fsl_ssi.c 32.2 KB
Newer Older
1 2 3 4 5
/*
 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
 *
 * Author: Timur Tabi <timur@freescale.com>
 *
6 7 8 9 10
 * Copyright 2007-2010 Freescale Semiconductor, Inc.
 *
 * This file is licensed under the terms of the GNU General Public License
 * version 2.  This program is licensed "as is" without any warranty of any
 * kind, whether express or implied.
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
 *
 *
 * Some notes why imx-pcm-fiq is used instead of DMA on some boards:
 *
 * The i.MX SSI core has some nasty limitations in AC97 mode. While most
 * sane processor vendors have a FIFO per AC97 slot, the i.MX has only
 * one FIFO which combines all valid receive slots. We cannot even select
 * which slots we want to receive. The WM9712 with which this driver
 * was developed with always sends GPIO status data in slot 12 which
 * we receive in our (PCM-) data stream. The only chance we have is to
 * manually skip this data in the FIQ handler. With sampling rates different
 * from 48000Hz not every frame has valid receive data, so the ratio
 * between pcm data and GPIO status data changes. Our FIQ handler is not
 * able to handle this, hence this driver only works with 48000Hz sampling
 * rate.
 * Reading and writing AC97 registers is another challenge. The core
 * provides us status bits when the read register is updated with *another*
 * value. When we read the same register two times (and the register still
 * contains the same value) these status bits are not set. We work
 * around this by not polling these bits but only wait a fixed delay.
31 32 33
 */

#include <linux/init.h>
34
#include <linux/io.h>
35 36
#include <linux/module.h>
#include <linux/interrupt.h>
37
#include <linux/clk.h>
38 39
#include <linux/device.h>
#include <linux/delay.h>
40
#include <linux/slab.h>
41 42
#include <linux/of_address.h>
#include <linux/of_irq.h>
43
#include <linux/of_platform.h>
44 45 46 47 48 49

#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/soc.h>
50
#include <sound/dmaengine_pcm.h>
51 52

#include "fsl_ssi.h"
53
#include "imx-pcm.h"
54

55 56 57 58
#ifdef PPC
#define read_ssi(addr)			 in_be32(addr)
#define write_ssi(val, addr)		 out_be32(addr, val)
#define write_ssi_mask(addr, clear, set) clrsetbits_be32(addr, clear, set)
59
#else
60 61 62 63 64 65 66 67 68 69 70 71 72 73
#define read_ssi(addr)			 readl(addr)
#define write_ssi(val, addr)		 writel(val, addr)
/*
 * FIXME: Proper locking should be added at write_ssi_mask caller level
 * to ensure this register read/modify/write sequence is race free.
 */
static inline void write_ssi_mask(u32 __iomem *addr, u32 clear, u32 set)
{
	u32 val = readl(addr);
	val = (val & ~clear) | set;
	writel(val, addr);
}
#endif

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
/**
 * FSLSSI_I2S_RATES: sample rates supported by the I2S
 *
 * This driver currently only supports the SSI running in I2S slave mode,
 * which means the codec determines the sample rate.  Therefore, we tell
 * ALSA that we support all rates and let the codec driver decide what rates
 * are really supported.
 */
#define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
			  SNDRV_PCM_RATE_CONTINUOUS)

/**
 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
 *
 * This driver currently only supports the SSI running in I2S slave mode.
 *
 * The SSI has a limitation in that the samples must be in the same byte
 * order as the host CPU.  This is because when multiple bytes are written
 * to the STX register, the bytes and bits must be written in the same
 * order.  The STX is a shift register, so all the bits need to be aligned
 * (bit-endianness must match byte-endianness).  Processors typically write
 * the bits within a byte in the same order that the bytes of a word are
 * written in.  So if the host CPU is big-endian, then only big-endian
 * samples will be written to STX properly.
 */
#ifdef __BIG_ENDIAN
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
	 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
	 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
#else
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
#endif

109 110 111 112 113 114 115
/* SIER bitflag of interrupts to enable */
#define SIER_FLAGS (CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | \
		    CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | \
		    CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | \
		    CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | \
		    CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN)

116 117 118 119 120 121
/**
 * fsl_ssi_private: per-SSI private data
 *
 * @ssi: pointer to the SSI's registers
 * @ssi_phys: physical address of the SSI registers
 * @irq: IRQ of this SSI
122 123
 * @first_stream: pointer to the stream that was opened first
 * @second_stream: pointer to second stream
124 125 126 127 128
 * @playback: the number of playback streams opened
 * @capture: the number of capture streams opened
 * @cpu_dai: the CPU DAI for this device
 * @dev_attr: the sysfs device attribute structure
 * @stats: SSI statistics
129
 * @name: name for this device
130 131 132 133 134
 */
struct fsl_ssi_private {
	struct ccsr_ssi __iomem *ssi;
	dma_addr_t ssi_phys;
	unsigned int irq;
135 136
	struct snd_pcm_substream *first_stream;
	struct snd_pcm_substream *second_stream;
137
	unsigned int fifo_depth;
138
	struct snd_soc_dai_driver cpu_dai_drv;
139
	struct device_attribute dev_attr;
140
	struct platform_device *pdev;
141

142 143
	bool new_binding;
	bool ssi_on_imx;
144
	bool imx_ac97;
145
	bool use_dma;
146
	u8 i2s_mode;
147
	struct clk *clk;
148 149 150 151
	struct snd_dmaengine_dai_dma_data dma_params_tx;
	struct snd_dmaengine_dai_dma_data dma_params_rx;
	struct imx_dma_data filter_data_tx;
	struct imx_dma_data filter_data_rx;
152
	struct imx_pcm_fiq_params fiq_params;
153

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
	struct {
		unsigned int rfrc;
		unsigned int tfrc;
		unsigned int cmdau;
		unsigned int cmddu;
		unsigned int rxt;
		unsigned int rdr1;
		unsigned int rdr0;
		unsigned int tde1;
		unsigned int tde0;
		unsigned int roe1;
		unsigned int roe0;
		unsigned int tue1;
		unsigned int tue0;
		unsigned int tfs;
		unsigned int rfs;
		unsigned int tls;
		unsigned int rls;
		unsigned int rff1;
		unsigned int rff0;
		unsigned int tfe1;
		unsigned int tfe0;
	} stats;
177 178

	char name[1];
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
};

/**
 * fsl_ssi_isr: SSI interrupt handler
 *
 * Although it's possible to use the interrupt handler to send and receive
 * data to/from the SSI, we use the DMA instead.  Programming is more
 * complicated, but the performance is much better.
 *
 * This interrupt handler is used only to gather statistics.
 *
 * @irq: IRQ of the SSI device
 * @dev_id: pointer to the ssi_private structure for this SSI device
 */
static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
{
	struct fsl_ssi_private *ssi_private = dev_id;
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	irqreturn_t ret = IRQ_NONE;
	__be32 sisr;
	__be32 sisr2 = 0;

	/* We got an interrupt, so read the status register to see what we
	   were interrupted for.  We mask it with the Interrupt Enable register
	   so that we only check for events that we're interested in.
	 */
205
	sisr = read_ssi(&ssi->sisr) & SIER_FLAGS;
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

	if (sisr & CCSR_SSI_SISR_RFRC) {
		ssi_private->stats.rfrc++;
		sisr2 |= CCSR_SSI_SISR_RFRC;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFRC) {
		ssi_private->stats.tfrc++;
		sisr2 |= CCSR_SSI_SISR_TFRC;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_CMDAU) {
		ssi_private->stats.cmdau++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_CMDDU) {
		ssi_private->stats.cmddu++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RXT) {
		ssi_private->stats.rxt++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RDR1) {
		ssi_private->stats.rdr1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RDR0) {
		ssi_private->stats.rdr0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TDE1) {
		ssi_private->stats.tde1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TDE0) {
		ssi_private->stats.tde0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_ROE1) {
		ssi_private->stats.roe1++;
		sisr2 |= CCSR_SSI_SISR_ROE1;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_ROE0) {
		ssi_private->stats.roe0++;
		sisr2 |= CCSR_SSI_SISR_ROE0;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TUE1) {
		ssi_private->stats.tue1++;
		sisr2 |= CCSR_SSI_SISR_TUE1;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TUE0) {
		ssi_private->stats.tue0++;
		sisr2 |= CCSR_SSI_SISR_TUE0;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFS) {
		ssi_private->stats.tfs++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFS) {
		ssi_private->stats.rfs++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TLS) {
		ssi_private->stats.tls++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RLS) {
		ssi_private->stats.rls++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFF1) {
		ssi_private->stats.rff1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFF0) {
		ssi_private->stats.rff0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFE1) {
		ssi_private->stats.tfe1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFE0) {
		ssi_private->stats.tfe0++;
		ret = IRQ_HANDLED;
	}

	/* Clear the bits that we set */
	if (sisr2)
320
		write_ssi(sisr2, &ssi->sisr);
321 322 323 324

	return ret;
}

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
static void fsl_ssi_setup_ac97(struct fsl_ssi_private *ssi_private)
{
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;

	/*
	 * Setup the clock control register
	 */
	write_ssi(CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13),
			&ssi->stccr);
	write_ssi(CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13),
			&ssi->srccr);

	/*
	 * Enable AC97 mode and startup the SSI
	 */
	write_ssi(CCSR_SSI_SACNT_AC97EN | CCSR_SSI_SACNT_FV,
			&ssi->sacnt);
	write_ssi(0xff, &ssi->saccdis);
	write_ssi(0x300, &ssi->saccen);

	/*
	 * Enable SSI, Transmit and Receive. AC97 has to communicate with the
	 * codec before a stream is started.
	 */
	write_ssi_mask(&ssi->scr, 0, CCSR_SSI_SCR_SSIEN |
			CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE);

	write_ssi(CCSR_SSI_SOR_WAIT(3), &ssi->sor);
}

355 356 357 358 359 360 361
static int fsl_ssi_setup(struct fsl_ssi_private *ssi_private)
{
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	u8 wm;
	int synchronous = ssi_private->cpu_dai_drv.symmetric_rates;

	if (ssi_private->imx_ac97)
362
		ssi_private->i2s_mode = CCSR_SSI_SCR_I2S_MODE_NORMAL | CCSR_SSI_SCR_NET;
363
	else
364
		ssi_private->i2s_mode = CCSR_SSI_SCR_I2S_MODE_SLAVE;
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380

	/*
	 * Section 16.5 of the MPC8610 reference manual says that the SSI needs
	 * to be disabled before updating the registers we set here.
	 */
	write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);

	/*
	 * Program the SSI into I2S Slave Non-Network Synchronous mode. Also
	 * enable the transmit and receive FIFO.
	 *
	 * FIXME: Little-endian samples require a different shift dir
	 */
	write_ssi_mask(&ssi->scr,
		CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
		CCSR_SSI_SCR_TFR_CLK_DIS |
381
		ssi_private->i2s_mode |
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
		(synchronous ? CCSR_SSI_SCR_SYN : 0));

	write_ssi(CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
		 CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
		 CCSR_SSI_STCR_TSCKP, &ssi->stcr);

	write_ssi(CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
		 CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
		 CCSR_SSI_SRCR_RSCKP, &ssi->srcr);
	/*
	 * The DC and PM bits are only used if the SSI is the clock master.
	 */

	/*
	 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We don't
	 * use FIFO 1. We program the transmit water to signal a DMA transfer
	 * if there are only two (or fewer) elements left in the FIFO. Two
	 * elements equals one frame (left channel, right channel). This value,
	 * however, depends on the depth of the transmit buffer.
	 *
	 * We set the watermark on the same level as the DMA burstsize.  For
	 * fiq it is probably better to use the biggest possible watermark
	 * size.
	 */
	if (ssi_private->use_dma)
		wm = ssi_private->fifo_depth - 2;
	else
		wm = ssi_private->fifo_depth;

	write_ssi(CCSR_SSI_SFCSR_TFWM0(wm) | CCSR_SSI_SFCSR_RFWM0(wm) |
		CCSR_SSI_SFCSR_TFWM1(wm) | CCSR_SSI_SFCSR_RFWM1(wm),
		&ssi->sfcsr);

	/*
	 * For ac97 interrupts are enabled with the startup of the substream
	 * because it is also running without an active substream. Normally SSI
	 * is only enabled when there is a substream.
	 */
420 421
	if (ssi_private->imx_ac97)
		fsl_ssi_setup_ac97(ssi_private);
422 423 424 425 426

	return 0;
}


427 428 429 430 431 432 433 434
/**
 * fsl_ssi_startup: create a new substream
 *
 * This is the first function called when a stream is opened.
 *
 * If this is the first stream open, then grab the IRQ and program most of
 * the SSI registers.
 */
435 436
static int fsl_ssi_startup(struct snd_pcm_substream *substream,
			   struct snd_soc_dai *dai)
437 438
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
439 440 441
	struct fsl_ssi_private *ssi_private =
		snd_soc_dai_get_drvdata(rtd->cpu_dai);
	int synchronous = ssi_private->cpu_dai_drv.symmetric_rates;
442 443 444 445 446

	/*
	 * If this is the first stream opened, then request the IRQ
	 * and initialize the SSI registers.
	 */
447 448 449
	if (!ssi_private->first_stream) {
		ssi_private->first_stream = substream;

450
		/*
451 452
		 * fsl_ssi_setup was already called by ac97_init earlier if
		 * the driver is in ac97 mode.
453
		 */
454 455
		if (!ssi_private->imx_ac97)
			fsl_ssi_setup(ssi_private);
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
	} else {
		if (synchronous) {
			struct snd_pcm_runtime *first_runtime =
				ssi_private->first_stream->runtime;
			/*
			 * This is the second stream open, and we're in
			 * synchronous mode, so we need to impose sample
			 * sample size constraints. This is because STCCR is
			 * used for playback and capture in synchronous mode,
			 * so there's no way to specify different word
			 * lengths.
			 *
			 * Note that this can cause a race condition if the
			 * second stream is opened before the first stream is
			 * fully initialized.  We provide some protection by
			 * checking to make sure the first stream is
			 * initialized, but it's not perfect.  ALSA sometimes
			 * re-initializes the driver with a different sample
			 * rate or size.  If the second stream is opened
			 * before the first stream has received its final
			 * parameters, then the second stream may be
			 * constrained to the wrong sample rate or size.
			 */
479 480 481
			if (first_runtime->sample_bits) {
				snd_pcm_hw_constraint_minmax(substream->runtime,
						SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
482 483
				first_runtime->sample_bits,
				first_runtime->sample_bits);
484
			}
485
		}
486 487 488 489

		ssi_private->second_stream = substream;
	}

490 491 492 493
	return 0;
}

/**
494
 * fsl_ssi_hw_params - program the sample size
495 496 497 498 499 500 501 502 503 504 505
 *
 * Most of the SSI registers have been programmed in the startup function,
 * but the word length must be programmed here.  Unfortunately, programming
 * the SxCCR.WL bits requires the SSI to be temporarily disabled.  This can
 * cause a problem with supporting simultaneous playback and capture.  If
 * the SSI is already playing a stream, then that stream may be temporarily
 * stopped when you start capture.
 *
 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
 * clock master.
 */
506 507
static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
	struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
508
{
509
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
510
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
511
	unsigned int channels = params_channels(hw_params);
512 513 514
	unsigned int sample_size =
		snd_pcm_format_width(params_format(hw_params));
	u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
515
	int enabled = read_ssi(&ssi->scr) & CCSR_SSI_SCR_SSIEN;
516

517 518 519 520 521 522
	/*
	 * If we're in synchronous mode, and the SSI is already enabled,
	 * then STCCR is already set properly.
	 */
	if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
		return 0;
523

524 525 526 527 528 529 530 531 532
	/*
	 * FIXME: The documentation says that SxCCR[WL] should not be
	 * modified while the SSI is enabled.  The only time this can
	 * happen is if we're trying to do simultaneous playback and
	 * capture in asynchronous mode.  Unfortunately, I have been enable
	 * to get that to work at all on the P1022DS.  Therefore, we don't
	 * bother to disable/enable the SSI when setting SxCCR[WL], because
	 * the SSI will stop anyway.  Maybe one day, this will get fixed.
	 */
533

534 535 536
	/* In synchronous mode, the SSI uses STCCR for capture */
	if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
	    ssi_private->cpu_dai_drv.symmetric_rates)
537
		write_ssi_mask(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl);
538
	else
539
		write_ssi_mask(&ssi->srccr, CCSR_SSI_SxCCR_WL_MASK, wl);
540

541 542 543 544 545
	if (!ssi_private->imx_ac97)
		write_ssi_mask(&ssi->scr,
				CCSR_SSI_SCR_NET | CCSR_SSI_SCR_I2S_MODE_MASK,
				channels == 1 ? 0 : ssi_private->i2s_mode);

546 547 548 549 550 551 552 553 554 555 556 557
	return 0;
}

/**
 * fsl_ssi_trigger: start and stop the DMA transfer.
 *
 * This function is called by ALSA to start, stop, pause, and resume the DMA
 * transfer of data.
 *
 * The DMA channel is in external master start and pause mode, which
 * means the SSI completely controls the flow of data.
 */
558 559
static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
			   struct snd_soc_dai *dai)
560 561
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
562
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
563
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
	unsigned int sier_bits;

	/*
	 *  Enable only the interrupts and DMA requests
	 *  that are needed for the channel. As the fiq
	 *  is polling for this bits, we have to ensure
	 *  that this are aligned with the preallocated
	 *  buffers
	 */

	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
		if (ssi_private->use_dma)
			sier_bits = SIER_FLAGS;
		else
			sier_bits = CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TFE0_EN;
	} else {
		if (ssi_private->use_dma)
			sier_bits = SIER_FLAGS;
		else
			sier_bits = CCSR_SSI_SIER_RIE | CCSR_SSI_SIER_RFF0_EN;
	}
585 586 587 588

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
589
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
590
			write_ssi_mask(&ssi->scr, 0,
591
				CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
592
		else
593
			write_ssi_mask(&ssi->scr, 0,
594
				CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
595 596 597 598 599
		break;

	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
600
			write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_TE, 0);
601
		else
602
			write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_RE, 0);
603

604 605
		if (!ssi_private->imx_ac97 && (read_ssi(&ssi->scr) &
					(CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE)) == 0)
606
			write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
607 608 609 610 611 612
		break;

	default:
		return -EINVAL;
	}

613 614
	write_ssi(sier_bits, &ssi->sier);

615 616 617 618 619 620 621 622
	return 0;
}

/**
 * fsl_ssi_shutdown: shutdown the SSI
 *
 * Shutdown the SSI if there are no other substreams open.
 */
623 624
static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
			     struct snd_soc_dai *dai)
625 626
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
627
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
628

629 630 631 632
	if (ssi_private->first_stream == substream)
		ssi_private->first_stream = ssi_private->second_stream;

	ssi_private->second_stream = NULL;
633 634
}

635 636 637 638
static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
{
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai);

639
	if (ssi_private->ssi_on_imx && ssi_private->use_dma) {
640 641 642 643 644 645 646
		dai->playback_dma_data = &ssi_private->dma_params_tx;
		dai->capture_dma_data = &ssi_private->dma_params_rx;
	}

	return 0;
}

647
static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
648 649 650 651 652 653
	.startup	= fsl_ssi_startup,
	.hw_params	= fsl_ssi_hw_params,
	.shutdown	= fsl_ssi_shutdown,
	.trigger	= fsl_ssi_trigger,
};

654 655
/* Template for the CPU dai driver structure */
static struct snd_soc_dai_driver fsl_ssi_dai_template = {
656
	.probe = fsl_ssi_dai_probe,
657
	.playback = {
658
		.channels_min = 1,
659 660 661 662 663
		.channels_max = 2,
		.rates = FSLSSI_I2S_RATES,
		.formats = FSLSSI_I2S_FORMATS,
	},
	.capture = {
664
		.channels_min = 1,
665 666 667 668
		.channels_max = 2,
		.rates = FSLSSI_I2S_RATES,
		.formats = FSLSSI_I2S_FORMATS,
	},
669
	.ops = &fsl_ssi_dai_ops,
670 671
};

672 673 674 675
static const struct snd_soc_component_driver fsl_ssi_component = {
	.name		= "fsl-ssi",
};

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
/**
 * fsl_ssi_ac97_trigger: start and stop the AC97 receive/transmit.
 *
 * This function is called by ALSA to start, stop, pause, and resume the
 * transfer of data.
 */
static int fsl_ssi_ac97_trigger(struct snd_pcm_substream *substream, int cmd,
			   struct snd_soc_dai *dai)
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(
			rtd->cpu_dai);
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
			write_ssi_mask(&ssi->sier, 0, CCSR_SSI_SIER_TIE |
					CCSR_SSI_SIER_TFE0_EN);
		else
			write_ssi_mask(&ssi->sier, 0, CCSR_SSI_SIER_RIE |
					CCSR_SSI_SIER_RFF0_EN);
		break;

	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
			write_ssi_mask(&ssi->sier, CCSR_SSI_SIER_TIE |
					CCSR_SSI_SIER_TFE0_EN, 0);
		else
			write_ssi_mask(&ssi->sier, CCSR_SSI_SIER_RIE |
					CCSR_SSI_SIER_RFF0_EN, 0);
		break;

	default:
		return -EINVAL;
	}

	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
		write_ssi(CCSR_SSI_SOR_TX_CLR, &ssi->sor);
	else
		write_ssi(CCSR_SSI_SOR_RX_CLR, &ssi->sor);

	return 0;
}

static const struct snd_soc_dai_ops fsl_ssi_ac97_dai_ops = {
	.startup	= fsl_ssi_startup,
	.shutdown	= fsl_ssi_shutdown,
	.trigger	= fsl_ssi_ac97_trigger,
};

static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
	.ac97_control = 1,
	.playback = {
		.stream_name = "AC97 Playback",
		.channels_min = 2,
		.channels_max = 2,
		.rates = SNDRV_PCM_RATE_8000_48000,
		.formats = SNDRV_PCM_FMTBIT_S16_LE,
	},
	.capture = {
		.stream_name = "AC97 Capture",
		.channels_min = 2,
		.channels_max = 2,
		.rates = SNDRV_PCM_RATE_48000,
		.formats = SNDRV_PCM_FMTBIT_S16_LE,
	},
	.ops = &fsl_ssi_ac97_dai_ops,
};


static struct fsl_ssi_private *fsl_ac97_data;

static void fsl_ssi_ac97_init(void)
{
	fsl_ssi_setup(fsl_ac97_data);
}

756
static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
		unsigned short val)
{
	struct ccsr_ssi *ssi = fsl_ac97_data->ssi;
	unsigned int lreg;
	unsigned int lval;

	if (reg > 0x7f)
		return;


	lreg = reg <<  12;
	write_ssi(lreg, &ssi->sacadd);

	lval = val << 4;
	write_ssi(lval , &ssi->sacdat);

	write_ssi_mask(&ssi->sacnt, CCSR_SSI_SACNT_RDWR_MASK,
			CCSR_SSI_SACNT_WR);
	udelay(100);
}

778
static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
		unsigned short reg)
{
	struct ccsr_ssi *ssi = fsl_ac97_data->ssi;

	unsigned short val = -1;
	unsigned int lreg;

	lreg = (reg & 0x7f) <<  12;
	write_ssi(lreg, &ssi->sacadd);
	write_ssi_mask(&ssi->sacnt, CCSR_SSI_SACNT_RDWR_MASK,
			CCSR_SSI_SACNT_RD);

	udelay(100);

	val = (read_ssi(&ssi->sacdat) >> 4) & 0xffff;

	return val;
}

static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
	.read		= fsl_ssi_ac97_read,
	.write		= fsl_ssi_ac97_write,
};

803 804 805 806 807 808 809 810 811 812 813 814
/* Show the statistics of a flag only if its interrupt is enabled.  The
 * compiler will optimze this code to a no-op if the interrupt is not
 * enabled.
 */
#define SIER_SHOW(flag, name) \
	do { \
		if (SIER_FLAGS & CCSR_SSI_SIER_##flag) \
			length += sprintf(buf + length, #name "=%u\n", \
				ssi_private->stats.name); \
	} while (0)


815 816 817
/**
 * fsl_sysfs_ssi_show: display SSI statistics
 *
818 819
 * Display the statistics for the current SSI device.  To avoid confusion,
 * we only show those counts that are enabled.
820 821 822 823 824
 */
static ssize_t fsl_sysfs_ssi_show(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct fsl_ssi_private *ssi_private =
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
		container_of(attr, struct fsl_ssi_private, dev_attr);
	ssize_t length = 0;

	SIER_SHOW(RFRC_EN, rfrc);
	SIER_SHOW(TFRC_EN, tfrc);
	SIER_SHOW(CMDAU_EN, cmdau);
	SIER_SHOW(CMDDU_EN, cmddu);
	SIER_SHOW(RXT_EN, rxt);
	SIER_SHOW(RDR1_EN, rdr1);
	SIER_SHOW(RDR0_EN, rdr0);
	SIER_SHOW(TDE1_EN, tde1);
	SIER_SHOW(TDE0_EN, tde0);
	SIER_SHOW(ROE1_EN, roe1);
	SIER_SHOW(ROE0_EN, roe0);
	SIER_SHOW(TUE1_EN, tue1);
	SIER_SHOW(TUE0_EN, tue0);
	SIER_SHOW(TFS_EN, tfs);
	SIER_SHOW(RFS_EN, rfs);
	SIER_SHOW(TLS_EN, tls);
	SIER_SHOW(RLS_EN, rls);
	SIER_SHOW(RFF1_EN, rff1);
	SIER_SHOW(RFF0_EN, rff0);
	SIER_SHOW(TFE1_EN, tfe1);
	SIER_SHOW(TFE0_EN, tfe0);
849 850 851 852 853

	return length;
}

/**
854
 * Make every character in a string lower-case
855
 */
856 857 858 859 860 861 862 863 864 865 866 867
static void make_lowercase(char *s)
{
	char *p = s;
	char c;

	while ((c = *p)) {
		if ((c >= 'A') && (c <= 'Z'))
			*p = c + ('a' - 'A');
		p++;
	}
}

868
static int fsl_ssi_probe(struct platform_device *pdev)
869 870 871
{
	struct fsl_ssi_private *ssi_private;
	int ret = 0;
872
	struct device_attribute *dev_attr = NULL;
873
	struct device_node *np = pdev->dev.of_node;
874
	const char *p, *sprop;
875
	const uint32_t *iprop;
876 877
	struct resource res;
	char name[64];
878
	bool shared;
879
	bool ac97 = false;
880

881 882 883
	/* SSIs that are not connected on the board should have a
	 *      status = "disabled"
	 * property in their device tree nodes.
884
	 */
885
	if (!of_device_is_available(np))
886 887 888 889
		return -ENODEV;

	/* We only support the SSI in "I2S Slave" mode */
	sprop = of_get_property(np, "fsl,mode", NULL);
890 891 892 893 894 895 896
	if (!sprop) {
		dev_err(&pdev->dev, "fsl,mode property is necessary\n");
		return -EINVAL;
	}
	if (!strcmp(sprop, "ac97-slave")) {
		ac97 = true;
	} else if (strcmp(sprop, "i2s-slave")) {
897
		dev_notice(&pdev->dev, "mode %s is unsupported\n", sprop);
898 899 900 901 902
		return -ENODEV;
	}

	/* The DAI name is the last part of the full name of the node. */
	p = strrchr(np->full_name, '/') + 1;
903
	ssi_private = devm_kzalloc(&pdev->dev, sizeof(*ssi_private) + strlen(p),
904
			      GFP_KERNEL);
905
	if (!ssi_private) {
906
		dev_err(&pdev->dev, "could not allocate DAI object\n");
907
		return -ENOMEM;
908 909
	}

910
	strcpy(ssi_private->name, p);
911

912 913 914
	ssi_private->use_dma = !of_property_read_bool(np,
			"fsl,fiq-stream-filter");

915 916 917 918 919 920 921 922 923 924 925 926 927
	if (ac97) {
		memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_ac97_dai,
				sizeof(fsl_ssi_ac97_dai));

		fsl_ac97_data = ssi_private;
		ssi_private->imx_ac97 = true;

		snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
	} else {
		/* Initialize this copy of the CPU DAI driver structure */
		memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
		       sizeof(fsl_ssi_dai_template));
	}
928 929 930 931 932
	ssi_private->cpu_dai_drv.name = ssi_private->name;

	/* Get the addresses and IRQ */
	ret = of_address_to_resource(np, 0, &res);
	if (ret) {
933
		dev_err(&pdev->dev, "could not determine device resources\n");
934
		return ret;
935
	}
936 937 938
	ssi_private->ssi = of_iomap(np, 0);
	if (!ssi_private->ssi) {
		dev_err(&pdev->dev, "could not map device resources\n");
939
		return -ENOMEM;
940
	}
941
	ssi_private->ssi_phys = res.start;
942

943
	ssi_private->irq = irq_of_parse_and_map(np, 0);
944
	if (!ssi_private->irq) {
945
		dev_err(&pdev->dev, "no irq for node %s\n", np->full_name);
946
		return -ENXIO;
947 948
	}

949
	/* Are the RX and the TX clocks locked? */
950
	if (!of_find_property(np, "fsl,ssi-asynchronous", NULL))
951
		ssi_private->cpu_dai_drv.symmetric_rates = 1;
952

953 954 955
	/* Determine the FIFO depth. */
	iprop = of_get_property(np, "fsl,fifo-depth", NULL);
	if (iprop)
956
		ssi_private->fifo_depth = be32_to_cpup(iprop);
957 958 959 960
	else
                /* Older 8610 DTs didn't have the fifo-depth property */
		ssi_private->fifo_depth = 8;

961 962 963
	if (of_device_is_compatible(pdev->dev.of_node, "fsl,imx21-ssi")) {
		u32 dma_events[2];
		ssi_private->ssi_on_imx = true;
964

965
		ssi_private->clk = devm_clk_get(&pdev->dev, NULL);
966 967 968
		if (IS_ERR(ssi_private->clk)) {
			ret = PTR_ERR(ssi_private->clk);
			dev_err(&pdev->dev, "could not get clock: %d\n", ret);
969
			goto error_irqmap;
970
		}
971 972 973 974 975 976
		ret = clk_prepare_enable(ssi_private->clk);
		if (ret) {
			dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n",
				ret);
			goto error_irqmap;
		}
977

978 979 980 981
		/*
		 * We have burstsize be "fifo_depth - 2" to match the SSI
		 * watermark setting in fsl_ssi_startup().
		 */
982
		ssi_private->dma_params_tx.maxburst =
983
			ssi_private->fifo_depth - 2;
984
		ssi_private->dma_params_rx.maxburst =
985
			ssi_private->fifo_depth - 2;
986
		ssi_private->dma_params_tx.addr =
987
			ssi_private->ssi_phys + offsetof(struct ccsr_ssi, stx0);
988
		ssi_private->dma_params_rx.addr =
989
			ssi_private->ssi_phys + offsetof(struct ccsr_ssi, srx0);
990 991 992 993
		ssi_private->dma_params_tx.filter_data =
			&ssi_private->filter_data_tx;
		ssi_private->dma_params_rx.filter_data =
			&ssi_private->filter_data_rx;
994 995 996 997 998 999 1000 1001
		if (!of_property_read_bool(pdev->dev.of_node, "dmas") &&
				ssi_private->use_dma) {
			/*
			 * FIXME: This is a temporary solution until all
			 * necessary dma drivers support the generic dma
			 * bindings.
			 */
			ret = of_property_read_u32_array(pdev->dev.of_node,
1002
					"fsl,ssi-dma-events", dma_events, 2);
1003 1004 1005 1006
			if (ret && ssi_private->use_dma) {
				dev_err(&pdev->dev, "could not get dma events but fsl-ssi is configured to use DMA\n");
				goto error_clk;
			}
1007
		}
1008 1009 1010 1011

		shared = of_device_is_compatible(of_get_parent(np),
			    "fsl,spba-bus");

1012
		imx_pcm_dma_params_init_data(&ssi_private->filter_data_tx,
1013
			dma_events[0], shared ? IMX_DMATYPE_SSI_SP : IMX_DMATYPE_SSI);
1014
		imx_pcm_dma_params_init_data(&ssi_private->filter_data_rx,
1015
			dma_events[1], shared ? IMX_DMATYPE_SSI_SP : IMX_DMATYPE_SSI);
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
	} else if (ssi_private->use_dma) {
		/* The 'name' should not have any slashes in it. */
		ret = devm_request_irq(&pdev->dev, ssi_private->irq,
					fsl_ssi_isr, 0, ssi_private->name,
					ssi_private);
		if (ret < 0) {
			dev_err(&pdev->dev, "could not claim irq %u\n",
					ssi_private->irq);
			goto error_irqmap;
		}
1026 1027
	}

1028
	/* Initialize the the device_attribute structure */
1029
	dev_attr = &ssi_private->dev_attr;
1030
	sysfs_attr_init(&dev_attr->attr);
1031
	dev_attr->attr.name = "statistics";
1032 1033 1034
	dev_attr->attr.mode = S_IRUGO;
	dev_attr->show = fsl_sysfs_ssi_show;

1035
	ret = device_create_file(&pdev->dev, dev_attr);
1036
	if (ret) {
1037
		dev_err(&pdev->dev, "could not create sysfs %s file\n",
1038
			ssi_private->dev_attr.attr.name);
1039
		goto error_clk;
1040 1041
	}

1042
	/* Register with ASoC */
1043
	dev_set_drvdata(&pdev->dev, ssi_private);
M
Mark Brown 已提交
1044

1045 1046
	ret = snd_soc_register_component(&pdev->dev, &fsl_ssi_component,
					 &ssi_private->cpu_dai_drv, 1);
1047
	if (ret) {
1048
		dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1049
		goto error_dev;
1050 1051
	}

1052
	if (ssi_private->ssi_on_imx) {
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
		if (!ssi_private->use_dma) {

			/*
			 * Some boards use an incompatible codec. To get it
			 * working, we are using imx-fiq-pcm-audio, that
			 * can handle those codecs. DMA is not possible in this
			 * situation.
			 */

			ssi_private->fiq_params.irq = ssi_private->irq;
			ssi_private->fiq_params.base = ssi_private->ssi;
			ssi_private->fiq_params.dma_params_rx =
				&ssi_private->dma_params_rx;
			ssi_private->fiq_params.dma_params_tx =
				&ssi_private->dma_params_tx;

			ret = imx_pcm_fiq_init(pdev, &ssi_private->fiq_params);
			if (ret)
				goto error_dev;
		} else {
			ret = imx_pcm_dma_init(pdev);
			if (ret)
				goto error_dev;
		}
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
	}

	/*
	 * If codec-handle property is missing from SSI node, we assume
	 * that the machine driver uses new binding which does not require
	 * SSI driver to trigger machine driver's probe.
	 */
	if (!of_get_property(np, "codec-handle", NULL)) {
		ssi_private->new_binding = true;
		goto done;
	}

1089
	/* Trigger the machine driver's probe function.  The platform driver
1090
	 * name of the machine driver is taken from /compatible property of the
1091 1092 1093
	 * device tree.  We also pass the address of the CPU DAI driver
	 * structure.
	 */
1094 1095
	sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
	/* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
1096 1097 1098 1099 1100 1101 1102
	p = strrchr(sprop, ',');
	if (p)
		sprop = p + 1;
	snprintf(name, sizeof(name), "snd-soc-%s", sprop);
	make_lowercase(name);

	ssi_private->pdev =
1103
		platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
1104 1105
	if (IS_ERR(ssi_private->pdev)) {
		ret = PTR_ERR(ssi_private->pdev);
1106
		dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
1107
		goto error_dai;
M
Mark Brown 已提交
1108
	}
1109

1110
done:
1111 1112 1113
	if (ssi_private->imx_ac97)
		fsl_ssi_ac97_init();

1114
	return 0;
1115

1116
error_dai:
1117
	snd_soc_unregister_component(&pdev->dev);
1118 1119 1120 1121

error_dev:
	device_remove_file(&pdev->dev, dev_attr);

1122
error_clk:
1123
	if (ssi_private->ssi_on_imx)
1124
		clk_disable_unprepare(ssi_private->clk);
1125 1126

error_irqmap:
1127
	irq_dispose_mapping(ssi_private->irq);
1128

1129
	return ret;
1130 1131
}

1132
static int fsl_ssi_remove(struct platform_device *pdev)
1133
{
1134
	struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
1135

1136 1137
	if (!ssi_private->new_binding)
		platform_device_unregister(ssi_private->pdev);
1138
	snd_soc_unregister_component(&pdev->dev);
1139
	device_remove_file(&pdev->dev, &ssi_private->dev_attr);
1140 1141
	if (ssi_private->ssi_on_imx)
		clk_disable_unprepare(ssi_private->clk);
1142
	irq_dispose_mapping(ssi_private->irq);
1143 1144

	return 0;
1145
}
1146 1147 1148

static const struct of_device_id fsl_ssi_ids[] = {
	{ .compatible = "fsl,mpc8610-ssi", },
1149
	{ .compatible = "fsl,imx21-ssi", },
1150 1151 1152 1153
	{}
};
MODULE_DEVICE_TABLE(of, fsl_ssi_ids);

1154
static struct platform_driver fsl_ssi_driver = {
1155 1156 1157 1158 1159 1160 1161 1162
	.driver = {
		.name = "fsl-ssi-dai",
		.owner = THIS_MODULE,
		.of_match_table = fsl_ssi_ids,
	},
	.probe = fsl_ssi_probe,
	.remove = fsl_ssi_remove,
};
1163

1164
module_platform_driver(fsl_ssi_driver);
1165

1166
MODULE_ALIAS("platform:fsl-ssi-dai");
1167 1168
MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
1169
MODULE_LICENSE("GPL v2");