i915_gem_context.c 58.6 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2011-2012 Intel Corporation
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
 */

/*
 * This file implements HW context support. On gen5+ a HW context consists of an
 * opaque GPU object which is referenced at times of context saves and restores.
 * With RC6 enabled, the context is also referenced as the GPU enters and exists
 * from RC6 (GPU has it's own internal power context, except on gen5). Though
 * something like a context does exist for the media ring, the code only
 * supports contexts for the render ring.
 *
 * In software, there is a distinction between contexts created by the user,
 * and the default HW context. The default HW context is used by GPU clients
 * that do not request setup of their own hardware context. The default
 * context's state is never restored to help prevent programming errors. This
 * would happen if a client ran and piggy-backed off another clients GPU state.
 * The default context only exists to give the GPU some offset to load as the
 * current to invoke a save of the context we actually care about. In fact, the
 * code could likely be constructed, albeit in a more complicated fashion, to
 * never use the default context, though that limits the driver's ability to
 * swap out, and/or destroy other contexts.
 *
 * All other contexts are created as a request by the GPU client. These contexts
 * store GPU state, and thus allow GPU clients to not re-emit state (and
 * potentially query certain state) at any time. The kernel driver makes
 * certain that the appropriate commands are inserted.
 *
 * The context life cycle is semi-complicated in that context BOs may live
 * longer than the context itself because of the way the hardware, and object
 * tracking works. Below is a very crude representation of the state machine
 * describing the context life.
 *                                         refcount     pincount     active
 * S0: initial state                          0            0           0
 * S1: context created                        1            0           0
 * S2: context is currently running           2            1           X
 * S3: GPU referenced, but not current        2            0           1
 * S4: context is current, but destroyed      1            1           0
 * S5: like S3, but destroyed                 1            0           1
 *
 * The most common (but not all) transitions:
 * S0->S1: client creates a context
 * S1->S2: client submits execbuf with context
 * S2->S3: other clients submits execbuf with context
 * S3->S1: context object was retired
 * S3->S2: clients submits another execbuf
 * S2->S4: context destroy called with current context
 * S3->S5->S0: destroy path
 * S4->S5->S0: destroy path on current context
 *
 * There are two confusing terms used above:
 *  The "current context" means the context which is currently running on the
D
Damien Lespiau 已提交
55
 *  GPU. The GPU has loaded its state already and has stored away the gtt
56 57 58 59 60 61 62 63 64 65 66
 *  offset of the BO. The GPU is not actively referencing the data at this
 *  offset, but it will on the next context switch. The only way to avoid this
 *  is to do a GPU reset.
 *
 *  An "active context' is one which was previously the "current context" and is
 *  on the active list waiting for the next context switch to occur. Until this
 *  happens, the object must remain at the same gtt offset. It is therefore
 *  possible to destroy a context, but it is still active.
 *
 */

67
#include <linux/log2.h>
68
#include <linux/nospec.h>
69

70
#include <drm/i915_drm.h>
71

72
#include "gt/intel_context.h"
73
#include "gt/intel_engine_heartbeat.h"
74
#include "gt/intel_engine_pm.h"
75
#include "gt/intel_engine_user.h"
76 77
#include "gt/intel_lrc_reg.h"
#include "gt/intel_ring.h"
78

79
#include "i915_gem_context.h"
80
#include "i915_globals.h"
81
#include "i915_trace.h"
82
#include "i915_user_extensions.h"
83

84 85
#define ALL_L3_SLICES(dev) (1 << NUM_L3_SLICES(dev)) - 1

86
static struct i915_global_gem_context {
87
	struct i915_global base;
88 89 90 91 92 93 94 95 96 97 98 99 100
	struct kmem_cache *slab_luts;
} global;

struct i915_lut_handle *i915_lut_handle_alloc(void)
{
	return kmem_cache_alloc(global.slab_luts, GFP_KERNEL);
}

void i915_lut_handle_free(struct i915_lut_handle *lut)
{
	return kmem_cache_free(global.slab_luts, lut);
}

101
static void lut_close(struct i915_gem_context *ctx)
102
{
103 104 105
	struct radix_tree_iter iter;
	void __rcu **slot;

106
	lockdep_assert_held(&ctx->mutex);
107

108
	rcu_read_lock();
109 110
	radix_tree_for_each_slot(slot, &ctx->handles_vma, &iter, 0) {
		struct i915_vma *vma = rcu_dereference_raw(*slot);
111 112 113 114 115
		struct drm_i915_gem_object *obj = vma->obj;
		struct i915_lut_handle *lut;

		if (!kref_get_unless_zero(&obj->base.refcount))
			continue;
116

117 118 119 120 121
		rcu_read_unlock();
		i915_gem_object_lock(obj);
		list_for_each_entry(lut, &obj->lut_list, obj_link) {
			if (lut->ctx != ctx)
				continue;
122

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
			if (lut->handle != iter.index)
				continue;

			list_del(&lut->obj_link);
			break;
		}
		i915_gem_object_unlock(obj);
		rcu_read_lock();

		if (&lut->obj_link != &obj->lut_list) {
			i915_lut_handle_free(lut);
			radix_tree_iter_delete(&ctx->handles_vma, &iter, slot);
			if (atomic_dec_and_test(&vma->open_count) &&
			    !i915_vma_is_ggtt(vma))
				i915_vma_close(vma);
			i915_gem_object_put(obj);
		}

		i915_gem_object_put(obj);
142
	}
143
	rcu_read_unlock();
144 145
}

146
static struct intel_context *
147 148 149 150
lookup_user_engine(struct i915_gem_context *ctx,
		   unsigned long flags,
		   const struct i915_engine_class_instance *ci)
#define LOOKUP_USER_INDEX BIT(0)
151
{
152
	int idx;
153

154
	if (!!(flags & LOOKUP_USER_INDEX) != i915_gem_context_user_engines(ctx))
155 156
		return ERR_PTR(-EINVAL);

157 158 159 160 161 162 163 164 165
	if (!i915_gem_context_user_engines(ctx)) {
		struct intel_engine_cs *engine;

		engine = intel_engine_lookup_user(ctx->i915,
						  ci->engine_class,
						  ci->engine_instance);
		if (!engine)
			return ERR_PTR(-EINVAL);

166
		idx = engine->legacy_idx;
167 168 169 170 171
	} else {
		idx = ci->engine_instance;
	}

	return i915_gem_context_get_engine(ctx, idx);
172 173
}

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
static struct i915_address_space *
context_get_vm_rcu(struct i915_gem_context *ctx)
{
	GEM_BUG_ON(!rcu_access_pointer(ctx->vm));

	do {
		struct i915_address_space *vm;

		/*
		 * We do not allow downgrading from full-ppgtt [to a shared
		 * global gtt], so ctx->vm cannot become NULL.
		 */
		vm = rcu_dereference(ctx->vm);
		if (!kref_get_unless_zero(&vm->ref))
			continue;

		/*
		 * This ppgtt may have be reallocated between
		 * the read and the kref, and reassigned to a third
		 * context. In order to avoid inadvertent sharing
		 * of this ppgtt with that third context (and not
		 * src), we have to confirm that we have the same
		 * ppgtt after passing through the strong memory
		 * barrier implied by a successful
		 * kref_get_unless_zero().
		 *
		 * Once we have acquired the current ppgtt of ctx,
		 * we no longer care if it is released from ctx, as
		 * it cannot be reallocated elsewhere.
		 */

		if (vm == rcu_access_pointer(ctx->vm))
			return rcu_pointer_handoff(vm);

		i915_vm_put(vm);
	} while (1);
}

212 213 214
static void intel_context_set_gem(struct intel_context *ce,
				  struct i915_gem_context *ctx)
{
215 216
	GEM_BUG_ON(rcu_access_pointer(ce->gem_context));
	RCU_INIT_POINTER(ce->gem_context, ctx);
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags))
		ce->ring = __intel_context_ring_size(SZ_16K);

	if (rcu_access_pointer(ctx->vm)) {
		struct i915_address_space *vm;

		rcu_read_lock();
		vm = context_get_vm_rcu(ctx); /* hmm */
		rcu_read_unlock();

		i915_vm_put(ce->vm);
		ce->vm = vm;
	}

	GEM_BUG_ON(ce->timeline);
	if (ctx->timeline)
		ce->timeline = intel_timeline_get(ctx->timeline);

	if (ctx->sched.priority >= I915_PRIORITY_NORMAL &&
	    intel_engine_has_semaphores(ce->engine))
		__set_bit(CONTEXT_USE_SEMAPHORES, &ce->flags);
}

241
static void __free_engines(struct i915_gem_engines *e, unsigned int count)
242
{
243 244 245 246
	while (count--) {
		if (!e->engines[count])
			continue;

247
		RCU_INIT_POINTER(e->engines[count]->gem_context, NULL);
248 249 250 251 252 253 254 255 256 257
		intel_context_put(e->engines[count]);
	}
	kfree(e);
}

static void free_engines(struct i915_gem_engines *e)
{
	__free_engines(e, e->num_engines);
}

258
static void free_engines_rcu(struct rcu_head *rcu)
259
{
260
	free_engines(container_of(rcu, struct i915_gem_engines, rcu));
261 262
}

263 264
static struct i915_gem_engines *default_engines(struct i915_gem_context *ctx)
{
265
	const struct intel_gt *gt = &ctx->i915->gt;
266 267 268 269 270 271 272 273
	struct intel_engine_cs *engine;
	struct i915_gem_engines *e;
	enum intel_engine_id id;

	e = kzalloc(struct_size(e, engines, I915_NUM_ENGINES), GFP_KERNEL);
	if (!e)
		return ERR_PTR(-ENOMEM);

274
	init_rcu_head(&e->rcu);
275
	for_each_engine(engine, gt, id) {
276 277
		struct intel_context *ce;

278 279 280 281 282 283
		if (engine->legacy_idx == INVALID_ENGINE)
			continue;

		GEM_BUG_ON(engine->legacy_idx >= I915_NUM_ENGINES);
		GEM_BUG_ON(e->engines[engine->legacy_idx]);

284
		ce = intel_context_create(engine);
285
		if (IS_ERR(ce)) {
286
			__free_engines(e, e->num_engines + 1);
287 288
			return ERR_CAST(ce);
		}
289

290 291
		intel_context_set_gem(ce, ctx);

292 293
		e->engines[engine->legacy_idx] = ce;
		e->num_engines = max(e->num_engines, engine->legacy_idx);
294
	}
295
	e->num_engines++;
296 297 298 299 300 301

	return e;
}

static void i915_gem_context_free(struct i915_gem_context *ctx)
{
302
	GEM_BUG_ON(!i915_gem_context_is_closed(ctx));
303

304 305 306 307
	spin_lock(&ctx->i915->gem.contexts.lock);
	list_del(&ctx->link);
	spin_unlock(&ctx->i915->gem.contexts.lock);

308 309
	free_engines(rcu_access_pointer(ctx->engines));
	mutex_destroy(&ctx->engines_mutex);
310

311
	if (ctx->timeline)
312
		intel_timeline_put(ctx->timeline);
313

314
	put_pid(ctx->pid);
315
	mutex_destroy(&ctx->mutex);
316

317
	kfree_rcu(ctx, rcu);
318 319
}

320
static void contexts_free_all(struct llist_node *list)
321
{
322
	struct i915_gem_context *ctx, *cn;
323

324
	llist_for_each_entry_safe(ctx, cn, list, free_link)
325 326 327
		i915_gem_context_free(ctx);
}

328
static void contexts_flush_free(struct i915_gem_contexts *gc)
329
{
330
	contexts_free_all(llist_del_all(&gc->free_list));
331 332
}

333 334
static void contexts_free_worker(struct work_struct *work)
{
335 336
	struct i915_gem_contexts *gc =
		container_of(work, typeof(*gc), free_work);
337

338
	contexts_flush_free(gc);
339 340 341 342 343
}

void i915_gem_context_release(struct kref *ref)
{
	struct i915_gem_context *ctx = container_of(ref, typeof(*ctx), ref);
344
	struct i915_gem_contexts *gc = &ctx->i915->gem.contexts;
345 346

	trace_i915_context_free(ctx);
347 348
	if (llist_add(&ctx->free_link, &gc->free_list))
		schedule_work(&gc->free_work);
349 350
}

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
static inline struct i915_gem_engines *
__context_engines_static(const struct i915_gem_context *ctx)
{
	return rcu_dereference_protected(ctx->engines, true);
}

static bool __reset_engine(struct intel_engine_cs *engine)
{
	struct intel_gt *gt = engine->gt;
	bool success = false;

	if (!intel_has_reset_engine(gt))
		return false;

	if (!test_and_set_bit(I915_RESET_ENGINE + engine->id,
			      &gt->reset.flags)) {
		success = intel_engine_reset(engine, NULL) == 0;
		clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id,
				      &gt->reset.flags);
	}

	return success;
}

static void __reset_context(struct i915_gem_context *ctx,
			    struct intel_engine_cs *engine)
{
	intel_gt_handle_error(engine->gt, engine->mask, 0,
			      "context closure in %s", ctx->name);
}

static bool __cancel_engine(struct intel_engine_cs *engine)
{
	/*
	 * Send a "high priority pulse" down the engine to cause the
	 * current request to be momentarily preempted. (If it fails to
	 * be preempted, it will be reset). As we have marked our context
	 * as banned, any incomplete request, including any running, will
	 * be skipped following the preemption.
	 *
	 * If there is no hangchecking (one of the reasons why we try to
	 * cancel the context) and no forced preemption, there may be no
	 * means by which we reset the GPU and evict the persistent hog.
	 * Ergo if we are unable to inject a preemptive pulse that can
	 * kill the banned context, we fallback to doing a local reset
	 * instead.
	 */
398 399
	if (IS_ACTIVE(CONFIG_DRM_I915_PREEMPT_TIMEOUT) &&
	    !intel_engine_pulse(engine))
400 401 402 403 404 405
		return true;

	/* If we are unable to send a pulse, try resetting this engine. */
	return __reset_engine(engine);
}

406
static struct intel_engine_cs *__active_engine(struct i915_request *rq)
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
{
	struct intel_engine_cs *engine, *locked;

	/*
	 * Serialise with __i915_request_submit() so that it sees
	 * is-banned?, or we know the request is already inflight.
	 */
	locked = READ_ONCE(rq->engine);
	spin_lock_irq(&locked->active.lock);
	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
		spin_unlock(&locked->active.lock);
		spin_lock(&engine->active.lock);
		locked = engine;
	}

	engine = NULL;
	if (i915_request_is_active(rq) && !rq->fence.error)
		engine = rq->engine;

	spin_unlock_irq(&locked->active.lock);

	return engine;
}

431 432 433 434 435 436 437 438
static struct intel_engine_cs *active_engine(struct intel_context *ce)
{
	struct intel_engine_cs *engine = NULL;
	struct i915_request *rq;

	if (!ce->timeline)
		return NULL;

439
	mutex_lock(&ce->timeline->mutex);
440 441 442 443 444 445 446 447 448
	list_for_each_entry_reverse(rq, &ce->timeline->requests, link) {
		if (i915_request_completed(rq))
			break;

		/* Check with the backend if the request is inflight */
		engine = __active_engine(rq);
		if (engine)
			break;
	}
449
	mutex_unlock(&ce->timeline->mutex);
450 451 452 453

	return engine;
}

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
static void kill_context(struct i915_gem_context *ctx)
{
	struct i915_gem_engines_iter it;
	struct intel_context *ce;

	/*
	 * Map the user's engine back to the actual engines; one virtual
	 * engine will be mapped to multiple engines, and using ctx->engine[]
	 * the same engine may be have multiple instances in the user's map.
	 * However, we only care about pending requests, so only include
	 * engines on which there are incomplete requests.
	 */
	for_each_gem_engine(ce, __context_engines_static(ctx), it) {
		struct intel_engine_cs *engine;

469 470 471
		if (intel_context_set_banned(ce))
			continue;

472 473 474 475 476 477 478 479
		/*
		 * Check the current active state of this context; if we
		 * are currently executing on the GPU we need to evict
		 * ourselves. On the other hand, if we haven't yet been
		 * submitted to the GPU or if everything is complete,
		 * we have nothing to do.
		 */
		engine = active_engine(ce);
480 481 482 483 484 485 486 487 488 489 490 491

		/* First attempt to gracefully cancel the context */
		if (engine && !__cancel_engine(engine))
			/*
			 * If we are unable to send a preemptive pulse to bump
			 * the context from the GPU, we have to resort to a full
			 * reset. We hope the collateral damage is worth it.
			 */
			__reset_context(ctx, engine);
	}
}

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
static void set_closed_name(struct i915_gem_context *ctx)
{
	char *s;

	/* Replace '[]' with '<>' to indicate closed in debug prints */

	s = strrchr(ctx->name, '[');
	if (!s)
		return;

	*s = '<';

	s = strchr(s + 1, ']');
	if (s)
		*s = '>';
}

509 510
static void context_close(struct i915_gem_context *ctx)
{
511
	struct i915_address_space *vm;
512

513
	i915_gem_context_set_closed(ctx);
514
	set_closed_name(ctx);
515

516 517
	mutex_lock(&ctx->mutex);

518 519 520 521
	vm = i915_gem_context_vm(ctx);
	if (vm)
		i915_vm_close(vm);

522
	ctx->file_priv = ERR_PTR(-EBADF);
523

524 525 526 527 528
	/*
	 * The LUT uses the VMA as a backpointer to unref the object,
	 * so we need to clear the LUT before we close all the VMA (inside
	 * the ppgtt).
	 */
529 530
	lut_close(ctx);

531
	mutex_unlock(&ctx->mutex);
532 533 534 535 536 537 538 539

	/*
	 * If the user has disabled hangchecking, we can not be sure that
	 * the batches will ever complete after the context is closed,
	 * keeping the context and all resources pinned forever. So in this
	 * case we opt to forcibly kill off all remaining requests on
	 * context close.
	 */
540 541
	if (!i915_gem_context_is_persistent(ctx) ||
	    !i915_modparams.enable_hangcheck)
542 543
		kill_context(ctx);

544 545 546
	i915_gem_context_put(ctx);
}

547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
static int __context_set_persistence(struct i915_gem_context *ctx, bool state)
{
	if (i915_gem_context_is_persistent(ctx) == state)
		return 0;

	if (state) {
		/*
		 * Only contexts that are short-lived [that will expire or be
		 * reset] are allowed to survive past termination. We require
		 * hangcheck to ensure that the persistent requests are healthy.
		 */
		if (!i915_modparams.enable_hangcheck)
			return -EINVAL;

		i915_gem_context_set_persistence(ctx);
	} else {
		/* To cancel a context we use "preempt-to-idle" */
		if (!(ctx->i915->caps.scheduler & I915_SCHEDULER_CAP_PREEMPTION))
			return -ENODEV;

		i915_gem_context_clear_persistence(ctx);
	}

	return 0;
}

573
static struct i915_gem_context *
574
__create_context(struct drm_i915_private *i915)
575
{
576
	struct i915_gem_context *ctx;
577 578
	struct i915_gem_engines *e;
	int err;
579
	int i;
580

581
	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
582
	if (!ctx)
583
		return ERR_PTR(-ENOMEM);
584

585
	kref_init(&ctx->ref);
586
	ctx->i915 = i915;
587
	ctx->sched.priority = I915_USER_PRIORITY(I915_PRIORITY_NORMAL);
588
	mutex_init(&ctx->mutex);
589

590 591 592 593 594 595 596
	mutex_init(&ctx->engines_mutex);
	e = default_engines(ctx);
	if (IS_ERR(e)) {
		err = PTR_ERR(e);
		goto err_free;
	}
	RCU_INIT_POINTER(ctx->engines, e);
597

598
	INIT_RADIX_TREE(&ctx->handles_vma, GFP_KERNEL);
599

600 601 602
	/* NB: Mark all slices as needing a remap so that when the context first
	 * loads it will restore whatever remap state already exists. If there
	 * is no remap info, it will be a NOP. */
603
	ctx->remap_slice = ALL_L3_SLICES(i915);
604

605
	i915_gem_context_set_bannable(ctx);
606
	i915_gem_context_set_recoverable(ctx);
607
	__context_set_persistence(ctx, true /* cgroup hook? */);
608

609 610 611
	for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp); i++)
		ctx->hang_timestamp[i] = jiffies - CONTEXT_FAST_HANG_JIFFIES;

612 613 614 615
	spin_lock(&i915->gem.contexts.lock);
	list_add_tail(&ctx->link, &i915->gem.contexts.list);
	spin_unlock(&i915->gem.contexts.lock);

616
	return ctx;
617 618 619 620

err_free:
	kfree(ctx);
	return ERR_PTR(err);
621 622
}

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
static void
context_apply_all(struct i915_gem_context *ctx,
		  void (*fn)(struct intel_context *ce, void *data),
		  void *data)
{
	struct i915_gem_engines_iter it;
	struct intel_context *ce;

	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it)
		fn(ce, data);
	i915_gem_context_unlock_engines(ctx);
}

static void __apply_ppgtt(struct intel_context *ce, void *vm)
{
	i915_vm_put(ce->vm);
	ce->vm = i915_vm_get(vm);
}

642 643
static struct i915_address_space *
__set_ppgtt(struct i915_gem_context *ctx, struct i915_address_space *vm)
644
{
645
	struct i915_address_space *old = i915_gem_context_vm(ctx);
646

647 648
	GEM_BUG_ON(old && i915_vm_is_4lvl(vm) != i915_vm_is_4lvl(old));

649
	rcu_assign_pointer(ctx->vm, i915_vm_open(vm));
650
	context_apply_all(ctx, __apply_ppgtt, vm);
651

652 653 654 655
	return old;
}

static void __assign_ppgtt(struct i915_gem_context *ctx,
656
			   struct i915_address_space *vm)
657
{
658
	if (vm == rcu_access_pointer(ctx->vm))
659 660
		return;

661 662
	vm = __set_ppgtt(ctx, vm);
	if (vm)
663
		i915_vm_close(vm);
664 665
}

666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
static void __set_timeline(struct intel_timeline **dst,
			   struct intel_timeline *src)
{
	struct intel_timeline *old = *dst;

	*dst = src ? intel_timeline_get(src) : NULL;

	if (old)
		intel_timeline_put(old);
}

static void __apply_timeline(struct intel_context *ce, void *timeline)
{
	__set_timeline(&ce->timeline, timeline);
}

static void __assign_timeline(struct i915_gem_context *ctx,
			      struct intel_timeline *timeline)
{
	__set_timeline(&ctx->timeline, timeline);
	context_apply_all(ctx, __apply_timeline, timeline);
}

689
static struct i915_gem_context *
690
i915_gem_create_context(struct drm_i915_private *i915, unsigned int flags)
691
{
692
	struct i915_gem_context *ctx;
693

694
	if (flags & I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE &&
695
	    !HAS_EXECLISTS(i915))
696 697
		return ERR_PTR(-EINVAL);

698 699
	/* Reap the stale contexts */
	contexts_flush_free(&i915->gem.contexts);
700

701
	ctx = __create_context(i915);
702
	if (IS_ERR(ctx))
703
		return ctx;
704

705
	if (HAS_FULL_PPGTT(i915)) {
706
		struct i915_ppgtt *ppgtt;
707

708
		ppgtt = i915_ppgtt_create(i915);
709
		if (IS_ERR(ppgtt)) {
710 711
			DRM_DEBUG_DRIVER("PPGTT setup failed (%ld)\n",
					 PTR_ERR(ppgtt));
712
			context_close(ctx);
713
			return ERR_CAST(ppgtt);
714 715
		}

716
		mutex_lock(&ctx->mutex);
717
		__assign_ppgtt(ctx, &ppgtt->vm);
718 719
		mutex_unlock(&ctx->mutex);

720
		i915_vm_put(&ppgtt->vm);
721
	}
722

723
	if (flags & I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE) {
724
		struct intel_timeline *timeline;
725

726
		timeline = intel_timeline_create(&i915->gt, NULL);
727 728 729 730 731
		if (IS_ERR(timeline)) {
			context_close(ctx);
			return ERR_CAST(timeline);
		}

732 733
		__assign_timeline(ctx, timeline);
		intel_timeline_put(timeline);
734 735
	}

736 737
	trace_i915_context_create(ctx);

738
	return ctx;
739 740
}

741
static void init_contexts(struct i915_gem_contexts *gc)
742
{
743 744
	spin_lock_init(&gc->lock);
	INIT_LIST_HEAD(&gc->list);
745

746 747
	INIT_WORK(&gc->free_work, contexts_free_worker);
	init_llist_head(&gc->free_list);
748 749
}

750
void i915_gem_init__contexts(struct drm_i915_private *i915)
751
{
752
	init_contexts(&i915->gem.contexts);
753
	DRM_DEBUG_DRIVER("%s context support initialized\n",
754
			 DRIVER_CAPS(i915)->has_logical_contexts ?
755
			 "logical" : "fake");
756 757
}

758
void i915_gem_driver_release__contexts(struct drm_i915_private *i915)
759
{
760
	flush_work(&i915->gem.contexts.free_work);
761 762
}

763 764
static int vm_idr_cleanup(int id, void *p, void *data)
{
765
	i915_vm_put(p);
766 767 768
	return 0;
}

769
static int gem_context_register(struct i915_gem_context *ctx,
770 771
				struct drm_i915_file_private *fpriv,
				u32 *id)
772
{
773
	struct i915_address_space *vm;
774 775 776
	int ret;

	ctx->file_priv = fpriv;
777 778 779 780 781 782

	mutex_lock(&ctx->mutex);
	vm = i915_gem_context_vm(ctx);
	if (vm)
		WRITE_ONCE(vm->file, fpriv); /* XXX */
	mutex_unlock(&ctx->mutex);
783 784

	ctx->pid = get_task_pid(current, PIDTYPE_PID);
785 786
	snprintf(ctx->name, sizeof(ctx->name), "%s[%d]",
		 current->comm, pid_nr(ctx->pid));
787 788

	/* And finally expose ourselves to userspace via the idr */
789 790 791
	ret = xa_alloc(&fpriv->context_xa, id, ctx, xa_limit_32b, GFP_KERNEL);
	if (ret)
		put_pid(fetch_and_zero(&ctx->pid));
792 793 794 795

	return ret;
}

796 797
int i915_gem_context_open(struct drm_i915_private *i915,
			  struct drm_file *file)
798 799
{
	struct drm_i915_file_private *file_priv = file->driver_priv;
800
	struct i915_gem_context *ctx;
801
	int err;
802
	u32 id;
803

804
	xa_init_flags(&file_priv->context_xa, XA_FLAGS_ALLOC);
805

806
	mutex_init(&file_priv->vm_idr_lock);
807
	idr_init_base(&file_priv->vm_idr, 1);
808

809
	ctx = i915_gem_create_context(i915, 0);
810
	if (IS_ERR(ctx)) {
811 812
		err = PTR_ERR(ctx);
		goto err;
813 814
	}

815
	err = gem_context_register(ctx, file_priv, &id);
816
	if (err < 0)
817 818
		goto err_ctx;

819
	GEM_BUG_ON(id);
820
	return 0;
821 822 823

err_ctx:
	context_close(ctx);
824
err:
825
	idr_destroy(&file_priv->vm_idr);
826
	xa_destroy(&file_priv->context_xa);
827
	mutex_destroy(&file_priv->vm_idr_lock);
828
	return err;
829 830
}

831
void i915_gem_context_close(struct drm_file *file)
832
{
833
	struct drm_i915_file_private *file_priv = file->driver_priv;
834
	struct drm_i915_private *i915 = file_priv->dev_priv;
835 836
	struct i915_gem_context *ctx;
	unsigned long idx;
837

838 839 840
	xa_for_each(&file_priv->context_xa, idx, ctx)
		context_close(ctx);
	xa_destroy(&file_priv->context_xa);
841 842 843 844

	idr_for_each(&file_priv->vm_idr, vm_idr_cleanup, NULL);
	idr_destroy(&file_priv->vm_idr);
	mutex_destroy(&file_priv->vm_idr_lock);
845 846

	contexts_flush_free(&i915->gem.contexts);
847 848 849 850 851 852 853 854
}

int i915_gem_vm_create_ioctl(struct drm_device *dev, void *data,
			     struct drm_file *file)
{
	struct drm_i915_private *i915 = to_i915(dev);
	struct drm_i915_gem_vm_control *args = data;
	struct drm_i915_file_private *file_priv = file->driver_priv;
855
	struct i915_ppgtt *ppgtt;
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
	int err;

	if (!HAS_FULL_PPGTT(i915))
		return -ENODEV;

	if (args->flags)
		return -EINVAL;

	ppgtt = i915_ppgtt_create(i915);
	if (IS_ERR(ppgtt))
		return PTR_ERR(ppgtt);

	ppgtt->vm.file = file_priv;

	if (args->extensions) {
		err = i915_user_extensions(u64_to_user_ptr(args->extensions),
					   NULL, 0,
					   ppgtt);
		if (err)
			goto err_put;
	}

	err = mutex_lock_interruptible(&file_priv->vm_idr_lock);
	if (err)
		goto err_put;

882
	err = idr_alloc(&file_priv->vm_idr, &ppgtt->vm, 0, 0, GFP_KERNEL);
883 884 885
	if (err < 0)
		goto err_unlock;

886
	GEM_BUG_ON(err == 0); /* reserved for invalid/unassigned ppgtt */
887 888 889 890 891 892 893 894 895

	mutex_unlock(&file_priv->vm_idr_lock);

	args->vm_id = err;
	return 0;

err_unlock:
	mutex_unlock(&file_priv->vm_idr_lock);
err_put:
896
	i915_vm_put(&ppgtt->vm);
897 898 899 900 901 902 903 904
	return err;
}

int i915_gem_vm_destroy_ioctl(struct drm_device *dev, void *data,
			      struct drm_file *file)
{
	struct drm_i915_file_private *file_priv = file->driver_priv;
	struct drm_i915_gem_vm_control *args = data;
905
	struct i915_address_space *vm;
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
	int err;
	u32 id;

	if (args->flags)
		return -EINVAL;

	if (args->extensions)
		return -EINVAL;

	id = args->vm_id;
	if (!id)
		return -ENOENT;

	err = mutex_lock_interruptible(&file_priv->vm_idr_lock);
	if (err)
		return err;

923
	vm = idr_remove(&file_priv->vm_idr, id);
924 925

	mutex_unlock(&file_priv->vm_idr_lock);
926
	if (!vm)
927 928
		return -ENOENT;

929
	i915_vm_put(vm);
930
	return 0;
931 932
}

933 934 935 936 937 938
struct context_barrier_task {
	struct i915_active base;
	void (*task)(void *data);
	void *data;
};

939
__i915_active_call
940 941 942 943 944 945 946 947 948 949 950
static void cb_retire(struct i915_active *base)
{
	struct context_barrier_task *cb = container_of(base, typeof(*cb), base);

	if (cb->task)
		cb->task(cb->data);

	i915_active_fini(&cb->base);
	kfree(cb);
}

951
I915_SELFTEST_DECLARE(static intel_engine_mask_t context_barrier_inject_fault);
952
static int context_barrier_task(struct i915_gem_context *ctx,
953
				intel_engine_mask_t engines,
954
				bool (*skip)(struct intel_context *ce, void *data),
955
				int (*emit)(struct i915_request *rq, void *data),
956 957 958 959
				void (*task)(void *data),
				void *data)
{
	struct context_barrier_task *cb;
960 961
	struct i915_gem_engines_iter it;
	struct intel_context *ce;
962 963 964 965 966 967 968 969
	int err = 0;

	GEM_BUG_ON(!task);

	cb = kmalloc(sizeof(*cb), GFP_KERNEL);
	if (!cb)
		return -ENOMEM;

970
	i915_active_init(&cb->base, NULL, cb_retire);
971 972 973 974 975
	err = i915_active_acquire(&cb->base);
	if (err) {
		kfree(cb);
		return err;
	}
976

977
	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
978 979 980
		struct i915_request *rq;

		if (I915_SELFTEST_ONLY(context_barrier_inject_fault &
981
				       ce->engine->mask)) {
982 983 984 985
			err = -ENXIO;
			break;
		}

986 987 988 989
		if (!(ce->engine->mask & engines))
			continue;

		if (skip && skip(ce, data))
990 991
			continue;

992
		rq = intel_context_create_request(ce);
993 994 995 996 997
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
			break;
		}

998 999 1000 1001
		err = 0;
		if (emit)
			err = emit(rq, data);
		if (err == 0)
1002
			err = i915_active_add_request(&cb->base, rq);
1003

1004 1005 1006 1007
		i915_request_add(rq);
		if (err)
			break;
	}
1008
	i915_gem_context_unlock_engines(ctx);
1009 1010 1011 1012 1013 1014 1015 1016 1017

	cb->task = err ? NULL : task; /* caller needs to unwind instead */
	cb->data = data;

	i915_active_release(&cb->base);

	return err;
}

1018 1019
static int get_ppgtt(struct drm_i915_file_private *file_priv,
		     struct i915_gem_context *ctx,
1020 1021
		     struct drm_i915_gem_context_param *args)
{
1022
	struct i915_address_space *vm;
1023 1024
	int ret;

1025
	if (!rcu_access_pointer(ctx->vm))
1026 1027
		return -ENODEV;

1028
	rcu_read_lock();
1029
	vm = context_get_vm_rcu(ctx);
1030
	rcu_read_unlock();
1031 1032 1033 1034 1035

	ret = mutex_lock_interruptible(&file_priv->vm_idr_lock);
	if (ret)
		goto err_put;

1036
	ret = idr_alloc(&file_priv->vm_idr, vm, 0, 0, GFP_KERNEL);
1037 1038 1039
	GEM_BUG_ON(!ret);
	if (ret < 0)
		goto err_unlock;
1040

1041
	i915_vm_open(vm);
1042 1043

	args->size = 0;
1044
	args->value = ret;
1045 1046 1047 1048 1049

	ret = 0;
err_unlock:
	mutex_unlock(&file_priv->vm_idr_lock);
err_put:
1050
	i915_vm_put(vm);
1051 1052 1053 1054 1055
	return ret;
}

static void set_ppgtt_barrier(void *data)
{
1056
	struct i915_address_space *old = data;
1057

1058 1059
	if (INTEL_GEN(old->i915) < 8)
		gen6_ppgtt_unpin_all(i915_vm_to_ppgtt(old));
1060

1061
	i915_vm_close(old);
1062 1063 1064 1065
}

static int emit_ppgtt_update(struct i915_request *rq, void *data)
{
1066
	struct i915_address_space *vm = rq->context->vm;
1067
	struct intel_engine_cs *engine = rq->engine;
1068
	u32 base = engine->mmio_base;
1069 1070 1071
	u32 *cs;
	int i;

1072
	if (i915_vm_is_4lvl(vm)) {
1073
		struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1074
		const dma_addr_t pd_daddr = px_dma(ppgtt->pd);
1075 1076 1077 1078 1079 1080 1081

		cs = intel_ring_begin(rq, 6);
		if (IS_ERR(cs))
			return PTR_ERR(cs);

		*cs++ = MI_LOAD_REGISTER_IMM(2);

1082
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0));
1083
		*cs++ = upper_32_bits(pd_daddr);
1084
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0));
1085 1086 1087 1088 1089
		*cs++ = lower_32_bits(pd_daddr);

		*cs++ = MI_NOOP;
		intel_ring_advance(rq, cs);
	} else if (HAS_LOGICAL_RING_CONTEXTS(engine->i915)) {
1090
		struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1091 1092 1093 1094 1095 1096
		int err;

		/* Magic required to prevent forcewake errors! */
		err = engine->emit_flush(rq, EMIT_INVALIDATE);
		if (err)
			return err;
1097

1098 1099 1100 1101
		cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
		if (IS_ERR(cs))
			return PTR_ERR(cs);

1102
		*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
1103 1104 1105
		for (i = GEN8_3LVL_PDPES; i--; ) {
			const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1106
			*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
1107
			*cs++ = upper_32_bits(pd_daddr);
1108
			*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
1109 1110 1111 1112 1113 1114 1115 1116 1117
			*cs++ = lower_32_bits(pd_daddr);
		}
		*cs++ = MI_NOOP;
		intel_ring_advance(rq, cs);
	}

	return 0;
}

1118 1119
static bool skip_ppgtt_update(struct intel_context *ce, void *data)
{
1120 1121 1122
	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags))
		return true;

1123
	if (HAS_LOGICAL_RING_CONTEXTS(ce->engine->i915))
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
		return false;

	if (!atomic_read(&ce->pin_count))
		return true;

	/* ppGTT is not part of the legacy context image */
	if (gen6_ppgtt_pin(i915_vm_to_ppgtt(ce->vm)))
		return true;

	return false;
1134 1135
}

1136 1137
static int set_ppgtt(struct drm_i915_file_private *file_priv,
		     struct i915_gem_context *ctx,
1138 1139
		     struct drm_i915_gem_context_param *args)
{
1140
	struct i915_address_space *vm, *old;
1141 1142 1143 1144 1145
	int err;

	if (args->size)
		return -EINVAL;

1146
	if (!rcu_access_pointer(ctx->vm))
1147 1148 1149 1150 1151
		return -ENODEV;

	if (upper_32_bits(args->value))
		return -ENOENT;

1152
	rcu_read_lock();
1153
	vm = idr_find(&file_priv->vm_idr, args->value);
1154 1155 1156
	if (vm && !kref_get_unless_zero(&vm->ref))
		vm = NULL;
	rcu_read_unlock();
1157
	if (!vm)
1158 1159
		return -ENOENT;

1160
	err = mutex_lock_interruptible(&ctx->mutex);
1161 1162 1163
	if (err)
		goto out;

1164 1165
	if (i915_gem_context_is_closed(ctx)) {
		err = -ENOENT;
1166
		goto unlock;
1167 1168 1169
	}

	if (vm == rcu_access_pointer(ctx->vm))
1170 1171 1172 1173 1174
		goto unlock;

	/* Teardown the existing obj:vma cache, it will have to be rebuilt. */
	lut_close(ctx);

1175
	old = __set_ppgtt(ctx, vm);
1176 1177 1178 1179 1180 1181 1182

	/*
	 * We need to flush any requests using the current ppgtt before
	 * we release it as the requests do not hold a reference themselves,
	 * only indirectly through the context.
	 */
	err = context_barrier_task(ctx, ALL_ENGINES,
1183
				   skip_ppgtt_update,
1184 1185 1186 1187
				   emit_ppgtt_update,
				   set_ppgtt_barrier,
				   old);
	if (err) {
1188 1189
		i915_vm_close(__set_ppgtt(ctx, old));
		i915_vm_close(old);
1190 1191 1192
	}

unlock:
1193
	mutex_unlock(&ctx->mutex);
1194
out:
1195
	i915_vm_put(vm);
1196 1197 1198
	return err;
}

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
static int gen8_emit_rpcs_config(struct i915_request *rq,
				 struct intel_context *ce,
				 struct intel_sseu sseu)
{
	u64 offset;
	u32 *cs;

	cs = intel_ring_begin(rq, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	offset = i915_ggtt_offset(ce->state) +
		 LRC_STATE_PN * PAGE_SIZE +
1212
		 CTX_R_PWR_CLK_STATE * 4;
1213 1214 1215 1216

	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
1217
	*cs++ = intel_sseu_make_rpcs(rq->i915, &sseu);
1218 1219 1220 1221 1222 1223 1224

	intel_ring_advance(rq, cs);

	return 0;
}

static int
1225
gen8_modify_rpcs(struct intel_context *ce, struct intel_sseu sseu)
1226
{
1227
	struct i915_request *rq;
1228 1229
	int ret;

1230
	lockdep_assert_held(&ce->pin_mutex);
1231

1232 1233 1234 1235 1236 1237 1238 1239
	/*
	 * If the context is not idle, we have to submit an ordered request to
	 * modify its context image via the kernel context (writing to our own
	 * image, or into the registers directory, does not stick). Pristine
	 * and idle contexts will be configured on pinning.
	 */
	if (!intel_context_is_pinned(ce))
		return 0;
1240

1241
	rq = intel_engine_create_kernel_request(ce->engine);
1242 1243
	if (IS_ERR(rq))
		return PTR_ERR(rq);
1244

1245 1246 1247 1248
	/* Serialise with the remote context */
	ret = intel_context_prepare_remote_request(ce, rq);
	if (ret == 0)
		ret = gen8_emit_rpcs_config(rq, ce, sseu);
1249 1250 1251 1252 1253 1254

	i915_request_add(rq);
	return ret;
}

static int
1255
intel_context_reconfigure_sseu(struct intel_context *ce, struct intel_sseu sseu)
1256
{
1257
	int ret;
1258

1259
	GEM_BUG_ON(INTEL_GEN(ce->engine->i915) < 8);
1260

1261 1262 1263
	ret = intel_context_lock_pinned(ce);
	if (ret)
		return ret;
1264

1265 1266
	/* Nothing to do if unmodified. */
	if (!memcmp(&ce->sseu, &sseu, sizeof(sseu)))
1267
		goto unlock;
1268

1269
	ret = gen8_modify_rpcs(ce, sseu);
1270 1271 1272
	if (!ret)
		ce->sseu = sseu;

1273
unlock:
1274
	intel_context_unlock_pinned(ce);
1275 1276 1277
	return ret;
}

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
static int
user_to_context_sseu(struct drm_i915_private *i915,
		     const struct drm_i915_gem_context_param_sseu *user,
		     struct intel_sseu *context)
{
	const struct sseu_dev_info *device = &RUNTIME_INFO(i915)->sseu;

	/* No zeros in any field. */
	if (!user->slice_mask || !user->subslice_mask ||
	    !user->min_eus_per_subslice || !user->max_eus_per_subslice)
		return -EINVAL;

	/* Max > min. */
	if (user->max_eus_per_subslice < user->min_eus_per_subslice)
		return -EINVAL;

	/*
	 * Some future proofing on the types since the uAPI is wider than the
	 * current internal implementation.
	 */
	if (overflows_type(user->slice_mask, context->slice_mask) ||
	    overflows_type(user->subslice_mask, context->subslice_mask) ||
	    overflows_type(user->min_eus_per_subslice,
			   context->min_eus_per_subslice) ||
	    overflows_type(user->max_eus_per_subslice,
			   context->max_eus_per_subslice))
		return -EINVAL;

	/* Check validity against hardware. */
	if (user->slice_mask & ~device->slice_mask)
		return -EINVAL;

	if (user->subslice_mask & ~device->subslice_mask[0])
		return -EINVAL;

	if (user->max_eus_per_subslice > device->max_eus_per_subslice)
		return -EINVAL;

	context->slice_mask = user->slice_mask;
	context->subslice_mask = user->subslice_mask;
	context->min_eus_per_subslice = user->min_eus_per_subslice;
	context->max_eus_per_subslice = user->max_eus_per_subslice;

	/* Part specific restrictions. */
	if (IS_GEN(i915, 11)) {
		unsigned int hw_s = hweight8(device->slice_mask);
		unsigned int hw_ss_per_s = hweight8(device->subslice_mask[0]);
		unsigned int req_s = hweight8(context->slice_mask);
		unsigned int req_ss = hweight8(context->subslice_mask);

		/*
		 * Only full subslice enablement is possible if more than one
		 * slice is turned on.
		 */
		if (req_s > 1 && req_ss != hw_ss_per_s)
			return -EINVAL;

		/*
		 * If more than four (SScount bitfield limit) subslices are
		 * requested then the number has to be even.
		 */
		if (req_ss > 4 && (req_ss & 1))
			return -EINVAL;

		/*
		 * If only one slice is enabled and subslice count is below the
		 * device full enablement, it must be at most half of the all
		 * available subslices.
		 */
		if (req_s == 1 && req_ss < hw_ss_per_s &&
		    req_ss > (hw_ss_per_s / 2))
			return -EINVAL;

		/* ABI restriction - VME use case only. */

		/* All slices or one slice only. */
		if (req_s != 1 && req_s != hw_s)
			return -EINVAL;

		/*
		 * Half subslices or full enablement only when one slice is
		 * enabled.
		 */
		if (req_s == 1 &&
		    (req_ss != hw_ss_per_s && req_ss != (hw_ss_per_s / 2)))
			return -EINVAL;

		/* No EU configuration changes. */
		if ((user->min_eus_per_subslice !=
		     device->max_eus_per_subslice) ||
		    (user->max_eus_per_subslice !=
		     device->max_eus_per_subslice))
			return -EINVAL;
	}

	return 0;
}

static int set_sseu(struct i915_gem_context *ctx,
		    struct drm_i915_gem_context_param *args)
{
	struct drm_i915_private *i915 = ctx->i915;
	struct drm_i915_gem_context_param_sseu user_sseu;
1381
	struct intel_context *ce;
1382
	struct intel_sseu sseu;
1383
	unsigned long lookup;
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
	int ret;

	if (args->size < sizeof(user_sseu))
		return -EINVAL;

	if (!IS_GEN(i915, 11))
		return -ENODEV;

	if (copy_from_user(&user_sseu, u64_to_user_ptr(args->value),
			   sizeof(user_sseu)))
		return -EFAULT;

1396
	if (user_sseu.rsvd)
1397 1398
		return -EINVAL;

1399 1400 1401 1402 1403 1404 1405 1406
	if (user_sseu.flags & ~(I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX))
		return -EINVAL;

	lookup = 0;
	if (user_sseu.flags & I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX)
		lookup |= LOOKUP_USER_INDEX;

	ce = lookup_user_engine(ctx, lookup, &user_sseu.engine);
1407 1408
	if (IS_ERR(ce))
		return PTR_ERR(ce);
1409 1410

	/* Only render engine supports RPCS configuration. */
1411 1412 1413 1414
	if (ce->engine->class != RENDER_CLASS) {
		ret = -ENODEV;
		goto out_ce;
	}
1415 1416 1417

	ret = user_to_context_sseu(i915, &user_sseu, &sseu);
	if (ret)
1418
		goto out_ce;
1419

1420
	ret = intel_context_reconfigure_sseu(ce, sseu);
1421
	if (ret)
1422
		goto out_ce;
1423 1424 1425

	args->size = sizeof(user_sseu);

1426 1427 1428
out_ce:
	intel_context_put(ce);
	return ret;
1429 1430
}

1431 1432 1433 1434 1435
struct set_engines {
	struct i915_gem_context *ctx;
	struct i915_gem_engines *engines;
};

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
static int
set_engines__load_balance(struct i915_user_extension __user *base, void *data)
{
	struct i915_context_engines_load_balance __user *ext =
		container_of_user(base, typeof(*ext), base);
	const struct set_engines *set = data;
	struct intel_engine_cs *stack[16];
	struct intel_engine_cs **siblings;
	struct intel_context *ce;
	u16 num_siblings, idx;
	unsigned int n;
	int err;

	if (!HAS_EXECLISTS(set->ctx->i915))
		return -ENODEV;

	if (USES_GUC_SUBMISSION(set->ctx->i915))
		return -ENODEV; /* not implement yet */

	if (get_user(idx, &ext->engine_index))
		return -EFAULT;

	if (idx >= set->engines->num_engines) {
		DRM_DEBUG("Invalid placement value, %d >= %d\n",
			  idx, set->engines->num_engines);
		return -EINVAL;
	}

	idx = array_index_nospec(idx, set->engines->num_engines);
	if (set->engines->engines[idx]) {
		DRM_DEBUG("Invalid placement[%d], already occupied\n", idx);
		return -EEXIST;
	}

	if (get_user(num_siblings, &ext->num_siblings))
		return -EFAULT;

	err = check_user_mbz(&ext->flags);
	if (err)
		return err;

	err = check_user_mbz(&ext->mbz64);
	if (err)
		return err;

	siblings = stack;
	if (num_siblings > ARRAY_SIZE(stack)) {
		siblings = kmalloc_array(num_siblings,
					 sizeof(*siblings),
					 GFP_KERNEL);
		if (!siblings)
			return -ENOMEM;
	}

	for (n = 0; n < num_siblings; n++) {
		struct i915_engine_class_instance ci;

		if (copy_from_user(&ci, &ext->engines[n], sizeof(ci))) {
			err = -EFAULT;
			goto out_siblings;
		}

		siblings[n] = intel_engine_lookup_user(set->ctx->i915,
						       ci.engine_class,
						       ci.engine_instance);
		if (!siblings[n]) {
			DRM_DEBUG("Invalid sibling[%d]: { class:%d, inst:%d }\n",
				  n, ci.engine_class, ci.engine_instance);
			err = -EINVAL;
			goto out_siblings;
		}
	}

1509
	ce = intel_execlists_create_virtual(siblings, n);
1510 1511 1512 1513 1514
	if (IS_ERR(ce)) {
		err = PTR_ERR(ce);
		goto out_siblings;
	}

1515 1516
	intel_context_set_gem(ce, set->ctx);

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
	if (cmpxchg(&set->engines->engines[idx], NULL, ce)) {
		intel_context_put(ce);
		err = -EEXIST;
		goto out_siblings;
	}

out_siblings:
	if (siblings != stack)
		kfree(siblings);

	return err;
}

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
static int
set_engines__bond(struct i915_user_extension __user *base, void *data)
{
	struct i915_context_engines_bond __user *ext =
		container_of_user(base, typeof(*ext), base);
	const struct set_engines *set = data;
	struct i915_engine_class_instance ci;
	struct intel_engine_cs *virtual;
	struct intel_engine_cs *master;
	u16 idx, num_bonds;
	int err, n;

	if (get_user(idx, &ext->virtual_index))
		return -EFAULT;

	if (idx >= set->engines->num_engines) {
		DRM_DEBUG("Invalid index for virtual engine: %d >= %d\n",
			  idx, set->engines->num_engines);
		return -EINVAL;
	}

	idx = array_index_nospec(idx, set->engines->num_engines);
	if (!set->engines->engines[idx]) {
		DRM_DEBUG("Invalid engine at %d\n", idx);
		return -EINVAL;
	}
	virtual = set->engines->engines[idx]->engine;

	err = check_user_mbz(&ext->flags);
	if (err)
		return err;

	for (n = 0; n < ARRAY_SIZE(ext->mbz64); n++) {
		err = check_user_mbz(&ext->mbz64[n]);
		if (err)
			return err;
	}

	if (copy_from_user(&ci, &ext->master, sizeof(ci)))
		return -EFAULT;

	master = intel_engine_lookup_user(set->ctx->i915,
					  ci.engine_class, ci.engine_instance);
	if (!master) {
		DRM_DEBUG("Unrecognised master engine: { class:%u, instance:%u }\n",
			  ci.engine_class, ci.engine_instance);
		return -EINVAL;
	}

	if (get_user(num_bonds, &ext->num_bonds))
		return -EFAULT;

	for (n = 0; n < num_bonds; n++) {
		struct intel_engine_cs *bond;

		if (copy_from_user(&ci, &ext->engines[n], sizeof(ci)))
			return -EFAULT;

		bond = intel_engine_lookup_user(set->ctx->i915,
						ci.engine_class,
						ci.engine_instance);
		if (!bond) {
			DRM_DEBUG("Unrecognised engine[%d] for bonding: { class:%d, instance: %d }\n",
				  n, ci.engine_class, ci.engine_instance);
			return -EINVAL;
		}

		/*
		 * A non-virtual engine has no siblings to choose between; and
		 * a submit fence will always be directed to the one engine.
		 */
		if (intel_engine_is_virtual(virtual)) {
			err = intel_virtual_engine_attach_bond(virtual,
							       master,
							       bond);
			if (err)
				return err;
		}
	}

	return 0;
}

1613
static const i915_user_extension_fn set_engines__extensions[] = {
1614
	[I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE] = set_engines__load_balance,
1615
	[I915_CONTEXT_ENGINES_EXT_BOND] = set_engines__bond,
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
};

static int
set_engines(struct i915_gem_context *ctx,
	    const struct drm_i915_gem_context_param *args)
{
	struct i915_context_param_engines __user *user =
		u64_to_user_ptr(args->value);
	struct set_engines set = { .ctx = ctx };
	unsigned int num_engines, n;
	u64 extensions;
	int err;

	if (!args->size) { /* switch back to legacy user_ring_map */
		if (!i915_gem_context_user_engines(ctx))
			return 0;

		set.engines = default_engines(ctx);
		if (IS_ERR(set.engines))
			return PTR_ERR(set.engines);

		goto replace;
	}

	BUILD_BUG_ON(!IS_ALIGNED(sizeof(*user), sizeof(*user->engines)));
	if (args->size < sizeof(*user) ||
	    !IS_ALIGNED(args->size, sizeof(*user->engines))) {
		DRM_DEBUG("Invalid size for engine array: %d\n",
			  args->size);
		return -EINVAL;
	}

	/*
	 * Note that I915_EXEC_RING_MASK limits execbuf to only using the
	 * first 64 engines defined here.
	 */
	num_engines = (args->size - sizeof(*user)) / sizeof(*user->engines);

	set.engines = kmalloc(struct_size(set.engines, engines, num_engines),
			      GFP_KERNEL);
	if (!set.engines)
		return -ENOMEM;

1659
	init_rcu_head(&set.engines->rcu);
1660 1661 1662
	for (n = 0; n < num_engines; n++) {
		struct i915_engine_class_instance ci;
		struct intel_engine_cs *engine;
1663
		struct intel_context *ce;
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685

		if (copy_from_user(&ci, &user->engines[n], sizeof(ci))) {
			__free_engines(set.engines, n);
			return -EFAULT;
		}

		if (ci.engine_class == (u16)I915_ENGINE_CLASS_INVALID &&
		    ci.engine_instance == (u16)I915_ENGINE_CLASS_INVALID_NONE) {
			set.engines->engines[n] = NULL;
			continue;
		}

		engine = intel_engine_lookup_user(ctx->i915,
						  ci.engine_class,
						  ci.engine_instance);
		if (!engine) {
			DRM_DEBUG("Invalid engine[%d]: { class:%d, instance:%d }\n",
				  n, ci.engine_class, ci.engine_instance);
			__free_engines(set.engines, n);
			return -ENOENT;
		}

1686
		ce = intel_context_create(engine);
1687
		if (IS_ERR(ce)) {
1688
			__free_engines(set.engines, n);
1689
			return PTR_ERR(ce);
1690
		}
1691

1692 1693
		intel_context_set_gem(ce, ctx);

1694
		set.engines->engines[n] = ce;
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
	}
	set.engines->num_engines = num_engines;

	err = -EFAULT;
	if (!get_user(extensions, &user->extensions))
		err = i915_user_extensions(u64_to_user_ptr(extensions),
					   set_engines__extensions,
					   ARRAY_SIZE(set_engines__extensions),
					   &set);
	if (err) {
		free_engines(set.engines);
		return err;
	}

replace:
	mutex_lock(&ctx->engines_mutex);
	if (args->size)
		i915_gem_context_set_user_engines(ctx);
	else
		i915_gem_context_clear_user_engines(ctx);
1715
	set.engines = rcu_replace_pointer(ctx->engines, set.engines, 1);
1716 1717
	mutex_unlock(&ctx->engines_mutex);

1718
	call_rcu(&set.engines->rcu, free_engines_rcu);
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732

	return 0;
}

static struct i915_gem_engines *
__copy_engines(struct i915_gem_engines *e)
{
	struct i915_gem_engines *copy;
	unsigned int n;

	copy = kmalloc(struct_size(e, engines, e->num_engines), GFP_KERNEL);
	if (!copy)
		return ERR_PTR(-ENOMEM);

1733
	init_rcu_head(&copy->rcu);
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
	for (n = 0; n < e->num_engines; n++) {
		if (e->engines[n])
			copy->engines[n] = intel_context_get(e->engines[n]);
		else
			copy->engines[n] = NULL;
	}
	copy->num_engines = n;

	return copy;
}

static int
get_engines(struct i915_gem_context *ctx,
	    struct drm_i915_gem_context_param *args)
{
	struct i915_context_param_engines __user *user;
	struct i915_gem_engines *e;
	size_t n, count, size;
	int err = 0;

	err = mutex_lock_interruptible(&ctx->engines_mutex);
	if (err)
		return err;

	e = NULL;
	if (i915_gem_context_user_engines(ctx))
		e = __copy_engines(i915_gem_context_engines(ctx));
	mutex_unlock(&ctx->engines_mutex);
	if (IS_ERR_OR_NULL(e)) {
		args->size = 0;
		return PTR_ERR_OR_ZERO(e);
	}

	count = e->num_engines;

	/* Be paranoid in case we have an impedance mismatch */
	if (!check_struct_size(user, engines, count, &size)) {
		err = -EINVAL;
		goto err_free;
	}
	if (overflows_type(size, args->size)) {
		err = -EINVAL;
		goto err_free;
	}

	if (!args->size) {
		args->size = size;
		goto err_free;
	}

	if (args->size < size) {
		err = -EINVAL;
		goto err_free;
	}

	user = u64_to_user_ptr(args->value);
	if (!access_ok(user, size)) {
		err = -EFAULT;
		goto err_free;
	}

	if (put_user(0, &user->extensions)) {
		err = -EFAULT;
		goto err_free;
	}

	for (n = 0; n < count; n++) {
		struct i915_engine_class_instance ci = {
			.engine_class = I915_ENGINE_CLASS_INVALID,
			.engine_instance = I915_ENGINE_CLASS_INVALID_NONE,
		};

		if (e->engines[n]) {
			ci.engine_class = e->engines[n]->engine->uabi_class;
1808
			ci.engine_instance = e->engines[n]->engine->uabi_instance;
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
		}

		if (copy_to_user(&user->engines[n], &ci, sizeof(ci))) {
			err = -EFAULT;
			goto err_free;
		}
	}

	args->size = size;

err_free:
1820
	free_engines(e);
1821 1822 1823
	return err;
}

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
static int
set_persistence(struct i915_gem_context *ctx,
		const struct drm_i915_gem_context_param *args)
{
	if (args->size)
		return -EINVAL;

	return __context_set_persistence(ctx, args->value);
}

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
static void __apply_priority(struct intel_context *ce, void *arg)
{
	struct i915_gem_context *ctx = arg;

	if (!intel_engine_has_semaphores(ce->engine))
		return;

	if (ctx->sched.priority >= I915_PRIORITY_NORMAL)
		intel_context_set_use_semaphores(ce);
	else
		intel_context_clear_use_semaphores(ce);
}

static int set_priority(struct i915_gem_context *ctx,
			const struct drm_i915_gem_context_param *args)
{
	s64 priority = args->value;

	if (args->size)
		return -EINVAL;

	if (!(ctx->i915->caps.scheduler & I915_SCHEDULER_CAP_PRIORITY))
		return -ENODEV;

	if (priority > I915_CONTEXT_MAX_USER_PRIORITY ||
	    priority < I915_CONTEXT_MIN_USER_PRIORITY)
		return -EINVAL;

	if (priority > I915_CONTEXT_DEFAULT_PRIORITY &&
	    !capable(CAP_SYS_NICE))
		return -EPERM;

	ctx->sched.priority = I915_USER_PRIORITY(priority);
	context_apply_all(ctx, __apply_priority, ctx);

	return 0;
}

1872 1873
static int ctx_setparam(struct drm_i915_file_private *fpriv,
			struct i915_gem_context *ctx,
1874
			struct drm_i915_gem_context_param *args)
1875
{
1876
	int ret = 0;
1877 1878

	switch (args->param) {
1879
	case I915_CONTEXT_PARAM_NO_ZEROMAP:
1880
		if (args->size)
1881
			ret = -EINVAL;
1882 1883 1884 1885
		else if (args->value)
			set_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags);
		else
			clear_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags);
1886
		break;
1887

1888
	case I915_CONTEXT_PARAM_NO_ERROR_CAPTURE:
1889
		if (args->size)
1890
			ret = -EINVAL;
1891 1892 1893 1894
		else if (args->value)
			i915_gem_context_set_no_error_capture(ctx);
		else
			i915_gem_context_clear_no_error_capture(ctx);
1895
		break;
1896

1897 1898 1899 1900 1901
	case I915_CONTEXT_PARAM_BANNABLE:
		if (args->size)
			ret = -EINVAL;
		else if (!capable(CAP_SYS_ADMIN) && !args->value)
			ret = -EPERM;
1902 1903
		else if (args->value)
			i915_gem_context_set_bannable(ctx);
1904
		else
1905
			i915_gem_context_clear_bannable(ctx);
1906
		break;
1907

1908 1909 1910 1911 1912 1913 1914 1915 1916
	case I915_CONTEXT_PARAM_RECOVERABLE:
		if (args->size)
			ret = -EINVAL;
		else if (args->value)
			i915_gem_context_set_recoverable(ctx);
		else
			i915_gem_context_clear_recoverable(ctx);
		break;

1917
	case I915_CONTEXT_PARAM_PRIORITY:
1918
		ret = set_priority(ctx, args);
1919
		break;
1920

1921 1922 1923
	case I915_CONTEXT_PARAM_SSEU:
		ret = set_sseu(ctx, args);
		break;
1924 1925

	case I915_CONTEXT_PARAM_VM:
1926
		ret = set_ppgtt(fpriv, ctx, args);
1927 1928
		break;

1929 1930 1931 1932
	case I915_CONTEXT_PARAM_ENGINES:
		ret = set_engines(ctx, args);
		break;

1933 1934 1935 1936
	case I915_CONTEXT_PARAM_PERSISTENCE:
		ret = set_persistence(ctx, args);
		break;

1937
	case I915_CONTEXT_PARAM_BAN_PERIOD:
1938 1939 1940 1941 1942
	default:
		ret = -EINVAL;
		break;
	}

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
	return ret;
}

struct create_ext {
	struct i915_gem_context *ctx;
	struct drm_i915_file_private *fpriv;
};

static int create_setparam(struct i915_user_extension __user *ext, void *data)
{
	struct drm_i915_gem_context_create_ext_setparam local;
	const struct create_ext *arg = data;

	if (copy_from_user(&local, ext, sizeof(local)))
		return -EFAULT;

	if (local.param.ctx_id)
		return -EINVAL;

1962
	return ctx_setparam(arg->fpriv, arg->ctx, &local.param);
1963 1964
}

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
static int clone_engines(struct i915_gem_context *dst,
			 struct i915_gem_context *src)
{
	struct i915_gem_engines *e = i915_gem_context_lock_engines(src);
	struct i915_gem_engines *clone;
	bool user_engines;
	unsigned long n;

	clone = kmalloc(struct_size(e, engines, e->num_engines), GFP_KERNEL);
	if (!clone)
		goto err_unlock;

1977
	init_rcu_head(&clone->rcu);
1978
	for (n = 0; n < e->num_engines; n++) {
1979 1980
		struct intel_engine_cs *engine;

1981 1982 1983 1984
		if (!e->engines[n]) {
			clone->engines[n] = NULL;
			continue;
		}
1985
		engine = e->engines[n]->engine;
1986

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
		/*
		 * Virtual engines are singletons; they can only exist
		 * inside a single context, because they embed their
		 * HW context... As each virtual context implies a single
		 * timeline (each engine can only dequeue a single request
		 * at any time), it would be surprising for two contexts
		 * to use the same engine. So let's create a copy of
		 * the virtual engine instead.
		 */
		if (intel_engine_is_virtual(engine))
			clone->engines[n] =
1998
				intel_execlists_clone_virtual(engine);
1999
		else
2000
			clone->engines[n] = intel_context_create(engine);
2001
		if (IS_ERR_OR_NULL(clone->engines[n])) {
2002 2003 2004
			__free_engines(clone, n);
			goto err_unlock;
		}
2005 2006

		intel_context_set_gem(clone->engines[n], dst);
2007 2008 2009 2010 2011 2012
	}
	clone->num_engines = n;

	user_engines = i915_gem_context_user_engines(src);
	i915_gem_context_unlock_engines(src);

2013 2014
	/* Serialised by constructor */
	free_engines(__context_engines_static(dst));
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
	RCU_INIT_POINTER(dst->engines, clone);
	if (user_engines)
		i915_gem_context_set_user_engines(dst);
	else
		i915_gem_context_clear_user_engines(dst);
	return 0;

err_unlock:
	i915_gem_context_unlock_engines(src);
	return -ENOMEM;
}

static int clone_flags(struct i915_gem_context *dst,
		       struct i915_gem_context *src)
{
	dst->user_flags = src->user_flags;
	return 0;
}

static int clone_schedattr(struct i915_gem_context *dst,
			   struct i915_gem_context *src)
{
	dst->sched = src->sched;
	return 0;
}

static int clone_sseu(struct i915_gem_context *dst,
		      struct i915_gem_context *src)
{
	struct i915_gem_engines *e = i915_gem_context_lock_engines(src);
	struct i915_gem_engines *clone;
	unsigned long n;
	int err;

2049 2050
	/* no locking required; sole access under constructor*/
	clone = __context_engines_static(dst);
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
	if (e->num_engines != clone->num_engines) {
		err = -EINVAL;
		goto unlock;
	}

	for (n = 0; n < e->num_engines; n++) {
		struct intel_context *ce = e->engines[n];

		if (clone->engines[n]->engine->class != ce->engine->class) {
			/* Must have compatible engine maps! */
			err = -EINVAL;
			goto unlock;
		}

		/* serialises with set_sseu */
		err = intel_context_lock_pinned(ce);
		if (err)
			goto unlock;

		clone->engines[n]->sseu = ce->sseu;
		intel_context_unlock_pinned(ce);
	}

	err = 0;
unlock:
	i915_gem_context_unlock_engines(src);
	return err;
}

static int clone_timeline(struct i915_gem_context *dst,
			  struct i915_gem_context *src)
{
2083 2084
	if (src->timeline)
		__assign_timeline(dst, src->timeline);
2085 2086 2087 2088 2089 2090 2091

	return 0;
}

static int clone_vm(struct i915_gem_context *dst,
		    struct i915_gem_context *src)
{
2092
	struct i915_address_space *vm;
2093
	int err = 0;
2094

2095 2096
	if (!rcu_access_pointer(src->vm))
		return 0;
2097

2098 2099
	rcu_read_lock();
	vm = context_get_vm_rcu(src);
2100 2101
	rcu_read_unlock();

2102 2103 2104 2105 2106
	if (!mutex_lock_interruptible(&dst->mutex)) {
		__assign_ppgtt(dst, vm);
		mutex_unlock(&dst->mutex);
	} else {
		err = -EINTR;
2107 2108
	}

2109
	i915_vm_put(vm);
2110
	return err;
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
}

static int create_clone(struct i915_user_extension __user *ext, void *data)
{
	static int (* const fn[])(struct i915_gem_context *dst,
				  struct i915_gem_context *src) = {
#define MAP(x, y) [ilog2(I915_CONTEXT_CLONE_##x)] = y
		MAP(ENGINES, clone_engines),
		MAP(FLAGS, clone_flags),
		MAP(SCHEDATTR, clone_schedattr),
		MAP(SSEU, clone_sseu),
		MAP(TIMELINE, clone_timeline),
		MAP(VM, clone_vm),
#undef MAP
	};
	struct drm_i915_gem_context_create_ext_clone local;
	const struct create_ext *arg = data;
	struct i915_gem_context *dst = arg->ctx;
	struct i915_gem_context *src;
	int err, bit;

	if (copy_from_user(&local, ext, sizeof(local)))
		return -EFAULT;

	BUILD_BUG_ON(GENMASK(BITS_PER_TYPE(local.flags) - 1, ARRAY_SIZE(fn)) !=
		     I915_CONTEXT_CLONE_UNKNOWN);

	if (local.flags & I915_CONTEXT_CLONE_UNKNOWN)
		return -EINVAL;

	if (local.rsvd)
		return -EINVAL;

	rcu_read_lock();
	src = __i915_gem_context_lookup_rcu(arg->fpriv, local.clone_id);
	rcu_read_unlock();
	if (!src)
		return -ENOENT;

	GEM_BUG_ON(src == dst);

	for (bit = 0; bit < ARRAY_SIZE(fn); bit++) {
		if (!(local.flags & BIT(bit)))
			continue;

		err = fn[bit](dst, src);
		if (err)
			return err;
	}

	return 0;
}

2164 2165
static const i915_user_extension_fn create_extensions[] = {
	[I915_CONTEXT_CREATE_EXT_SETPARAM] = create_setparam,
2166
	[I915_CONTEXT_CREATE_EXT_CLONE] = create_clone,
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
};

static bool client_is_banned(struct drm_i915_file_private *file_priv)
{
	return atomic_read(&file_priv->ban_score) >= I915_CLIENT_SCORE_BANNED;
}

int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
				  struct drm_file *file)
{
	struct drm_i915_private *i915 = to_i915(dev);
	struct drm_i915_gem_context_create_ext *args = data;
	struct create_ext ext_data;
	int ret;
2181
	u32 id;
2182 2183 2184 2185 2186 2187 2188

	if (!DRIVER_CAPS(i915)->has_logical_contexts)
		return -ENODEV;

	if (args->flags & I915_CONTEXT_CREATE_FLAGS_UNKNOWN)
		return -EINVAL;

2189
	ret = intel_gt_terminally_wedged(&i915->gt);
2190 2191 2192 2193 2194 2195
	if (ret)
		return ret;

	ext_data.fpriv = file->driver_priv;
	if (client_is_banned(ext_data.fpriv)) {
		DRM_DEBUG("client %s[%d] banned from creating ctx\n",
2196
			  current->comm, task_pid_nr(current));
2197 2198 2199
		return -EIO;
	}

2200
	ext_data.ctx = i915_gem_create_context(i915, args->flags);
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
	if (IS_ERR(ext_data.ctx))
		return PTR_ERR(ext_data.ctx);

	if (args->flags & I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS) {
		ret = i915_user_extensions(u64_to_user_ptr(args->extensions),
					   create_extensions,
					   ARRAY_SIZE(create_extensions),
					   &ext_data);
		if (ret)
			goto err_ctx;
	}

2213
	ret = gem_context_register(ext_data.ctx, ext_data.fpriv, &id);
2214 2215 2216
	if (ret < 0)
		goto err_ctx;

2217
	args->ctx_id = id;
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
	DRM_DEBUG("HW context %d created\n", args->ctx_id);

	return 0;

err_ctx:
	context_close(ext_data.ctx);
	return ret;
}

int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
				   struct drm_file *file)
{
	struct drm_i915_gem_context_destroy *args = data;
	struct drm_i915_file_private *file_priv = file->driver_priv;
	struct i915_gem_context *ctx;

	if (args->pad != 0)
		return -EINVAL;

	if (!args->ctx_id)
		return -ENOENT;

2240
	ctx = xa_erase(&file_priv->context_xa, args->ctx_id);
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
	if (!ctx)
		return -ENOENT;

	context_close(ctx);
	return 0;
}

static int get_sseu(struct i915_gem_context *ctx,
		    struct drm_i915_gem_context_param *args)
{
	struct drm_i915_gem_context_param_sseu user_sseu;
	struct intel_context *ce;
2253
	unsigned long lookup;
2254
	int err;
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264

	if (args->size == 0)
		goto out;
	else if (args->size < sizeof(user_sseu))
		return -EINVAL;

	if (copy_from_user(&user_sseu, u64_to_user_ptr(args->value),
			   sizeof(user_sseu)))
		return -EFAULT;

2265
	if (user_sseu.rsvd)
2266 2267
		return -EINVAL;

2268 2269 2270 2271 2272 2273 2274 2275
	if (user_sseu.flags & ~(I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX))
		return -EINVAL;

	lookup = 0;
	if (user_sseu.flags & I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX)
		lookup |= LOOKUP_USER_INDEX;

	ce = lookup_user_engine(ctx, lookup, &user_sseu.engine);
2276 2277 2278
	if (IS_ERR(ce))
		return PTR_ERR(ce);

2279 2280 2281 2282 2283 2284
	err = intel_context_lock_pinned(ce); /* serialises with set_sseu */
	if (err) {
		intel_context_put(ce);
		return err;
	}

2285 2286 2287 2288 2289
	user_sseu.slice_mask = ce->sseu.slice_mask;
	user_sseu.subslice_mask = ce->sseu.subslice_mask;
	user_sseu.min_eus_per_subslice = ce->sseu.min_eus_per_subslice;
	user_sseu.max_eus_per_subslice = ce->sseu.max_eus_per_subslice;

2290 2291
	intel_context_unlock_pinned(ce);
	intel_context_put(ce);
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322

	if (copy_to_user(u64_to_user_ptr(args->value), &user_sseu,
			 sizeof(user_sseu)))
		return -EFAULT;

out:
	args->size = sizeof(user_sseu);

	return 0;
}

int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
				    struct drm_file *file)
{
	struct drm_i915_file_private *file_priv = file->driver_priv;
	struct drm_i915_gem_context_param *args = data;
	struct i915_gem_context *ctx;
	int ret = 0;

	ctx = i915_gem_context_lookup(file_priv, args->ctx_id);
	if (!ctx)
		return -ENOENT;

	switch (args->param) {
	case I915_CONTEXT_PARAM_NO_ZEROMAP:
		args->size = 0;
		args->value = test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags);
		break;

	case I915_CONTEXT_PARAM_GTT_SIZE:
		args->size = 0;
2323 2324 2325
		rcu_read_lock();
		if (rcu_access_pointer(ctx->vm))
			args->value = rcu_dereference(ctx->vm)->total;
2326 2327
		else
			args->value = to_i915(dev)->ggtt.vm.total;
2328
		rcu_read_unlock();
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
		break;

	case I915_CONTEXT_PARAM_NO_ERROR_CAPTURE:
		args->size = 0;
		args->value = i915_gem_context_no_error_capture(ctx);
		break;

	case I915_CONTEXT_PARAM_BANNABLE:
		args->size = 0;
		args->value = i915_gem_context_is_bannable(ctx);
		break;

	case I915_CONTEXT_PARAM_RECOVERABLE:
		args->size = 0;
		args->value = i915_gem_context_is_recoverable(ctx);
		break;

	case I915_CONTEXT_PARAM_PRIORITY:
		args->size = 0;
		args->value = ctx->sched.priority >> I915_USER_PRIORITY_SHIFT;
		break;

	case I915_CONTEXT_PARAM_SSEU:
		ret = get_sseu(ctx, args);
		break;

	case I915_CONTEXT_PARAM_VM:
2356
		ret = get_ppgtt(file_priv, ctx, args);
2357 2358
		break;

2359 2360 2361 2362
	case I915_CONTEXT_PARAM_ENGINES:
		ret = get_engines(ctx, args);
		break;

2363 2364 2365 2366 2367
	case I915_CONTEXT_PARAM_PERSISTENCE:
		args->size = 0;
		args->value = i915_gem_context_is_persistent(ctx);
		break;

2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
	case I915_CONTEXT_PARAM_BAN_PERIOD:
	default:
		ret = -EINVAL;
		break;
	}

	i915_gem_context_put(ctx);
	return ret;
}

int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
				    struct drm_file *file)
{
	struct drm_i915_file_private *file_priv = file->driver_priv;
	struct drm_i915_gem_context_param *args = data;
	struct i915_gem_context *ctx;
	int ret;

	ctx = i915_gem_context_lookup(file_priv, args->ctx_id);
	if (!ctx)
		return -ENOENT;

2390
	ret = ctx_setparam(file_priv, ctx, args);
2391

2392
	i915_gem_context_put(ctx);
2393 2394
	return ret;
}
2395 2396 2397 2398

int i915_gem_context_reset_stats_ioctl(struct drm_device *dev,
				       void *data, struct drm_file *file)
{
2399
	struct drm_i915_private *i915 = to_i915(dev);
2400
	struct drm_i915_reset_stats *args = data;
2401
	struct i915_gem_context *ctx;
2402 2403 2404 2405 2406
	int ret;

	if (args->flags || args->pad)
		return -EINVAL;

2407 2408 2409 2410 2411
	ret = -ENOENT;
	rcu_read_lock();
	ctx = __i915_gem_context_lookup_rcu(file->driver_priv, args->ctx_id);
	if (!ctx)
		goto out;
2412

2413 2414 2415 2416 2417 2418
	/*
	 * We opt for unserialised reads here. This may result in tearing
	 * in the extremely unlikely event of a GPU hang on this context
	 * as we are querying them. If we need that extra layer of protection,
	 * we should wrap the hangstats with a seqlock.
	 */
2419 2420

	if (capable(CAP_SYS_ADMIN))
2421
		args->reset_count = i915_reset_count(&i915->gpu_error);
2422 2423 2424
	else
		args->reset_count = 0;

2425 2426
	args->batch_active = atomic_read(&ctx->guilty_count);
	args->batch_pending = atomic_read(&ctx->active_count);
2427

2428 2429 2430 2431
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
2432
}
2433

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
/* GEM context-engines iterator: for_each_gem_engine() */
struct intel_context *
i915_gem_engines_iter_next(struct i915_gem_engines_iter *it)
{
	const struct i915_gem_engines *e = it->engines;
	struct intel_context *ctx;

	do {
		if (it->idx >= e->num_engines)
			return NULL;

		ctx = e->engines[it->idx++];
	} while (!ctx);

	return ctx;
}

2451 2452
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_context.c"
2453
#include "selftests/i915_gem_context.c"
2454
#endif
2455

2456
static void i915_global_gem_context_shrink(void)
2457
{
2458
	kmem_cache_shrink(global.slab_luts);
2459 2460
}

2461
static void i915_global_gem_context_exit(void)
2462
{
2463
	kmem_cache_destroy(global.slab_luts);
2464 2465
}

2466 2467 2468
static struct i915_global_gem_context global = { {
	.shrink = i915_global_gem_context_shrink,
	.exit = i915_global_gem_context_exit,
2469 2470
} };

2471
int __init i915_global_gem_context_init(void)
2472
{
2473 2474 2475 2476 2477 2478
	global.slab_luts = KMEM_CACHE(i915_lut_handle, 0);
	if (!global.slab_luts)
		return -ENOMEM;

	i915_global_register(&global.base);
	return 0;
2479
}