fsl_ssi.c 38.1 KB
Newer Older
1 2 3 4 5
/*
 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
 *
 * Author: Timur Tabi <timur@freescale.com>
 *
6 7 8 9 10
 * Copyright 2007-2010 Freescale Semiconductor, Inc.
 *
 * This file is licensed under the terms of the GNU General Public License
 * version 2.  This program is licensed "as is" without any warranty of any
 * kind, whether express or implied.
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
 *
 *
 * Some notes why imx-pcm-fiq is used instead of DMA on some boards:
 *
 * The i.MX SSI core has some nasty limitations in AC97 mode. While most
 * sane processor vendors have a FIFO per AC97 slot, the i.MX has only
 * one FIFO which combines all valid receive slots. We cannot even select
 * which slots we want to receive. The WM9712 with which this driver
 * was developed with always sends GPIO status data in slot 12 which
 * we receive in our (PCM-) data stream. The only chance we have is to
 * manually skip this data in the FIQ handler. With sampling rates different
 * from 48000Hz not every frame has valid receive data, so the ratio
 * between pcm data and GPIO status data changes. Our FIQ handler is not
 * able to handle this, hence this driver only works with 48000Hz sampling
 * rate.
 * Reading and writing AC97 registers is another challenge. The core
 * provides us status bits when the read register is updated with *another*
 * value. When we read the same register two times (and the register still
 * contains the same value) these status bits are not set. We work
 * around this by not polling these bits but only wait a fixed delay.
31 32 33
 */

#include <linux/init.h>
34
#include <linux/io.h>
35 36
#include <linux/module.h>
#include <linux/interrupt.h>
37
#include <linux/clk.h>
38 39
#include <linux/device.h>
#include <linux/delay.h>
40
#include <linux/slab.h>
41
#include <linux/spinlock.h>
42 43
#include <linux/of_address.h>
#include <linux/of_irq.h>
44
#include <linux/of_platform.h>
45 46 47 48 49 50

#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/soc.h>
51
#include <sound/dmaengine_pcm.h>
52 53

#include "fsl_ssi.h"
54
#include "imx-pcm.h"
55

56 57 58 59
#ifdef PPC
#define read_ssi(addr)			 in_be32(addr)
#define write_ssi(val, addr)		 out_be32(addr, val)
#define write_ssi_mask(addr, clear, set) clrsetbits_be32(addr, clear, set)
60
#else
61 62 63 64 65 66 67 68 69 70 71 72 73 74
#define read_ssi(addr)			 readl(addr)
#define write_ssi(val, addr)		 writel(val, addr)
/*
 * FIXME: Proper locking should be added at write_ssi_mask caller level
 * to ensure this register read/modify/write sequence is race free.
 */
static inline void write_ssi_mask(u32 __iomem *addr, u32 clear, u32 set)
{
	u32 val = readl(addr);
	val = (val & ~clear) | set;
	writel(val, addr);
}
#endif

75 76 77 78 79 80 81 82
/**
 * FSLSSI_I2S_RATES: sample rates supported by the I2S
 *
 * This driver currently only supports the SSI running in I2S slave mode,
 * which means the codec determines the sample rate.  Therefore, we tell
 * ALSA that we support all rates and let the codec driver decide what rates
 * are really supported.
 */
83
#define FSLSSI_I2S_RATES SNDRV_PCM_RATE_CONTINUOUS
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

/**
 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
 *
 * This driver currently only supports the SSI running in I2S slave mode.
 *
 * The SSI has a limitation in that the samples must be in the same byte
 * order as the host CPU.  This is because when multiple bytes are written
 * to the STX register, the bytes and bits must be written in the same
 * order.  The STX is a shift register, so all the bits need to be aligned
 * (bit-endianness must match byte-endianness).  Processors typically write
 * the bits within a byte in the same order that the bytes of a word are
 * written in.  So if the host CPU is big-endian, then only big-endian
 * samples will be written to STX properly.
 */
#ifdef __BIG_ENDIAN
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
	 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
	 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
#else
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
#endif

109 110 111 112 113 114
#define FSLSSI_SIER_DBG_RX_FLAGS (CCSR_SSI_SIER_RFF0_EN | \
		CCSR_SSI_SIER_RLS_EN | CCSR_SSI_SIER_RFS_EN | \
		CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_RFRC_EN)
#define FSLSSI_SIER_DBG_TX_FLAGS (CCSR_SSI_SIER_TFE0_EN | \
		CCSR_SSI_SIER_TLS_EN | CCSR_SSI_SIER_TFS_EN | \
		CCSR_SSI_SIER_TUE0_EN | CCSR_SSI_SIER_TFRC_EN)
115 116 117 118

enum fsl_ssi_type {
	FSL_SSI_MCP8610,
	FSL_SSI_MX21,
119
	FSL_SSI_MX35,
120 121 122
	FSL_SSI_MX51,
};

123 124 125 126 127 128 129 130 131 132 133
struct fsl_ssi_reg_val {
	u32 sier;
	u32 srcr;
	u32 stcr;
	u32 scr;
};

struct fsl_ssi_rxtx_reg_val {
	struct fsl_ssi_reg_val rx;
	struct fsl_ssi_reg_val tx;
};
134

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/**
 * fsl_ssi_private: per-SSI private data
 *
 * @ssi: pointer to the SSI's registers
 * @ssi_phys: physical address of the SSI registers
 * @irq: IRQ of this SSI
 * @playback: the number of playback streams opened
 * @capture: the number of capture streams opened
 * @cpu_dai: the CPU DAI for this device
 * @dev_attr: the sysfs device attribute structure
 * @stats: SSI statistics
 */
struct fsl_ssi_private {
	struct ccsr_ssi __iomem *ssi;
	dma_addr_t ssi_phys;
	unsigned int irq;
151
	unsigned int fifo_depth;
152 153
	struct snd_soc_dai_driver cpu_dai_drv;
	struct platform_device *pdev;
154
	unsigned int dai_fmt;
155

156
	enum fsl_ssi_type hw_type;
157
	bool use_dma;
158
	bool baudclk_locked;
159
	bool use_dual_fifo;
160
	u8 i2s_mode;
161 162
	spinlock_t baudclk_lock;
	struct clk *baudclk;
163
	struct clk *clk;
164 165
	struct snd_dmaengine_dai_dma_data dma_params_tx;
	struct snd_dmaengine_dai_dma_data dma_params_rx;
166
	struct imx_pcm_fiq_params fiq_params;
167 168
	/* Register values for rx/tx configuration */
	struct fsl_ssi_rxtx_reg_val rxtx_reg_val;
169

170
	struct fsl_ssi_dbg dbg_stats;
171 172
};

173 174 175
static const struct of_device_id fsl_ssi_ids[] = {
	{ .compatible = "fsl,mpc8610-ssi", .data = (void *) FSL_SSI_MCP8610},
	{ .compatible = "fsl,imx51-ssi", .data = (void *) FSL_SSI_MX51},
176
	{ .compatible = "fsl,imx35-ssi", .data = (void *) FSL_SSI_MX35},
177 178 179 180 181
	{ .compatible = "fsl,imx21-ssi", .data = (void *) FSL_SSI_MX21},
	{}
};
MODULE_DEVICE_TABLE(of, fsl_ssi_ids);

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
static bool fsl_ssi_is_ac97(struct fsl_ssi_private *ssi_private)
{
	return !!(ssi_private->dai_fmt & SND_SOC_DAIFMT_AC97);
}

static bool fsl_ssi_on_imx(struct fsl_ssi_private *ssi_private)
{
	switch (ssi_private->hw_type) {
	case FSL_SSI_MX21:
	case FSL_SSI_MX35:
	case FSL_SSI_MX51:
		return true;
	case FSL_SSI_MCP8610:
		return false;
	}

	return false;
}

/*
 * imx51 and later SoCs have a slightly different IP that allows the
 * SSI configuration while the SSI unit is running.
 *
 * More important, it is necessary on those SoCs to configure the
 * sperate TX/RX DMA bits just before starting the stream
 * (fsl_ssi_trigger). The SDMA unit has to be configured before fsl_ssi
 * sends any DMA requests to the SDMA unit, otherwise it is not defined
 * how the SDMA unit handles the DMA request.
 *
 * SDMA units are present on devices starting at imx35 but the imx35
 * reference manual states that the DMA bits should not be changed
 * while the SSI unit is running (SSIEN). So we support the necessary
 * online configuration of fsl-ssi starting at imx51.
 */
static bool fsl_ssi_offline_config(struct fsl_ssi_private *ssi_private)
{
	switch (ssi_private->hw_type) {
	case FSL_SSI_MCP8610:
	case FSL_SSI_MX21:
	case FSL_SSI_MX35:
		return true;
	case FSL_SSI_MX51:
		return false;
	}

	return true;
}

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
/**
 * fsl_ssi_isr: SSI interrupt handler
 *
 * Although it's possible to use the interrupt handler to send and receive
 * data to/from the SSI, we use the DMA instead.  Programming is more
 * complicated, but the performance is much better.
 *
 * This interrupt handler is used only to gather statistics.
 *
 * @irq: IRQ of the SSI device
 * @dev_id: pointer to the ssi_private structure for this SSI device
 */
static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
{
	struct fsl_ssi_private *ssi_private = dev_id;
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	__be32 sisr;
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
	__be32 sisr2;
	__be32 sisr_write_mask = 0;

	switch (ssi_private->hw_type) {
	case FSL_SSI_MX21:
		sisr_write_mask = 0;
		break;

	case FSL_SSI_MCP8610:
	case FSL_SSI_MX35:
		sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC |
			CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
			CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1;
		break;

	case FSL_SSI_MX51:
		sisr_write_mask = CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
			CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1;
		break;
	}
267 268 269 270 271

	/* We got an interrupt, so read the status register to see what we
	   were interrupted for.  We mask it with the Interrupt Enable register
	   so that we only check for events that we're interested in.
	 */
272
	sisr = read_ssi(&ssi->sisr);
273

274
	sisr2 = sisr & sisr_write_mask;
275 276
	/* Clear the bits that we set */
	if (sisr2)
277
		write_ssi(sisr2, &ssi->sisr);
278

279
	fsl_ssi_dbg_isr(&ssi_private->dbg_stats, sisr);
280

281
	return IRQ_HANDLED;
282 283
}

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
/*
 * Enable/Disable all rx/tx config flags at once.
 */
static void fsl_ssi_rxtx_config(struct fsl_ssi_private *ssi_private,
		bool enable)
{
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	struct fsl_ssi_rxtx_reg_val *vals = &ssi_private->rxtx_reg_val;

	if (enable) {
		write_ssi_mask(&ssi->sier, 0, vals->rx.sier | vals->tx.sier);
		write_ssi_mask(&ssi->srcr, 0, vals->rx.srcr | vals->tx.srcr);
		write_ssi_mask(&ssi->stcr, 0, vals->rx.stcr | vals->tx.stcr);
	} else {
		write_ssi_mask(&ssi->srcr, vals->rx.srcr | vals->tx.srcr, 0);
		write_ssi_mask(&ssi->stcr, vals->rx.stcr | vals->tx.stcr, 0);
		write_ssi_mask(&ssi->sier, vals->rx.sier | vals->tx.sier, 0);
	}
}

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
/*
 * Calculate the bits that have to be disabled for the current stream that is
 * getting disabled. This keeps the bits enabled that are necessary for the
 * second stream to work if 'stream_active' is true.
 *
 * Detailed calculation:
 * These are the values that need to be active after disabling. For non-active
 * second stream, this is 0:
 *	vals_stream * !!stream_active
 *
 * The following computes the overall differences between the setup for the
 * to-disable stream and the active stream, a simple XOR:
 *	vals_disable ^ (vals_stream * !!(stream_active))
 *
 * The full expression adds a mask on all values we care about
 */
#define fsl_ssi_disable_val(vals_disable, vals_stream, stream_active) \
	((vals_disable) & \
	 ((vals_disable) ^ ((vals_stream) * (u32)!!(stream_active))))

324 325 326 327 328 329 330 331 332 333 334 335
/*
 * Enable/Disable a ssi configuration. You have to pass either
 * ssi_private->rxtx_reg_val.rx or tx as vals parameter.
 */
static void fsl_ssi_config(struct fsl_ssi_private *ssi_private, bool enable,
		struct fsl_ssi_reg_val *vals)
{
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	struct fsl_ssi_reg_val *avals;
	u32 scr_val = read_ssi(&ssi->scr);
	int nr_active_streams = !!(scr_val & CCSR_SSI_SCR_TE) +
				!!(scr_val & CCSR_SSI_SCR_RE);
336 337 338 339 340 341
	int keep_active;

	if (nr_active_streams - 1 > 0)
		keep_active = 1;
	else
		keep_active = 0;
342 343 344 345 346 347 348 349 350 351

	/* Find the other direction values rx or tx which we do not want to
	 * modify */
	if (&ssi_private->rxtx_reg_val.rx == vals)
		avals = &ssi_private->rxtx_reg_val.tx;
	else
		avals = &ssi_private->rxtx_reg_val.rx;

	/* If vals should be disabled, start with disabling the unit */
	if (!enable) {
352 353
		u32 scr = fsl_ssi_disable_val(vals->scr, avals->scr,
				keep_active);
354 355 356 357 358 359 360 361
		write_ssi_mask(&ssi->scr, scr, 0);
	}

	/*
	 * We are running on a SoC which does not support online SSI
	 * reconfiguration, so we have to enable all necessary flags at once
	 * even if we do not use them later (capture and playback configuration)
	 */
362
	if (fsl_ssi_offline_config(ssi_private)) {
363
		if ((enable && !nr_active_streams) ||
364
				(!enable && !keep_active))
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
			fsl_ssi_rxtx_config(ssi_private, enable);

		goto config_done;
	}

	/*
	 * Configure single direction units while the SSI unit is running
	 * (online configuration)
	 */
	if (enable) {
		write_ssi_mask(&ssi->sier, 0, vals->sier);
		write_ssi_mask(&ssi->srcr, 0, vals->srcr);
		write_ssi_mask(&ssi->stcr, 0, vals->stcr);
	} else {
		u32 sier;
		u32 srcr;
		u32 stcr;

		/*
		 * Disabling the necessary flags for one of rx/tx while the
		 * other stream is active is a little bit more difficult. We
		 * have to disable only those flags that differ between both
		 * streams (rx XOR tx) and that are set in the stream that is
		 * disabled now. Otherwise we could alter flags of the other
		 * stream
		 */

		/* These assignments are simply vals without bits set in avals*/
393 394 395 396 397 398
		sier = fsl_ssi_disable_val(vals->sier, avals->sier,
				keep_active);
		srcr = fsl_ssi_disable_val(vals->srcr, avals->srcr,
				keep_active);
		stcr = fsl_ssi_disable_val(vals->stcr, avals->stcr,
				keep_active);
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421

		write_ssi_mask(&ssi->srcr, srcr, 0);
		write_ssi_mask(&ssi->stcr, stcr, 0);
		write_ssi_mask(&ssi->sier, sier, 0);
	}

config_done:
	/* Enabling of subunits is done after configuration */
	if (enable)
		write_ssi_mask(&ssi->scr, 0, vals->scr);
}


static void fsl_ssi_rx_config(struct fsl_ssi_private *ssi_private, bool enable)
{
	fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.rx);
}

static void fsl_ssi_tx_config(struct fsl_ssi_private *ssi_private, bool enable)
{
	fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.tx);
}

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
/*
 * Setup rx/tx register values used to enable/disable the streams. These will
 * be used later in fsl_ssi_config to setup the streams without the need to
 * check for all different SSI modes.
 */
static void fsl_ssi_setup_reg_vals(struct fsl_ssi_private *ssi_private)
{
	struct fsl_ssi_rxtx_reg_val *reg = &ssi_private->rxtx_reg_val;

	reg->rx.sier = CCSR_SSI_SIER_RFF0_EN;
	reg->rx.srcr = CCSR_SSI_SRCR_RFEN0;
	reg->rx.scr = 0;
	reg->tx.sier = CCSR_SSI_SIER_TFE0_EN;
	reg->tx.stcr = CCSR_SSI_STCR_TFEN0;
	reg->tx.scr = 0;

438
	if (!fsl_ssi_is_ac97(ssi_private)) {
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
		reg->rx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE;
		reg->rx.sier |= CCSR_SSI_SIER_RFF0_EN;
		reg->tx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE;
		reg->tx.sier |= CCSR_SSI_SIER_TFE0_EN;
	}

	if (ssi_private->use_dma) {
		reg->rx.sier |= CCSR_SSI_SIER_RDMAE;
		reg->tx.sier |= CCSR_SSI_SIER_TDMAE;
	} else {
		reg->rx.sier |= CCSR_SSI_SIER_RIE;
		reg->tx.sier |= CCSR_SSI_SIER_TIE;
	}

	reg->rx.sier |= FSLSSI_SIER_DBG_RX_FLAGS;
	reg->tx.sier |= FSLSSI_SIER_DBG_TX_FLAGS;
}

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
static void fsl_ssi_setup_ac97(struct fsl_ssi_private *ssi_private)
{
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;

	/*
	 * Setup the clock control register
	 */
	write_ssi(CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13),
			&ssi->stccr);
	write_ssi(CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13),
			&ssi->srccr);

	/*
	 * Enable AC97 mode and startup the SSI
	 */
	write_ssi(CCSR_SSI_SACNT_AC97EN | CCSR_SSI_SACNT_FV,
			&ssi->sacnt);
	write_ssi(0xff, &ssi->saccdis);
	write_ssi(0x300, &ssi->saccen);

	/*
	 * Enable SSI, Transmit and Receive. AC97 has to communicate with the
	 * codec before a stream is started.
	 */
	write_ssi_mask(&ssi->scr, 0, CCSR_SSI_SCR_SSIEN |
			CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE);

	write_ssi(CCSR_SSI_SOR_WAIT(3), &ssi->sor);
}

487 488 489 490 491 492 493 494
/**
 * fsl_ssi_startup: create a new substream
 *
 * This is the first function called when a stream is opened.
 *
 * If this is the first stream open, then grab the IRQ and program most of
 * the SSI registers.
 */
495 496
static int fsl_ssi_startup(struct snd_pcm_substream *substream,
			   struct snd_soc_dai *dai)
497 498
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
499 500
	struct fsl_ssi_private *ssi_private =
		snd_soc_dai_get_drvdata(rtd->cpu_dai);
501
	unsigned long flags;
502

503
	if (!dai->active && !fsl_ssi_is_ac97(ssi_private)) {
504 505 506 507
		spin_lock_irqsave(&ssi_private->baudclk_lock, flags);
		ssi_private->baudclk_locked = false;
		spin_unlock_irqrestore(&ssi_private->baudclk_lock, flags);
	}
508

509 510 511 512 513 514 515 516 517
	/* When using dual fifo mode, it is safer to ensure an even period
	 * size. If appearing to an odd number while DMA always starts its
	 * task from fifo0, fifo1 would be neglected at the end of each
	 * period. But SSI would still access fifo1 with an invalid data.
	 */
	if (ssi_private->use_dual_fifo)
		snd_pcm_hw_constraint_step(substream->runtime, 0,
				SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);

518 519 520
	return 0;
}

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
/**
 * fsl_ssi_set_dai_sysclk - configure Digital Audio Interface bit clock
 *
 * Note: This function can be only called when using SSI as DAI master
 *
 * Quick instruction for parameters:
 * freq: Output BCLK frequency = samplerate * 32 (fixed) * channels
 * dir: SND_SOC_CLOCK_OUT -> TxBCLK, SND_SOC_CLOCK_IN -> RxBCLK.
 */
static int fsl_ssi_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
				  int clk_id, unsigned int freq, int dir)
{
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	int synchronous = ssi_private->cpu_dai_drv.symmetric_rates, ret;
	u32 pm = 999, div2, psr, stccr, mask, afreq, factor, i;
	unsigned long flags, clkrate, baudrate, tmprate;
	u64 sub, savesub = 100000;

	/* Don't apply it to any non-baudclk circumstance */
	if (IS_ERR(ssi_private->baudclk))
		return -EINVAL;

	/* It should be already enough to divide clock by setting pm alone */
	psr = 0;
	div2 = 0;

	factor = (div2 + 1) * (7 * psr + 1) * 2;

	for (i = 0; i < 255; i++) {
		/* The bclk rate must be smaller than 1/5 sysclk rate */
		if (factor * (i + 1) < 5)
			continue;

		tmprate = freq * factor * (i + 2);
		clkrate = clk_round_rate(ssi_private->baudclk, tmprate);

		do_div(clkrate, factor);
		afreq = (u32)clkrate / (i + 1);

		if (freq == afreq)
			sub = 0;
		else if (freq / afreq == 1)
			sub = freq - afreq;
		else if (afreq / freq == 1)
			sub = afreq - freq;
		else
			continue;

		/* Calculate the fraction */
		sub *= 100000;
		do_div(sub, freq);

		if (sub < savesub) {
			baudrate = tmprate;
			savesub = sub;
			pm = i;
		}

		/* We are lucky */
		if (savesub == 0)
			break;
	}

	/* No proper pm found if it is still remaining the initial value */
	if (pm == 999) {
		dev_err(cpu_dai->dev, "failed to handle the required sysclk\n");
		return -EINVAL;
	}

	stccr = CCSR_SSI_SxCCR_PM(pm + 1) | (div2 ? CCSR_SSI_SxCCR_DIV2 : 0) |
		(psr ? CCSR_SSI_SxCCR_PSR : 0);
	mask = CCSR_SSI_SxCCR_PM_MASK | CCSR_SSI_SxCCR_DIV2 |
		CCSR_SSI_SxCCR_PSR;

	if (dir == SND_SOC_CLOCK_OUT || synchronous)
		write_ssi_mask(&ssi->stccr, mask, stccr);
	else
		write_ssi_mask(&ssi->srccr, mask, stccr);

	spin_lock_irqsave(&ssi_private->baudclk_lock, flags);
	if (!ssi_private->baudclk_locked) {
		ret = clk_set_rate(ssi_private->baudclk, baudrate);
		if (ret) {
			spin_unlock_irqrestore(&ssi_private->baudclk_lock,
					flags);
			dev_err(cpu_dai->dev, "failed to set baudclk rate\n");
			return -EINVAL;
		}
		ssi_private->baudclk_locked = true;
	}
	spin_unlock_irqrestore(&ssi_private->baudclk_lock, flags);

	return 0;
}

617
/**
618
 * fsl_ssi_hw_params - program the sample size
619 620 621 622 623 624 625 626 627 628 629
 *
 * Most of the SSI registers have been programmed in the startup function,
 * but the word length must be programmed here.  Unfortunately, programming
 * the SxCCR.WL bits requires the SSI to be temporarily disabled.  This can
 * cause a problem with supporting simultaneous playback and capture.  If
 * the SSI is already playing a stream, then that stream may be temporarily
 * stopped when you start capture.
 *
 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
 * clock master.
 */
630 631
static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
	struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
632
{
633
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
634
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
635
	unsigned int channels = params_channels(hw_params);
636 637 638
	unsigned int sample_size =
		snd_pcm_format_width(params_format(hw_params));
	u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
639
	int enabled = read_ssi(&ssi->scr) & CCSR_SSI_SCR_SSIEN;
640

641 642 643 644 645 646
	/*
	 * If we're in synchronous mode, and the SSI is already enabled,
	 * then STCCR is already set properly.
	 */
	if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
		return 0;
647

648 649 650 651 652 653 654 655 656
	/*
	 * FIXME: The documentation says that SxCCR[WL] should not be
	 * modified while the SSI is enabled.  The only time this can
	 * happen is if we're trying to do simultaneous playback and
	 * capture in asynchronous mode.  Unfortunately, I have been enable
	 * to get that to work at all on the P1022DS.  Therefore, we don't
	 * bother to disable/enable the SSI when setting SxCCR[WL], because
	 * the SSI will stop anyway.  Maybe one day, this will get fixed.
	 */
657

658 659 660
	/* In synchronous mode, the SSI uses STCCR for capture */
	if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
	    ssi_private->cpu_dai_drv.symmetric_rates)
661
		write_ssi_mask(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl);
662
	else
663
		write_ssi_mask(&ssi->srccr, CCSR_SSI_SxCCR_WL_MASK, wl);
664

665
	if (!fsl_ssi_is_ac97(ssi_private))
666 667 668 669
		write_ssi_mask(&ssi->scr,
				CCSR_SSI_SCR_NET | CCSR_SSI_SCR_I2S_MODE_MASK,
				channels == 1 ? 0 : ssi_private->i2s_mode);

670 671 672
	return 0;
}

673 674 675 676 677 678 679 680
/**
 * fsl_ssi_set_dai_fmt - configure Digital Audio Interface Format.
 */
static int fsl_ssi_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
{
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	u32 strcr = 0, stcr, srcr, scr, mask;
681 682
	u8 wm;

683 684
	ssi_private->dai_fmt = fmt;

685
	fsl_ssi_setup_reg_vals(ssi_private);
686 687

	scr = read_ssi(&ssi->scr) & ~(CCSR_SSI_SCR_SYN | CCSR_SSI_SCR_I2S_MODE_MASK);
688
	scr |= CCSR_SSI_SCR_SYNC_TX_FS;
689 690 691 692 693 694 695

	mask = CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR |
		CCSR_SSI_STCR_TSCKP | CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TFSL |
		CCSR_SSI_STCR_TEFS;
	stcr = read_ssi(&ssi->stcr) & ~mask;
	srcr = read_ssi(&ssi->srcr) & ~mask;

696
	ssi_private->i2s_mode = CCSR_SSI_SCR_NET;
697 698 699 700
	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
	case SND_SOC_DAIFMT_I2S:
		switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
		case SND_SOC_DAIFMT_CBS_CFS:
701
			ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_MASTER;
702 703
			break;
		case SND_SOC_DAIFMT_CBM_CFM:
704
			ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_SLAVE;
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
			break;
		default:
			return -EINVAL;
		}

		/* Data on rising edge of bclk, frame low, 1clk before data */
		strcr |= CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TSCKP |
			CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
		break;
	case SND_SOC_DAIFMT_LEFT_J:
		/* Data on rising edge of bclk, frame high */
		strcr |= CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TSCKP;
		break;
	case SND_SOC_DAIFMT_DSP_A:
		/* Data on rising edge of bclk, frame high, 1clk before data */
		strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
			CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
		break;
	case SND_SOC_DAIFMT_DSP_B:
		/* Data on rising edge of bclk, frame high */
		strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
			CCSR_SSI_STCR_TXBIT0;
		break;
728
	case SND_SOC_DAIFMT_AC97:
729
		ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_NORMAL;
730
		break;
731 732 733
	default:
		return -EINVAL;
	}
734
	scr |= ssi_private->i2s_mode;
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783

	/* DAI clock inversion */
	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
	case SND_SOC_DAIFMT_NB_NF:
		/* Nothing to do for both normal cases */
		break;
	case SND_SOC_DAIFMT_IB_NF:
		/* Invert bit clock */
		strcr ^= CCSR_SSI_STCR_TSCKP;
		break;
	case SND_SOC_DAIFMT_NB_IF:
		/* Invert frame clock */
		strcr ^= CCSR_SSI_STCR_TFSI;
		break;
	case SND_SOC_DAIFMT_IB_IF:
		/* Invert both clocks */
		strcr ^= CCSR_SSI_STCR_TSCKP;
		strcr ^= CCSR_SSI_STCR_TFSI;
		break;
	default:
		return -EINVAL;
	}

	/* DAI clock master masks */
	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
	case SND_SOC_DAIFMT_CBS_CFS:
		strcr |= CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR;
		scr |= CCSR_SSI_SCR_SYS_CLK_EN;
		break;
	case SND_SOC_DAIFMT_CBM_CFM:
		scr &= ~CCSR_SSI_SCR_SYS_CLK_EN;
		break;
	default:
		return -EINVAL;
	}

	stcr |= strcr;
	srcr |= strcr;

	if (ssi_private->cpu_dai_drv.symmetric_rates) {
		/* Need to clear RXDIR when using SYNC mode */
		srcr &= ~CCSR_SSI_SRCR_RXDIR;
		scr |= CCSR_SSI_SCR_SYN;
	}

	write_ssi(stcr, &ssi->stcr);
	write_ssi(srcr, &ssi->srcr);
	write_ssi(scr, &ssi->scr);

784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
	/*
	 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We don't
	 * use FIFO 1. We program the transmit water to signal a DMA transfer
	 * if there are only two (or fewer) elements left in the FIFO. Two
	 * elements equals one frame (left channel, right channel). This value,
	 * however, depends on the depth of the transmit buffer.
	 *
	 * We set the watermark on the same level as the DMA burstsize.  For
	 * fiq it is probably better to use the biggest possible watermark
	 * size.
	 */
	if (ssi_private->use_dma)
		wm = ssi_private->fifo_depth - 2;
	else
		wm = ssi_private->fifo_depth;

	write_ssi(CCSR_SSI_SFCSR_TFWM0(wm) | CCSR_SSI_SFCSR_RFWM0(wm) |
			CCSR_SSI_SFCSR_TFWM1(wm) | CCSR_SSI_SFCSR_RFWM1(wm),
			&ssi->sfcsr);

	if (ssi_private->use_dual_fifo) {
		write_ssi_mask(&ssi->srcr, CCSR_SSI_SRCR_RFEN1,
				CCSR_SSI_SRCR_RFEN1);
		write_ssi_mask(&ssi->stcr, CCSR_SSI_STCR_TFEN1,
				CCSR_SSI_STCR_TFEN1);
		write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_TCH_EN,
				CCSR_SSI_SCR_TCH_EN);
	}

	if (fmt & SND_SOC_DAIFMT_AC97)
		fsl_ssi_setup_ac97(ssi_private);

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
	return 0;
}

/**
 * fsl_ssi_set_dai_tdm_slot - set TDM slot number
 *
 * Note: This function can be only called when using SSI as DAI master
 */
static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
				u32 rx_mask, int slots, int slot_width)
{
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	u32 val;

	/* The slot number should be >= 2 if using Network mode or I2S mode */
	val = read_ssi(&ssi->scr) & (CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_NET);
	if (val && slots < 2) {
		dev_err(cpu_dai->dev, "slot number should be >= 2 in I2S or NET\n");
		return -EINVAL;
	}

	write_ssi_mask(&ssi->stccr, CCSR_SSI_SxCCR_DC_MASK,
			CCSR_SSI_SxCCR_DC(slots));
	write_ssi_mask(&ssi->srccr, CCSR_SSI_SxCCR_DC_MASK,
			CCSR_SSI_SxCCR_DC(slots));

	/* The register SxMSKs needs SSI to provide essential clock due to
	 * hardware design. So we here temporarily enable SSI to set them.
	 */
	val = read_ssi(&ssi->scr) & CCSR_SSI_SCR_SSIEN;
	write_ssi_mask(&ssi->scr, 0, CCSR_SSI_SCR_SSIEN);

	write_ssi(tx_mask, &ssi->stmsk);
	write_ssi(rx_mask, &ssi->srmsk);

	write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, val);

	return 0;
}

857 858 859 860 861 862 863 864 865
/**
 * fsl_ssi_trigger: start and stop the DMA transfer.
 *
 * This function is called by ALSA to start, stop, pause, and resume the DMA
 * transfer of data.
 *
 * The DMA channel is in external master start and pause mode, which
 * means the SSI completely controls the flow of data.
 */
866 867
static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
			   struct snd_soc_dai *dai)
868 869
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
870
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
871
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
872
	unsigned long flags;
873

874 875
	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
876
	case SNDRV_PCM_TRIGGER_RESUME:
877
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
878
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
879
			fsl_ssi_tx_config(ssi_private, true);
880
		else
881
			fsl_ssi_rx_config(ssi_private, true);
882 883 884
		break;

	case SNDRV_PCM_TRIGGER_STOP:
885
	case SNDRV_PCM_TRIGGER_SUSPEND:
886 887
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
888
			fsl_ssi_tx_config(ssi_private, false);
889
		else
890
			fsl_ssi_rx_config(ssi_private, false);
891

892
		if (!fsl_ssi_is_ac97(ssi_private) && (read_ssi(&ssi->scr) &
893 894 895 896 897
					(CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE)) == 0) {
			spin_lock_irqsave(&ssi_private->baudclk_lock, flags);
			ssi_private->baudclk_locked = false;
			spin_unlock_irqrestore(&ssi_private->baudclk_lock, flags);
		}
898 899 900 901 902 903
		break;

	default:
		return -EINVAL;
	}

904
	if (fsl_ssi_is_ac97(ssi_private)) {
905 906 907 908 909
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
			write_ssi(CCSR_SSI_SOR_TX_CLR, &ssi->sor);
		else
			write_ssi(CCSR_SSI_SOR_RX_CLR, &ssi->sor);
	}
910

911 912 913
	return 0;
}

914 915 916 917
static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
{
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai);

918
	if (fsl_ssi_on_imx(ssi_private) && ssi_private->use_dma) {
919 920 921 922 923 924 925
		dai->playback_dma_data = &ssi_private->dma_params_tx;
		dai->capture_dma_data = &ssi_private->dma_params_rx;
	}

	return 0;
}

926
static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
927 928
	.startup	= fsl_ssi_startup,
	.hw_params	= fsl_ssi_hw_params,
929 930 931
	.set_fmt	= fsl_ssi_set_dai_fmt,
	.set_sysclk	= fsl_ssi_set_dai_sysclk,
	.set_tdm_slot	= fsl_ssi_set_dai_tdm_slot,
932 933 934
	.trigger	= fsl_ssi_trigger,
};

935 936
/* Template for the CPU dai driver structure */
static struct snd_soc_dai_driver fsl_ssi_dai_template = {
937
	.probe = fsl_ssi_dai_probe,
938
	.playback = {
939
		.channels_min = 1,
940 941 942 943 944
		.channels_max = 2,
		.rates = FSLSSI_I2S_RATES,
		.formats = FSLSSI_I2S_FORMATS,
	},
	.capture = {
945
		.channels_min = 1,
946 947 948 949
		.channels_max = 2,
		.rates = FSLSSI_I2S_RATES,
		.formats = FSLSSI_I2S_FORMATS,
	},
950
	.ops = &fsl_ssi_dai_ops,
951 952
};

953 954 955 956
static const struct snd_soc_component_driver fsl_ssi_component = {
	.name		= "fsl-ssi",
};

957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
	.ac97_control = 1,
	.playback = {
		.stream_name = "AC97 Playback",
		.channels_min = 2,
		.channels_max = 2,
		.rates = SNDRV_PCM_RATE_8000_48000,
		.formats = SNDRV_PCM_FMTBIT_S16_LE,
	},
	.capture = {
		.stream_name = "AC97 Capture",
		.channels_min = 2,
		.channels_max = 2,
		.rates = SNDRV_PCM_RATE_48000,
		.formats = SNDRV_PCM_FMTBIT_S16_LE,
	},
973
	.ops = &fsl_ssi_dai_ops,
974 975 976 977 978
};


static struct fsl_ssi_private *fsl_ac97_data;

979
static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
		unsigned short val)
{
	struct ccsr_ssi *ssi = fsl_ac97_data->ssi;
	unsigned int lreg;
	unsigned int lval;

	if (reg > 0x7f)
		return;


	lreg = reg <<  12;
	write_ssi(lreg, &ssi->sacadd);

	lval = val << 4;
	write_ssi(lval , &ssi->sacdat);

	write_ssi_mask(&ssi->sacnt, CCSR_SSI_SACNT_RDWR_MASK,
			CCSR_SSI_SACNT_WR);
	udelay(100);
}

1001
static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
		unsigned short reg)
{
	struct ccsr_ssi *ssi = fsl_ac97_data->ssi;

	unsigned short val = -1;
	unsigned int lreg;

	lreg = (reg & 0x7f) <<  12;
	write_ssi(lreg, &ssi->sacadd);
	write_ssi_mask(&ssi->sacnt, CCSR_SSI_SACNT_RDWR_MASK,
			CCSR_SSI_SACNT_RD);

	udelay(100);

	val = (read_ssi(&ssi->sacdat) >> 4) & 0xffff;

	return val;
}

static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
	.read		= fsl_ssi_ac97_read,
	.write		= fsl_ssi_ac97_write,
};

1026
/**
1027
 * Make every character in a string lower-case
1028
 */
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
static void make_lowercase(char *s)
{
	char *p = s;
	char c;

	while ((c = *p)) {
		if ((c >= 'A') && (c <= 'Z'))
			*p = c + ('a' - 'A');
		p++;
	}
}

1041
static int fsl_ssi_imx_probe(struct platform_device *pdev,
1042
		struct fsl_ssi_private *ssi_private, void __iomem *iomem)
1043 1044
{
	struct device_node *np = pdev->dev.of_node;
1045
	u32 dmas[4];
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
	int ret;

	ssi_private->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(ssi_private->clk)) {
		ret = PTR_ERR(ssi_private->clk);
		dev_err(&pdev->dev, "could not get clock: %d\n", ret);
		return ret;
	}

	ret = clk_prepare_enable(ssi_private->clk);
	if (ret) {
		dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n", ret);
		return ret;
	}

	/* For those SLAVE implementations, we ingore non-baudclk cases
	 * and, instead, abandon MASTER mode that needs baud clock.
	 */
	ssi_private->baudclk = devm_clk_get(&pdev->dev, "baud");
	if (IS_ERR(ssi_private->baudclk))
		dev_dbg(&pdev->dev, "could not get baud clock: %ld\n",
			 PTR_ERR(ssi_private->baudclk));
	else
		clk_prepare_enable(ssi_private->baudclk);

	/*
	 * We have burstsize be "fifo_depth - 2" to match the SSI
	 * watermark setting in fsl_ssi_startup().
	 */
	ssi_private->dma_params_tx.maxburst = ssi_private->fifo_depth - 2;
	ssi_private->dma_params_rx.maxburst = ssi_private->fifo_depth - 2;
	ssi_private->dma_params_tx.addr = ssi_private->ssi_phys +
			offsetof(struct ccsr_ssi, stx0);
	ssi_private->dma_params_rx.addr = ssi_private->ssi_phys +
			offsetof(struct ccsr_ssi, srx0);

1082 1083
	ret = !of_property_read_u32_array(np, "dmas", dmas, 4);
	if (ssi_private->use_dma && !ret && dmas[2] == IMX_DMATYPE_SSI_DUAL) {
1084 1085 1086 1087 1088 1089 1090 1091
		ssi_private->use_dual_fifo = true;
		/* When using dual fifo mode, we need to keep watermark
		 * as even numbers due to dma script limitation.
		 */
		ssi_private->dma_params_tx.maxburst &= ~0x1;
		ssi_private->dma_params_rx.maxburst &= ~0x1;
	}

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
	if (!ssi_private->use_dma) {

		/*
		 * Some boards use an incompatible codec. To get it
		 * working, we are using imx-fiq-pcm-audio, that
		 * can handle those codecs. DMA is not possible in this
		 * situation.
		 */

		ssi_private->fiq_params.irq = ssi_private->irq;
		ssi_private->fiq_params.base = iomem;
		ssi_private->fiq_params.dma_params_rx =
			&ssi_private->dma_params_rx;
		ssi_private->fiq_params.dma_params_tx =
			&ssi_private->dma_params_tx;

		ret = imx_pcm_fiq_init(pdev, &ssi_private->fiq_params);
		if (ret)
			goto error_pcm;
	} else {
		ret = imx_pcm_dma_init(pdev);
		if (ret)
			goto error_pcm;
	}

1117
	return 0;
1118 1119 1120 1121 1122 1123 1124 1125

error_pcm:
	if (!IS_ERR(ssi_private->baudclk))
		clk_disable_unprepare(ssi_private->baudclk);

	clk_disable_unprepare(ssi_private->clk);

	return ret;
1126 1127 1128 1129 1130
}

static void fsl_ssi_imx_clean(struct platform_device *pdev,
		struct fsl_ssi_private *ssi_private)
{
1131 1132
	if (!ssi_private->use_dma)
		imx_pcm_fiq_exit(pdev);
1133 1134 1135 1136 1137
	if (!IS_ERR(ssi_private->baudclk))
		clk_disable_unprepare(ssi_private->baudclk);
	clk_disable_unprepare(ssi_private->clk);
}

1138
static int fsl_ssi_probe(struct platform_device *pdev)
1139 1140 1141
{
	struct fsl_ssi_private *ssi_private;
	int ret = 0;
1142
	struct device_node *np = pdev->dev.of_node;
1143 1144
	const struct of_device_id *of_id;
	enum fsl_ssi_type hw_type;
1145
	const char *p, *sprop;
1146
	const uint32_t *iprop;
1147 1148
	struct resource res;
	char name[64];
1149
	bool ac97 = false;
1150

1151 1152 1153
	/* SSIs that are not connected on the board should have a
	 *      status = "disabled"
	 * property in their device tree nodes.
1154
	 */
1155
	if (!of_device_is_available(np))
1156 1157
		return -ENODEV;

1158 1159 1160 1161 1162
	of_id = of_match_device(fsl_ssi_ids, &pdev->dev);
	if (!of_id)
		return -EINVAL;
	hw_type = (enum fsl_ssi_type) of_id->data;

1163
	sprop = of_get_property(np, "fsl,mode", NULL);
1164 1165 1166 1167
	if (!sprop) {
		dev_err(&pdev->dev, "fsl,mode property is necessary\n");
		return -EINVAL;
	}
1168
	if (!strcmp(sprop, "ac97-slave"))
1169
		ac97 = true;
1170

1171 1172
	ssi_private = devm_kzalloc(&pdev->dev, sizeof(*ssi_private),
			GFP_KERNEL);
1173
	if (!ssi_private) {
1174
		dev_err(&pdev->dev, "could not allocate DAI object\n");
1175
		return -ENOMEM;
1176 1177
	}

1178 1179
	ssi_private->use_dma = !of_property_read_bool(np,
			"fsl,fiq-stream-filter");
1180
	ssi_private->hw_type = hw_type;
1181

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	if (ac97) {
		memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_ac97_dai,
				sizeof(fsl_ssi_ac97_dai));

		fsl_ac97_data = ssi_private;

		snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
	} else {
		/* Initialize this copy of the CPU DAI driver structure */
		memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
		       sizeof(fsl_ssi_dai_template));
	}
1194
	ssi_private->cpu_dai_drv.name = dev_name(&pdev->dev);
1195 1196 1197 1198

	/* Get the addresses and IRQ */
	ret = of_address_to_resource(np, 0, &res);
	if (ret) {
1199
		dev_err(&pdev->dev, "could not determine device resources\n");
1200
		return ret;
1201
	}
1202 1203 1204
	ssi_private->ssi = of_iomap(np, 0);
	if (!ssi_private->ssi) {
		dev_err(&pdev->dev, "could not map device resources\n");
1205
		return -ENOMEM;
1206
	}
1207
	ssi_private->ssi_phys = res.start;
1208

1209
	ssi_private->irq = irq_of_parse_and_map(np, 0);
1210
	if (!ssi_private->irq) {
1211
		dev_err(&pdev->dev, "no irq for node %s\n", np->full_name);
1212
		return -ENXIO;
1213 1214
	}

1215
	/* Are the RX and the TX clocks locked? */
1216
	if (!of_find_property(np, "fsl,ssi-asynchronous", NULL)) {
1217
		ssi_private->cpu_dai_drv.symmetric_rates = 1;
1218 1219 1220
		ssi_private->cpu_dai_drv.symmetric_channels = 1;
		ssi_private->cpu_dai_drv.symmetric_samplebits = 1;
	}
1221

1222 1223 1224
	/* Determine the FIFO depth. */
	iprop = of_get_property(np, "fsl,fifo-depth", NULL);
	if (iprop)
1225
		ssi_private->fifo_depth = be32_to_cpup(iprop);
1226 1227 1228 1229
	else
                /* Older 8610 DTs didn't have the fifo-depth property */
		ssi_private->fifo_depth = 8;

1230 1231 1232
	ssi_private->baudclk_locked = false;
	spin_lock_init(&ssi_private->baudclk_lock);

1233 1234
	dev_set_drvdata(&pdev->dev, ssi_private);

1235
	if (fsl_ssi_on_imx(ssi_private)) {
1236
		ret = fsl_ssi_imx_probe(pdev, ssi_private, ssi_private->ssi);
1237
		if (ret)
1238
			goto error_irqmap;
1239 1240
	}

1241 1242 1243 1244 1245 1246 1247
	ret = snd_soc_register_component(&pdev->dev, &fsl_ssi_component,
					 &ssi_private->cpu_dai_drv, 1);
	if (ret) {
		dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
		goto error_asoc_register;
	}

1248
	if (ssi_private->use_dma) {
1249
		ret = devm_request_irq(&pdev->dev, ssi_private->irq,
1250
					fsl_ssi_isr, 0, dev_name(&pdev->dev),
1251 1252 1253 1254
					ssi_private);
		if (ret < 0) {
			dev_err(&pdev->dev, "could not claim irq %u\n",
					ssi_private->irq);
1255
			goto error_irq;
1256
		}
1257 1258
	}

1259
	ret = fsl_ssi_debugfs_create(&ssi_private->dbg_stats, &pdev->dev);
1260
	if (ret)
1261
		goto error_asoc_register;
1262 1263 1264 1265 1266 1267

	/*
	 * If codec-handle property is missing from SSI node, we assume
	 * that the machine driver uses new binding which does not require
	 * SSI driver to trigger machine driver's probe.
	 */
1268
	if (!of_get_property(np, "codec-handle", NULL))
1269 1270
		goto done;

1271
	/* Trigger the machine driver's probe function.  The platform driver
1272
	 * name of the machine driver is taken from /compatible property of the
1273 1274 1275
	 * device tree.  We also pass the address of the CPU DAI driver
	 * structure.
	 */
1276 1277
	sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
	/* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
1278 1279 1280 1281 1282 1283 1284
	p = strrchr(sprop, ',');
	if (p)
		sprop = p + 1;
	snprintf(name, sizeof(name), "snd-soc-%s", sprop);
	make_lowercase(name);

	ssi_private->pdev =
1285
		platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
1286 1287
	if (IS_ERR(ssi_private->pdev)) {
		ret = PTR_ERR(ssi_private->pdev);
1288
		dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
1289
		goto error_sound_card;
M
Mark Brown 已提交
1290
	}
1291

1292
done:
1293
	return 0;
1294

1295
error_sound_card:
1296
	fsl_ssi_debugfs_remove(&ssi_private->dbg_stats);
1297

1298
error_irq:
1299
	snd_soc_unregister_component(&pdev->dev);
1300

1301
error_asoc_register:
1302
	if (fsl_ssi_on_imx(ssi_private))
1303
		fsl_ssi_imx_clean(pdev, ssi_private);
1304 1305

error_irqmap:
1306
	if (ssi_private->use_dma)
1307
		irq_dispose_mapping(ssi_private->irq);
1308

1309
	return ret;
1310 1311
}

1312
static int fsl_ssi_remove(struct platform_device *pdev)
1313
{
1314
	struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
1315

1316
	fsl_ssi_debugfs_remove(&ssi_private->dbg_stats);
1317

1318
	if (ssi_private->pdev)
1319
		platform_device_unregister(ssi_private->pdev);
1320
	snd_soc_unregister_component(&pdev->dev);
1321

1322
	if (fsl_ssi_on_imx(ssi_private))
1323 1324
		fsl_ssi_imx_clean(pdev, ssi_private);

1325
	if (ssi_private->use_dma)
1326
		irq_dispose_mapping(ssi_private->irq);
1327 1328

	return 0;
1329
}
1330

1331
static struct platform_driver fsl_ssi_driver = {
1332 1333 1334 1335 1336 1337 1338 1339
	.driver = {
		.name = "fsl-ssi-dai",
		.owner = THIS_MODULE,
		.of_match_table = fsl_ssi_ids,
	},
	.probe = fsl_ssi_probe,
	.remove = fsl_ssi_remove,
};
1340

1341
module_platform_driver(fsl_ssi_driver);
1342

1343
MODULE_ALIAS("platform:fsl-ssi-dai");
1344 1345
MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
1346
MODULE_LICENSE("GPL v2");