param_engines __user *user =
		u64_to_user_ptr(args->value);
	struct set_engines set = { .ctx = ctx };
	unsigned int num_engines, n;
	u64 extensions;
	int err;

	if (!args->size) { /* switch back to legacy user_ring_map */
		if (!i915_gem_context_user_engines(ctx))
			return 0;

		set.engines = default_engines(ctx);
		if (IS_ERR(set.engines))
			return PTR_ERR(set.engines);

		goto replace;
	}

	BUILD_BUG_ON(!IS_ALIGNED(sizeof(*user), sizeof(*user->engines)));
	if (args->size < sizeof(*user) ||
	    !IS_ALIGNED(args->size, sizeof(*user->engines))) {
1795 1796
		drm_dbg(&i915->drm, "Invalid size for engine array: %d\n",
			args->size);
1797 1798 1799 1800 1801 1802 1803 1804
		return -EINVAL;
	}

	/*
	 * Note that I915_EXEC_RING_MASK limits execbuf to only using the
	 * first 64 engines defined here.
	 */
	num_engines = (args->size - sizeof(*user)) / sizeof(*user->engines);
1805
	set.engines = alloc_engines(num_engines);
1806 1807 1808 1809 1810 1811
	if (!set.engines)
		return -ENOMEM;

	for (n = 0; n < num_engines; n++) {
		struct i915_engine_class_instance ci;
		struct intel_engine_cs *engine;
1812
		struct intel_context *ce;
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828

		if (copy_from_user(&ci, &user->engines[n], sizeof(ci))) {
			__free_engines(set.engines, n);
			return -EFAULT;
		}

		if (ci.engine_class == (u16)I915_ENGINE_CLASS_INVALID &&
		    ci.engine_instance == (u16)I915_ENGINE_CLASS_INVALID_NONE) {
			set.engines->engines[n] = NULL;
			continue;
		}

		engine = intel_engine_lookup_user(ctx->i915,
						  ci.engine_class,
						  ci.engine_instance);
		if (!engine) {
1829 1830 1831
			drm_dbg(&i915->drm,
				"Invalid engine[%d]: { class:%d, instance:%d }\n",
				n, ci.engine_class, ci.engine_instance);
1832 1833 1834 1835
			__free_engines(set.engines, n);
			return -ENOENT;
		}

1836
		ce = intel_context_create(engine);
1837
		if (IS_ERR(ce)) {
1838
			__free_engines(set.engines, n);
1839
			return PTR_ERR(ce);
1840
		}
1841

1842 1843
		intel_context_set_gem(ce, ctx);

1844
		set.engines->engines[n] = ce;
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
	}
	set.engines->num_engines = num_engines;

	err = -EFAULT;
	if (!get_user(extensions, &user->extensions))
		err = i915_user_extensions(u64_to_user_ptr(extensions),
					   set_engines__extensions,
					   ARRAY_SIZE(set_engines__extensions),
					   &set);
	if (err) {
		free_engines(set.engines);
		return err;
	}

replace:
	mutex_lock(&ctx->engines_mutex);
1861 1862 1863 1864 1865
	if (i915_gem_context_is_closed(ctx)) {
		mutex_unlock(&ctx->engines_mutex);
		free_engines(set.engines);
		return -ENOENT;
	}
1866 1867 1868 1869
	if (args->size)
		i915_gem_context_set_user_engines(ctx);
	else
		i915_gem_context_clear_user_engines(ctx);
1870
	set.engines = rcu_replace_pointer(ctx->engines, set.engines, 1);
1871 1872
	mutex_unlock(&ctx->engines_mutex);

1873
	/* Keep track of old engine sets for kill_context() */
1874
	engines_idle_release(ctx, set.engines);
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884

	return 0;
}

static struct i915_gem_engines *
__copy_engines(struct i915_gem_engines *e)
{
	struct i915_gem_engines *copy;
	unsigned int n;

1885
	copy = alloc_engines(e->num_engines);
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
	if (!copy)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < e->num_engines; n++) {
		if (e->engines[n])
			copy->engines[n] = intel_context_get(e->engines[n]);
		else
			copy->engines[n] = NULL;
	}
	copy->num_engines = n;

	return copy;
}

static int
get_engines(struct i915_gem_context *ctx,
	    struct drm_i915_gem_context_param *args)
{
	struct i915_context_param_engines __user *user;
	struct i915_gem_engines *e;
	size_t n, count, size;
	int err = 0;

	err = mutex_lock_interruptible(&ctx->engines_mutex);
	if (err)
		return err;

	e = NULL;
	if (i915_gem_context_user_engines(ctx))
		e = __copy_engines(i915_gem_context_engines(ctx));
	mutex_unlock(&ctx->engines_mutex);
	if (IS_ERR_OR_NULL(e)) {
		args->size = 0;
		return PTR_ERR_OR_ZERO(e);
	}

	count = e->num_engines;

	/* Be paranoid in case we have an impedance mismatch */
	if (!check_struct_size(user, engines, count, &size)) {
		err = -EINVAL;
		goto err_free;
	}
	if (overflows_type(size, args->size)) {
		err = -EINVAL;
		goto err_free;
	}

	if (!args->size) {
		args->size = size;
		goto err_free;
	}

	if (args->size < size) {
		err = -EINVAL;
		goto err_free;
	}

	user = u64_to_user_ptr(args->value);
	if (put_user(0, &user->extensions)) {
		err = -EFAULT;
		goto err_free;
	}

	for (n = 0; n < count; n++) {
		struct i915_engine_class_instance ci = {
			.engine_class = I915_ENGINE_CLASS_INVALID,
			.engine_instance = I915_ENGINE_CLASS_INVALID_NONE,
		};

		if (e->engines[n]) {
			ci.engine_class = e->engines[n]->engine->uabi_class;
1958
			ci.engine_instance = e->engines[n]->engine->uabi_instance;
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
		}

		if (copy_to_user(&user->engines[n], &ci, sizeof(ci))) {
			err = -EFAULT;
			goto err_free;
		}
	}

	args->size = size;

err_free:
1970
	free_engines(e);
1971 1972 1973
	return err;
}

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
static int
set_persistence(struct i915_gem_context *ctx,
		const struct drm_i915_gem_context_param *args)
{
	if (args->size)
		return -EINVAL;

	return __context_set_persistence(ctx, args->value);
}

1984
static int __apply_priority(struct intel_context *ce, void *arg)
1985 1986 1987
{
	struct i915_gem_context *ctx = arg;

1988
	if (!intel_engine_has_timeslices(ce->engine))
1989
		return 0;
1990 1991 1992 1993 1994

	if (ctx->sched.priority >= I915_PRIORITY_NORMAL)
		intel_context_set_use_semaphores(ce);
	else
		intel_context_clear_use_semaphores(ce);
1995 1996

	return 0;
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
}

static int set_priority(struct i915_gem_context *ctx,
			const struct drm_i915_gem_context_param *args)
{
	s64 priority = args->value;

	if (args->size)
		return -EINVAL;

	if (!(ctx->i915->caps.scheduler & I915_SCHEDULER_CAP_PRIORITY))
		return -ENODEV;

	if (priority > I915_CONTEXT_MAX_USER_PRIORITY ||
	    priority < I915_CONTEXT_MIN_USER_PRIORITY)
		return -EINVAL;

	if (priority > I915_CONTEXT_DEFAULT_PRIORITY &&
	    !capable(CAP_SYS_NICE))
		return -EPERM;

	ctx->sched.priority = I915_USER_PRIORITY(priority);
	context_apply_all(ctx, __apply_priority, ctx);

	return 0;
}

2024 2025
static int ctx_setparam(struct drm_i915_file_private *fpriv,
			struct i915_gem_context *ctx,
2026
			struct drm_i915_gem_context_param *args)
2027
{
2028
	int ret = 0;
2029 2030

	switch (args->param) {
2031
	case I915_CONTEXT_PARAM_NO_ZEROMAP:
2032
		if (args->size)
2033
			ret = -EINVAL;
2034 2035 2036 2037
		else if (args->value)
			set_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags);
		else
			clear_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags);
2038
		break;
2039

2040
	case I915_CONTEXT_PARAM_NO_ERROR_CAPTURE:
2041
		if (args->size)
2042
			ret = -EINVAL;
2043 2044 2045 2046
		else if (args->value)
			i915_gem_context_set_no_error_capture(ctx);
		else
			i915_gem_context_clear_no_error_capture(ctx);
2047
		break;
2048

2049 2050 2051 2052 2053
	case I915_CONTEXT_PARAM_BANNABLE:
		if (args->size)
			ret = -EINVAL;
		else if (!capable(CAP_SYS_ADMIN) && !args->value)
			ret = -EPERM;
2054 2055
		else if (args->value)
			i915_gem_context_set_bannable(ctx);
2056
		else
2057
			i915_gem_context_clear_bannable(ctx);
2058
		break;
2059

2060 2061 2062 2063 2064 2065 2066 2067 2068
	case I915_CONTEXT_PARAM_RECOVERABLE:
		if (args->size)
			ret = -EINVAL;
		else if (args->value)
			i915_gem_context_set_recoverable(ctx);
		else
			i915_gem_context_clear_recoverable(ctx);
		break;

2069
	case I915_CONTEXT_PARAM_PRIORITY:
2070
		ret = set_priority(ctx, args);
2071
		break;
2072

2073 2074 2075
	case I915_CONTEXT_PARAM_SSEU:
		ret = set_sseu(ctx, args);
		break;
2076 2077

	case I915_CONTEXT_PARAM_VM:
2078
		ret = set_ppgtt(fpriv, ctx, args);
2079 2080
		break;

2081 2082 2083 2084
	case I915_CONTEXT_PARAM_ENGINES:
		ret = set_engines(ctx, args);
		break;

2085 2086 2087 2088
	case I915_CONTEXT_PARAM_PERSISTENCE:
		ret = set_persistence(ctx, args);
		break;

2089 2090 2091 2092
	case I915_CONTEXT_PARAM_RINGSIZE:
		ret = set_ringsize(ctx, args);
		break;

2093
	case I915_CONTEXT_PARAM_BAN_PERIOD:
2094 2095 2096 2097 2098
	default:
		ret = -EINVAL;
		break;
	}

2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
	return ret;
}

struct create_ext {
	struct i915_gem_context *ctx;
	struct drm_i915_file_private *fpriv;
};

static int create_setparam(struct i915_user_extension __user *ext, void *data)
{
	struct drm_i915_gem_context_create_ext_setparam local;
	const struct create_ext *arg = data;

	if (copy_from_user(&local, ext, sizeof(local)))
		return -EFAULT;

	if (local.param.ctx_id)
		return -EINVAL;

2118
	return ctx_setparam(arg->fpriv, arg->ctx, &local.param);
2119 2120
}

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
static int copy_ring_size(struct intel_context *dst,
			  struct intel_context *src)
{
	long sz;

	sz = intel_context_get_ring_size(src);
	if (sz < 0)
		return sz;

	return intel_context_set_ring_size(dst, sz);
}

2133 2134 2135 2136 2137 2138 2139 2140
static int clone_engines(struct i915_gem_context *dst,
			 struct i915_gem_context *src)
{
	struct i915_gem_engines *e = i915_gem_context_lock_engines(src);
	struct i915_gem_engines *clone;
	bool user_engines;
	unsigned long n;

2141
	clone = alloc_engines(e->num_engines);
2142 2143 2144 2145
	if (!clone)
		goto err_unlock;

	for (n = 0; n < e->num_engines; n++) {
2146 2147
		struct intel_engine_cs *engine;

2148 2149 2150 2151
		if (!e->engines[n]) {
			clone->engines[n] = NULL;
			continue;
		}
2152
		engine = e->engines[n]->engine;
2153

2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
		/*
		 * Virtual engines are singletons; they can only exist
		 * inside a single context, because they embed their
		 * HW context... As each virtual context implies a single
		 * timeline (each engine can only dequeue a single request
		 * at any time), it would be surprising for two contexts
		 * to use the same engine. So let's create a copy of
		 * the virtual engine instead.
		 */
		if (intel_engine_is_virtual(engine))
			clone->engines[n] =
2165
				intel_execlists_clone_virtual(engine);
2166
		else
2167
			clone->engines[n] = intel_context_create(engine);
2168
		if (IS_ERR_OR_NULL(clone->engines[n])) {
2169 2170 2171
			__free_engines(clone, n);
			goto err_unlock;
		}
2172 2173

		intel_context_set_gem(clone->engines[n], dst);
2174 2175 2176 2177 2178 2179

		/* Copy across the preferred ringsize */
		if (copy_ring_size(clone->engines[n], e->engines[n])) {
			__free_engines(clone, n + 1);
			goto err_unlock;
		}
2180 2181 2182 2183 2184 2185
	}
	clone->num_engines = n;

	user_engines = i915_gem_context_user_engines(src);
	i915_gem_context_unlock_engines(src);

2186
	/* Serialised by constructor */
2187
	engines_idle_release(dst, rcu_replace_pointer(dst->engines, clone, 1));
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
	if (user_engines)
		i915_gem_context_set_user_engines(dst);
	else
		i915_gem_context_clear_user_engines(dst);
	return 0;

err_unlock:
	i915_gem_context_unlock_engines(src);
	return -ENOMEM;
}

static int clone_flags(struct i915_gem_context *dst,
		       struct i915_gem_context *src)
{
	dst->user_flags = src->user_flags;
	return 0;
}

static int clone_schedattr(struct i915_gem_context *dst,
			   struct i915_gem_context *src)
{
	dst->sched = src->sched;
	return 0;
}

static int clone_sseu(struct i915_gem_context *dst,
		      struct i915_gem_context *src)
{
	struct i915_gem_engines *e = i915_gem_context_lock_engines(src);
	struct i915_gem_engines *clone;
	unsigned long n;
	int err;

2221 2222
	/* no locking required; sole access under constructor*/
	clone = __context_engines_static(dst);
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
	if (e->num_engines != clone->num_engines) {
		err = -EINVAL;
		goto unlock;
	}

	for (n = 0; n < e->num_engines; n++) {
		struct intel_context *ce = e->engines[n];

		if (clone->engines[n]->engine->class != ce->engine->class) {
			/* Must have compatible engine maps! */
			err = -EINVAL;
			goto unlock;
		}

		/* serialises with set_sseu */
		err = intel_context_lock_pinned(ce);
		if (err)
			goto unlock;

		clone->engines[n]->sseu = ce->sseu;
		intel_context_unlock_pinned(ce);
	}

	err = 0;
unlock:
	i915_gem_context_unlock_engines(src);
	return err;
}

static int clone_timeline(struct i915_gem_context *dst,
			  struct i915_gem_context *src)
{
2255 2256
	if (src->timeline)
		__assign_timeline(dst, src->timeline);
2257 2258 2259 2260 2261 2262 2263

	return 0;
}

static int clone_vm(struct i915_gem_context *dst,
		    struct i915_gem_context *src)
{
2264
	struct i915_address_space *vm;
2265
	int err = 0;
2266

2267 2268
	if (!rcu_access_pointer(src->vm))
		return 0;
2269

2270 2271
	rcu_read_lock();
	vm = context_get_vm_rcu(src);
2272 2273
	rcu_read_unlock();

2274 2275 2276 2277 2278
	if (!mutex_lock_interruptible(&dst->mutex)) {
		__assign_ppgtt(dst, vm);
		mutex_unlock(&dst->mutex);
	} else {
		err = -EINTR;
2279 2280
	}

2281
	i915_vm_put(vm);
2282
	return err;
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
}

static int create_clone(struct i915_user_extension __user *ext, void *data)
{
	static int (* const fn[])(struct i915_gem_context *dst,
				  struct i915_gem_context *src) = {
#define MAP(x, y) [ilog2(I915_CONTEXT_CLONE_##x)] = y
		MAP(ENGINES, clone_engines),
		MAP(FLAGS, clone_flags),
		MAP(SCHEDATTR, clone_schedattr),
		MAP(SSEU, clone_sseu),
		MAP(TIMELINE, clone_timeline),
		MAP(VM, clone_vm),
#undef MAP
	};
	struct drm_i915_gem_context_create_ext_clone local;
	const struct create_ext *arg = data;
	struct i915_gem_context *dst = arg->ctx;
	struct i915_gem_context *src;
	int err, bit;

	if (copy_from_user(&local, ext, sizeof(local)))
		return -EFAULT;

	BUILD_BUG_ON(GENMASK(BITS_PER_TYPE(local.flags) - 1, ARRAY_SIZE(fn)) !=
		     I915_CONTEXT_CLONE_UNKNOWN);

	if (local.flags & I915_CONTEXT_CLONE_UNKNOWN)
		return -EINVAL;

	if (local.rsvd)
		return -EINVAL;

	rcu_read_lock();
	src = __i915_gem_context_lookup_rcu(arg->fpriv, local.clone_id);
	rcu_read_unlock();
	if (!src)
		return -ENOENT;

	GEM_BUG_ON(src == dst);

	for (bit = 0; bit < ARRAY_SIZE(fn); bit++) {
		if (!(local.flags & BIT(bit)))
			continue;

		err = fn[bit](dst, src);
		if (err)
			return err;
	}

	return 0;
}

2336 2337
static const i915_user_extension_fn create_extensions[] = {
	[I915_CONTEXT_CREATE_EXT_SETPARAM] = create_setparam,
2338
	[I915_CONTEXT_CREATE_EXT_CLONE] = create_clone,
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
};

static bool client_is_banned(struct drm_i915_file_private *file_priv)
{
	return atomic_read(&file_priv->ban_score) >= I915_CLIENT_SCORE_BANNED;
}

int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
				  struct drm_file *file)
{
	struct drm_i915_private *i915 = to_i915(dev);
	struct drm_i915_gem_context_create_ext *args = data;
	struct create_ext ext_data;
	int ret;
2353
	u32 id;
2354 2355 2356 2357 2358 2359 2360

	if (!DRIVER_CAPS(i915)->has_logical_contexts)
		return -ENODEV;

	if (args->flags & I915_CONTEXT_CREATE_FLAGS_UNKNOWN)
		return -EINVAL;

2361
	ret = intel_gt_terminally_wedged(&i915->gt);
2362 2363 2364 2365 2366
	if (ret)
		return ret;

	ext_data.fpriv = file->driver_priv;
	if (client_is_banned(ext_data.fpriv)) {
2367 2368 2369
		drm_dbg(&i915->drm,
			"client %s[%d] banned from creating ctx\n",
			current->comm, task_pid_nr(current));
2370 2371 2372
		return -EIO;
	}

2373
	ext_data.ctx = i915_gem_create_context(i915, args->flags);
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
	if (IS_ERR(ext_data.ctx))
		return PTR_ERR(ext_data.ctx);

	if (args->flags & I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS) {
		ret = i915_user_extensions(u64_to_user_ptr(args->extensions),
					   create_extensions,
					   ARRAY_SIZE(create_extensions),
					   &ext_data);
		if (ret)
			goto err_ctx;
	}

2386
	ret = gem_context_register(ext_data.ctx, ext_data.fpriv, &id);
2387 2388 2389
	if (ret < 0)
		goto err_ctx;

2390
	args->ctx_id = id;
2391
	drm_dbg(&i915->drm, "HW context %d created\n", args->ctx_id);
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412

	return 0;

err_ctx:
	context_close(ext_data.ctx);
	return ret;
}

int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
				   struct drm_file *file)
{
	struct drm_i915_gem_context_destroy *args = data;
	struct drm_i915_file_private *file_priv = file->driver_priv;
	struct i915_gem_context *ctx;

	if (args->pad != 0)
		return -EINVAL;

	if (!args->ctx_id)
		return -ENOENT;

2413
	ctx = xa_erase(&file_priv->context_xa, args->ctx_id);
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
	if (!ctx)
		return -ENOENT;

	context_close(ctx);
	return 0;
}

static int get_sseu(struct i915_gem_context *ctx,
		    struct drm_i915_gem_context_param *args)
{
	struct drm_i915_gem_context_param_sseu user_sseu;
	struct intel_context *ce;
2426
	unsigned long lookup;
2427
	int err;
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437

	if (args->size == 0)
		goto out;
	else if (args->size < sizeof(user_sseu))
		return -EINVAL;

	if (copy_from_user(&user_sseu, u64_to_user_ptr(args->value),
			   sizeof(user_sseu)))
		return -EFAULT;

2438
	if (user_sseu.rsvd)
2439 2440
		return -EINVAL;

2441 2442 2443 2444 2445 2446 2447 2448
	if (user_sseu.flags & ~(I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX))
		return -EINVAL;

	lookup = 0;
	if (user_sseu.flags & I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX)
		lookup |= LOOKUP_USER_INDEX;

	ce = lookup_user_engine(ctx, lookup, &user_sseu.engine);
2449 2450 2451
	if (IS_ERR(ce))
		return PTR_ERR(ce);

2452 2453 2454 2455 2456 2457
	err = intel_context_lock_pinned(ce); /* serialises with set_sseu */
	if (err) {
		intel_context_put(ce);
		return err;
	}

2458 2459 2460 2461 2462
	user_sseu.slice_mask = ce->sseu.slice_mask;
	user_sseu.subslice_mask = ce->sseu.subslice_mask;
	user_sseu.min_eus_per_subslice = ce->sseu.min_eus_per_subslice;
	user_sseu.max_eus_per_subslice = ce->sseu.max_eus_per_subslice;

2463 2464
	intel_context_unlock_pinned(ce);
	intel_context_put(ce);
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

	if (copy_to_user(u64_to_user_ptr(args->value), &user_sseu,
			 sizeof(user_sseu)))
		return -EFAULT;

out:
	args->size = sizeof(user_sseu);

	return 0;
}

int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
				    struct drm_file *file)
{
	struct drm_i915_file_private *file_priv = file->driver_priv;
	struct drm_i915_gem_context_param *args = data;
	struct i915_gem_context *ctx;
	int ret = 0;

	ctx = i915_gem_context_lookup(file_priv, args->ctx_id);
	if (!ctx)
		return -ENOENT;

	switch (args->param) {
	case I915_CONTEXT_PARAM_NO_ZEROMAP:
		args->size = 0;
		args->value = test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags);
		break;

	case I915_CONTEXT_PARAM_GTT_SIZE:
		args->size = 0;
2496 2497 2498
		rcu_read_lock();
		if (rcu_access_pointer(ctx->vm))
			args->value = rcu_dereference(ctx->vm)->total;
2499 2500
		else
			args->value = to_i915(dev)->ggtt.vm.total;
2501
		rcu_read_unlock();
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
		break;

	case I915_CONTEXT_PARAM_NO_ERROR_CAPTURE:
		args->size = 0;
		args->value = i915_gem_context_no_error_capture(ctx);
		break;

	case I915_CONTEXT_PARAM_BANNABLE:
		args->size = 0;
		args->value = i915_gem_context_is_bannable(ctx);
		break;

	case I915_CONTEXT_PARAM_RECOVERABLE:
		args->size = 0;
		args->value = i915_gem_context_is_recoverable(ctx);
		break;

	case I915_CONTEXT_PARAM_PRIORITY:
		args->size = 0;
		args->value = ctx->sched.priority >> I915_USER_PRIORITY_SHIFT;
		break;

	case I915_CONTEXT_PARAM_SSEU:
		ret = get_sseu(ctx, args);
		break;

	case I915_CONTEXT_PARAM_VM:
2529
		ret = get_ppgtt(file_priv, ctx, args);
2530 2531
		break;

2532 2533 2534 2535
	case I915_CONTEXT_PARAM_ENGINES:
		ret = get_engines(ctx, args);
		break;

2536 2537 2538 2539 2540
	case I915_CONTEXT_PARAM_PERSISTENCE:
		args->size = 0;
		args->value = i915_gem_context_is_persistent(ctx);
		break;

2541 2542 2543 2544
	case I915_CONTEXT_PARAM_RINGSIZE:
		ret = get_ringsize(ctx, args);
		break;

2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
	case I915_CONTEXT_PARAM_BAN_PERIOD:
	default:
		ret = -EINVAL;
		break;
	}

	i915_gem_context_put(ctx);
	return ret;
}

int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
				    struct drm_file *file)
{
	struct drm_i915_file_private *file_priv = file->driver_priv;
	struct drm_i915_gem_context_param *args = data;
	struct i915_gem_context *ctx;
	int ret;

	ctx = i915_gem_context_lookup(file_priv, args->ctx_id);
	if (!ctx)
		return -ENOENT;

2567
	ret = ctx_setparam(file_priv, ctx, args);
2568

2569
	i915_gem_context_put(ctx);
2570 2571
	return ret;
}
2572 2573 2574 2575

int i915_gem_context_reset_stats_ioctl(struct drm_device *dev,
				       void *data, struct drm_file *file)
{
2576
	struct drm_i915_private *i915 = to_i915(dev);
2577
	struct drm_i915_reset_stats *args = data;
2578
	struct i915_gem_context *ctx;
2579 2580 2581 2582 2583
	int ret;

	if (args->flags || args->pad)
		return -EINVAL;

2584 2585 2586 2587 2588
	ret = -ENOENT;
	rcu_read_lock();
	ctx = __i915_gem_context_lookup_rcu(file->driver_priv, args->ctx_id);
	if (!ctx)
		goto out;
2589

2590 2591 2592 2593 2594 2595
	/*
	 * We opt for unserialised reads here. This may result in tearing
	 * in the extremely unlikely event of a GPU hang on this context
	 * as we are querying them. If we need that extra layer of protection,
	 * we should wrap the hangstats with a seqlock.
	 */
2596 2597

	if (capable(CAP_SYS_ADMIN))
2598
		args->reset_count = i915_reset_count(&i915->gpu_error);
2599 2600 2601
	else
		args->reset_count = 0;

2602 2603
	args->batch_active = atomic_read(&ctx->guilty_count);
	args->batch_pending = atomic_read(&ctx->active_count);
2604

2605 2606 2607 2608
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
2609
}
2610

2611 2612 2613 2614 2615 2616 2617
/* GEM context-engines iterator: for_each_gem_engine() */
struct intel_context *
i915_gem_engines_iter_next(struct i915_gem_engines_iter *it)
{
	const struct i915_gem_engines *e = it->engines;
	struct intel_context *ctx;

2618 2619 2620
	if (unlikely(!e))
		return NULL;

2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
	do {
		if (it->idx >= e->num_engines)
			return NULL;

		ctx = e->engines[it->idx++];
	} while (!ctx);

	return ctx;
}

2631 2632
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_context.c"
2633
#include "selftests/i915_gem_context.c"
2634
#endif
2635

2636
static void i915_global_gem_context_shrink(void)
2637
{
2638
	kmem_cache_shrink(global.slab_luts);
2639 2640
}

2641
static void i915_global_gem_context_exit(void)
2642
{
2643
	kmem_cache_destroy(global.slab_luts);
2644 2645
}

2646 2647 2648
static struct i915_global_gem_context global = { {
	.shrink = i915_global_gem_context_shrink,
	.exit = i915_global_gem_context_exit,
2649 2650
} };

2651
int __init i915_global_gem_context_init(void)
2652
{
2653 2654 2655 2656 2657 2658
	global.slab_luts = KMEM_CACHE(i915_lut_handle, 0);
	if (!global.slab_luts)
		return -ENOMEM;

	i915_global_register(&global.base);
	return 0;
2659
}