fsl_ssi.c 38.8 KB
Newer Older
1 2 3 4 5
/*
 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
 *
 * Author: Timur Tabi <timur@freescale.com>
 *
6 7 8 9 10
 * Copyright 2007-2010 Freescale Semiconductor, Inc.
 *
 * This file is licensed under the terms of the GNU General Public License
 * version 2.  This program is licensed "as is" without any warranty of any
 * kind, whether express or implied.
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
 *
 *
 * Some notes why imx-pcm-fiq is used instead of DMA on some boards:
 *
 * The i.MX SSI core has some nasty limitations in AC97 mode. While most
 * sane processor vendors have a FIFO per AC97 slot, the i.MX has only
 * one FIFO which combines all valid receive slots. We cannot even select
 * which slots we want to receive. The WM9712 with which this driver
 * was developed with always sends GPIO status data in slot 12 which
 * we receive in our (PCM-) data stream. The only chance we have is to
 * manually skip this data in the FIQ handler. With sampling rates different
 * from 48000Hz not every frame has valid receive data, so the ratio
 * between pcm data and GPIO status data changes. Our FIQ handler is not
 * able to handle this, hence this driver only works with 48000Hz sampling
 * rate.
 * Reading and writing AC97 registers is another challenge. The core
 * provides us status bits when the read register is updated with *another*
 * value. When we read the same register two times (and the register still
 * contains the same value) these status bits are not set. We work
 * around this by not polling these bits but only wait a fixed delay.
31 32 33
 */

#include <linux/init.h>
34
#include <linux/io.h>
35 36
#include <linux/module.h>
#include <linux/interrupt.h>
37
#include <linux/clk.h>
38 39
#include <linux/device.h>
#include <linux/delay.h>
40
#include <linux/slab.h>
41
#include <linux/spinlock.h>
42 43
#include <linux/of_address.h>
#include <linux/of_irq.h>
44
#include <linux/of_platform.h>
45 46 47 48 49 50

#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/soc.h>
51
#include <sound/dmaengine_pcm.h>
52 53

#include "fsl_ssi.h"
54
#include "imx-pcm.h"
55

56 57 58 59
#ifdef PPC
#define read_ssi(addr)			 in_be32(addr)
#define write_ssi(val, addr)		 out_be32(addr, val)
#define write_ssi_mask(addr, clear, set) clrsetbits_be32(addr, clear, set)
60
#else
61 62 63 64 65 66 67 68 69 70 71 72 73 74
#define read_ssi(addr)			 readl(addr)
#define write_ssi(val, addr)		 writel(val, addr)
/*
 * FIXME: Proper locking should be added at write_ssi_mask caller level
 * to ensure this register read/modify/write sequence is race free.
 */
static inline void write_ssi_mask(u32 __iomem *addr, u32 clear, u32 set)
{
	u32 val = readl(addr);
	val = (val & ~clear) | set;
	writel(val, addr);
}
#endif

75 76 77 78 79 80 81 82
/**
 * FSLSSI_I2S_RATES: sample rates supported by the I2S
 *
 * This driver currently only supports the SSI running in I2S slave mode,
 * which means the codec determines the sample rate.  Therefore, we tell
 * ALSA that we support all rates and let the codec driver decide what rates
 * are really supported.
 */
83
#define FSLSSI_I2S_RATES SNDRV_PCM_RATE_CONTINUOUS
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

/**
 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
 *
 * This driver currently only supports the SSI running in I2S slave mode.
 *
 * The SSI has a limitation in that the samples must be in the same byte
 * order as the host CPU.  This is because when multiple bytes are written
 * to the STX register, the bytes and bits must be written in the same
 * order.  The STX is a shift register, so all the bits need to be aligned
 * (bit-endianness must match byte-endianness).  Processors typically write
 * the bits within a byte in the same order that the bytes of a word are
 * written in.  So if the host CPU is big-endian, then only big-endian
 * samples will be written to STX properly.
 */
#ifdef __BIG_ENDIAN
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
	 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
	 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
#else
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
#endif

109 110 111 112 113 114
#define FSLSSI_SIER_DBG_RX_FLAGS (CCSR_SSI_SIER_RFF0_EN | \
		CCSR_SSI_SIER_RLS_EN | CCSR_SSI_SIER_RFS_EN | \
		CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_RFRC_EN)
#define FSLSSI_SIER_DBG_TX_FLAGS (CCSR_SSI_SIER_TFE0_EN | \
		CCSR_SSI_SIER_TLS_EN | CCSR_SSI_SIER_TFS_EN | \
		CCSR_SSI_SIER_TUE0_EN | CCSR_SSI_SIER_TFRC_EN)
115 116 117 118

enum fsl_ssi_type {
	FSL_SSI_MCP8610,
	FSL_SSI_MX21,
119
	FSL_SSI_MX35,
120 121 122
	FSL_SSI_MX51,
};

123 124 125 126 127 128 129 130 131 132 133
struct fsl_ssi_reg_val {
	u32 sier;
	u32 srcr;
	u32 stcr;
	u32 scr;
};

struct fsl_ssi_rxtx_reg_val {
	struct fsl_ssi_reg_val rx;
	struct fsl_ssi_reg_val tx;
};
134

135 136 137 138 139 140 141 142 143 144 145
/**
 * fsl_ssi_private: per-SSI private data
 *
 * @ssi: pointer to the SSI's registers
 * @ssi_phys: physical address of the SSI registers
 * @irq: IRQ of this SSI
 * @playback: the number of playback streams opened
 * @capture: the number of capture streams opened
 * @cpu_dai: the CPU DAI for this device
 * @dev_attr: the sysfs device attribute structure
 * @stats: SSI statistics
146
 * @name: name for this device
147 148 149 150 151
 */
struct fsl_ssi_private {
	struct ccsr_ssi __iomem *ssi;
	dma_addr_t ssi_phys;
	unsigned int irq;
152
	unsigned int fifo_depth;
153 154
	struct snd_soc_dai_driver cpu_dai_drv;
	struct platform_device *pdev;
155

156
	enum fsl_ssi_type hw_type;
157 158
	bool new_binding;
	bool ssi_on_imx;
159
	bool imx_ac97;
160
	bool use_dma;
161
	bool baudclk_locked;
162
	bool irq_stats;
163
	bool offline_config;
164
	bool use_dual_fifo;
165
	u8 i2s_mode;
166 167
	spinlock_t baudclk_lock;
	struct clk *baudclk;
168
	struct clk *clk;
169 170 171 172
	struct snd_dmaengine_dai_dma_data dma_params_tx;
	struct snd_dmaengine_dai_dma_data dma_params_rx;
	struct imx_dma_data filter_data_tx;
	struct imx_dma_data filter_data_rx;
173
	struct imx_pcm_fiq_params fiq_params;
174 175
	/* Register values for rx/tx configuration */
	struct fsl_ssi_rxtx_reg_val rxtx_reg_val;
176

177
	struct fsl_ssi_dbg dbg_stats;
178 179

	char name[1];
180 181
};

182 183 184
static const struct of_device_id fsl_ssi_ids[] = {
	{ .compatible = "fsl,mpc8610-ssi", .data = (void *) FSL_SSI_MCP8610},
	{ .compatible = "fsl,imx51-ssi", .data = (void *) FSL_SSI_MX51},
185
	{ .compatible = "fsl,imx35-ssi", .data = (void *) FSL_SSI_MX35},
186 187 188 189 190
	{ .compatible = "fsl,imx21-ssi", .data = (void *) FSL_SSI_MX21},
	{}
};
MODULE_DEVICE_TABLE(of, fsl_ssi_ids);

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
/**
 * fsl_ssi_isr: SSI interrupt handler
 *
 * Although it's possible to use the interrupt handler to send and receive
 * data to/from the SSI, we use the DMA instead.  Programming is more
 * complicated, but the performance is much better.
 *
 * This interrupt handler is used only to gather statistics.
 *
 * @irq: IRQ of the SSI device
 * @dev_id: pointer to the ssi_private structure for this SSI device
 */
static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
{
	struct fsl_ssi_private *ssi_private = dev_id;
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	__be32 sisr;
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
	__be32 sisr2;
	__be32 sisr_write_mask = 0;

	switch (ssi_private->hw_type) {
	case FSL_SSI_MX21:
		sisr_write_mask = 0;
		break;

	case FSL_SSI_MCP8610:
	case FSL_SSI_MX35:
		sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC |
			CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
			CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1;
		break;

	case FSL_SSI_MX51:
		sisr_write_mask = CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
			CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1;
		break;
	}
228 229 230 231 232

	/* We got an interrupt, so read the status register to see what we
	   were interrupted for.  We mask it with the Interrupt Enable register
	   so that we only check for events that we're interested in.
	 */
233
	sisr = read_ssi(&ssi->sisr);
234

235
	sisr2 = sisr & sisr_write_mask;
236 237
	/* Clear the bits that we set */
	if (sisr2)
238
		write_ssi(sisr2, &ssi->sisr);
239

240
	fsl_ssi_dbg_isr(&ssi_private->dbg_stats, sisr);
241

242
	return IRQ_HANDLED;
243 244
}

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
/*
 * Enable/Disable all rx/tx config flags at once.
 */
static void fsl_ssi_rxtx_config(struct fsl_ssi_private *ssi_private,
		bool enable)
{
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	struct fsl_ssi_rxtx_reg_val *vals = &ssi_private->rxtx_reg_val;

	if (enable) {
		write_ssi_mask(&ssi->sier, 0, vals->rx.sier | vals->tx.sier);
		write_ssi_mask(&ssi->srcr, 0, vals->rx.srcr | vals->tx.srcr);
		write_ssi_mask(&ssi->stcr, 0, vals->rx.stcr | vals->tx.stcr);
	} else {
		write_ssi_mask(&ssi->srcr, vals->rx.srcr | vals->tx.srcr, 0);
		write_ssi_mask(&ssi->stcr, vals->rx.stcr | vals->tx.stcr, 0);
		write_ssi_mask(&ssi->sier, vals->rx.sier | vals->tx.sier, 0);
	}
}

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
/*
 * Calculate the bits that have to be disabled for the current stream that is
 * getting disabled. This keeps the bits enabled that are necessary for the
 * second stream to work if 'stream_active' is true.
 *
 * Detailed calculation:
 * These are the values that need to be active after disabling. For non-active
 * second stream, this is 0:
 *	vals_stream * !!stream_active
 *
 * The following computes the overall differences between the setup for the
 * to-disable stream and the active stream, a simple XOR:
 *	vals_disable ^ (vals_stream * !!(stream_active))
 *
 * The full expression adds a mask on all values we care about
 */
#define fsl_ssi_disable_val(vals_disable, vals_stream, stream_active) \
	((vals_disable) & \
	 ((vals_disable) ^ ((vals_stream) * (u32)!!(stream_active))))

285 286 287 288 289 290 291 292 293 294 295 296
/*
 * Enable/Disable a ssi configuration. You have to pass either
 * ssi_private->rxtx_reg_val.rx or tx as vals parameter.
 */
static void fsl_ssi_config(struct fsl_ssi_private *ssi_private, bool enable,
		struct fsl_ssi_reg_val *vals)
{
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	struct fsl_ssi_reg_val *avals;
	u32 scr_val = read_ssi(&ssi->scr);
	int nr_active_streams = !!(scr_val & CCSR_SSI_SCR_TE) +
				!!(scr_val & CCSR_SSI_SCR_RE);
297 298 299 300 301 302
	int keep_active;

	if (nr_active_streams - 1 > 0)
		keep_active = 1;
	else
		keep_active = 0;
303 304 305 306 307 308 309 310 311 312

	/* Find the other direction values rx or tx which we do not want to
	 * modify */
	if (&ssi_private->rxtx_reg_val.rx == vals)
		avals = &ssi_private->rxtx_reg_val.tx;
	else
		avals = &ssi_private->rxtx_reg_val.rx;

	/* If vals should be disabled, start with disabling the unit */
	if (!enable) {
313 314
		u32 scr = fsl_ssi_disable_val(vals->scr, avals->scr,
				keep_active);
315 316 317 318 319 320 321 322 323 324
		write_ssi_mask(&ssi->scr, scr, 0);
	}

	/*
	 * We are running on a SoC which does not support online SSI
	 * reconfiguration, so we have to enable all necessary flags at once
	 * even if we do not use them later (capture and playback configuration)
	 */
	if (ssi_private->offline_config) {
		if ((enable && !nr_active_streams) ||
325
				(!enable && !keep_active))
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
			fsl_ssi_rxtx_config(ssi_private, enable);

		goto config_done;
	}

	/*
	 * Configure single direction units while the SSI unit is running
	 * (online configuration)
	 */
	if (enable) {
		write_ssi_mask(&ssi->sier, 0, vals->sier);
		write_ssi_mask(&ssi->srcr, 0, vals->srcr);
		write_ssi_mask(&ssi->stcr, 0, vals->stcr);
	} else {
		u32 sier;
		u32 srcr;
		u32 stcr;

		/*
		 * Disabling the necessary flags for one of rx/tx while the
		 * other stream is active is a little bit more difficult. We
		 * have to disable only those flags that differ between both
		 * streams (rx XOR tx) and that are set in the stream that is
		 * disabled now. Otherwise we could alter flags of the other
		 * stream
		 */

		/* These assignments are simply vals without bits set in avals*/
354 355 356 357 358 359
		sier = fsl_ssi_disable_val(vals->sier, avals->sier,
				keep_active);
		srcr = fsl_ssi_disable_val(vals->srcr, avals->srcr,
				keep_active);
		stcr = fsl_ssi_disable_val(vals->stcr, avals->stcr,
				keep_active);
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382

		write_ssi_mask(&ssi->srcr, srcr, 0);
		write_ssi_mask(&ssi->stcr, stcr, 0);
		write_ssi_mask(&ssi->sier, sier, 0);
	}

config_done:
	/* Enabling of subunits is done after configuration */
	if (enable)
		write_ssi_mask(&ssi->scr, 0, vals->scr);
}


static void fsl_ssi_rx_config(struct fsl_ssi_private *ssi_private, bool enable)
{
	fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.rx);
}

static void fsl_ssi_tx_config(struct fsl_ssi_private *ssi_private, bool enable)
{
	fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.tx);
}

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
/*
 * Setup rx/tx register values used to enable/disable the streams. These will
 * be used later in fsl_ssi_config to setup the streams without the need to
 * check for all different SSI modes.
 */
static void fsl_ssi_setup_reg_vals(struct fsl_ssi_private *ssi_private)
{
	struct fsl_ssi_rxtx_reg_val *reg = &ssi_private->rxtx_reg_val;

	reg->rx.sier = CCSR_SSI_SIER_RFF0_EN;
	reg->rx.srcr = CCSR_SSI_SRCR_RFEN0;
	reg->rx.scr = 0;
	reg->tx.sier = CCSR_SSI_SIER_TFE0_EN;
	reg->tx.stcr = CCSR_SSI_STCR_TFEN0;
	reg->tx.scr = 0;

	if (!ssi_private->imx_ac97) {
		reg->rx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE;
		reg->rx.sier |= CCSR_SSI_SIER_RFF0_EN;
		reg->tx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE;
		reg->tx.sier |= CCSR_SSI_SIER_TFE0_EN;
	}

	if (ssi_private->use_dma) {
		reg->rx.sier |= CCSR_SSI_SIER_RDMAE;
		reg->tx.sier |= CCSR_SSI_SIER_TDMAE;
	} else {
		reg->rx.sier |= CCSR_SSI_SIER_RIE;
		reg->tx.sier |= CCSR_SSI_SIER_TIE;
	}

	reg->rx.sier |= FSLSSI_SIER_DBG_RX_FLAGS;
	reg->tx.sier |= FSLSSI_SIER_DBG_TX_FLAGS;
}

418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
static void fsl_ssi_setup_ac97(struct fsl_ssi_private *ssi_private)
{
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;

	/*
	 * Setup the clock control register
	 */
	write_ssi(CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13),
			&ssi->stccr);
	write_ssi(CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13),
			&ssi->srccr);

	/*
	 * Enable AC97 mode and startup the SSI
	 */
	write_ssi(CCSR_SSI_SACNT_AC97EN | CCSR_SSI_SACNT_FV,
			&ssi->sacnt);
	write_ssi(0xff, &ssi->saccdis);
	write_ssi(0x300, &ssi->saccen);

	/*
	 * Enable SSI, Transmit and Receive. AC97 has to communicate with the
	 * codec before a stream is started.
	 */
	write_ssi_mask(&ssi->scr, 0, CCSR_SSI_SCR_SSIEN |
			CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE);

	write_ssi(CCSR_SSI_SOR_WAIT(3), &ssi->sor);
}

448 449 450 451 452 453 454 455
/**
 * fsl_ssi_startup: create a new substream
 *
 * This is the first function called when a stream is opened.
 *
 * If this is the first stream open, then grab the IRQ and program most of
 * the SSI registers.
 */
456 457
static int fsl_ssi_startup(struct snd_pcm_substream *substream,
			   struct snd_soc_dai *dai)
458 459
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
460 461
	struct fsl_ssi_private *ssi_private =
		snd_soc_dai_get_drvdata(rtd->cpu_dai);
462
	unsigned long flags;
463

464 465 466 467 468
	if (!dai->active && !ssi_private->imx_ac97) {
		spin_lock_irqsave(&ssi_private->baudclk_lock, flags);
		ssi_private->baudclk_locked = false;
		spin_unlock_irqrestore(&ssi_private->baudclk_lock, flags);
	}
469

470 471 472 473 474 475 476 477 478
	/* When using dual fifo mode, it is safer to ensure an even period
	 * size. If appearing to an odd number while DMA always starts its
	 * task from fifo0, fifo1 would be neglected at the end of each
	 * period. But SSI would still access fifo1 with an invalid data.
	 */
	if (ssi_private->use_dual_fifo)
		snd_pcm_hw_constraint_step(substream->runtime, 0,
				SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);

479 480 481 482
	return 0;
}

/**
483
 * fsl_ssi_hw_params - program the sample size
484 485 486 487 488 489 490 491 492 493 494
 *
 * Most of the SSI registers have been programmed in the startup function,
 * but the word length must be programmed here.  Unfortunately, programming
 * the SxCCR.WL bits requires the SSI to be temporarily disabled.  This can
 * cause a problem with supporting simultaneous playback and capture.  If
 * the SSI is already playing a stream, then that stream may be temporarily
 * stopped when you start capture.
 *
 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
 * clock master.
 */
495 496
static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
	struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
497
{
498
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
499
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
500
	unsigned int channels = params_channels(hw_params);
501 502 503
	unsigned int sample_size =
		snd_pcm_format_width(params_format(hw_params));
	u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
504
	int enabled = read_ssi(&ssi->scr) & CCSR_SSI_SCR_SSIEN;
505

506 507 508 509 510 511
	/*
	 * If we're in synchronous mode, and the SSI is already enabled,
	 * then STCCR is already set properly.
	 */
	if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
		return 0;
512

513 514 515 516 517 518 519 520 521
	/*
	 * FIXME: The documentation says that SxCCR[WL] should not be
	 * modified while the SSI is enabled.  The only time this can
	 * happen is if we're trying to do simultaneous playback and
	 * capture in asynchronous mode.  Unfortunately, I have been enable
	 * to get that to work at all on the P1022DS.  Therefore, we don't
	 * bother to disable/enable the SSI when setting SxCCR[WL], because
	 * the SSI will stop anyway.  Maybe one day, this will get fixed.
	 */
522

523 524 525
	/* In synchronous mode, the SSI uses STCCR for capture */
	if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
	    ssi_private->cpu_dai_drv.symmetric_rates)
526
		write_ssi_mask(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl);
527
	else
528
		write_ssi_mask(&ssi->srccr, CCSR_SSI_SxCCR_WL_MASK, wl);
529

530 531 532 533 534
	if (!ssi_private->imx_ac97)
		write_ssi_mask(&ssi->scr,
				CCSR_SSI_SCR_NET | CCSR_SSI_SCR_I2S_MODE_MASK,
				channels == 1 ? 0 : ssi_private->i2s_mode);

535 536 537
	return 0;
}

538 539 540 541 542 543 544 545
/**
 * fsl_ssi_set_dai_fmt - configure Digital Audio Interface Format.
 */
static int fsl_ssi_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
{
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	u32 strcr = 0, stcr, srcr, scr, mask;
546 547 548
	u8 wm;

	fsl_ssi_setup_reg_vals(ssi_private);
549 550 551 552 553 554 555 556 557

	scr = read_ssi(&ssi->scr) & ~(CCSR_SSI_SCR_SYN | CCSR_SSI_SCR_I2S_MODE_MASK);

	mask = CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR |
		CCSR_SSI_STCR_TSCKP | CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TFSL |
		CCSR_SSI_STCR_TEFS;
	stcr = read_ssi(&ssi->stcr) & ~mask;
	srcr = read_ssi(&ssi->srcr) & ~mask;

558
	ssi_private->i2s_mode = CCSR_SSI_SCR_NET;
559 560 561 562
	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
	case SND_SOC_DAIFMT_I2S:
		switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
		case SND_SOC_DAIFMT_CBS_CFS:
563
			ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_MASTER;
564 565
			break;
		case SND_SOC_DAIFMT_CBM_CFM:
566
			ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_SLAVE;
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
			break;
		default:
			return -EINVAL;
		}

		/* Data on rising edge of bclk, frame low, 1clk before data */
		strcr |= CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TSCKP |
			CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
		break;
	case SND_SOC_DAIFMT_LEFT_J:
		/* Data on rising edge of bclk, frame high */
		strcr |= CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TSCKP;
		break;
	case SND_SOC_DAIFMT_DSP_A:
		/* Data on rising edge of bclk, frame high, 1clk before data */
		strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
			CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
		break;
	case SND_SOC_DAIFMT_DSP_B:
		/* Data on rising edge of bclk, frame high */
		strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
			CCSR_SSI_STCR_TXBIT0;
		break;
590
	case SND_SOC_DAIFMT_AC97:
591
		ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_NORMAL;
592
		break;
593 594 595
	default:
		return -EINVAL;
	}
596
	scr |= ssi_private->i2s_mode;
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645

	/* DAI clock inversion */
	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
	case SND_SOC_DAIFMT_NB_NF:
		/* Nothing to do for both normal cases */
		break;
	case SND_SOC_DAIFMT_IB_NF:
		/* Invert bit clock */
		strcr ^= CCSR_SSI_STCR_TSCKP;
		break;
	case SND_SOC_DAIFMT_NB_IF:
		/* Invert frame clock */
		strcr ^= CCSR_SSI_STCR_TFSI;
		break;
	case SND_SOC_DAIFMT_IB_IF:
		/* Invert both clocks */
		strcr ^= CCSR_SSI_STCR_TSCKP;
		strcr ^= CCSR_SSI_STCR_TFSI;
		break;
	default:
		return -EINVAL;
	}

	/* DAI clock master masks */
	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
	case SND_SOC_DAIFMT_CBS_CFS:
		strcr |= CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR;
		scr |= CCSR_SSI_SCR_SYS_CLK_EN;
		break;
	case SND_SOC_DAIFMT_CBM_CFM:
		scr &= ~CCSR_SSI_SCR_SYS_CLK_EN;
		break;
	default:
		return -EINVAL;
	}

	stcr |= strcr;
	srcr |= strcr;

	if (ssi_private->cpu_dai_drv.symmetric_rates) {
		/* Need to clear RXDIR when using SYNC mode */
		srcr &= ~CCSR_SSI_SRCR_RXDIR;
		scr |= CCSR_SSI_SCR_SYN;
	}

	write_ssi(stcr, &ssi->stcr);
	write_ssi(srcr, &ssi->srcr);
	write_ssi(scr, &ssi->scr);

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
	/*
	 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We don't
	 * use FIFO 1. We program the transmit water to signal a DMA transfer
	 * if there are only two (or fewer) elements left in the FIFO. Two
	 * elements equals one frame (left channel, right channel). This value,
	 * however, depends on the depth of the transmit buffer.
	 *
	 * We set the watermark on the same level as the DMA burstsize.  For
	 * fiq it is probably better to use the biggest possible watermark
	 * size.
	 */
	if (ssi_private->use_dma)
		wm = ssi_private->fifo_depth - 2;
	else
		wm = ssi_private->fifo_depth;

	write_ssi(CCSR_SSI_SFCSR_TFWM0(wm) | CCSR_SSI_SFCSR_RFWM0(wm) |
			CCSR_SSI_SFCSR_TFWM1(wm) | CCSR_SSI_SFCSR_RFWM1(wm),
			&ssi->sfcsr);

	if (ssi_private->use_dual_fifo) {
		write_ssi_mask(&ssi->srcr, CCSR_SSI_SRCR_RFEN1,
				CCSR_SSI_SRCR_RFEN1);
		write_ssi_mask(&ssi->stcr, CCSR_SSI_STCR_TFEN1,
				CCSR_SSI_STCR_TFEN1);
		write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_TCH_EN,
				CCSR_SSI_SCR_TCH_EN);
	}

	if (fmt & SND_SOC_DAIFMT_AC97)
		fsl_ssi_setup_ac97(ssi_private);

678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
	return 0;
}

/**
 * fsl_ssi_set_dai_sysclk - configure Digital Audio Interface bit clock
 *
 * Note: This function can be only called when using SSI as DAI master
 *
 * Quick instruction for parameters:
 * freq: Output BCLK frequency = samplerate * 32 (fixed) * channels
 * dir: SND_SOC_CLOCK_OUT -> TxBCLK, SND_SOC_CLOCK_IN -> RxBCLK.
 */
static int fsl_ssi_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
				  int clk_id, unsigned int freq, int dir)
{
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	int synchronous = ssi_private->cpu_dai_drv.symmetric_rates, ret;
	u32 pm = 999, div2, psr, stccr, mask, afreq, factor, i;
	unsigned long flags, clkrate, baudrate, tmprate;
	u64 sub, savesub = 100000;

	/* Don't apply it to any non-baudclk circumstance */
	if (IS_ERR(ssi_private->baudclk))
		return -EINVAL;

	/* It should be already enough to divide clock by setting pm alone */
	psr = 0;
	div2 = 0;

	factor = (div2 + 1) * (7 * psr + 1) * 2;

	for (i = 0; i < 255; i++) {
		/* The bclk rate must be smaller than 1/5 sysclk rate */
		if (factor * (i + 1) < 5)
			continue;

		tmprate = freq * factor * (i + 2);
		clkrate = clk_round_rate(ssi_private->baudclk, tmprate);

		do_div(clkrate, factor);
		afreq = (u32)clkrate / (i + 1);

		if (freq == afreq)
			sub = 0;
		else if (freq / afreq == 1)
			sub = freq - afreq;
		else if (afreq / freq == 1)
			sub = afreq - freq;
		else
			continue;

		/* Calculate the fraction */
		sub *= 100000;
		do_div(sub, freq);

		if (sub < savesub) {
			baudrate = tmprate;
			savesub = sub;
			pm = i;
		}

		/* We are lucky */
		if (savesub == 0)
			break;
	}

	/* No proper pm found if it is still remaining the initial value */
	if (pm == 999) {
		dev_err(cpu_dai->dev, "failed to handle the required sysclk\n");
		return -EINVAL;
	}

	stccr = CCSR_SSI_SxCCR_PM(pm + 1) | (div2 ? CCSR_SSI_SxCCR_DIV2 : 0) |
		(psr ? CCSR_SSI_SxCCR_PSR : 0);
	mask = CCSR_SSI_SxCCR_PM_MASK | CCSR_SSI_SxCCR_DIV2 | CCSR_SSI_SxCCR_PSR;

	if (dir == SND_SOC_CLOCK_OUT || synchronous)
		write_ssi_mask(&ssi->stccr, mask, stccr);
	else
		write_ssi_mask(&ssi->srccr, mask, stccr);

	spin_lock_irqsave(&ssi_private->baudclk_lock, flags);
	if (!ssi_private->baudclk_locked) {
		ret = clk_set_rate(ssi_private->baudclk, baudrate);
		if (ret) {
			spin_unlock_irqrestore(&ssi_private->baudclk_lock, flags);
			dev_err(cpu_dai->dev, "failed to set baudclk rate\n");
			return -EINVAL;
		}
		ssi_private->baudclk_locked = true;
	}
	spin_unlock_irqrestore(&ssi_private->baudclk_lock, flags);

	return 0;
}

/**
 * fsl_ssi_set_dai_tdm_slot - set TDM slot number
 *
 * Note: This function can be only called when using SSI as DAI master
 */
static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
				u32 rx_mask, int slots, int slot_width)
{
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	u32 val;

	/* The slot number should be >= 2 if using Network mode or I2S mode */
	val = read_ssi(&ssi->scr) & (CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_NET);
	if (val && slots < 2) {
		dev_err(cpu_dai->dev, "slot number should be >= 2 in I2S or NET\n");
		return -EINVAL;
	}

	write_ssi_mask(&ssi->stccr, CCSR_SSI_SxCCR_DC_MASK,
			CCSR_SSI_SxCCR_DC(slots));
	write_ssi_mask(&ssi->srccr, CCSR_SSI_SxCCR_DC_MASK,
			CCSR_SSI_SxCCR_DC(slots));

	/* The register SxMSKs needs SSI to provide essential clock due to
	 * hardware design. So we here temporarily enable SSI to set them.
	 */
	val = read_ssi(&ssi->scr) & CCSR_SSI_SCR_SSIEN;
	write_ssi_mask(&ssi->scr, 0, CCSR_SSI_SCR_SSIEN);

	write_ssi(tx_mask, &ssi->stmsk);
	write_ssi(rx_mask, &ssi->srmsk);

	write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, val);

	return 0;
}

813 814 815 816 817 818 819 820 821
/**
 * fsl_ssi_trigger: start and stop the DMA transfer.
 *
 * This function is called by ALSA to start, stop, pause, and resume the DMA
 * transfer of data.
 *
 * The DMA channel is in external master start and pause mode, which
 * means the SSI completely controls the flow of data.
 */
822 823
static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
			   struct snd_soc_dai *dai)
824 825
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
826
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
827
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
828
	unsigned long flags;
829

830 831 832
	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
833
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
834
			fsl_ssi_tx_config(ssi_private, true);
835
		else
836
			fsl_ssi_rx_config(ssi_private, true);
837 838 839 840 841
		break;

	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
842
			fsl_ssi_tx_config(ssi_private, false);
843
		else
844
			fsl_ssi_rx_config(ssi_private, false);
845

846
		if (!ssi_private->imx_ac97 && (read_ssi(&ssi->scr) &
847 848 849 850 851
					(CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE)) == 0) {
			spin_lock_irqsave(&ssi_private->baudclk_lock, flags);
			ssi_private->baudclk_locked = false;
			spin_unlock_irqrestore(&ssi_private->baudclk_lock, flags);
		}
852 853 854 855 856 857
		break;

	default:
		return -EINVAL;
	}

858 859 860 861 862 863
	if (ssi_private->imx_ac97) {
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
			write_ssi(CCSR_SSI_SOR_TX_CLR, &ssi->sor);
		else
			write_ssi(CCSR_SSI_SOR_RX_CLR, &ssi->sor);
	}
864

865 866 867
	return 0;
}

868 869 870 871
static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
{
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai);

872
	if (ssi_private->ssi_on_imx && ssi_private->use_dma) {
873 874 875 876 877 878 879
		dai->playback_dma_data = &ssi_private->dma_params_tx;
		dai->capture_dma_data = &ssi_private->dma_params_rx;
	}

	return 0;
}

880
static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
881 882
	.startup	= fsl_ssi_startup,
	.hw_params	= fsl_ssi_hw_params,
883 884 885
	.set_fmt	= fsl_ssi_set_dai_fmt,
	.set_sysclk	= fsl_ssi_set_dai_sysclk,
	.set_tdm_slot	= fsl_ssi_set_dai_tdm_slot,
886 887 888
	.trigger	= fsl_ssi_trigger,
};

889 890
/* Template for the CPU dai driver structure */
static struct snd_soc_dai_driver fsl_ssi_dai_template = {
891
	.probe = fsl_ssi_dai_probe,
892
	.playback = {
893
		.channels_min = 1,
894 895 896 897 898
		.channels_max = 2,
		.rates = FSLSSI_I2S_RATES,
		.formats = FSLSSI_I2S_FORMATS,
	},
	.capture = {
899
		.channels_min = 1,
900 901 902 903
		.channels_max = 2,
		.rates = FSLSSI_I2S_RATES,
		.formats = FSLSSI_I2S_FORMATS,
	},
904
	.ops = &fsl_ssi_dai_ops,
905 906
};

907 908 909 910
static const struct snd_soc_component_driver fsl_ssi_component = {
	.name		= "fsl-ssi",
};

911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
	.ac97_control = 1,
	.playback = {
		.stream_name = "AC97 Playback",
		.channels_min = 2,
		.channels_max = 2,
		.rates = SNDRV_PCM_RATE_8000_48000,
		.formats = SNDRV_PCM_FMTBIT_S16_LE,
	},
	.capture = {
		.stream_name = "AC97 Capture",
		.channels_min = 2,
		.channels_max = 2,
		.rates = SNDRV_PCM_RATE_48000,
		.formats = SNDRV_PCM_FMTBIT_S16_LE,
	},
927
	.ops = &fsl_ssi_dai_ops,
928 929 930 931 932
};


static struct fsl_ssi_private *fsl_ac97_data;

933
static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
		unsigned short val)
{
	struct ccsr_ssi *ssi = fsl_ac97_data->ssi;
	unsigned int lreg;
	unsigned int lval;

	if (reg > 0x7f)
		return;


	lreg = reg <<  12;
	write_ssi(lreg, &ssi->sacadd);

	lval = val << 4;
	write_ssi(lval , &ssi->sacdat);

	write_ssi_mask(&ssi->sacnt, CCSR_SSI_SACNT_RDWR_MASK,
			CCSR_SSI_SACNT_WR);
	udelay(100);
}

955
static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
		unsigned short reg)
{
	struct ccsr_ssi *ssi = fsl_ac97_data->ssi;

	unsigned short val = -1;
	unsigned int lreg;

	lreg = (reg & 0x7f) <<  12;
	write_ssi(lreg, &ssi->sacadd);
	write_ssi_mask(&ssi->sacnt, CCSR_SSI_SACNT_RDWR_MASK,
			CCSR_SSI_SACNT_RD);

	udelay(100);

	val = (read_ssi(&ssi->sacdat) >> 4) & 0xffff;

	return val;
}

static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
	.read		= fsl_ssi_ac97_read,
	.write		= fsl_ssi_ac97_write,
};

980
/**
981
 * Make every character in a string lower-case
982
 */
983 984 985 986 987 988 989 990 991 992 993 994
static void make_lowercase(char *s)
{
	char *p = s;
	char c;

	while ((c = *p)) {
		if ((c >= 'A') && (c <= 'Z'))
			*p = c + ('a' - 'A');
		p++;
	}
}

995
static int fsl_ssi_probe(struct platform_device *pdev)
996 997 998
{
	struct fsl_ssi_private *ssi_private;
	int ret = 0;
999
	struct device_attribute *dev_attr = NULL;
1000
	struct device_node *np = pdev->dev.of_node;
1001 1002
	const struct of_device_id *of_id;
	enum fsl_ssi_type hw_type;
1003
	const char *p, *sprop;
1004
	const uint32_t *iprop;
1005 1006
	struct resource res;
	char name[64];
1007
	bool shared;
1008
	bool ac97 = false;
1009

1010 1011 1012
	/* SSIs that are not connected on the board should have a
	 *      status = "disabled"
	 * property in their device tree nodes.
1013
	 */
1014
	if (!of_device_is_available(np))
1015 1016
		return -ENODEV;

1017 1018 1019 1020 1021
	of_id = of_match_device(fsl_ssi_ids, &pdev->dev);
	if (!of_id)
		return -EINVAL;
	hw_type = (enum fsl_ssi_type) of_id->data;

1022
	sprop = of_get_property(np, "fsl,mode", NULL);
1023 1024 1025 1026
	if (!sprop) {
		dev_err(&pdev->dev, "fsl,mode property is necessary\n");
		return -EINVAL;
	}
1027
	if (!strcmp(sprop, "ac97-slave"))
1028
		ac97 = true;
1029

1030 1031
	ssi_private = devm_kzalloc(&pdev->dev, sizeof(*ssi_private),
			GFP_KERNEL);
1032
	if (!ssi_private) {
1033
		dev_err(&pdev->dev, "could not allocate DAI object\n");
1034
		return -ENOMEM;
1035 1036
	}

1037 1038
	ssi_private->use_dma = !of_property_read_bool(np,
			"fsl,fiq-stream-filter");
1039
	ssi_private->hw_type = hw_type;
1040

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
	if (ac97) {
		memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_ac97_dai,
				sizeof(fsl_ssi_ac97_dai));

		fsl_ac97_data = ssi_private;
		ssi_private->imx_ac97 = true;

		snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
	} else {
		/* Initialize this copy of the CPU DAI driver structure */
		memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
		       sizeof(fsl_ssi_dai_template));
	}
1054
	ssi_private->cpu_dai_drv.name = dev_name(&pdev->dev);
1055 1056 1057 1058

	/* Get the addresses and IRQ */
	ret = of_address_to_resource(np, 0, &res);
	if (ret) {
1059
		dev_err(&pdev->dev, "could not determine device resources\n");
1060
		return ret;
1061
	}
1062 1063 1064
	ssi_private->ssi = of_iomap(np, 0);
	if (!ssi_private->ssi) {
		dev_err(&pdev->dev, "could not map device resources\n");
1065
		return -ENOMEM;
1066
	}
1067
	ssi_private->ssi_phys = res.start;
1068

1069
	ssi_private->irq = irq_of_parse_and_map(np, 0);
1070
	if (!ssi_private->irq) {
1071
		dev_err(&pdev->dev, "no irq for node %s\n", np->full_name);
1072
		return -ENXIO;
1073 1074
	}

1075
	/* Are the RX and the TX clocks locked? */
1076
	if (!of_find_property(np, "fsl,ssi-asynchronous", NULL)) {
1077
		ssi_private->cpu_dai_drv.symmetric_rates = 1;
1078 1079 1080
		ssi_private->cpu_dai_drv.symmetric_channels = 1;
		ssi_private->cpu_dai_drv.symmetric_samplebits = 1;
	}
1081

1082 1083 1084
	/* Determine the FIFO depth. */
	iprop = of_get_property(np, "fsl,fifo-depth", NULL);
	if (iprop)
1085
		ssi_private->fifo_depth = be32_to_cpup(iprop);
1086 1087 1088 1089
	else
                /* Older 8610 DTs didn't have the fifo-depth property */
		ssi_private->fifo_depth = 8;

1090 1091 1092
	ssi_private->baudclk_locked = false;
	spin_lock_init(&ssi_private->baudclk_lock);

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
	/*
	 * imx51 and later SoCs have a slightly different IP that allows the
	 * SSI configuration while the SSI unit is running.
	 *
	 * More important, it is necessary on those SoCs to configure the
	 * sperate TX/RX DMA bits just before starting the stream
	 * (fsl_ssi_trigger). The SDMA unit has to be configured before fsl_ssi
	 * sends any DMA requests to the SDMA unit, otherwise it is not defined
	 * how the SDMA unit handles the DMA request.
	 *
	 * SDMA units are present on devices starting at imx35 but the imx35
	 * reference manual states that the DMA bits should not be changed
	 * while the SSI unit is running (SSIEN). So we support the necessary
	 * online configuration of fsl-ssi starting at imx51.
	 */
	switch (hw_type) {
	case FSL_SSI_MCP8610:
	case FSL_SSI_MX21:
	case FSL_SSI_MX35:
		ssi_private->offline_config = true;
		break;
	case FSL_SSI_MX51:
		ssi_private->offline_config = false;
		break;
	}

1119 1120
	if (hw_type == FSL_SSI_MX21 || hw_type == FSL_SSI_MX51 ||
			hw_type == FSL_SSI_MX35) {
1121
		u32 dma_events[2], dmas[4];
1122
		ssi_private->ssi_on_imx = true;
1123

1124
		ssi_private->clk = devm_clk_get(&pdev->dev, NULL);
1125 1126 1127
		if (IS_ERR(ssi_private->clk)) {
			ret = PTR_ERR(ssi_private->clk);
			dev_err(&pdev->dev, "could not get clock: %d\n", ret);
1128
			goto error_irqmap;
1129
		}
1130 1131 1132 1133 1134 1135
		ret = clk_prepare_enable(ssi_private->clk);
		if (ret) {
			dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n",
				ret);
			goto error_irqmap;
		}
1136

1137 1138 1139 1140 1141
		/* For those SLAVE implementations, we ingore non-baudclk cases
		 * and, instead, abandon MASTER mode that needs baud clock.
		 */
		ssi_private->baudclk = devm_clk_get(&pdev->dev, "baud");
		if (IS_ERR(ssi_private->baudclk))
1142
			dev_dbg(&pdev->dev, "could not get baud clock: %ld\n",
1143
				 PTR_ERR(ssi_private->baudclk));
1144 1145 1146
		else
			clk_prepare_enable(ssi_private->baudclk);

1147 1148 1149 1150
		/*
		 * We have burstsize be "fifo_depth - 2" to match the SSI
		 * watermark setting in fsl_ssi_startup().
		 */
1151
		ssi_private->dma_params_tx.maxburst =
1152
			ssi_private->fifo_depth - 2;
1153
		ssi_private->dma_params_rx.maxburst =
1154
			ssi_private->fifo_depth - 2;
1155
		ssi_private->dma_params_tx.addr =
1156
			ssi_private->ssi_phys + offsetof(struct ccsr_ssi, stx0);
1157
		ssi_private->dma_params_rx.addr =
1158
			ssi_private->ssi_phys + offsetof(struct ccsr_ssi, srx0);
1159 1160 1161 1162
		ssi_private->dma_params_tx.filter_data =
			&ssi_private->filter_data_tx;
		ssi_private->dma_params_rx.filter_data =
			&ssi_private->filter_data_rx;
1163 1164 1165 1166 1167 1168 1169 1170
		if (!of_property_read_bool(pdev->dev.of_node, "dmas") &&
				ssi_private->use_dma) {
			/*
			 * FIXME: This is a temporary solution until all
			 * necessary dma drivers support the generic dma
			 * bindings.
			 */
			ret = of_property_read_u32_array(pdev->dev.of_node,
1171
					"fsl,ssi-dma-events", dma_events, 2);
1172 1173 1174 1175
			if (ret && ssi_private->use_dma) {
				dev_err(&pdev->dev, "could not get dma events but fsl-ssi is configured to use DMA\n");
				goto error_clk;
			}
1176
		}
1177
		/* Should this be merge with the above? */
1178 1179 1180 1181 1182 1183 1184 1185 1186
		if (!of_property_read_u32_array(pdev->dev.of_node, "dmas", dmas, 4)
				&& dmas[2] == IMX_DMATYPE_SSI_DUAL) {
			ssi_private->use_dual_fifo = true;
			/* When using dual fifo mode, we need to keep watermark
			 * as even numbers due to dma script limitation.
			 */
			ssi_private->dma_params_tx.maxburst &= ~0x1;
			ssi_private->dma_params_rx.maxburst &= ~0x1;
		}
1187 1188 1189 1190

		shared = of_device_is_compatible(of_get_parent(np),
			    "fsl,spba-bus");

1191
		imx_pcm_dma_params_init_data(&ssi_private->filter_data_tx,
1192
			dma_events[0], shared ? IMX_DMATYPE_SSI_SP : IMX_DMATYPE_SSI);
1193
		imx_pcm_dma_params_init_data(&ssi_private->filter_data_rx,
1194
			dma_events[1], shared ? IMX_DMATYPE_SSI_SP : IMX_DMATYPE_SSI);
1195 1196 1197 1198 1199 1200 1201
	}

	/*
	 * Enable interrupts only for MCP8610 and MX51. The other MXs have
	 * different writeable interrupt status registers.
	 */
	if (ssi_private->use_dma) {
1202 1203 1204
		ret = devm_request_irq(&pdev->dev, ssi_private->irq,
					fsl_ssi_isr, 0, ssi_private->name,
					ssi_private);
1205
		ssi_private->irq_stats = true;
1206 1207 1208
		if (ret < 0) {
			dev_err(&pdev->dev, "could not claim irq %u\n",
					ssi_private->irq);
1209
			goto error_clk;
1210
		}
1211 1212
	}

1213
	/* Register with ASoC */
1214
	dev_set_drvdata(&pdev->dev, ssi_private);
M
Mark Brown 已提交
1215

1216 1217
	ret = snd_soc_register_component(&pdev->dev, &fsl_ssi_component,
					 &ssi_private->cpu_dai_drv, 1);
1218
	if (ret) {
1219
		dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1220
		goto error_dev;
1221 1222
	}

1223
	ret = fsl_ssi_debugfs_create(&ssi_private->dbg_stats, &pdev->dev);
1224 1225 1226
	if (ret)
		goto error_dbgfs;

1227
	if (ssi_private->ssi_on_imx) {
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
		if (!ssi_private->use_dma) {

			/*
			 * Some boards use an incompatible codec. To get it
			 * working, we are using imx-fiq-pcm-audio, that
			 * can handle those codecs. DMA is not possible in this
			 * situation.
			 */

			ssi_private->fiq_params.irq = ssi_private->irq;
			ssi_private->fiq_params.base = ssi_private->ssi;
			ssi_private->fiq_params.dma_params_rx =
				&ssi_private->dma_params_rx;
			ssi_private->fiq_params.dma_params_tx =
				&ssi_private->dma_params_tx;

			ret = imx_pcm_fiq_init(pdev, &ssi_private->fiq_params);
			if (ret)
1246
				goto error_pcm;
1247 1248 1249
		} else {
			ret = imx_pcm_dma_init(pdev);
			if (ret)
1250
				goto error_pcm;
1251
		}
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
	}

	/*
	 * If codec-handle property is missing from SSI node, we assume
	 * that the machine driver uses new binding which does not require
	 * SSI driver to trigger machine driver's probe.
	 */
	if (!of_get_property(np, "codec-handle", NULL)) {
		ssi_private->new_binding = true;
		goto done;
	}

1264
	/* Trigger the machine driver's probe function.  The platform driver
1265
	 * name of the machine driver is taken from /compatible property of the
1266 1267 1268
	 * device tree.  We also pass the address of the CPU DAI driver
	 * structure.
	 */
1269 1270
	sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
	/* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
1271 1272 1273 1274 1275 1276 1277
	p = strrchr(sprop, ',');
	if (p)
		sprop = p + 1;
	snprintf(name, sizeof(name), "snd-soc-%s", sprop);
	make_lowercase(name);

	ssi_private->pdev =
1278
		platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
1279 1280
	if (IS_ERR(ssi_private->pdev)) {
		ret = PTR_ERR(ssi_private->pdev);
1281
		dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
1282
		goto error_dai;
M
Mark Brown 已提交
1283
	}
1284

1285
done:
1286
	return 0;
1287

1288
error_dai:
1289 1290 1291 1292
	if (ssi_private->ssi_on_imx && !ssi_private->use_dma)
		imx_pcm_fiq_exit(pdev);

error_pcm:
1293
	fsl_ssi_debugfs_remove(&ssi_private->dbg_stats);
1294 1295

error_dbgfs:
1296
	snd_soc_unregister_component(&pdev->dev);
1297 1298 1299 1300

error_dev:
	device_remove_file(&pdev->dev, dev_attr);

1301
error_clk:
1302 1303 1304
	if (ssi_private->ssi_on_imx) {
		if (!IS_ERR(ssi_private->baudclk))
			clk_disable_unprepare(ssi_private->baudclk);
1305
		clk_disable_unprepare(ssi_private->clk);
1306
	}
1307 1308

error_irqmap:
1309 1310
	if (ssi_private->irq_stats)
		irq_dispose_mapping(ssi_private->irq);
1311

1312
	return ret;
1313 1314
}

1315
static int fsl_ssi_remove(struct platform_device *pdev)
1316
{
1317
	struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
1318

1319
	fsl_ssi_debugfs_remove(&ssi_private->dbg_stats);
1320

1321 1322
	if (!ssi_private->new_binding)
		platform_device_unregister(ssi_private->pdev);
1323
	snd_soc_unregister_component(&pdev->dev);
1324 1325 1326
	if (ssi_private->ssi_on_imx) {
		if (!IS_ERR(ssi_private->baudclk))
			clk_disable_unprepare(ssi_private->baudclk);
1327
		clk_disable_unprepare(ssi_private->clk);
1328
	}
1329 1330
	if (ssi_private->irq_stats)
		irq_dispose_mapping(ssi_private->irq);
1331 1332

	return 0;
1333
}
1334

1335
static struct platform_driver fsl_ssi_driver = {
1336 1337 1338 1339 1340 1341 1342 1343
	.driver = {
		.name = "fsl-ssi-dai",
		.owner = THIS_MODULE,
		.of_match_table = fsl_ssi_ids,
	},
	.probe = fsl_ssi_probe,
	.remove = fsl_ssi_remove,
};
1344

1345
module_platform_driver(fsl_ssi_driver);
1346

1347
MODULE_ALIAS("platform:fsl-ssi-dai");
1348 1349
MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
1350
MODULE_LICENSE("GPL v2");