i915_gem_context.c 61.6 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2011-2012 Intel Corporation
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
 */

/*
 * This file implements HW context support. On gen5+ a HW context consists of an
 * opaque GPU object which is referenced at times of context saves and restores.
 * With RC6 enabled, the context is also referenced as the GPU enters and exists
 * from RC6 (GPU has it's own internal power context, except on gen5). Though
 * something like a context does exist for the media ring, the code only
 * supports contexts for the render ring.
 *
 * In software, there is a distinction between contexts created by the user,
 * and the default HW context. The default HW context is used by GPU clients
 * that do not request setup of their own hardware context. The default
 * context's state is never restored to help prevent programming errors. This
 * would happen if a client ran and piggy-backed off another clients GPU state.
 * The default context only exists to give the GPU some offset to load as the
 * current to invoke a save of the context we actually care about. In fact, the
 * code could likely be constructed, albeit in a more complicated fashion, to
 * never use the default context, though that limits the driver's ability to
 * swap out, and/or destroy other contexts.
 *
 * All other contexts are created as a request by the GPU client. These contexts
 * store GPU state, and thus allow GPU clients to not re-emit state (and
 * potentially query certain state) at any time. The kernel driver makes
 * certain that the appropriate commands are inserted.
 *
 * The context life cycle is semi-complicated in that context BOs may live
 * longer than the context itself because of the way the hardware, and object
 * tracking works. Below is a very crude representation of the state machine
 * describing the context life.
 *                                         refcount     pincount     active
 * S0: initial state                          0            0           0
 * S1: context created                        1            0           0
 * S2: context is currently running           2            1           X
 * S3: GPU referenced, but not current        2            0           1
 * S4: context is current, but destroyed      1            1           0
 * S5: like S3, but destroyed                 1            0           1
 *
 * The most common (but not all) transitions:
 * S0->S1: client creates a context
 * S1->S2: client submits execbuf with context
 * S2->S3: other clients submits execbuf with context
 * S3->S1: context object was retired
 * S3->S2: clients submits another execbuf
 * S2->S4: context destroy called with current context
 * S3->S5->S0: destroy path
 * S4->S5->S0: destroy path on current context
 *
 * There are two confusing terms used above:
 *  The "current context" means the context which is currently running on the
D
Damien Lespiau 已提交
55
 *  GPU. The GPU has loaded its state already and has stored away the gtt
56 57 58 59 60 61 62 63 64 65 66
 *  offset of the BO. The GPU is not actively referencing the data at this
 *  offset, but it will on the next context switch. The only way to avoid this
 *  is to do a GPU reset.
 *
 *  An "active context' is one which was previously the "current context" and is
 *  on the active list waiting for the next context switch to occur. Until this
 *  happens, the object must remain at the same gtt offset. It is therefore
 *  possible to destroy a context, but it is still active.
 *
 */

67
#include <linux/log2.h>
68
#include <linux/nospec.h>
69

70
#include "gt/gen6_ppgtt.h"
71
#include "gt/intel_context.h"
72
#include "gt/intel_context_param.h"
73
#include "gt/intel_engine_heartbeat.h"
74
#include "gt/intel_engine_user.h"
75
#include "gt/intel_ring.h"
76

77
#include "i915_gem_context.h"
78
#include "i915_globals.h"
79
#include "i915_trace.h"
80
#include "i915_user_extensions.h"
81

82 83
#define ALL_L3_SLICES(dev) (1 << NUM_L3_SLICES(dev)) - 1

84
static struct i915_global_gem_context {
85
	struct i915_global base;
86 87 88 89 90 91 92 93 94 95 96 97 98
	struct kmem_cache *slab_luts;
} global;

struct i915_lut_handle *i915_lut_handle_alloc(void)
{
	return kmem_cache_alloc(global.slab_luts, GFP_KERNEL);
}

void i915_lut_handle_free(struct i915_lut_handle *lut)
{
	return kmem_cache_free(global.slab_luts, lut);
}

99
static void lut_close(struct i915_gem_context *ctx)
100
{
101 102 103
	struct radix_tree_iter iter;
	void __rcu **slot;

104
	lockdep_assert_held(&ctx->mutex);
105

106
	rcu_read_lock();
107 108
	radix_tree_for_each_slot(slot, &ctx->handles_vma, &iter, 0) {
		struct i915_vma *vma = rcu_dereference_raw(*slot);
109 110 111 112 113
		struct drm_i915_gem_object *obj = vma->obj;
		struct i915_lut_handle *lut;

		if (!kref_get_unless_zero(&obj->base.refcount))
			continue;
114

115 116 117 118 119
		rcu_read_unlock();
		i915_gem_object_lock(obj);
		list_for_each_entry(lut, &obj->lut_list, obj_link) {
			if (lut->ctx != ctx)
				continue;
120

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
			if (lut->handle != iter.index)
				continue;

			list_del(&lut->obj_link);
			break;
		}
		i915_gem_object_unlock(obj);
		rcu_read_lock();

		if (&lut->obj_link != &obj->lut_list) {
			i915_lut_handle_free(lut);
			radix_tree_iter_delete(&ctx->handles_vma, &iter, slot);
			if (atomic_dec_and_test(&vma->open_count) &&
			    !i915_vma_is_ggtt(vma))
				i915_vma_close(vma);
			i915_gem_object_put(obj);
		}

		i915_gem_object_put(obj);
140
	}
141
	rcu_read_unlock();
142 143
}

144
static struct intel_context *
145 146 147 148
lookup_user_engine(struct i915_gem_context *ctx,
		   unsigned long flags,
		   const struct i915_engine_class_instance *ci)
#define LOOKUP_USER_INDEX BIT(0)
149
{
150
	int idx;
151

152
	if (!!(flags & LOOKUP_USER_INDEX) != i915_gem_context_user_engines(ctx))
153 154
		return ERR_PTR(-EINVAL);

155 156 157 158 159 160 161 162 163
	if (!i915_gem_context_user_engines(ctx)) {
		struct intel_engine_cs *engine;

		engine = intel_engine_lookup_user(ctx->i915,
						  ci->engine_class,
						  ci->engine_instance);
		if (!engine)
			return ERR_PTR(-EINVAL);

164
		idx = engine->legacy_idx;
165 166 167 168 169
	} else {
		idx = ci->engine_instance;
	}

	return i915_gem_context_get_engine(ctx, idx);
170 171
}

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
static struct i915_address_space *
context_get_vm_rcu(struct i915_gem_context *ctx)
{
	GEM_BUG_ON(!rcu_access_pointer(ctx->vm));

	do {
		struct i915_address_space *vm;

		/*
		 * We do not allow downgrading from full-ppgtt [to a shared
		 * global gtt], so ctx->vm cannot become NULL.
		 */
		vm = rcu_dereference(ctx->vm);
		if (!kref_get_unless_zero(&vm->ref))
			continue;

		/*
		 * This ppgtt may have be reallocated between
		 * the read and the kref, and reassigned to a third
		 * context. In order to avoid inadvertent sharing
		 * of this ppgtt with that third context (and not
		 * src), we have to confirm that we have the same
		 * ppgtt after passing through the strong memory
		 * barrier implied by a successful
		 * kref_get_unless_zero().
		 *
		 * Once we have acquired the current ppgtt of ctx,
		 * we no longer care if it is released from ctx, as
		 * it cannot be reallocated elsewhere.
		 */

		if (vm == rcu_access_pointer(ctx->vm))
			return rcu_pointer_handoff(vm);

		i915_vm_put(vm);
	} while (1);
}

210 211 212
static void intel_context_set_gem(struct intel_context *ce,
				  struct i915_gem_context *ctx)
{
213 214
	GEM_BUG_ON(rcu_access_pointer(ce->gem_context));
	RCU_INIT_POINTER(ce->gem_context, ctx);
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238

	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags))
		ce->ring = __intel_context_ring_size(SZ_16K);

	if (rcu_access_pointer(ctx->vm)) {
		struct i915_address_space *vm;

		rcu_read_lock();
		vm = context_get_vm_rcu(ctx); /* hmm */
		rcu_read_unlock();

		i915_vm_put(ce->vm);
		ce->vm = vm;
	}

	GEM_BUG_ON(ce->timeline);
	if (ctx->timeline)
		ce->timeline = intel_timeline_get(ctx->timeline);

	if (ctx->sched.priority >= I915_PRIORITY_NORMAL &&
	    intel_engine_has_semaphores(ce->engine))
		__set_bit(CONTEXT_USE_SEMAPHORES, &ce->flags);
}

239
static void __free_engines(struct i915_gem_engines *e, unsigned int count)
240
{
241 242 243 244 245 246 247 248 249 250 251 252 253 254
	while (count--) {
		if (!e->engines[count])
			continue;

		intel_context_put(e->engines[count]);
	}
	kfree(e);
}

static void free_engines(struct i915_gem_engines *e)
{
	__free_engines(e, e->num_engines);
}

255
static void free_engines_rcu(struct rcu_head *rcu)
256
{
257 258 259 260 261
	struct i915_gem_engines *engines =
		container_of(rcu, struct i915_gem_engines, rcu);

	i915_sw_fence_fini(&engines->fence);
	free_engines(engines);
262 263
}

264 265
static struct i915_gem_engines *default_engines(struct i915_gem_context *ctx)
{
266
	const struct intel_gt *gt = &ctx->i915->gt;
267 268 269 270 271 272 273 274
	struct intel_engine_cs *engine;
	struct i915_gem_engines *e;
	enum intel_engine_id id;

	e = kzalloc(struct_size(e, engines, I915_NUM_ENGINES), GFP_KERNEL);
	if (!e)
		return ERR_PTR(-ENOMEM);

275
	for_each_engine(engine, gt, id) {
276 277
		struct intel_context *ce;

278 279 280 281 282 283
		if (engine->legacy_idx == INVALID_ENGINE)
			continue;

		GEM_BUG_ON(engine->legacy_idx >= I915_NUM_ENGINES);
		GEM_BUG_ON(e->engines[engine->legacy_idx]);

284
		ce = intel_context_create(engine);
285
		if (IS_ERR(ce)) {
286
			__free_engines(e, e->num_engines + 1);
287 288
			return ERR_CAST(ce);
		}
289

290 291
		intel_context_set_gem(ce, ctx);

292 293
		e->engines[engine->legacy_idx] = ce;
		e->num_engines = max(e->num_engines, engine->legacy_idx);
294
	}
295
	e->num_engines++;
296 297 298 299 300 301

	return e;
}

static void i915_gem_context_free(struct i915_gem_context *ctx)
{
302
	GEM_BUG_ON(!i915_gem_context_is_closed(ctx));
303

304 305 306 307
	spin_lock(&ctx->i915->gem.contexts.lock);
	list_del(&ctx->link);
	spin_unlock(&ctx->i915->gem.contexts.lock);

308
	mutex_destroy(&ctx->engines_mutex);
309

310
	if (ctx->timeline)
311
		intel_timeline_put(ctx->timeline);
312

313
	put_pid(ctx->pid);
314
	mutex_destroy(&ctx->mutex);
315

316
	kfree_rcu(ctx, rcu);
317 318
}

319
static void contexts_free_all(struct llist_node *list)
320
{
321
	struct i915_gem_context *ctx, *cn;
322

323
	llist_for_each_entry_safe(ctx, cn, list, free_link)
324 325 326
		i915_gem_context_free(ctx);
}

327
static void contexts_flush_free(struct i915_gem_contexts *gc)
328
{
329
	contexts_free_all(llist_del_all(&gc->free_list));
330 331
}

332 333
static void contexts_free_worker(struct work_struct *work)
{
334 335
	struct i915_gem_contexts *gc =
		container_of(work, typeof(*gc), free_work);
336

337
	contexts_flush_free(gc);
338 339 340 341 342
}

void i915_gem_context_release(struct kref *ref)
{
	struct i915_gem_context *ctx = container_of(ref, typeof(*ctx), ref);
343
	struct i915_gem_contexts *gc = &ctx->i915->gem.contexts;
344 345

	trace_i915_context_free(ctx);
346 347
	if (llist_add(&ctx->free_link, &gc->free_list))
		schedule_work(&gc->free_work);
348 349
}

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
static inline struct i915_gem_engines *
__context_engines_static(const struct i915_gem_context *ctx)
{
	return rcu_dereference_protected(ctx->engines, true);
}

static bool __reset_engine(struct intel_engine_cs *engine)
{
	struct intel_gt *gt = engine->gt;
	bool success = false;

	if (!intel_has_reset_engine(gt))
		return false;

	if (!test_and_set_bit(I915_RESET_ENGINE + engine->id,
			      &gt->reset.flags)) {
		success = intel_engine_reset(engine, NULL) == 0;
		clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id,
				      &gt->reset.flags);
	}

	return success;
}

static void __reset_context(struct i915_gem_context *ctx,
			    struct intel_engine_cs *engine)
{
	intel_gt_handle_error(engine->gt, engine->mask, 0,
			      "context closure in %s", ctx->name);
}

static bool __cancel_engine(struct intel_engine_cs *engine)
{
	/*
	 * Send a "high priority pulse" down the engine to cause the
	 * current request to be momentarily preempted. (If it fails to
	 * be preempted, it will be reset). As we have marked our context
	 * as banned, any incomplete request, including any running, will
	 * be skipped following the preemption.
	 *
	 * If there is no hangchecking (one of the reasons why we try to
	 * cancel the context) and no forced preemption, there may be no
	 * means by which we reset the GPU and evict the persistent hog.
	 * Ergo if we are unable to inject a preemptive pulse that can
	 * kill the banned context, we fallback to doing a local reset
	 * instead.
	 */
397 398
	if (IS_ACTIVE(CONFIG_DRM_I915_PREEMPT_TIMEOUT) &&
	    !intel_engine_pulse(engine))
399 400 401 402 403 404
		return true;

	/* If we are unable to send a pulse, try resetting this engine. */
	return __reset_engine(engine);
}

405
static struct intel_engine_cs *__active_engine(struct i915_request *rq)
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
{
	struct intel_engine_cs *engine, *locked;

	/*
	 * Serialise with __i915_request_submit() so that it sees
	 * is-banned?, or we know the request is already inflight.
	 */
	locked = READ_ONCE(rq->engine);
	spin_lock_irq(&locked->active.lock);
	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
		spin_unlock(&locked->active.lock);
		spin_lock(&engine->active.lock);
		locked = engine;
	}

	engine = NULL;
422
	if (i915_request_is_active(rq) && rq->fence.error != -EIO)
423 424 425 426 427 428 429
		engine = rq->engine;

	spin_unlock_irq(&locked->active.lock);

	return engine;
}

430 431 432 433 434 435 436 437
static struct intel_engine_cs *active_engine(struct intel_context *ce)
{
	struct intel_engine_cs *engine = NULL;
	struct i915_request *rq;

	if (!ce->timeline)
		return NULL;

438
	mutex_lock(&ce->timeline->mutex);
439 440 441 442 443 444 445 446 447
	list_for_each_entry_reverse(rq, &ce->timeline->requests, link) {
		if (i915_request_completed(rq))
			break;

		/* Check with the backend if the request is inflight */
		engine = __active_engine(rq);
		if (engine)
			break;
	}
448
	mutex_unlock(&ce->timeline->mutex);
449 450 451 452

	return engine;
}

453
static void kill_engines(struct i915_gem_engines *engines)
454 455 456 457 458 459 460 461 462 463 464
{
	struct i915_gem_engines_iter it;
	struct intel_context *ce;

	/*
	 * Map the user's engine back to the actual engines; one virtual
	 * engine will be mapped to multiple engines, and using ctx->engine[]
	 * the same engine may be have multiple instances in the user's map.
	 * However, we only care about pending requests, so only include
	 * engines on which there are incomplete requests.
	 */
465
	for_each_gem_engine(ce, engines, it) {
466 467
		struct intel_engine_cs *engine;

468 469 470
		if (intel_context_set_banned(ce))
			continue;

471 472 473 474 475 476 477 478
		/*
		 * Check the current active state of this context; if we
		 * are currently executing on the GPU we need to evict
		 * ourselves. On the other hand, if we haven't yet been
		 * submitted to the GPU or if everything is complete,
		 * we have nothing to do.
		 */
		engine = active_engine(ce);
479 480 481 482 483 484 485 486

		/* First attempt to gracefully cancel the context */
		if (engine && !__cancel_engine(engine))
			/*
			 * If we are unable to send a preemptive pulse to bump
			 * the context from the GPU, we have to resort to a full
			 * reset. We hope the collateral damage is worth it.
			 */
487 488 489 490 491 492 493 494
			__reset_context(engines->ctx, engine);
	}
}

static void kill_stale_engines(struct i915_gem_context *ctx)
{
	struct i915_gem_engines *pos, *next;

495 496
	spin_lock_irq(&ctx->stale.lock);
	GEM_BUG_ON(!i915_gem_context_is_closed(ctx));
497
	list_for_each_entry_safe(pos, next, &ctx->stale.engines, link) {
498 499
		if (!i915_sw_fence_await(&pos->fence)) {
			list_del_init(&pos->link);
500
			continue;
501
		}
502

503
		spin_unlock_irq(&ctx->stale.lock);
504 505 506

		kill_engines(pos);

507 508
		spin_lock_irq(&ctx->stale.lock);
		GEM_BUG_ON(i915_sw_fence_signaled(&pos->fence));
509 510 511 512
		list_safe_reset_next(pos, next, link);
		list_del_init(&pos->link); /* decouple from FENCE_COMPLETE */

		i915_sw_fence_complete(&pos->fence);
513
	}
514
	spin_unlock_irq(&ctx->stale.lock);
515 516 517 518 519
}

static void kill_context(struct i915_gem_context *ctx)
{
	kill_stale_engines(ctx);
520 521
}

522 523
static int __i915_sw_fence_call
engines_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
{
	struct i915_gem_engines *engines =
		container_of(fence, typeof(*engines), fence);

	switch (state) {
	case FENCE_COMPLETE:
		if (!list_empty(&engines->link)) {
			struct i915_gem_context *ctx = engines->ctx;
			unsigned long flags;

			spin_lock_irqsave(&ctx->stale.lock, flags);
			list_del(&engines->link);
			spin_unlock_irqrestore(&ctx->stale.lock, flags);
		}
		i915_gem_context_put(engines->ctx);
		break;

	case FENCE_FREE:
		init_rcu_head(&engines->rcu);
		call_rcu(&engines->rcu, free_engines_rcu);
		break;
	}

	return NOTIFY_DONE;
}

static void engines_idle_release(struct i915_gem_context *ctx,
				 struct i915_gem_engines *engines)
{
	struct i915_gem_engines_iter it;
	struct intel_context *ce;

	i915_sw_fence_init(&engines->fence, engines_notify);
	INIT_LIST_HEAD(&engines->link);

	engines->ctx = i915_gem_context_get(ctx);

	for_each_gem_engine(ce, engines, it) {
		struct dma_fence *fence;
		int err = 0;

		/* serialises with execbuf */
		RCU_INIT_POINTER(ce->gem_context, NULL);
		if (!intel_context_pin_if_active(ce))
			continue;

		fence = i915_active_fence_get(&ce->timeline->last_request);
		if (fence) {
			err = i915_sw_fence_await_dma_fence(&engines->fence,
							    fence, 0,
							    GFP_KERNEL);
			dma_fence_put(fence);
		}
		intel_context_unpin(ce);
		if (err < 0)
			goto kill;
	}

	spin_lock_irq(&ctx->stale.lock);
	if (!i915_gem_context_is_closed(ctx))
		list_add_tail(&engines->link, &ctx->stale.engines);
	spin_unlock_irq(&ctx->stale.lock);

kill:
	if (list_empty(&engines->link)) /* raced, already closed */
		kill_engines(engines);

	i915_sw_fence_commit(&engines->fence);
592 593
}

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
static void set_closed_name(struct i915_gem_context *ctx)
{
	char *s;

	/* Replace '[]' with '<>' to indicate closed in debug prints */

	s = strrchr(ctx->name, '[');
	if (!s)
		return;

	*s = '<';

	s = strchr(s + 1, ']');
	if (s)
		*s = '>';
}

611 612
static void context_close(struct i915_gem_context *ctx)
{
613
	struct i915_address_space *vm;
614

615 616 617
	/* Flush any concurrent set_engines() */
	mutex_lock(&ctx->engines_mutex);
	engines_idle_release(ctx, rcu_replace_pointer(ctx->engines, NULL, 1));
618
	i915_gem_context_set_closed(ctx);
619
	mutex_unlock(&ctx->engines_mutex);
620

621 622
	mutex_lock(&ctx->mutex);

623 624
	set_closed_name(ctx);

625 626 627 628
	vm = i915_gem_context_vm(ctx);
	if (vm)
		i915_vm_close(vm);

629
	ctx->file_priv = ERR_PTR(-EBADF);
630

631 632 633 634 635
	/*
	 * The LUT uses the VMA as a backpointer to unref the object,
	 * so we need to clear the LUT before we close all the VMA (inside
	 * the ppgtt).
	 */
636 637
	lut_close(ctx);

638
	mutex_unlock(&ctx->mutex);
639 640 641 642 643 644 645 646

	/*
	 * If the user has disabled hangchecking, we can not be sure that
	 * the batches will ever complete after the context is closed,
	 * keeping the context and all resources pinned forever. So in this
	 * case we opt to forcibly kill off all remaining requests on
	 * context close.
	 */
647 648
	if (!i915_gem_context_is_persistent(ctx) ||
	    !i915_modparams.enable_hangcheck)
649 650
		kill_context(ctx);

651 652 653
	i915_gem_context_put(ctx);
}

654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
static int __context_set_persistence(struct i915_gem_context *ctx, bool state)
{
	if (i915_gem_context_is_persistent(ctx) == state)
		return 0;

	if (state) {
		/*
		 * Only contexts that are short-lived [that will expire or be
		 * reset] are allowed to survive past termination. We require
		 * hangcheck to ensure that the persistent requests are healthy.
		 */
		if (!i915_modparams.enable_hangcheck)
			return -EINVAL;

		i915_gem_context_set_persistence(ctx);
	} else {
		/* To cancel a context we use "preempt-to-idle" */
		if (!(ctx->i915->caps.scheduler & I915_SCHEDULER_CAP_PREEMPTION))
			return -ENODEV;

674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
		/*
		 * If the cancel fails, we then need to reset, cleanly!
		 *
		 * If the per-engine reset fails, all hope is lost! We resort
		 * to a full GPU reset in that unlikely case, but realistically
		 * if the engine could not reset, the full reset does not fare
		 * much better. The damage has been done.
		 *
		 * However, if we cannot reset an engine by itself, we cannot
		 * cleanup a hanging persistent context without causing
		 * colateral damage, and we should not pretend we can by
		 * exposing the interface.
		 */
		if (!intel_has_reset_engine(&ctx->i915->gt))
			return -ENODEV;

690 691 692 693 694 695
		i915_gem_context_clear_persistence(ctx);
	}

	return 0;
}

696
static struct i915_gem_context *
697
__create_context(struct drm_i915_private *i915)
698
{
699
	struct i915_gem_context *ctx;
700 701
	struct i915_gem_engines *e;
	int err;
702
	int i;
703

704
	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
705
	if (!ctx)
706
		return ERR_PTR(-ENOMEM);
707

708
	kref_init(&ctx->ref);
709
	ctx->i915 = i915;
710
	ctx->sched.priority = I915_USER_PRIORITY(I915_PRIORITY_NORMAL);
711
	mutex_init(&ctx->mutex);
712

713 714 715
	spin_lock_init(&ctx->stale.lock);
	INIT_LIST_HEAD(&ctx->stale.engines);

716 717 718 719 720 721 722
	mutex_init(&ctx->engines_mutex);
	e = default_engines(ctx);
	if (IS_ERR(e)) {
		err = PTR_ERR(e);
		goto err_free;
	}
	RCU_INIT_POINTER(ctx->engines, e);
723

724
	INIT_RADIX_TREE(&ctx->handles_vma, GFP_KERNEL);
725

726 727 728
	/* NB: Mark all slices as needing a remap so that when the context first
	 * loads it will restore whatever remap state already exists. If there
	 * is no remap info, it will be a NOP. */
729
	ctx->remap_slice = ALL_L3_SLICES(i915);
730

731
	i915_gem_context_set_bannable(ctx);
732
	i915_gem_context_set_recoverable(ctx);
733
	__context_set_persistence(ctx, true /* cgroup hook? */);
734

735 736 737
	for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp); i++)
		ctx->hang_timestamp[i] = jiffies - CONTEXT_FAST_HANG_JIFFIES;

738 739 740 741
	spin_lock(&i915->gem.contexts.lock);
	list_add_tail(&ctx->link, &i915->gem.contexts.list);
	spin_unlock(&i915->gem.contexts.lock);

742
	return ctx;
743 744 745 746

err_free:
	kfree(ctx);
	return ERR_PTR(err);
747 748
}

749
static int
750
context_apply_all(struct i915_gem_context *ctx,
751
		  int (*fn)(struct intel_context *ce, void *data),
752 753 754 755
		  void *data)
{
	struct i915_gem_engines_iter it;
	struct intel_context *ce;
756
	int err = 0;
757

758 759 760 761 762
	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
		err = fn(ce, data);
		if (err)
			break;
	}
763
	i915_gem_context_unlock_engines(ctx);
764 765

	return err;
766 767
}

768
static int __apply_ppgtt(struct intel_context *ce, void *vm)
769 770 771
{
	i915_vm_put(ce->vm);
	ce->vm = i915_vm_get(vm);
772
	return 0;
773 774
}

775 776
static struct i915_address_space *
__set_ppgtt(struct i915_gem_context *ctx, struct i915_address_space *vm)
777
{
778
	struct i915_address_space *old = i915_gem_context_vm(ctx);
779

780 781
	GEM_BUG_ON(old && i915_vm_is_4lvl(vm) != i915_vm_is_4lvl(old));

782
	rcu_assign_pointer(ctx->vm, i915_vm_open(vm));
783
	context_apply_all(ctx, __apply_ppgtt, vm);
784

785 786 787 788
	return old;
}

static void __assign_ppgtt(struct i915_gem_context *ctx,
789
			   struct i915_address_space *vm)
790
{
791
	if (vm == rcu_access_pointer(ctx->vm))
792 793
		return;

794 795
	vm = __set_ppgtt(ctx, vm);
	if (vm)
796
		i915_vm_close(vm);
797 798
}

799 800 801 802 803 804 805 806 807 808 809
static void __set_timeline(struct intel_timeline **dst,
			   struct intel_timeline *src)
{
	struct intel_timeline *old = *dst;

	*dst = src ? intel_timeline_get(src) : NULL;

	if (old)
		intel_timeline_put(old);
}

810
static int __apply_timeline(struct intel_context *ce, void *timeline)
811 812
{
	__set_timeline(&ce->timeline, timeline);
813
	return 0;
814 815 816 817 818 819 820 821 822
}

static void __assign_timeline(struct i915_gem_context *ctx,
			      struct intel_timeline *timeline)
{
	__set_timeline(&ctx->timeline, timeline);
	context_apply_all(ctx, __apply_timeline, timeline);
}

823
static struct i915_gem_context *
824
i915_gem_create_context(struct drm_i915_private *i915, unsigned int flags)
825
{
826
	struct i915_gem_context *ctx;
827

828
	if (flags & I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE &&
829
	    !HAS_EXECLISTS(i915))
830 831
		return ERR_PTR(-EINVAL);

832 833
	/* Reap the stale contexts */
	contexts_flush_free(&i915->gem.contexts);
834

835
	ctx = __create_context(i915);
836
	if (IS_ERR(ctx))
837
		return ctx;
838

839
	if (HAS_FULL_PPGTT(i915)) {
840
		struct i915_ppgtt *ppgtt;
841

842
		ppgtt = i915_ppgtt_create(&i915->gt);
843
		if (IS_ERR(ppgtt)) {
844 845
			drm_dbg(&i915->drm, "PPGTT setup failed (%ld)\n",
				PTR_ERR(ppgtt));
846
			context_close(ctx);
847
			return ERR_CAST(ppgtt);
848 849
		}

850
		mutex_lock(&ctx->mutex);
851
		__assign_ppgtt(ctx, &ppgtt->vm);
852 853
		mutex_unlock(&ctx->mutex);

854
		i915_vm_put(&ppgtt->vm);
855
	}
856

857
	if (flags & I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE) {
858
		struct intel_timeline *timeline;
859

860
		timeline = intel_timeline_create(&i915->gt, NULL);
861 862 863 864 865
		if (IS_ERR(timeline)) {
			context_close(ctx);
			return ERR_CAST(timeline);
		}

866 867
		__assign_timeline(ctx, timeline);
		intel_timeline_put(timeline);
868 869
	}

870 871
	trace_i915_context_create(ctx);

872
	return ctx;
873 874
}

875
static void init_contexts(struct i915_gem_contexts *gc)
876
{
877 878
	spin_lock_init(&gc->lock);
	INIT_LIST_HEAD(&gc->list);
879

880 881
	INIT_WORK(&gc->free_work, contexts_free_worker);
	init_llist_head(&gc->free_list);
882 883
}

884
void i915_gem_init__contexts(struct drm_i915_private *i915)
885
{
886
	init_contexts(&i915->gem.contexts);
887 888 889
	drm_dbg(&i915->drm, "%s context support initialized\n",
		DRIVER_CAPS(i915)->has_logical_contexts ?
		"logical" : "fake");
890 891
}

892
void i915_gem_driver_release__contexts(struct drm_i915_private *i915)
893
{
894
	flush_work(&i915->gem.contexts.free_work);
895 896
}

897
static int gem_context_register(struct i915_gem_context *ctx,
898 899
				struct drm_i915_file_private *fpriv,
				u32 *id)
900
{
901
	struct i915_address_space *vm;
902 903 904
	int ret;

	ctx->file_priv = fpriv;
905 906 907 908 909 910

	mutex_lock(&ctx->mutex);
	vm = i915_gem_context_vm(ctx);
	if (vm)
		WRITE_ONCE(vm->file, fpriv); /* XXX */
	mutex_unlock(&ctx->mutex);
911 912

	ctx->pid = get_task_pid(current, PIDTYPE_PID);
913 914
	snprintf(ctx->name, sizeof(ctx->name), "%s[%d]",
		 current->comm, pid_nr(ctx->pid));
915 916

	/* And finally expose ourselves to userspace via the idr */
917 918 919
	ret = xa_alloc(&fpriv->context_xa, id, ctx, xa_limit_32b, GFP_KERNEL);
	if (ret)
		put_pid(fetch_and_zero(&ctx->pid));
920 921 922 923

	return ret;
}

924 925
int i915_gem_context_open(struct drm_i915_private *i915,
			  struct drm_file *file)
926 927
{
	struct drm_i915_file_private *file_priv = file->driver_priv;
928
	struct i915_gem_context *ctx;
929
	int err;
930
	u32 id;
931

932
	xa_init_flags(&file_priv->context_xa, XA_FLAGS_ALLOC);
933

934 935
	/* 0 reserved for invalid/unassigned ppgtt */
	xa_init_flags(&file_priv->vm_xa, XA_FLAGS_ALLOC1);
936

937
	ctx = i915_gem_create_context(i915, 0);
938
	if (IS_ERR(ctx)) {
939 940
		err = PTR_ERR(ctx);
		goto err;
941 942
	}

943
	err = gem_context_register(ctx, file_priv, &id);
944
	if (err < 0)
945 946
		goto err_ctx;

947
	GEM_BUG_ON(id);
948
	return 0;
949 950 951

err_ctx:
	context_close(ctx);
952
err:
953
	xa_destroy(&file_priv->vm_xa);
954
	xa_destroy(&file_priv->context_xa);
955
	return err;
956 957
}

958
void i915_gem_context_close(struct drm_file *file)
959
{
960
	struct drm_i915_file_private *file_priv = file->driver_priv;
961
	struct drm_i915_private *i915 = file_priv->dev_priv;
962
	struct i915_address_space *vm;
963 964
	struct i915_gem_context *ctx;
	unsigned long idx;
965

966 967 968
	xa_for_each(&file_priv->context_xa, idx, ctx)
		context_close(ctx);
	xa_destroy(&file_priv->context_xa);
969

970 971 972
	xa_for_each(&file_priv->vm_xa, idx, vm)
		i915_vm_put(vm);
	xa_destroy(&file_priv->vm_xa);
973 974

	contexts_flush_free(&i915->gem.contexts);
975 976 977 978 979 980 981 982
}

int i915_gem_vm_create_ioctl(struct drm_device *dev, void *data,
			     struct drm_file *file)
{
	struct drm_i915_private *i915 = to_i915(dev);
	struct drm_i915_gem_vm_control *args = data;
	struct drm_i915_file_private *file_priv = file->driver_priv;
983
	struct i915_ppgtt *ppgtt;
984
	u32 id;
985 986 987 988 989 990 991 992
	int err;

	if (!HAS_FULL_PPGTT(i915))
		return -ENODEV;

	if (args->flags)
		return -EINVAL;

993
	ppgtt = i915_ppgtt_create(&i915->gt);
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
	if (IS_ERR(ppgtt))
		return PTR_ERR(ppgtt);

	ppgtt->vm.file = file_priv;

	if (args->extensions) {
		err = i915_user_extensions(u64_to_user_ptr(args->extensions),
					   NULL, 0,
					   ppgtt);
		if (err)
			goto err_put;
	}

1007 1008
	err = xa_alloc(&file_priv->vm_xa, &id, &ppgtt->vm,
		       xa_limit_32b, GFP_KERNEL);
1009 1010 1011
	if (err)
		goto err_put;

1012 1013
	GEM_BUG_ON(id == 0); /* reserved for invalid/unassigned ppgtt */
	args->vm_id = id;
1014 1015 1016
	return 0;

err_put:
1017
	i915_vm_put(&ppgtt->vm);
1018 1019 1020 1021 1022 1023 1024 1025
	return err;
}

int i915_gem_vm_destroy_ioctl(struct drm_device *dev, void *data,
			      struct drm_file *file)
{
	struct drm_i915_file_private *file_priv = file->driver_priv;
	struct drm_i915_gem_vm_control *args = data;
1026
	struct i915_address_space *vm;
1027 1028 1029 1030 1031 1032 1033

	if (args->flags)
		return -EINVAL;

	if (args->extensions)
		return -EINVAL;

1034
	vm = xa_erase(&file_priv->vm_xa, args->vm_id);
1035
	if (!vm)
1036 1037
		return -ENOENT;

1038
	i915_vm_put(vm);
1039
	return 0;
1040 1041
}

1042 1043 1044 1045 1046 1047
struct context_barrier_task {
	struct i915_active base;
	void (*task)(void *data);
	void *data;
};

1048
__i915_active_call
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
static void cb_retire(struct i915_active *base)
{
	struct context_barrier_task *cb = container_of(base, typeof(*cb), base);

	if (cb->task)
		cb->task(cb->data);

	i915_active_fini(&cb->base);
	kfree(cb);
}

1060
I915_SELFTEST_DECLARE(static intel_engine_mask_t context_barrier_inject_fault);
1061
static int context_barrier_task(struct i915_gem_context *ctx,
1062
				intel_engine_mask_t engines,
1063
				bool (*skip)(struct intel_context *ce, void *data),
1064
				int (*emit)(struct i915_request *rq, void *data),
1065 1066 1067 1068
				void (*task)(void *data),
				void *data)
{
	struct context_barrier_task *cb;
1069 1070
	struct i915_gem_engines_iter it;
	struct intel_context *ce;
1071 1072 1073 1074 1075 1076 1077 1078
	int err = 0;

	GEM_BUG_ON(!task);

	cb = kmalloc(sizeof(*cb), GFP_KERNEL);
	if (!cb)
		return -ENOMEM;

1079
	i915_active_init(&cb->base, NULL, cb_retire);
1080 1081 1082 1083 1084
	err = i915_active_acquire(&cb->base);
	if (err) {
		kfree(cb);
		return err;
	}
1085

1086
	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1087 1088 1089
		struct i915_request *rq;

		if (I915_SELFTEST_ONLY(context_barrier_inject_fault &
1090
				       ce->engine->mask)) {
1091 1092 1093 1094
			err = -ENXIO;
			break;
		}

1095 1096 1097 1098
		if (!(ce->engine->mask & engines))
			continue;

		if (skip && skip(ce, data))
1099 1100
			continue;

1101
		rq = intel_context_create_request(ce);
1102 1103 1104 1105 1106
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
			break;
		}

1107 1108 1109 1110
		err = 0;
		if (emit)
			err = emit(rq, data);
		if (err == 0)
1111
			err = i915_active_add_request(&cb->base, rq);
1112

1113 1114 1115 1116
		i915_request_add(rq);
		if (err)
			break;
	}
1117
	i915_gem_context_unlock_engines(ctx);
1118 1119 1120 1121 1122 1123 1124 1125 1126

	cb->task = err ? NULL : task; /* caller needs to unwind instead */
	cb->data = data;

	i915_active_release(&cb->base);

	return err;
}

1127 1128
static int get_ppgtt(struct drm_i915_file_private *file_priv,
		     struct i915_gem_context *ctx,
1129 1130
		     struct drm_i915_gem_context_param *args)
{
1131
	struct i915_address_space *vm;
1132 1133
	int err;
	u32 id;
1134

1135
	if (!rcu_access_pointer(ctx->vm))
1136 1137
		return -ENODEV;

1138
	rcu_read_lock();
1139
	vm = context_get_vm_rcu(ctx);
1140
	rcu_read_unlock();
1141 1142 1143 1144
	if (!vm)
		return -ENODEV;

	err = xa_alloc(&file_priv->vm_xa, &id, vm, xa_limit_32b, GFP_KERNEL);
1145
	if (err)
1146 1147
		goto err_put;

1148
	i915_vm_open(vm);
1149

1150 1151
	GEM_BUG_ON(id == 0); /* reserved for invalid/unassigned ppgtt */
	args->value = id;
1152 1153 1154
	args->size = 0;

err_put:
1155
	i915_vm_put(vm);
1156
	return err;
1157 1158 1159 1160
}

static void set_ppgtt_barrier(void *data)
{
1161
	struct i915_address_space *old = data;
1162

1163 1164
	if (INTEL_GEN(old->i915) < 8)
		gen6_ppgtt_unpin_all(i915_vm_to_ppgtt(old));
1165

1166
	i915_vm_close(old);
1167 1168 1169 1170
}

static int emit_ppgtt_update(struct i915_request *rq, void *data)
{
1171
	struct i915_address_space *vm = rq->context->vm;
1172
	struct intel_engine_cs *engine = rq->engine;
1173
	u32 base = engine->mmio_base;
1174 1175 1176
	u32 *cs;
	int i;

1177
	if (i915_vm_is_4lvl(vm)) {
1178
		struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1179
		const dma_addr_t pd_daddr = px_dma(ppgtt->pd);
1180 1181 1182 1183 1184 1185 1186

		cs = intel_ring_begin(rq, 6);
		if (IS_ERR(cs))
			return PTR_ERR(cs);

		*cs++ = MI_LOAD_REGISTER_IMM(2);

1187
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0));
1188
		*cs++ = upper_32_bits(pd_daddr);
1189
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0));
1190 1191 1192 1193 1194
		*cs++ = lower_32_bits(pd_daddr);

		*cs++ = MI_NOOP;
		intel_ring_advance(rq, cs);
	} else if (HAS_LOGICAL_RING_CONTEXTS(engine->i915)) {
1195
		struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1196 1197 1198 1199 1200 1201
		int err;

		/* Magic required to prevent forcewake errors! */
		err = engine->emit_flush(rq, EMIT_INVALIDATE);
		if (err)
			return err;
1202

1203 1204 1205 1206
		cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
		if (IS_ERR(cs))
			return PTR_ERR(cs);

1207
		*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
1208 1209 1210
		for (i = GEN8_3LVL_PDPES; i--; ) {
			const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1211
			*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
1212
			*cs++ = upper_32_bits(pd_daddr);
1213
			*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
1214 1215 1216 1217 1218 1219 1220 1221 1222
			*cs++ = lower_32_bits(pd_daddr);
		}
		*cs++ = MI_NOOP;
		intel_ring_advance(rq, cs);
	}

	return 0;
}

1223 1224
static bool skip_ppgtt_update(struct intel_context *ce, void *data)
{
1225 1226 1227
	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags))
		return true;

1228
	if (HAS_LOGICAL_RING_CONTEXTS(ce->engine->i915))
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
		return false;

	if (!atomic_read(&ce->pin_count))
		return true;

	/* ppGTT is not part of the legacy context image */
	if (gen6_ppgtt_pin(i915_vm_to_ppgtt(ce->vm)))
		return true;

	return false;
1239 1240
}

1241 1242
static int set_ppgtt(struct drm_i915_file_private *file_priv,
		     struct i915_gem_context *ctx,
1243 1244
		     struct drm_i915_gem_context_param *args)
{
1245
	struct i915_address_space *vm, *old;
1246 1247 1248 1249 1250
	int err;

	if (args->size)
		return -EINVAL;

1251
	if (!rcu_access_pointer(ctx->vm))
1252 1253 1254 1255 1256
		return -ENODEV;

	if (upper_32_bits(args->value))
		return -ENOENT;

1257
	rcu_read_lock();
1258
	vm = xa_load(&file_priv->vm_xa, args->value);
1259 1260 1261
	if (vm && !kref_get_unless_zero(&vm->ref))
		vm = NULL;
	rcu_read_unlock();
1262
	if (!vm)
1263 1264
		return -ENOENT;

1265
	err = mutex_lock_interruptible(&ctx->mutex);
1266 1267 1268
	if (err)
		goto out;

1269 1270
	if (i915_gem_context_is_closed(ctx)) {
		err = -ENOENT;
1271
		goto unlock;
1272 1273 1274
	}

	if (vm == rcu_access_pointer(ctx->vm))
1275 1276 1277 1278 1279
		goto unlock;

	/* Teardown the existing obj:vma cache, it will have to be rebuilt. */
	lut_close(ctx);

1280
	old = __set_ppgtt(ctx, vm);
1281 1282 1283 1284 1285 1286 1287

	/*
	 * We need to flush any requests using the current ppgtt before
	 * we release it as the requests do not hold a reference themselves,
	 * only indirectly through the context.
	 */
	err = context_barrier_task(ctx, ALL_ENGINES,
1288
				   skip_ppgtt_update,
1289 1290 1291 1292
				   emit_ppgtt_update,
				   set_ppgtt_barrier,
				   old);
	if (err) {
1293 1294
		i915_vm_close(__set_ppgtt(ctx, old));
		i915_vm_close(old);
1295 1296 1297
	}

unlock:
1298
	mutex_unlock(&ctx->mutex);
1299
out:
1300
	i915_vm_put(vm);
1301 1302 1303
	return err;
}

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
static int __apply_ringsize(struct intel_context *ce, void *sz)
{
	return intel_context_set_ring_size(ce, (unsigned long)sz);
}

static int set_ringsize(struct i915_gem_context *ctx,
			struct drm_i915_gem_context_param *args)
{
	if (!HAS_LOGICAL_RING_CONTEXTS(ctx->i915))
		return -ENODEV;

	if (args->size)
		return -EINVAL;

	if (!IS_ALIGNED(args->value, I915_GTT_PAGE_SIZE))
		return -EINVAL;

	if (args->value < I915_GTT_PAGE_SIZE)
		return -EINVAL;

	if (args->value > 128 * I915_GTT_PAGE_SIZE)
		return -EINVAL;

	return context_apply_all(ctx,
				 __apply_ringsize,
				 __intel_context_ring_size(args->value));
}

static int __get_ringsize(struct intel_context *ce, void *arg)
{
	long sz;

	sz = intel_context_get_ring_size(ce);
	GEM_BUG_ON(sz > INT_MAX);

	return sz; /* stop on first engine */
}

static int get_ringsize(struct i915_gem_context *ctx,
			struct drm_i915_gem_context_param *args)
{
	int sz;

	if (!HAS_LOGICAL_RING_CONTEXTS(ctx->i915))
		return -ENODEV;

	if (args->size)
		return -EINVAL;

	sz = context_apply_all(ctx, __get_ringsize, NULL);
	if (sz < 0)
		return sz;

	args->value = sz;
	return 0;
}

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
static int
user_to_context_sseu(struct drm_i915_private *i915,
		     const struct drm_i915_gem_context_param_sseu *user,
		     struct intel_sseu *context)
{
	const struct sseu_dev_info *device = &RUNTIME_INFO(i915)->sseu;

	/* No zeros in any field. */
	if (!user->slice_mask || !user->subslice_mask ||
	    !user->min_eus_per_subslice || !user->max_eus_per_subslice)
		return -EINVAL;

	/* Max > min. */
	if (user->max_eus_per_subslice < user->min_eus_per_subslice)
		return -EINVAL;

	/*
	 * Some future proofing on the types since the uAPI is wider than the
	 * current internal implementation.
	 */
	if (overflows_type(user->slice_mask, context->slice_mask) ||
	    overflows_type(user->subslice_mask, context->subslice_mask) ||
	    overflows_type(user->min_eus_per_subslice,
			   context->min_eus_per_subslice) ||
	    overflows_type(user->max_eus_per_subslice,
			   context->max_eus_per_subslice))
		return -EINVAL;

	/* Check validity against hardware. */
	if (user->slice_mask & ~device->slice_mask)
		return -EINVAL;

	if (user->subslice_mask & ~device->subslice_mask[0])
		return -EINVAL;

	if (user->max_eus_per_subslice > device->max_eus_per_subslice)
		return -EINVAL;

	context->slice_mask = user->slice_mask;
	context->subslice_mask = user->subslice_mask;
	context->min_eus_per_subslice = user->min_eus_per_subslice;
	context->max_eus_per_subslice = user->max_eus_per_subslice;

	/* Part specific restrictions. */
	if (IS_GEN(i915, 11)) {
		unsigned int hw_s = hweight8(device->slice_mask);
		unsigned int hw_ss_per_s = hweight8(device->subslice_mask[0]);
		unsigned int req_s = hweight8(context->slice_mask);
		unsigned int req_ss = hweight8(context->subslice_mask);

		/*
		 * Only full subslice enablement is possible if more than one
		 * slice is turned on.
		 */
		if (req_s > 1 && req_ss != hw_ss_per_s)
			return -EINVAL;

		/*
		 * If more than four (SScount bitfield limit) subslices are
		 * requested then the number has to be even.
		 */
		if (req_ss > 4 && (req_ss & 1))
			return -EINVAL;

		/*
		 * If only one slice is enabled and subslice count is below the
		 * device full enablement, it must be at most half of the all
		 * available subslices.
		 */
		if (req_s == 1 && req_ss < hw_ss_per_s &&
		    req_ss > (hw_ss_per_s / 2))
			return -EINVAL;

		/* ABI restriction - VME use case only. */

		/* All slices or one slice only. */
		if (req_s != 1 && req_s != hw_s)
			return -EINVAL;

		/*
		 * Half subslices or full enablement only when one slice is
		 * enabled.
		 */
		if (req_s == 1 &&
		    (req_ss != hw_ss_per_s && req_ss != (hw_ss_per_s / 2)))
			return -EINVAL;

		/* No EU configuration changes. */
		if ((user->min_eus_per_subslice !=
		     device->max_eus_per_subslice) ||
		    (user->max_eus_per_subslice !=
		     device->max_eus_per_subslice))
			return -EINVAL;
	}

	return 0;
}

static int set_sseu(struct i915_gem_context *ctx,
		    struct drm_i915_gem_context_param *args)
{
	struct drm_i915_private *i915 = ctx->i915;
	struct drm_i915_gem_context_param_sseu user_sseu;
1464
	struct intel_context *ce;
1465
	struct intel_sseu sseu;
1466
	unsigned long lookup;
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
	int ret;

	if (args->size < sizeof(user_sseu))
		return -EINVAL;

	if (!IS_GEN(i915, 11))
		return -ENODEV;

	if (copy_from_user(&user_sseu, u64_to_user_ptr(args->value),
			   sizeof(user_sseu)))
		return -EFAULT;

1479
	if (user_sseu.rsvd)
1480 1481
		return -EINVAL;

1482 1483 1484 1485 1486 1487 1488 1489
	if (user_sseu.flags & ~(I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX))
		return -EINVAL;

	lookup = 0;
	if (user_sseu.flags & I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX)
		lookup |= LOOKUP_USER_INDEX;

	ce = lookup_user_engine(ctx, lookup, &user_sseu.engine);
1490 1491
	if (IS_ERR(ce))
		return PTR_ERR(ce);
1492 1493

	/* Only render engine supports RPCS configuration. */
1494 1495 1496 1497
	if (ce->engine->class != RENDER_CLASS) {
		ret = -ENODEV;
		goto out_ce;
	}
1498 1499 1500

	ret = user_to_context_sseu(i915, &user_sseu, &sseu);
	if (ret)
1501
		goto out_ce;
1502

1503
	ret = intel_context_reconfigure_sseu(ce, sseu);
1504
	if (ret)
1505
		goto out_ce;
1506 1507 1508

	args->size = sizeof(user_sseu);

1509 1510 1511
out_ce:
	intel_context_put(ce);
	return ret;
1512 1513
}

1514 1515 1516 1517 1518
struct set_engines {
	struct i915_gem_context *ctx;
	struct i915_gem_engines *engines;
};

1519 1520 1521 1522 1523 1524
static int
set_engines__load_balance(struct i915_user_extension __user *base, void *data)
{
	struct i915_context_engines_load_balance __user *ext =
		container_of_user(base, typeof(*ext), base);
	const struct set_engines *set = data;
1525
	struct drm_i915_private *i915 = set->ctx->i915;
1526 1527 1528 1529 1530 1531 1532
	struct intel_engine_cs *stack[16];
	struct intel_engine_cs **siblings;
	struct intel_context *ce;
	u16 num_siblings, idx;
	unsigned int n;
	int err;

1533
	if (!HAS_EXECLISTS(i915))
1534 1535
		return -ENODEV;

1536
	if (intel_uc_uses_guc_submission(&i915->gt.uc))
1537 1538 1539 1540 1541 1542
		return -ENODEV; /* not implement yet */

	if (get_user(idx, &ext->engine_index))
		return -EFAULT;

	if (idx >= set->engines->num_engines) {
1543 1544
		drm_dbg(&i915->drm, "Invalid placement value, %d >= %d\n",
			idx, set->engines->num_engines);
1545 1546 1547 1548 1549
		return -EINVAL;
	}

	idx = array_index_nospec(idx, set->engines->num_engines);
	if (set->engines->engines[idx]) {
1550 1551
		drm_dbg(&i915->drm,
			"Invalid placement[%d], already occupied\n", idx);
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
		return -EEXIST;
	}

	if (get_user(num_siblings, &ext->num_siblings))
		return -EFAULT;

	err = check_user_mbz(&ext->flags);
	if (err)
		return err;

	err = check_user_mbz(&ext->mbz64);
	if (err)
		return err;

	siblings = stack;
	if (num_siblings > ARRAY_SIZE(stack)) {
		siblings = kmalloc_array(num_siblings,
					 sizeof(*siblings),
					 GFP_KERNEL);
		if (!siblings)
			return -ENOMEM;
	}

	for (n = 0; n < num_siblings; n++) {
		struct i915_engine_class_instance ci;

		if (copy_from_user(&ci, &ext->engines[n], sizeof(ci))) {
			err = -EFAULT;
			goto out_siblings;
		}

1583
		siblings[n] = intel_engine_lookup_user(i915,
1584 1585 1586
						       ci.engine_class,
						       ci.engine_instance);
		if (!siblings[n]) {
1587 1588 1589
			drm_dbg(&i915->drm,
				"Invalid sibling[%d]: { class:%d, inst:%d }\n",
				n, ci.engine_class, ci.engine_instance);
1590 1591 1592 1593 1594
			err = -EINVAL;
			goto out_siblings;
		}
	}

1595
	ce = intel_execlists_create_virtual(siblings, n);
1596 1597 1598 1599 1600
	if (IS_ERR(ce)) {
		err = PTR_ERR(ce);
		goto out_siblings;
	}

1601 1602
	intel_context_set_gem(ce, set->ctx);

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
	if (cmpxchg(&set->engines->engines[idx], NULL, ce)) {
		intel_context_put(ce);
		err = -EEXIST;
		goto out_siblings;
	}

out_siblings:
	if (siblings != stack)
		kfree(siblings);

	return err;
}

1616 1617 1618 1619 1620 1621
static int
set_engines__bond(struct i915_user_extension __user *base, void *data)
{
	struct i915_context_engines_bond __user *ext =
		container_of_user(base, typeof(*ext), base);
	const struct set_engines *set = data;
1622
	struct drm_i915_private *i915 = set->ctx->i915;
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
	struct i915_engine_class_instance ci;
	struct intel_engine_cs *virtual;
	struct intel_engine_cs *master;
	u16 idx, num_bonds;
	int err, n;

	if (get_user(idx, &ext->virtual_index))
		return -EFAULT;

	if (idx >= set->engines->num_engines) {
1633 1634 1635
		drm_dbg(&i915->drm,
			"Invalid index for virtual engine: %d >= %d\n",
			idx, set->engines->num_engines);
1636 1637 1638 1639 1640
		return -EINVAL;
	}

	idx = array_index_nospec(idx, set->engines->num_engines);
	if (!set->engines->engines[idx]) {
1641
		drm_dbg(&i915->drm, "Invalid engine at %d\n", idx);
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
		return -EINVAL;
	}
	virtual = set->engines->engines[idx]->engine;

	err = check_user_mbz(&ext->flags);
	if (err)
		return err;

	for (n = 0; n < ARRAY_SIZE(ext->mbz64); n++) {
		err = check_user_mbz(&ext->mbz64[n]);
		if (err)
			return err;
	}

	if (copy_from_user(&ci, &ext->master, sizeof(ci)))
		return -EFAULT;

1659
	master = intel_engine_lookup_user(i915,
1660 1661
					  ci.engine_class, ci.engine_instance);
	if (!master) {
1662 1663 1664
		drm_dbg(&i915->drm,
			"Unrecognised master engine: { class:%u, instance:%u }\n",
			ci.engine_class, ci.engine_instance);
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
		return -EINVAL;
	}

	if (get_user(num_bonds, &ext->num_bonds))
		return -EFAULT;

	for (n = 0; n < num_bonds; n++) {
		struct intel_engine_cs *bond;

		if (copy_from_user(&ci, &ext->engines[n], sizeof(ci)))
			return -EFAULT;

1677
		bond = intel_engine_lookup_user(i915,
1678 1679 1680
						ci.engine_class,
						ci.engine_instance);
		if (!bond) {
1681 1682 1683
			drm_dbg(&i915->drm,
				"Unrecognised engine[%d] for bonding: { class:%d, instance: %d }\n",
				n, ci.engine_class, ci.engine_instance);
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
			return -EINVAL;
		}

		/*
		 * A non-virtual engine has no siblings to choose between; and
		 * a submit fence will always be directed to the one engine.
		 */
		if (intel_engine_is_virtual(virtual)) {
			err = intel_virtual_engine_attach_bond(virtual,
							       master,
							       bond);
			if (err)
				return err;
		}
	}

	return 0;
}

1703
static const i915_user_extension_fn set_engines__extensions[] = {
1704
	[I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE] = set_engines__load_balance,
1705
	[I915_CONTEXT_ENGINES_EXT_BOND] = set_engines__bond,
1706 1707 1708 1709 1710 1711
};

static int
set_engines(struct i915_gem_context *ctx,
	    const struct drm_i915_gem_context_param *args)
{
1712
	struct drm_i915_private *i915 = ctx->i915;
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
	struct i915_context_param_engines __user *user =
		u64_to_user_ptr(args->value);
	struct set_engines set = { .ctx = ctx };
	unsigned int num_engines, n;
	u64 extensions;
	int err;

	if (!args->size) { /* switch back to legacy user_ring_map */
		if (!i915_gem_context_user_engines(ctx))
			return 0;

		set.engines = default_engines(ctx);
		if (IS_ERR(set.engines))
			return PTR_ERR(set.engines);

		goto replace;
	}

	BUILD_BUG_ON(!IS_ALIGNED(sizeof(*user), sizeof(*user->engines)));
	if (args->size < sizeof(*user) ||
	    !IS_ALIGNED(args->size, sizeof(*user->engines))) {
1734 1735
		drm_dbg(&i915->drm, "Invalid size for engine array: %d\n",
			args->size);
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
		return -EINVAL;
	}

	/*
	 * Note that I915_EXEC_RING_MASK limits execbuf to only using the
	 * first 64 engines defined here.
	 */
	num_engines = (args->size - sizeof(*user)) / sizeof(*user->engines);

	set.engines = kmalloc(struct_size(set.engines, engines, num_engines),
			      GFP_KERNEL);
	if (!set.engines)
		return -ENOMEM;

	for (n = 0; n < num_engines; n++) {
		struct i915_engine_class_instance ci;
		struct intel_engine_cs *engine;
1753
		struct intel_context *ce;
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769

		if (copy_from_user(&ci, &user->engines[n], sizeof(ci))) {
			__free_engines(set.engines, n);
			return -EFAULT;
		}

		if (ci.engine_class == (u16)I915_ENGINE_CLASS_INVALID &&
		    ci.engine_instance == (u16)I915_ENGINE_CLASS_INVALID_NONE) {
			set.engines->engines[n] = NULL;
			continue;
		}

		engine = intel_engine_lookup_user(ctx->i915,
						  ci.engine_class,
						  ci.engine_instance);
		if (!engine) {
1770 1771 1772
			drm_dbg(&i915->drm,
				"Invalid engine[%d]: { class:%d, instance:%d }\n",
				n, ci.engine_class, ci.engine_instance);
1773 1774 1775 1776
			__free_engines(set.engines, n);
			return -ENOENT;
		}

1777
		ce = intel_context_create(engine);
1778
		if (IS_ERR(ce)) {
1779
			__free_engines(set.engines, n);
1780
			return PTR_ERR(ce);
1781
		}
1782

1783 1784
		intel_context_set_gem(ce, ctx);

1785
		set.engines->engines[n] = ce;
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
	}
	set.engines->num_engines = num_engines;

	err = -EFAULT;
	if (!get_user(extensions, &user->extensions))
		err = i915_user_extensions(u64_to_user_ptr(extensions),
					   set_engines__extensions,
					   ARRAY_SIZE(set_engines__extensions),
					   &set);
	if (err) {
		free_engines(set.engines);
		return err;
	}

replace:
	mutex_lock(&ctx->engines_mutex);
1802 1803 1804 1805 1806
	if (i915_gem_context_is_closed(ctx)) {
		mutex_unlock(&ctx->engines_mutex);
		free_engines(set.engines);
		return -ENOENT;
	}
1807 1808 1809 1810
	if (args->size)
		i915_gem_context_set_user_engines(ctx);
	else
		i915_gem_context_clear_user_engines(ctx);
1811
	set.engines = rcu_replace_pointer(ctx->engines, set.engines, 1);
1812 1813
	mutex_unlock(&ctx->engines_mutex);

1814
	/* Keep track of old engine sets for kill_context() */
1815
	engines_idle_release(ctx, set.engines);
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903

	return 0;
}

static struct i915_gem_engines *
__copy_engines(struct i915_gem_engines *e)
{
	struct i915_gem_engines *copy;
	unsigned int n;

	copy = kmalloc(struct_size(e, engines, e->num_engines), GFP_KERNEL);
	if (!copy)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < e->num_engines; n++) {
		if (e->engines[n])
			copy->engines[n] = intel_context_get(e->engines[n]);
		else
			copy->engines[n] = NULL;
	}
	copy->num_engines = n;

	return copy;
}

static int
get_engines(struct i915_gem_context *ctx,
	    struct drm_i915_gem_context_param *args)
{
	struct i915_context_param_engines __user *user;
	struct i915_gem_engines *e;
	size_t n, count, size;
	int err = 0;

	err = mutex_lock_interruptible(&ctx->engines_mutex);
	if (err)
		return err;

	e = NULL;
	if (i915_gem_context_user_engines(ctx))
		e = __copy_engines(i915_gem_context_engines(ctx));
	mutex_unlock(&ctx->engines_mutex);
	if (IS_ERR_OR_NULL(e)) {
		args->size = 0;
		return PTR_ERR_OR_ZERO(e);
	}

	count = e->num_engines;

	/* Be paranoid in case we have an impedance mismatch */
	if (!check_struct_size(user, engines, count, &size)) {
		err = -EINVAL;
		goto err_free;
	}
	if (overflows_type(size, args->size)) {
		err = -EINVAL;
		goto err_free;
	}

	if (!args->size) {
		args->size = size;
		goto err_free;
	}

	if (args->size < size) {
		err = -EINVAL;
		goto err_free;
	}

	user = u64_to_user_ptr(args->value);
	if (!access_ok(user, size)) {
		err = -EFAULT;
		goto err_free;
	}

	if (put_user(0, &user->extensions)) {
		err = -EFAULT;
		goto err_free;
	}

	for (n = 0; n < count; n++) {
		struct i915_engine_class_instance ci = {
			.engine_class = I915_ENGINE_CLASS_INVALID,
			.engine_instance = I915_ENGINE_CLASS_INVALID_NONE,
		};

		if (e->engines[n]) {
			ci.engine_class = e->engines[n]->engine->uabi_class;
1904
			ci.engine_instance = e->engines[n]->engine->uabi_instance;
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
		}

		if (copy_to_user(&user->engines[n], &ci, sizeof(ci))) {
			err = -EFAULT;
			goto err_free;
		}
	}

	args->size = size;

err_free:
1916
	free_engines(e);
1917 1918 1919
	return err;
}

1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
static int
set_persistence(struct i915_gem_context *ctx,
		const struct drm_i915_gem_context_param *args)
{
	if (args->size)
		return -EINVAL;

	return __context_set_persistence(ctx, args->value);
}

1930
static int __apply_priority(struct intel_context *ce, void *arg)
1931 1932 1933 1934
{
	struct i915_gem_context *ctx = arg;

	if (!intel_engine_has_semaphores(ce->engine))
1935
		return 0;
1936 1937 1938 1939 1940

	if (ctx->sched.priority >= I915_PRIORITY_NORMAL)
		intel_context_set_use_semaphores(ce);
	else
		intel_context_clear_use_semaphores(ce);
1941 1942

	return 0;
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
}

static int set_priority(struct i915_gem_context *ctx,
			const struct drm_i915_gem_context_param *args)
{
	s64 priority = args->value;

	if (args->size)
		return -EINVAL;

	if (!(ctx->i915->caps.scheduler & I915_SCHEDULER_CAP_PRIORITY))
		return -ENODEV;

	if (priority > I915_CONTEXT_MAX_USER_PRIORITY ||
	    priority < I915_CONTEXT_MIN_USER_PRIORITY)
		return -EINVAL;

	if (priority > I915_CONTEXT_DEFAULT_PRIORITY &&
	    !capable(CAP_SYS_NICE))
		return -EPERM;

	ctx->sched.priority = I915_USER_PRIORITY(priority);
	context_apply_all(ctx, __apply_priority, ctx);

	return 0;
}

1970 1971
static int ctx_setparam(struct drm_i915_file_private *fpriv,
			struct i915_gem_context *ctx,
1972
			struct drm_i915_gem_context_param *args)
1973
{
1974
	int ret = 0;
1975 1976

	switch (args->param) {
1977
	case I915_CONTEXT_PARAM_NO_ZEROMAP:
1978
		if (args->size)
1979
			ret = -EINVAL;
1980 1981 1982 1983
		else if (args->value)
			set_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags);
		else
			clear_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags);
1984
		break;
1985

1986
	case I915_CONTEXT_PARAM_NO_ERROR_CAPTURE:
1987
		if (args->size)
1988
			ret = -EINVAL;
1989 1990 1991 1992
		else if (args->value)
			i915_gem_context_set_no_error_capture(ctx);
		else
			i915_gem_context_clear_no_error_capture(ctx);
1993
		break;
1994

1995 1996 1997 1998 1999
	case I915_CONTEXT_PARAM_BANNABLE:
		if (args->size)
			ret = -EINVAL;
		else if (!capable(CAP_SYS_ADMIN) && !args->value)
			ret = -EPERM;
2000 2001
		else if (args->value)
			i915_gem_context_set_bannable(ctx);
2002
		else
2003
			i915_gem_context_clear_bannable(ctx);
2004
		break;
2005

2006 2007 2008 2009 2010 2011 2012 2013 2014
	case I915_CONTEXT_PARAM_RECOVERABLE:
		if (args->size)
			ret = -EINVAL;
		else if (args->value)
			i915_gem_context_set_recoverable(ctx);
		else
			i915_gem_context_clear_recoverable(ctx);
		break;

2015
	case I915_CONTEXT_PARAM_PRIORITY:
2016
		ret = set_priority(ctx, args);
2017
		break;
2018

2019 2020 2021
	case I915_CONTEXT_PARAM_SSEU:
		ret = set_sseu(ctx, args);
		break;
2022 2023

	case I915_CONTEXT_PARAM_VM:
2024
		ret = set_ppgtt(fpriv, ctx, args);
2025 2026
		break;

2027 2028 2029 2030
	case I915_CONTEXT_PARAM_ENGINES:
		ret = set_engines(ctx, args);
		break;

2031 2032 2033 2034
	case I915_CONTEXT_PARAM_PERSISTENCE:
		ret = set_persistence(ctx, args);
		break;

2035 2036 2037 2038
	case I915_CONTEXT_PARAM_RINGSIZE:
		ret = set_ringsize(ctx, args);
		break;

2039
	case I915_CONTEXT_PARAM_BAN_PERIOD:
2040 2041 2042 2043 2044
	default:
		ret = -EINVAL;
		break;
	}

2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
	return ret;
}

struct create_ext {
	struct i915_gem_context *ctx;
	struct drm_i915_file_private *fpriv;
};

static int create_setparam(struct i915_user_extension __user *ext, void *data)
{
	struct drm_i915_gem_context_create_ext_setparam local;
	const struct create_ext *arg = data;

	if (copy_from_user(&local, ext, sizeof(local)))
		return -EFAULT;

	if (local.param.ctx_id)
		return -EINVAL;

2064
	return ctx_setparam(arg->fpriv, arg->ctx, &local.param);
2065 2066
}

2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
static int copy_ring_size(struct intel_context *dst,
			  struct intel_context *src)
{
	long sz;

	sz = intel_context_get_ring_size(src);
	if (sz < 0)
		return sz;

	return intel_context_set_ring_size(dst, sz);
}

2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
static int clone_engines(struct i915_gem_context *dst,
			 struct i915_gem_context *src)
{
	struct i915_gem_engines *e = i915_gem_context_lock_engines(src);
	struct i915_gem_engines *clone;
	bool user_engines;
	unsigned long n;

	clone = kmalloc(struct_size(e, engines, e->num_engines), GFP_KERNEL);
	if (!clone)
		goto err_unlock;

	for (n = 0; n < e->num_engines; n++) {
2092 2093
		struct intel_engine_cs *engine;

2094 2095 2096 2097
		if (!e->engines[n]) {
			clone->engines[n] = NULL;
			continue;
		}
2098
		engine = e->engines[n]->engine;
2099

2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
		/*
		 * Virtual engines are singletons; they can only exist
		 * inside a single context, because they embed their
		 * HW context... As each virtual context implies a single
		 * timeline (each engine can only dequeue a single request
		 * at any time), it would be surprising for two contexts
		 * to use the same engine. So let's create a copy of
		 * the virtual engine instead.
		 */
		if (intel_engine_is_virtual(engine))
			clone->engines[n] =
2111
				intel_execlists_clone_virtual(engine);
2112
		else
2113
			clone->engines[n] = intel_context_create(engine);
2114
		if (IS_ERR_OR_NULL(clone->engines[n])) {
2115 2116 2117
			__free_engines(clone, n);
			goto err_unlock;
		}
2118 2119

		intel_context_set_gem(clone->engines[n], dst);
2120 2121 2122 2123 2124 2125

		/* Copy across the preferred ringsize */
		if (copy_ring_size(clone->engines[n], e->engines[n])) {
			__free_engines(clone, n + 1);
			goto err_unlock;
		}
2126 2127 2128 2129 2130 2131
	}
	clone->num_engines = n;

	user_engines = i915_gem_context_user_engines(src);
	i915_gem_context_unlock_engines(src);

2132
	/* Serialised by constructor */
2133
	engines_idle_release(dst, rcu_replace_pointer(dst->engines, clone, 1));
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
	if (user_engines)
		i915_gem_context_set_user_engines(dst);
	else
		i915_gem_context_clear_user_engines(dst);
	return 0;

err_unlock:
	i915_gem_context_unlock_engines(src);
	return -ENOMEM;
}

static int clone_flags(struct i915_gem_context *dst,
		       struct i915_gem_context *src)
{
	dst->user_flags = src->user_flags;
	return 0;
}

static int clone_schedattr(struct i915_gem_context *dst,
			   struct i915_gem_context *src)
{
	dst->sched = src->sched;
	return 0;
}

static int clone_sseu(struct i915_gem_context *dst,
		      struct i915_gem_context *src)
{
	struct i915_gem_engines *e = i915_gem_context_lock_engines(src);
	struct i915_gem_engines *clone;
	unsigned long n;
	int err;

2167 2168
	/* no locking required; sole access under constructor*/
	clone = __context_engines_static(dst);
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
	if (e->num_engines != clone->num_engines) {
		err = -EINVAL;
		goto unlock;
	}

	for (n = 0; n < e->num_engines; n++) {
		struct intel_context *ce = e->engines[n];

		if (clone->engines[n]->engine->class != ce->engine->class) {
			/* Must have compatible engine maps! */
			err = -EINVAL;
			goto unlock;
		}

		/* serialises with set_sseu */
		err = intel_context_lock_pinned(ce);
		if (err)
			goto unlock;

		clone->engines[n]->sseu = ce->sseu;
		intel_context_unlock_pinned(ce);
	}

	err = 0;
unlock:
	i915_gem_context_unlock_engines(src);
	return err;
}

static int clone_timeline(struct i915_gem_context *dst,
			  struct i915_gem_context *src)
{
2201 2202
	if (src->timeline)
		__assign_timeline(dst, src->timeline);
2203 2204 2205 2206 2207 2208 2209

	return 0;
}

static int clone_vm(struct i915_gem_context *dst,
		    struct i915_gem_context *src)
{
2210
	struct i915_address_space *vm;
2211
	int err = 0;
2212

2213 2214
	if (!rcu_access_pointer(src->vm))
		return 0;
2215

2216 2217
	rcu_read_lock();
	vm = context_get_vm_rcu(src);
2218 2219
	rcu_read_unlock();

2220 2221 2222 2223 2224
	if (!mutex_lock_interruptible(&dst->mutex)) {
		__assign_ppgtt(dst, vm);
		mutex_unlock(&dst->mutex);
	} else {
		err = -EINTR;
2225 2226
	}

2227
	i915_vm_put(vm);
2228
	return err;
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
}

static int create_clone(struct i915_user_extension __user *ext, void *data)
{
	static int (* const fn[])(struct i915_gem_context *dst,
				  struct i915_gem_context *src) = {
#define MAP(x, y) [ilog2(I915_CONTEXT_CLONE_##x)] = y
		MAP(ENGINES, clone_engines),
		MAP(FLAGS, clone_flags),
		MAP(SCHEDATTR, clone_schedattr),
		MAP(SSEU, clone_sseu),
		MAP(TIMELINE, clone_timeline),
		MAP(VM, clone_vm),
#undef MAP
	};
	struct drm_i915_gem_context_create_ext_clone local;
	const struct create_ext *arg = data;
	struct i915_gem_context *dst = arg->ctx;
	struct i915_gem_context *src;
	int err, bit;

	if (copy_from_user(&local, ext, sizeof(local)))
		return -EFAULT;

	BUILD_BUG_ON(GENMASK(BITS_PER_TYPE(local.flags) - 1, ARRAY_SIZE(fn)) !=
		     I915_CONTEXT_CLONE_UNKNOWN);

	if (local.flags & I915_CONTEXT_CLONE_UNKNOWN)
		return -EINVAL;

	if (local.rsvd)
		return -EINVAL;

	rcu_read_lock();
	src = __i915_gem_context_lookup_rcu(arg->fpriv, local.clone_id);
	rcu_read_unlock();
	if (!src)
		return -ENOENT;

	GEM_BUG_ON(src == dst);

	for (bit = 0; bit < ARRAY_SIZE(fn); bit++) {
		if (!(local.flags & BIT(bit)))
			continue;

		err = fn[bit](dst, src);
		if (err)
			return err;
	}

	return 0;
}

2282 2283
static const i915_user_extension_fn create_extensions[] = {
	[I915_CONTEXT_CREATE_EXT_SETPARAM] = create_setparam,
2284
	[I915_CONTEXT_CREATE_EXT_CLONE] = create_clone,
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
};

static bool client_is_banned(struct drm_i915_file_private *file_priv)
{
	return atomic_read(&file_priv->ban_score) >= I915_CLIENT_SCORE_BANNED;
}

int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
				  struct drm_file *file)
{
	struct drm_i915_private *i915 = to_i915(dev);
	struct drm_i915_gem_context_create_ext *args = data;
	struct create_ext ext_data;
	int ret;
2299
	u32 id;
2300 2301 2302 2303 2304 2305 2306

	if (!DRIVER_CAPS(i915)->has_logical_contexts)
		return -ENODEV;

	if (args->flags & I915_CONTEXT_CREATE_FLAGS_UNKNOWN)
		return -EINVAL;

2307
	ret = intel_gt_terminally_wedged(&i915->gt);
2308 2309 2310 2311 2312
	if (ret)
		return ret;

	ext_data.fpriv = file->driver_priv;
	if (client_is_banned(ext_data.fpriv)) {
2313 2314 2315
		drm_dbg(&i915->drm,
			"client %s[%d] banned from creating ctx\n",
			current->comm, task_pid_nr(current));
2316 2317 2318
		return -EIO;
	}

2319
	ext_data.ctx = i915_gem_create_context(i915, args->flags);
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
	if (IS_ERR(ext_data.ctx))
		return PTR_ERR(ext_data.ctx);

	if (args->flags & I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS) {
		ret = i915_user_extensions(u64_to_user_ptr(args->extensions),
					   create_extensions,
					   ARRAY_SIZE(create_extensions),
					   &ext_data);
		if (ret)
			goto err_ctx;
	}

2332
	ret = gem_context_register(ext_data.ctx, ext_data.fpriv, &id);
2333 2334 2335
	if (ret < 0)
		goto err_ctx;

2336
	args->ctx_id = id;
2337
	drm_dbg(&i915->drm, "HW context %d created\n", args->ctx_id);
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358

	return 0;

err_ctx:
	context_close(ext_data.ctx);
	return ret;
}

int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
				   struct drm_file *file)
{
	struct drm_i915_gem_context_destroy *args = data;
	struct drm_i915_file_private *file_priv = file->driver_priv;
	struct i915_gem_context *ctx;

	if (args->pad != 0)
		return -EINVAL;

	if (!args->ctx_id)
		return -ENOENT;

2359
	ctx = xa_erase(&file_priv->context_xa, args->ctx_id);
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
	if (!ctx)
		return -ENOENT;

	context_close(ctx);
	return 0;
}

static int get_sseu(struct i915_gem_context *ctx,
		    struct drm_i915_gem_context_param *args)
{
	struct drm_i915_gem_context_param_sseu user_sseu;
	struct intel_context *ce;
2372
	unsigned long lookup;
2373
	int err;
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383

	if (args->size == 0)
		goto out;
	else if (args->size < sizeof(user_sseu))
		return -EINVAL;

	if (copy_from_user(&user_sseu, u64_to_user_ptr(args->value),
			   sizeof(user_sseu)))
		return -EFAULT;

2384
	if (user_sseu.rsvd)
2385 2386
		return -EINVAL;

2387 2388 2389 2390 2391 2392 2393 2394
	if (user_sseu.flags & ~(I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX))
		return -EINVAL;

	lookup = 0;
	if (user_sseu.flags & I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX)
		lookup |= LOOKUP_USER_INDEX;

	ce = lookup_user_engine(ctx, lookup, &user_sseu.engine);
2395 2396 2397
	if (IS_ERR(ce))
		return PTR_ERR(ce);

2398 2399 2400 2401 2402 2403
	err = intel_context_lock_pinned(ce); /* serialises with set_sseu */
	if (err) {
		intel_context_put(ce);
		return err;
	}

2404 2405 2406 2407 2408
	user_sseu.slice_mask = ce->sseu.slice_mask;
	user_sseu.subslice_mask = ce->sseu.subslice_mask;
	user_sseu.min_eus_per_subslice = ce->sseu.min_eus_per_subslice;
	user_sseu.max_eus_per_subslice = ce->sseu.max_eus_per_subslice;

2409 2410
	intel_context_unlock_pinned(ce);
	intel_context_put(ce);
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441

	if (copy_to_user(u64_to_user_ptr(args->value), &user_sseu,
			 sizeof(user_sseu)))
		return -EFAULT;

out:
	args->size = sizeof(user_sseu);

	return 0;
}

int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
				    struct drm_file *file)
{
	struct drm_i915_file_private *file_priv = file->driver_priv;
	struct drm_i915_gem_context_param *args = data;
	struct i915_gem_context *ctx;
	int ret = 0;

	ctx = i915_gem_context_lookup(file_priv, args->ctx_id);
	if (!ctx)
		return -ENOENT;

	switch (args->param) {
	case I915_CONTEXT_PARAM_NO_ZEROMAP:
		args->size = 0;
		args->value = test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags);
		break;

	case I915_CONTEXT_PARAM_GTT_SIZE:
		args->size = 0;
2442 2443 2444
		rcu_read_lock();
		if (rcu_access_pointer(ctx->vm))
			args->value = rcu_dereference(ctx->vm)->total;
2445 2446
		else
			args->value = to_i915(dev)->ggtt.vm.total;
2447
		rcu_read_unlock();
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
		break;

	case I915_CONTEXT_PARAM_NO_ERROR_CAPTURE:
		args->size = 0;
		args->value = i915_gem_context_no_error_capture(ctx);
		break;

	case I915_CONTEXT_PARAM_BANNABLE:
		args->size = 0;
		args->value = i915_gem_context_is_bannable(ctx);
		break;

	case I915_CONTEXT_PARAM_RECOVERABLE:
		args->size = 0;
		args->value = i915_gem_context_is_recoverable(ctx);
		break;

	case I915_CONTEXT_PARAM_PRIORITY:
		args->size = 0;
		args->value = ctx->sched.priority >> I915_USER_PRIORITY_SHIFT;
		break;

	case I915_CONTEXT_PARAM_SSEU:
		ret = get_sseu(ctx, args);
		break;

	case I915_CONTEXT_PARAM_VM:
2475
		ret = get_ppgtt(file_priv, ctx, args);
2476 2477
		break;

2478 2479 2480 2481
	case I915_CONTEXT_PARAM_ENGINES:
		ret = get_engines(ctx, args);
		break;

2482 2483 2484 2485 2486
	case I915_CONTEXT_PARAM_PERSISTENCE:
		args->size = 0;
		args->value = i915_gem_context_is_persistent(ctx);
		break;

2487 2488 2489 2490
	case I915_CONTEXT_PARAM_RINGSIZE:
		ret = get_ringsize(ctx, args);
		break;

2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
	case I915_CONTEXT_PARAM_BAN_PERIOD:
	default:
		ret = -EINVAL;
		break;
	}

	i915_gem_context_put(ctx);
	return ret;
}

int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
				    struct drm_file *file)
{
	struct drm_i915_file_private *file_priv = file->driver_priv;
	struct drm_i915_gem_context_param *args = data;
	struct i915_gem_context *ctx;
	int ret;

	ctx = i915_gem_context_lookup(file_priv, args->ctx_id);
	if (!ctx)
		return -ENOENT;

2513
	ret = ctx_setparam(file_priv, ctx, args);
2514

2515
	i915_gem_context_put(ctx);
2516 2517
	return ret;
}
2518 2519 2520 2521

int i915_gem_context_reset_stats_ioctl(struct drm_device *dev,
				       void *data, struct drm_file *file)
{
2522
	struct drm_i915_private *i915 = to_i915(dev);
2523
	struct drm_i915_reset_stats *args = data;
2524
	struct i915_gem_context *ctx;
2525 2526 2527 2528 2529
	int ret;

	if (args->flags || args->pad)
		return -EINVAL;

2530 2531 2532 2533 2534
	ret = -ENOENT;
	rcu_read_lock();
	ctx = __i915_gem_context_lookup_rcu(file->driver_priv, args->ctx_id);
	if (!ctx)
		goto out;
2535

2536 2537 2538 2539 2540 2541
	/*
	 * We opt for unserialised reads here. This may result in tearing
	 * in the extremely unlikely event of a GPU hang on this context
	 * as we are querying them. If we need that extra layer of protection,
	 * we should wrap the hangstats with a seqlock.
	 */
2542 2543

	if (capable(CAP_SYS_ADMIN))
2544
		args->reset_count = i915_reset_count(&i915->gpu_error);
2545 2546 2547
	else
		args->reset_count = 0;

2548 2549
	args->batch_active = atomic_read(&ctx->guilty_count);
	args->batch_pending = atomic_read(&ctx->active_count);
2550

2551 2552 2553 2554
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
2555
}
2556

2557 2558 2559 2560 2561 2562 2563
/* GEM context-engines iterator: for_each_gem_engine() */
struct intel_context *
i915_gem_engines_iter_next(struct i915_gem_engines_iter *it)
{
	const struct i915_gem_engines *e = it->engines;
	struct intel_context *ctx;

2564 2565 2566
	if (unlikely(!e))
		return NULL;

2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
	do {
		if (it->idx >= e->num_engines)
			return NULL;

		ctx = e->engines[it->idx++];
	} while (!ctx);

	return ctx;
}

2577 2578
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_context.c"
2579
#include "selftests/i915_gem_context.c"
2580
#endif
2581

2582
static void i915_global_gem_context_shrink(void)
2583
{
2584
	kmem_cache_shrink(global.slab_luts);
2585 2586
}

2587
static void i915_global_gem_context_exit(void)
2588
{
2589
	kmem_cache_destroy(global.slab_luts);
2590 2591
}

2592 2593 2594
static struct i915_global_gem_context global = { {
	.shrink = i915_global_gem_context_shrink,
	.exit = i915_global_gem_context_exit,
2595 2596
} };

2597
int __init i915_global_gem_context_init(void)
2598
{
2599 2600 2601 2602 2603 2604
	global.slab_luts = KMEM_CACHE(i915_lut_handle, 0);
	if (!global.slab_luts)
		return -ENOMEM;

	i915_global_register(&global.base);
	return 0;
2605
}