fsl_ssi.c 31.9 KB
Newer Older
1 2 3 4 5
/*
 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
 *
 * Author: Timur Tabi <timur@freescale.com>
 *
6 7 8 9 10
 * Copyright 2007-2010 Freescale Semiconductor, Inc.
 *
 * This file is licensed under the terms of the GNU General Public License
 * version 2.  This program is licensed "as is" without any warranty of any
 * kind, whether express or implied.
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
 *
 *
 * Some notes why imx-pcm-fiq is used instead of DMA on some boards:
 *
 * The i.MX SSI core has some nasty limitations in AC97 mode. While most
 * sane processor vendors have a FIFO per AC97 slot, the i.MX has only
 * one FIFO which combines all valid receive slots. We cannot even select
 * which slots we want to receive. The WM9712 with which this driver
 * was developed with always sends GPIO status data in slot 12 which
 * we receive in our (PCM-) data stream. The only chance we have is to
 * manually skip this data in the FIQ handler. With sampling rates different
 * from 48000Hz not every frame has valid receive data, so the ratio
 * between pcm data and GPIO status data changes. Our FIQ handler is not
 * able to handle this, hence this driver only works with 48000Hz sampling
 * rate.
 * Reading and writing AC97 registers is another challenge. The core
 * provides us status bits when the read register is updated with *another*
 * value. When we read the same register two times (and the register still
 * contains the same value) these status bits are not set. We work
 * around this by not polling these bits but only wait a fixed delay.
31 32 33
 */

#include <linux/init.h>
34
#include <linux/io.h>
35 36
#include <linux/module.h>
#include <linux/interrupt.h>
37
#include <linux/clk.h>
38 39
#include <linux/device.h>
#include <linux/delay.h>
40
#include <linux/slab.h>
41 42
#include <linux/of_address.h>
#include <linux/of_irq.h>
43
#include <linux/of_platform.h>
44 45 46 47 48 49

#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/soc.h>
50
#include <sound/dmaengine_pcm.h>
51 52

#include "fsl_ssi.h"
53
#include "imx-pcm.h"
54

55 56 57 58
#ifdef PPC
#define read_ssi(addr)			 in_be32(addr)
#define write_ssi(val, addr)		 out_be32(addr, val)
#define write_ssi_mask(addr, clear, set) clrsetbits_be32(addr, clear, set)
59
#else
60 61 62 63 64 65 66 67 68 69 70 71 72 73
#define read_ssi(addr)			 readl(addr)
#define write_ssi(val, addr)		 writel(val, addr)
/*
 * FIXME: Proper locking should be added at write_ssi_mask caller level
 * to ensure this register read/modify/write sequence is race free.
 */
static inline void write_ssi_mask(u32 __iomem *addr, u32 clear, u32 set)
{
	u32 val = readl(addr);
	val = (val & ~clear) | set;
	writel(val, addr);
}
#endif

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
/**
 * FSLSSI_I2S_RATES: sample rates supported by the I2S
 *
 * This driver currently only supports the SSI running in I2S slave mode,
 * which means the codec determines the sample rate.  Therefore, we tell
 * ALSA that we support all rates and let the codec driver decide what rates
 * are really supported.
 */
#define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
			  SNDRV_PCM_RATE_CONTINUOUS)

/**
 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
 *
 * This driver currently only supports the SSI running in I2S slave mode.
 *
 * The SSI has a limitation in that the samples must be in the same byte
 * order as the host CPU.  This is because when multiple bytes are written
 * to the STX register, the bytes and bits must be written in the same
 * order.  The STX is a shift register, so all the bits need to be aligned
 * (bit-endianness must match byte-endianness).  Processors typically write
 * the bits within a byte in the same order that the bytes of a word are
 * written in.  So if the host CPU is big-endian, then only big-endian
 * samples will be written to STX properly.
 */
#ifdef __BIG_ENDIAN
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
	 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
	 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
#else
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
#endif

109 110 111 112 113 114 115
/* SIER bitflag of interrupts to enable */
#define SIER_FLAGS (CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | \
		    CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | \
		    CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | \
		    CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | \
		    CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN)

116 117 118 119 120 121
/**
 * fsl_ssi_private: per-SSI private data
 *
 * @ssi: pointer to the SSI's registers
 * @ssi_phys: physical address of the SSI registers
 * @irq: IRQ of this SSI
122 123
 * @first_stream: pointer to the stream that was opened first
 * @second_stream: pointer to second stream
124 125 126 127 128
 * @playback: the number of playback streams opened
 * @capture: the number of capture streams opened
 * @cpu_dai: the CPU DAI for this device
 * @dev_attr: the sysfs device attribute structure
 * @stats: SSI statistics
129
 * @name: name for this device
130 131 132 133 134
 */
struct fsl_ssi_private {
	struct ccsr_ssi __iomem *ssi;
	dma_addr_t ssi_phys;
	unsigned int irq;
135 136
	struct snd_pcm_substream *first_stream;
	struct snd_pcm_substream *second_stream;
137
	unsigned int fifo_depth;
138
	struct snd_soc_dai_driver cpu_dai_drv;
139
	struct device_attribute dev_attr;
140
	struct platform_device *pdev;
141

142 143
	bool new_binding;
	bool ssi_on_imx;
144
	bool imx_ac97;
145
	bool use_dma;
146
	struct clk *clk;
147 148 149 150
	struct snd_dmaengine_dai_dma_data dma_params_tx;
	struct snd_dmaengine_dai_dma_data dma_params_rx;
	struct imx_dma_data filter_data_tx;
	struct imx_dma_data filter_data_rx;
151
	struct imx_pcm_fiq_params fiq_params;
152

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
	struct {
		unsigned int rfrc;
		unsigned int tfrc;
		unsigned int cmdau;
		unsigned int cmddu;
		unsigned int rxt;
		unsigned int rdr1;
		unsigned int rdr0;
		unsigned int tde1;
		unsigned int tde0;
		unsigned int roe1;
		unsigned int roe0;
		unsigned int tue1;
		unsigned int tue0;
		unsigned int tfs;
		unsigned int rfs;
		unsigned int tls;
		unsigned int rls;
		unsigned int rff1;
		unsigned int rff0;
		unsigned int tfe1;
		unsigned int tfe0;
	} stats;
176 177

	char name[1];
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
};

/**
 * fsl_ssi_isr: SSI interrupt handler
 *
 * Although it's possible to use the interrupt handler to send and receive
 * data to/from the SSI, we use the DMA instead.  Programming is more
 * complicated, but the performance is much better.
 *
 * This interrupt handler is used only to gather statistics.
 *
 * @irq: IRQ of the SSI device
 * @dev_id: pointer to the ssi_private structure for this SSI device
 */
static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
{
	struct fsl_ssi_private *ssi_private = dev_id;
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	irqreturn_t ret = IRQ_NONE;
	__be32 sisr;
	__be32 sisr2 = 0;

	/* We got an interrupt, so read the status register to see what we
	   were interrupted for.  We mask it with the Interrupt Enable register
	   so that we only check for events that we're interested in.
	 */
204
	sisr = read_ssi(&ssi->sisr) & SIER_FLAGS;
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318

	if (sisr & CCSR_SSI_SISR_RFRC) {
		ssi_private->stats.rfrc++;
		sisr2 |= CCSR_SSI_SISR_RFRC;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFRC) {
		ssi_private->stats.tfrc++;
		sisr2 |= CCSR_SSI_SISR_TFRC;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_CMDAU) {
		ssi_private->stats.cmdau++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_CMDDU) {
		ssi_private->stats.cmddu++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RXT) {
		ssi_private->stats.rxt++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RDR1) {
		ssi_private->stats.rdr1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RDR0) {
		ssi_private->stats.rdr0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TDE1) {
		ssi_private->stats.tde1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TDE0) {
		ssi_private->stats.tde0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_ROE1) {
		ssi_private->stats.roe1++;
		sisr2 |= CCSR_SSI_SISR_ROE1;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_ROE0) {
		ssi_private->stats.roe0++;
		sisr2 |= CCSR_SSI_SISR_ROE0;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TUE1) {
		ssi_private->stats.tue1++;
		sisr2 |= CCSR_SSI_SISR_TUE1;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TUE0) {
		ssi_private->stats.tue0++;
		sisr2 |= CCSR_SSI_SISR_TUE0;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFS) {
		ssi_private->stats.tfs++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFS) {
		ssi_private->stats.rfs++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TLS) {
		ssi_private->stats.tls++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RLS) {
		ssi_private->stats.rls++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFF1) {
		ssi_private->stats.rff1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFF0) {
		ssi_private->stats.rff0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFE1) {
		ssi_private->stats.tfe1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFE0) {
		ssi_private->stats.tfe0++;
		ret = IRQ_HANDLED;
	}

	/* Clear the bits that we set */
	if (sisr2)
319
		write_ssi(sisr2, &ssi->sisr);
320 321 322 323

	return ret;
}

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
static int fsl_ssi_setup(struct fsl_ssi_private *ssi_private)
{
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	u8 i2s_mode;
	u8 wm;
	int synchronous = ssi_private->cpu_dai_drv.symmetric_rates;

	if (ssi_private->imx_ac97)
		i2s_mode = CCSR_SSI_SCR_I2S_MODE_NORMAL | CCSR_SSI_SCR_NET;
	else
		i2s_mode = CCSR_SSI_SCR_I2S_MODE_SLAVE;

	/*
	 * Section 16.5 of the MPC8610 reference manual says that the SSI needs
	 * to be disabled before updating the registers we set here.
	 */
	write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);

	/*
	 * Program the SSI into I2S Slave Non-Network Synchronous mode. Also
	 * enable the transmit and receive FIFO.
	 *
	 * FIXME: Little-endian samples require a different shift dir
	 */
	write_ssi_mask(&ssi->scr,
		CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
		CCSR_SSI_SCR_TFR_CLK_DIS |
		i2s_mode |
		(synchronous ? CCSR_SSI_SCR_SYN : 0));

	write_ssi(CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
		 CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
		 CCSR_SSI_STCR_TSCKP, &ssi->stcr);

	write_ssi(CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
		 CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
		 CCSR_SSI_SRCR_RSCKP, &ssi->srcr);
	/*
	 * The DC and PM bits are only used if the SSI is the clock master.
	 */

	/*
	 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We don't
	 * use FIFO 1. We program the transmit water to signal a DMA transfer
	 * if there are only two (or fewer) elements left in the FIFO. Two
	 * elements equals one frame (left channel, right channel). This value,
	 * however, depends on the depth of the transmit buffer.
	 *
	 * We set the watermark on the same level as the DMA burstsize.  For
	 * fiq it is probably better to use the biggest possible watermark
	 * size.
	 */
	if (ssi_private->use_dma)
		wm = ssi_private->fifo_depth - 2;
	else
		wm = ssi_private->fifo_depth;

	write_ssi(CCSR_SSI_SFCSR_TFWM0(wm) | CCSR_SSI_SFCSR_RFWM0(wm) |
		CCSR_SSI_SFCSR_TFWM1(wm) | CCSR_SSI_SFCSR_RFWM1(wm),
		&ssi->sfcsr);

	/*
	 * For ac97 interrupts are enabled with the startup of the substream
	 * because it is also running without an active substream. Normally SSI
	 * is only enabled when there is a substream.
	 */
390
	if (ssi_private->imx_ac97) {
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
		/*
		 * Setup the clock control register
		 */
		write_ssi(CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13),
				&ssi->stccr);
		write_ssi(CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13),
				&ssi->srccr);

		/*
		 * Enable AC97 mode and startup the SSI
		 */
		write_ssi(CCSR_SSI_SACNT_AC97EN | CCSR_SSI_SACNT_FV,
				&ssi->sacnt);
		write_ssi(0xff, &ssi->saccdis);
		write_ssi(0x300, &ssi->saccen);

		/*
408
		 * Enable SSI, Transmit and Receive
409
		 */
410 411
		write_ssi_mask(&ssi->scr, 0, CCSR_SSI_SCR_SSIEN |
				CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE);
412

413
		write_ssi(CCSR_SSI_SOR_WAIT(3), &ssi->sor);
414 415 416 417 418 419
	}

	return 0;
}


420 421 422 423 424 425 426 427
/**
 * fsl_ssi_startup: create a new substream
 *
 * This is the first function called when a stream is opened.
 *
 * If this is the first stream open, then grab the IRQ and program most of
 * the SSI registers.
 */
428 429
static int fsl_ssi_startup(struct snd_pcm_substream *substream,
			   struct snd_soc_dai *dai)
430 431
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
432 433 434
	struct fsl_ssi_private *ssi_private =
		snd_soc_dai_get_drvdata(rtd->cpu_dai);
	int synchronous = ssi_private->cpu_dai_drv.symmetric_rates;
435 436 437 438 439

	/*
	 * If this is the first stream opened, then request the IRQ
	 * and initialize the SSI registers.
	 */
440 441 442
	if (!ssi_private->first_stream) {
		ssi_private->first_stream = substream;

443
		/*
444 445
		 * fsl_ssi_setup was already called by ac97_init earlier if
		 * the driver is in ac97 mode.
446
		 */
447 448
		if (!ssi_private->imx_ac97)
			fsl_ssi_setup(ssi_private);
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
	} else {
		if (synchronous) {
			struct snd_pcm_runtime *first_runtime =
				ssi_private->first_stream->runtime;
			/*
			 * This is the second stream open, and we're in
			 * synchronous mode, so we need to impose sample
			 * sample size constraints. This is because STCCR is
			 * used for playback and capture in synchronous mode,
			 * so there's no way to specify different word
			 * lengths.
			 *
			 * Note that this can cause a race condition if the
			 * second stream is opened before the first stream is
			 * fully initialized.  We provide some protection by
			 * checking to make sure the first stream is
			 * initialized, but it's not perfect.  ALSA sometimes
			 * re-initializes the driver with a different sample
			 * rate or size.  If the second stream is opened
			 * before the first stream has received its final
			 * parameters, then the second stream may be
			 * constrained to the wrong sample rate or size.
			 */
472 473 474
			if (first_runtime->sample_bits) {
				snd_pcm_hw_constraint_minmax(substream->runtime,
						SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
475 476
				first_runtime->sample_bits,
				first_runtime->sample_bits);
477
			}
478
		}
479 480 481 482

		ssi_private->second_stream = substream;
	}

483 484 485 486
	return 0;
}

/**
487
 * fsl_ssi_hw_params - program the sample size
488 489 490 491 492 493 494 495 496 497 498
 *
 * Most of the SSI registers have been programmed in the startup function,
 * but the word length must be programmed here.  Unfortunately, programming
 * the SxCCR.WL bits requires the SSI to be temporarily disabled.  This can
 * cause a problem with supporting simultaneous playback and capture.  If
 * the SSI is already playing a stream, then that stream may be temporarily
 * stopped when you start capture.
 *
 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
 * clock master.
 */
499 500
static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
	struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
501
{
502
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
503 504 505 506
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	unsigned int sample_size =
		snd_pcm_format_width(params_format(hw_params));
	u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
507
	int enabled = read_ssi(&ssi->scr) & CCSR_SSI_SCR_SSIEN;
508

509 510 511 512 513 514
	/*
	 * If we're in synchronous mode, and the SSI is already enabled,
	 * then STCCR is already set properly.
	 */
	if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
		return 0;
515

516 517 518 519 520 521 522 523 524
	/*
	 * FIXME: The documentation says that SxCCR[WL] should not be
	 * modified while the SSI is enabled.  The only time this can
	 * happen is if we're trying to do simultaneous playback and
	 * capture in asynchronous mode.  Unfortunately, I have been enable
	 * to get that to work at all on the P1022DS.  Therefore, we don't
	 * bother to disable/enable the SSI when setting SxCCR[WL], because
	 * the SSI will stop anyway.  Maybe one day, this will get fixed.
	 */
525

526 527 528
	/* In synchronous mode, the SSI uses STCCR for capture */
	if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
	    ssi_private->cpu_dai_drv.symmetric_rates)
529
		write_ssi_mask(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl);
530
	else
531
		write_ssi_mask(&ssi->srccr, CCSR_SSI_SxCCR_WL_MASK, wl);
532 533 534 535 536 537 538 539 540 541 542 543 544

	return 0;
}

/**
 * fsl_ssi_trigger: start and stop the DMA transfer.
 *
 * This function is called by ALSA to start, stop, pause, and resume the DMA
 * transfer of data.
 *
 * The DMA channel is in external master start and pause mode, which
 * means the SSI completely controls the flow of data.
 */
545 546
static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
			   struct snd_soc_dai *dai)
547 548
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
549
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
550
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
	unsigned int sier_bits;

	/*
	 *  Enable only the interrupts and DMA requests
	 *  that are needed for the channel. As the fiq
	 *  is polling for this bits, we have to ensure
	 *  that this are aligned with the preallocated
	 *  buffers
	 */

	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
		if (ssi_private->use_dma)
			sier_bits = SIER_FLAGS;
		else
			sier_bits = CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TFE0_EN;
	} else {
		if (ssi_private->use_dma)
			sier_bits = SIER_FLAGS;
		else
			sier_bits = CCSR_SSI_SIER_RIE | CCSR_SSI_SIER_RFF0_EN;
	}
572 573 574 575

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
576
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
577
			write_ssi_mask(&ssi->scr, 0,
578
				CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
579
		else
580
			write_ssi_mask(&ssi->scr, 0,
581
				CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
582 583 584 585 586
		break;

	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
587
			write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_TE, 0);
588
		else
589
			write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_RE, 0);
590

591 592
		if (!ssi_private->imx_ac97 && (read_ssi(&ssi->scr) &
					(CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE)) == 0)
593
			write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
594 595 596 597 598 599
		break;

	default:
		return -EINVAL;
	}

600 601
	write_ssi(sier_bits, &ssi->sier);

602 603 604 605 606 607 608 609
	return 0;
}

/**
 * fsl_ssi_shutdown: shutdown the SSI
 *
 * Shutdown the SSI if there are no other substreams open.
 */
610 611
static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
			     struct snd_soc_dai *dai)
612 613
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
614
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
615

616 617 618 619
	if (ssi_private->first_stream == substream)
		ssi_private->first_stream = ssi_private->second_stream;

	ssi_private->second_stream = NULL;
620 621
}

622 623 624 625
static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
{
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai);

626
	if (ssi_private->ssi_on_imx && ssi_private->use_dma) {
627 628 629 630 631 632 633
		dai->playback_dma_data = &ssi_private->dma_params_tx;
		dai->capture_dma_data = &ssi_private->dma_params_rx;
	}

	return 0;
}

634
static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
635 636 637 638 639 640
	.startup	= fsl_ssi_startup,
	.hw_params	= fsl_ssi_hw_params,
	.shutdown	= fsl_ssi_shutdown,
	.trigger	= fsl_ssi_trigger,
};

641 642
/* Template for the CPU dai driver structure */
static struct snd_soc_dai_driver fsl_ssi_dai_template = {
643
	.probe = fsl_ssi_dai_probe,
644 645 646 647 648 649 650 651 652 653 654 655 656
	.playback = {
		/* The SSI does not support monaural audio. */
		.channels_min = 2,
		.channels_max = 2,
		.rates = FSLSSI_I2S_RATES,
		.formats = FSLSSI_I2S_FORMATS,
	},
	.capture = {
		.channels_min = 2,
		.channels_max = 2,
		.rates = FSLSSI_I2S_RATES,
		.formats = FSLSSI_I2S_FORMATS,
	},
657
	.ops = &fsl_ssi_dai_ops,
658 659
};

660 661 662 663
static const struct snd_soc_component_driver fsl_ssi_component = {
	.name		= "fsl-ssi",
};

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
/**
 * fsl_ssi_ac97_trigger: start and stop the AC97 receive/transmit.
 *
 * This function is called by ALSA to start, stop, pause, and resume the
 * transfer of data.
 */
static int fsl_ssi_ac97_trigger(struct snd_pcm_substream *substream, int cmd,
			   struct snd_soc_dai *dai)
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(
			rtd->cpu_dai);
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
			write_ssi_mask(&ssi->sier, 0, CCSR_SSI_SIER_TIE |
					CCSR_SSI_SIER_TFE0_EN);
		else
			write_ssi_mask(&ssi->sier, 0, CCSR_SSI_SIER_RIE |
					CCSR_SSI_SIER_RFF0_EN);
		break;

	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
			write_ssi_mask(&ssi->sier, CCSR_SSI_SIER_TIE |
					CCSR_SSI_SIER_TFE0_EN, 0);
		else
			write_ssi_mask(&ssi->sier, CCSR_SSI_SIER_RIE |
					CCSR_SSI_SIER_RFF0_EN, 0);
		break;

	default:
		return -EINVAL;
	}

	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
		write_ssi(CCSR_SSI_SOR_TX_CLR, &ssi->sor);
	else
		write_ssi(CCSR_SSI_SOR_RX_CLR, &ssi->sor);

	return 0;
}

static const struct snd_soc_dai_ops fsl_ssi_ac97_dai_ops = {
	.startup	= fsl_ssi_startup,
	.shutdown	= fsl_ssi_shutdown,
	.trigger	= fsl_ssi_ac97_trigger,
};

static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
	.ac97_control = 1,
	.playback = {
		.stream_name = "AC97 Playback",
		.channels_min = 2,
		.channels_max = 2,
		.rates = SNDRV_PCM_RATE_8000_48000,
		.formats = SNDRV_PCM_FMTBIT_S16_LE,
	},
	.capture = {
		.stream_name = "AC97 Capture",
		.channels_min = 2,
		.channels_max = 2,
		.rates = SNDRV_PCM_RATE_48000,
		.formats = SNDRV_PCM_FMTBIT_S16_LE,
	},
	.ops = &fsl_ssi_ac97_dai_ops,
};


static struct fsl_ssi_private *fsl_ac97_data;

static void fsl_ssi_ac97_init(void)
{
	fsl_ssi_setup(fsl_ac97_data);
}

744
static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
		unsigned short val)
{
	struct ccsr_ssi *ssi = fsl_ac97_data->ssi;
	unsigned int lreg;
	unsigned int lval;

	if (reg > 0x7f)
		return;


	lreg = reg <<  12;
	write_ssi(lreg, &ssi->sacadd);

	lval = val << 4;
	write_ssi(lval , &ssi->sacdat);

	write_ssi_mask(&ssi->sacnt, CCSR_SSI_SACNT_RDWR_MASK,
			CCSR_SSI_SACNT_WR);
	udelay(100);
}

766
static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
		unsigned short reg)
{
	struct ccsr_ssi *ssi = fsl_ac97_data->ssi;

	unsigned short val = -1;
	unsigned int lreg;

	lreg = (reg & 0x7f) <<  12;
	write_ssi(lreg, &ssi->sacadd);
	write_ssi_mask(&ssi->sacnt, CCSR_SSI_SACNT_RDWR_MASK,
			CCSR_SSI_SACNT_RD);

	udelay(100);

	val = (read_ssi(&ssi->sacdat) >> 4) & 0xffff;

	return val;
}

static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
	.read		= fsl_ssi_ac97_read,
	.write		= fsl_ssi_ac97_write,
};

791 792 793 794 795 796 797 798 799 800 801 802
/* Show the statistics of a flag only if its interrupt is enabled.  The
 * compiler will optimze this code to a no-op if the interrupt is not
 * enabled.
 */
#define SIER_SHOW(flag, name) \
	do { \
		if (SIER_FLAGS & CCSR_SSI_SIER_##flag) \
			length += sprintf(buf + length, #name "=%u\n", \
				ssi_private->stats.name); \
	} while (0)


803 804 805
/**
 * fsl_sysfs_ssi_show: display SSI statistics
 *
806 807
 * Display the statistics for the current SSI device.  To avoid confusion,
 * we only show those counts that are enabled.
808 809 810 811 812
 */
static ssize_t fsl_sysfs_ssi_show(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct fsl_ssi_private *ssi_private =
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
		container_of(attr, struct fsl_ssi_private, dev_attr);
	ssize_t length = 0;

	SIER_SHOW(RFRC_EN, rfrc);
	SIER_SHOW(TFRC_EN, tfrc);
	SIER_SHOW(CMDAU_EN, cmdau);
	SIER_SHOW(CMDDU_EN, cmddu);
	SIER_SHOW(RXT_EN, rxt);
	SIER_SHOW(RDR1_EN, rdr1);
	SIER_SHOW(RDR0_EN, rdr0);
	SIER_SHOW(TDE1_EN, tde1);
	SIER_SHOW(TDE0_EN, tde0);
	SIER_SHOW(ROE1_EN, roe1);
	SIER_SHOW(ROE0_EN, roe0);
	SIER_SHOW(TUE1_EN, tue1);
	SIER_SHOW(TUE0_EN, tue0);
	SIER_SHOW(TFS_EN, tfs);
	SIER_SHOW(RFS_EN, rfs);
	SIER_SHOW(TLS_EN, tls);
	SIER_SHOW(RLS_EN, rls);
	SIER_SHOW(RFF1_EN, rff1);
	SIER_SHOW(RFF0_EN, rff0);
	SIER_SHOW(TFE1_EN, tfe1);
	SIER_SHOW(TFE0_EN, tfe0);
837 838 839 840 841

	return length;
}

/**
842
 * Make every character in a string lower-case
843
 */
844 845 846 847 848 849 850 851 852 853 854 855
static void make_lowercase(char *s)
{
	char *p = s;
	char c;

	while ((c = *p)) {
		if ((c >= 'A') && (c <= 'Z'))
			*p = c + ('a' - 'A');
		p++;
	}
}

856
static int fsl_ssi_probe(struct platform_device *pdev)
857 858 859
{
	struct fsl_ssi_private *ssi_private;
	int ret = 0;
860
	struct device_attribute *dev_attr = NULL;
861
	struct device_node *np = pdev->dev.of_node;
862
	const char *p, *sprop;
863
	const uint32_t *iprop;
864 865
	struct resource res;
	char name[64];
866
	bool shared;
867
	bool ac97 = false;
868

869 870 871
	/* SSIs that are not connected on the board should have a
	 *      status = "disabled"
	 * property in their device tree nodes.
872
	 */
873
	if (!of_device_is_available(np))
874 875 876 877
		return -ENODEV;

	/* We only support the SSI in "I2S Slave" mode */
	sprop = of_get_property(np, "fsl,mode", NULL);
878 879 880 881 882 883 884
	if (!sprop) {
		dev_err(&pdev->dev, "fsl,mode property is necessary\n");
		return -EINVAL;
	}
	if (!strcmp(sprop, "ac97-slave")) {
		ac97 = true;
	} else if (strcmp(sprop, "i2s-slave")) {
885
		dev_notice(&pdev->dev, "mode %s is unsupported\n", sprop);
886 887 888 889 890
		return -ENODEV;
	}

	/* The DAI name is the last part of the full name of the node. */
	p = strrchr(np->full_name, '/') + 1;
891
	ssi_private = devm_kzalloc(&pdev->dev, sizeof(*ssi_private) + strlen(p),
892
			      GFP_KERNEL);
893
	if (!ssi_private) {
894
		dev_err(&pdev->dev, "could not allocate DAI object\n");
895
		return -ENOMEM;
896 897
	}

898
	strcpy(ssi_private->name, p);
899

900 901 902
	ssi_private->use_dma = !of_property_read_bool(np,
			"fsl,fiq-stream-filter");

903 904 905 906 907 908 909 910 911 912 913 914 915
	if (ac97) {
		memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_ac97_dai,
				sizeof(fsl_ssi_ac97_dai));

		fsl_ac97_data = ssi_private;
		ssi_private->imx_ac97 = true;

		snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
	} else {
		/* Initialize this copy of the CPU DAI driver structure */
		memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
		       sizeof(fsl_ssi_dai_template));
	}
916 917 918 919 920
	ssi_private->cpu_dai_drv.name = ssi_private->name;

	/* Get the addresses and IRQ */
	ret = of_address_to_resource(np, 0, &res);
	if (ret) {
921
		dev_err(&pdev->dev, "could not determine device resources\n");
922
		return ret;
923
	}
924 925 926
	ssi_private->ssi = of_iomap(np, 0);
	if (!ssi_private->ssi) {
		dev_err(&pdev->dev, "could not map device resources\n");
927
		return -ENOMEM;
928
	}
929
	ssi_private->ssi_phys = res.start;
930

931
	ssi_private->irq = irq_of_parse_and_map(np, 0);
932 933
	if (ssi_private->irq == NO_IRQ) {
		dev_err(&pdev->dev, "no irq for node %s\n", np->full_name);
934
		return -ENXIO;
935 936
	}

937
	/* Are the RX and the TX clocks locked? */
938
	if (!of_find_property(np, "fsl,ssi-asynchronous", NULL))
939
		ssi_private->cpu_dai_drv.symmetric_rates = 1;
940

941 942 943
	/* Determine the FIFO depth. */
	iprop = of_get_property(np, "fsl,fifo-depth", NULL);
	if (iprop)
944
		ssi_private->fifo_depth = be32_to_cpup(iprop);
945 946 947 948
	else
                /* Older 8610 DTs didn't have the fifo-depth property */
		ssi_private->fifo_depth = 8;

949 950 951
	if (of_device_is_compatible(pdev->dev.of_node, "fsl,imx21-ssi")) {
		u32 dma_events[2];
		ssi_private->ssi_on_imx = true;
952

953
		ssi_private->clk = devm_clk_get(&pdev->dev, NULL);
954 955 956
		if (IS_ERR(ssi_private->clk)) {
			ret = PTR_ERR(ssi_private->clk);
			dev_err(&pdev->dev, "could not get clock: %d\n", ret);
957
			goto error_irqmap;
958
		}
959 960 961 962 963 964
		ret = clk_prepare_enable(ssi_private->clk);
		if (ret) {
			dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n",
				ret);
			goto error_irqmap;
		}
965

966 967 968 969
		/*
		 * We have burstsize be "fifo_depth - 2" to match the SSI
		 * watermark setting in fsl_ssi_startup().
		 */
970
		ssi_private->dma_params_tx.maxburst =
971
			ssi_private->fifo_depth - 2;
972
		ssi_private->dma_params_rx.maxburst =
973
			ssi_private->fifo_depth - 2;
974
		ssi_private->dma_params_tx.addr =
975
			ssi_private->ssi_phys + offsetof(struct ccsr_ssi, stx0);
976
		ssi_private->dma_params_rx.addr =
977
			ssi_private->ssi_phys + offsetof(struct ccsr_ssi, srx0);
978 979 980 981
		ssi_private->dma_params_tx.filter_data =
			&ssi_private->filter_data_tx;
		ssi_private->dma_params_rx.filter_data =
			&ssi_private->filter_data_rx;
982 983 984 985 986 987 988 989
		if (!of_property_read_bool(pdev->dev.of_node, "dmas") &&
				ssi_private->use_dma) {
			/*
			 * FIXME: This is a temporary solution until all
			 * necessary dma drivers support the generic dma
			 * bindings.
			 */
			ret = of_property_read_u32_array(pdev->dev.of_node,
990
					"fsl,ssi-dma-events", dma_events, 2);
991 992 993 994
			if (ret && ssi_private->use_dma) {
				dev_err(&pdev->dev, "could not get dma events but fsl-ssi is configured to use DMA\n");
				goto error_clk;
			}
995
		}
996 997 998 999

		shared = of_device_is_compatible(of_get_parent(np),
			    "fsl,spba-bus");

1000
		imx_pcm_dma_params_init_data(&ssi_private->filter_data_tx,
1001
			dma_events[0], shared ? IMX_DMATYPE_SSI_SP : IMX_DMATYPE_SSI);
1002
		imx_pcm_dma_params_init_data(&ssi_private->filter_data_rx,
1003
			dma_events[1], shared ? IMX_DMATYPE_SSI_SP : IMX_DMATYPE_SSI);
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
	} else if (ssi_private->use_dma) {
		/* The 'name' should not have any slashes in it. */
		ret = devm_request_irq(&pdev->dev, ssi_private->irq,
					fsl_ssi_isr, 0, ssi_private->name,
					ssi_private);
		if (ret < 0) {
			dev_err(&pdev->dev, "could not claim irq %u\n",
					ssi_private->irq);
			goto error_irqmap;
		}
1014 1015
	}

1016
	/* Initialize the the device_attribute structure */
1017
	dev_attr = &ssi_private->dev_attr;
1018
	sysfs_attr_init(&dev_attr->attr);
1019
	dev_attr->attr.name = "statistics";
1020 1021 1022
	dev_attr->attr.mode = S_IRUGO;
	dev_attr->show = fsl_sysfs_ssi_show;

1023
	ret = device_create_file(&pdev->dev, dev_attr);
1024
	if (ret) {
1025
		dev_err(&pdev->dev, "could not create sysfs %s file\n",
1026
			ssi_private->dev_attr.attr.name);
1027
		goto error_clk;
1028 1029
	}

1030
	/* Register with ASoC */
1031
	dev_set_drvdata(&pdev->dev, ssi_private);
M
Mark Brown 已提交
1032

1033 1034
	ret = snd_soc_register_component(&pdev->dev, &fsl_ssi_component,
					 &ssi_private->cpu_dai_drv, 1);
1035
	if (ret) {
1036
		dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1037
		goto error_dev;
1038 1039
	}

1040
	if (ssi_private->ssi_on_imx) {
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
		if (!ssi_private->use_dma) {

			/*
			 * Some boards use an incompatible codec. To get it
			 * working, we are using imx-fiq-pcm-audio, that
			 * can handle those codecs. DMA is not possible in this
			 * situation.
			 */

			ssi_private->fiq_params.irq = ssi_private->irq;
			ssi_private->fiq_params.base = ssi_private->ssi;
			ssi_private->fiq_params.dma_params_rx =
				&ssi_private->dma_params_rx;
			ssi_private->fiq_params.dma_params_tx =
				&ssi_private->dma_params_tx;

			ret = imx_pcm_fiq_init(pdev, &ssi_private->fiq_params);
			if (ret)
				goto error_dev;
		} else {
			ret = imx_pcm_dma_init(pdev);
			if (ret)
				goto error_dev;
		}
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
	}

	/*
	 * If codec-handle property is missing from SSI node, we assume
	 * that the machine driver uses new binding which does not require
	 * SSI driver to trigger machine driver's probe.
	 */
	if (!of_get_property(np, "codec-handle", NULL)) {
		ssi_private->new_binding = true;
		goto done;
	}

1077
	/* Trigger the machine driver's probe function.  The platform driver
1078
	 * name of the machine driver is taken from /compatible property of the
1079 1080 1081
	 * device tree.  We also pass the address of the CPU DAI driver
	 * structure.
	 */
1082 1083
	sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
	/* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
1084 1085 1086 1087 1088 1089 1090
	p = strrchr(sprop, ',');
	if (p)
		sprop = p + 1;
	snprintf(name, sizeof(name), "snd-soc-%s", sprop);
	make_lowercase(name);

	ssi_private->pdev =
1091
		platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
1092 1093
	if (IS_ERR(ssi_private->pdev)) {
		ret = PTR_ERR(ssi_private->pdev);
1094
		dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
1095
		goto error_dai;
M
Mark Brown 已提交
1096
	}
1097

1098
done:
1099 1100 1101
	if (ssi_private->imx_ac97)
		fsl_ssi_ac97_init();

1102
	return 0;
1103

1104
error_dai:
1105
	if (ssi_private->ssi_on_imx)
1106
		imx_pcm_dma_exit(pdev);
1107
	snd_soc_unregister_component(&pdev->dev);
1108 1109 1110 1111

error_dev:
	device_remove_file(&pdev->dev, dev_attr);

1112
error_clk:
1113
	if (ssi_private->ssi_on_imx)
1114
		clk_disable_unprepare(ssi_private->clk);
1115 1116

error_irqmap:
1117
	irq_dispose_mapping(ssi_private->irq);
1118

1119
	return ret;
1120 1121
}

1122
static int fsl_ssi_remove(struct platform_device *pdev)
1123
{
1124
	struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
1125

1126 1127
	if (!ssi_private->new_binding)
		platform_device_unregister(ssi_private->pdev);
1128
	if (ssi_private->ssi_on_imx)
1129
		imx_pcm_dma_exit(pdev);
1130
	snd_soc_unregister_component(&pdev->dev);
1131
	device_remove_file(&pdev->dev, &ssi_private->dev_attr);
1132 1133
	if (ssi_private->ssi_on_imx)
		clk_disable_unprepare(ssi_private->clk);
1134
	irq_dispose_mapping(ssi_private->irq);
1135 1136

	return 0;
1137
}
1138 1139 1140

static const struct of_device_id fsl_ssi_ids[] = {
	{ .compatible = "fsl,mpc8610-ssi", },
1141
	{ .compatible = "fsl,imx21-ssi", },
1142 1143 1144 1145
	{}
};
MODULE_DEVICE_TABLE(of, fsl_ssi_ids);

1146
static struct platform_driver fsl_ssi_driver = {
1147 1148 1149 1150 1151 1152 1153 1154
	.driver = {
		.name = "fsl-ssi-dai",
		.owner = THIS_MODULE,
		.of_match_table = fsl_ssi_ids,
	},
	.probe = fsl_ssi_probe,
	.remove = fsl_ssi_remove,
};
1155

1156
module_platform_driver(fsl_ssi_driver);
1157

1158
MODULE_ALIAS("platform:fsl-ssi-dai");
1159 1160
MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
1161
MODULE_LICENSE("GPL v2");