irq_remapping.c 37.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
J
Joerg Roedel 已提交
2 3 4

#define pr_fmt(fmt)     "DMAR-IR: " fmt

Y
Yinghai Lu 已提交
5
#include <linux/interrupt.h>
6
#include <linux/dmar.h>
7
#include <linux/spinlock.h>
8
#include <linux/slab.h>
9
#include <linux/jiffies.h>
10
#include <linux/hpet.h>
11
#include <linux/pci.h>
12
#include <linux/irq.h>
13 14
#include <linux/intel-iommu.h>
#include <linux/acpi.h>
15
#include <linux/irqdomain.h>
16
#include <linux/crash_dump.h>
17
#include <asm/io_apic.h>
18
#include <asm/apic.h>
Y
Yinghai Lu 已提交
19
#include <asm/smp.h>
20
#include <asm/cpu.h>
21
#include <asm/irq_remapping.h>
22
#include <asm/pci-direct.h>
23

24
#include "../irq_remapping.h"
25
#include "cap_audit.h"
26

27 28 29 30 31
enum irq_mode {
	IRQ_REMAPPING,
	IRQ_POSTING,
};

32 33 34 35 36 37 38 39 40 41 42 43 44 45
struct ioapic_scope {
	struct intel_iommu *iommu;
	unsigned int id;
	unsigned int bus;	/* PCI bus number */
	unsigned int devfn;	/* PCI devfn number */
};

struct hpet_scope {
	struct intel_iommu *iommu;
	u8 id;
	unsigned int bus;
	unsigned int devfn;
};

46 47 48 49 50
struct irq_2_iommu {
	struct intel_iommu *iommu;
	u16 irte_index;
	u16 sub_handle;
	u8  irte_mask;
51
	enum irq_mode mode;
52 53
};

54 55 56 57 58 59 60 61
struct intel_ir_data {
	struct irq_2_iommu			irq_2_iommu;
	struct irte				irte_entry;
	union {
		struct msi_msg			msi_entry;
	};
};

62
#define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
63
#define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
64

65
static int __read_mostly eim_mode;
66
static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
67
static struct hpet_scope ir_hpet[MAX_HPET_TBS];
68

69 70 71 72 73 74 75 76 77 78 79
/*
 * Lock ordering:
 * ->dmar_global_lock
 *	->irq_2_ir_lock
 *		->qi->q_lock
 *	->iommu->register_lock
 * Note:
 * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
 * in single-threaded environment with interrupt disabled, so no need to tabke
 * the dmar_global_lock.
 */
80
DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
81
static const struct irq_domain_ops intel_ir_domain_ops;
82

83
static void iommu_disable_irq_remapping(struct intel_iommu *iommu);
84 85
static int __init parse_ioapics_under_ir(void);

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
static bool ir_pre_enabled(struct intel_iommu *iommu)
{
	return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED);
}

static void clear_ir_pre_enabled(struct intel_iommu *iommu)
{
	iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
}

static void init_ir_status(struct intel_iommu *iommu)
{
	u32 gsts;

	gsts = readl(iommu->reg + DMAR_GSTS_REG);
	if (gsts & DMA_GSTS_IRES)
		iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
}

J
Jacob Pan 已提交
105
static int alloc_irte(struct intel_iommu *iommu,
106
		      struct irq_2_iommu *irq_iommu, u16 count)
107 108 109
{
	struct ir_table *table = iommu->ir_table;
	unsigned int mask = 0;
110
	unsigned long flags;
111
	int index;
112

113
	if (!count || !irq_iommu)
114 115
		return -1;

116 117 118 119 120 121
	if (count > 1) {
		count = __roundup_pow_of_two(count);
		mask = ilog2(count);
	}

	if (mask > ecap_max_handle_mask(iommu->ecap)) {
J
Joerg Roedel 已提交
122
		pr_err("Requested mask %x exceeds the max invalidation handle"
123 124 125 126 127
		       " mask value %Lx\n", mask,
		       ecap_max_handle_mask(iommu->ecap));
		return -1;
	}

128
	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
129 130 131 132 133 134 135 136 137
	index = bitmap_find_free_region(table->bitmap,
					INTR_REMAP_TABLE_ENTRIES, mask);
	if (index < 0) {
		pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
	} else {
		irq_iommu->iommu = iommu;
		irq_iommu->irte_index =  index;
		irq_iommu->sub_handle = 0;
		irq_iommu->irte_mask = mask;
138
		irq_iommu->mode = IRQ_REMAPPING;
139
	}
140
	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
141 142 143 144

	return index;
}

145
static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
146 147 148
{
	struct qi_desc desc;

149
	desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
150
		   | QI_IEC_SELECTIVE;
151 152 153
	desc.qw1 = 0;
	desc.qw2 = 0;
	desc.qw3 = 0;
154

155
	return qi_submit_sync(iommu, &desc, 1, 0);
156 157
}

158 159
static int modify_irte(struct irq_2_iommu *irq_iommu,
		       struct irte *irte_modified)
160 161
{
	struct intel_iommu *iommu;
162
	unsigned long flags;
163 164
	struct irte *irte;
	int rc, index;
165

166
	if (!irq_iommu)
167
		return -1;
168

169
	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
170

171
	iommu = irq_iommu->iommu;
172

173
	index = irq_iommu->irte_index + irq_iommu->sub_handle;
174 175
	irte = &iommu->ir_table->base[index];

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE)
	if ((irte->pst == 1) || (irte_modified->pst == 1)) {
		bool ret;

		ret = cmpxchg_double(&irte->low, &irte->high,
				     irte->low, irte->high,
				     irte_modified->low, irte_modified->high);
		/*
		 * We use cmpxchg16 to atomically update the 128-bit IRTE,
		 * and it cannot be updated by the hardware or other processors
		 * behind us, so the return value of cmpxchg16 should be the
		 * same as the old value.
		 */
		WARN_ON(!ret);
	} else
#endif
	{
		set_64bit(&irte->low, irte_modified->low);
		set_64bit(&irte->high, irte_modified->high);
	}
196 197
	__iommu_flush_cache(iommu, irte, sizeof(*irte));

198
	rc = qi_flush_iec(iommu, index, 0);
199 200 201

	/* Update iommu mode according to the IRTE mode */
	irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING;
202
	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
203 204

	return rc;
205 206
}

207
static struct intel_iommu *map_hpet_to_iommu(u8 hpet_id)
208 209 210
{
	int i;

211
	for (i = 0; i < MAX_HPET_TBS; i++) {
212
		if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
213
			return ir_hpet[i].iommu;
214
	}
215 216 217
	return NULL;
}

218
static struct intel_iommu *map_ioapic_to_iommu(int apic)
219 220 221
{
	int i;

222
	for (i = 0; i < MAX_IO_APICS; i++) {
223
		if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
224
			return ir_ioapic[i].iommu;
225
	}
226 227 228
	return NULL;
}

229 230 231
static struct irq_domain *map_dev_to_ir(struct pci_dev *dev)
{
	struct dmar_drhd_unit *drhd = dmar_find_matched_drhd_unit(dev);
232

233
	return drhd ? drhd->iommu->ir_msi_domain : NULL;
234 235
}

236 237 238 239 240 241 242 243 244 245
static int clear_entries(struct irq_2_iommu *irq_iommu)
{
	struct irte *start, *entry, *end;
	struct intel_iommu *iommu;
	int index;

	if (irq_iommu->sub_handle)
		return 0;

	iommu = irq_iommu->iommu;
246
	index = irq_iommu->irte_index;
247 248 249 250 251

	start = iommu->ir_table->base + index;
	end = start + (1 << irq_iommu->irte_mask);

	for (entry = start; entry < end; entry++) {
252 253
		set_64bit(&entry->low, 0);
		set_64bit(&entry->high, 0);
254
	}
255 256
	bitmap_release_region(iommu->ir_table->bitmap, index,
			      irq_iommu->irte_mask);
257 258 259 260

	return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
}

261 262 263 264
/*
 * source validation type
 */
#define SVT_NO_VERIFY		0x0  /* no verification is required */
L
Lucas De Marchi 已提交
265
#define SVT_VERIFY_SID_SQ	0x1  /* verify using SID and SQ fields */
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
#define SVT_VERIFY_BUS		0x2  /* verify bus of request-id */

/*
 * source-id qualifier
 */
#define SQ_ALL_16	0x0  /* verify all 16 bits of request-id */
#define SQ_13_IGNORE_1	0x1  /* verify most significant 13 bits, ignore
			      * the third least significant bit
			      */
#define SQ_13_IGNORE_2	0x2  /* verify most significant 13 bits, ignore
			      * the second and third least significant bits
			      */
#define SQ_13_IGNORE_3	0x3  /* verify most significant 13 bits, ignore
			      * the least three significant bits
			      */

/*
 * set SVT, SQ and SID fields of irte to verify
 * source ids of interrupt requests
 */
static void set_irte_sid(struct irte *irte, unsigned int svt,
			 unsigned int sq, unsigned int sid)
{
289 290
	if (disable_sourceid_checking)
		svt = SVT_NO_VERIFY;
291 292 293 294 295
	irte->svt = svt;
	irte->sq = sq;
	irte->sid = sid;
}

296 297 298 299 300 301 302 303 304 305 306 307
/*
 * Set an IRTE to match only the bus number. Interrupt requests that reference
 * this IRTE must have a requester-id whose bus number is between or equal
 * to the start_bus and end_bus arguments.
 */
static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus,
				unsigned int end_bus)
{
	set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
		     (start_bus << 8) | end_bus);
}

308
static int set_ioapic_sid(struct irte *irte, int apic)
309 310 311 312 313 314 315
{
	int i;
	u16 sid = 0;

	if (!irte)
		return -1;

316
	down_read(&dmar_global_lock);
317
	for (i = 0; i < MAX_IO_APICS; i++) {
318
		if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
319 320 321 322
			sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn;
			break;
		}
	}
323
	up_read(&dmar_global_lock);
324 325

	if (sid == 0) {
J
Joerg Roedel 已提交
326
		pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic);
327 328 329
		return -1;
	}

330
	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
331 332 333 334

	return 0;
}

335
static int set_hpet_sid(struct irte *irte, u8 id)
336 337 338 339 340 341 342
{
	int i;
	u16 sid = 0;

	if (!irte)
		return -1;

343
	down_read(&dmar_global_lock);
344
	for (i = 0; i < MAX_HPET_TBS; i++) {
345
		if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
346 347 348 349
			sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn;
			break;
		}
	}
350
	up_read(&dmar_global_lock);
351 352

	if (sid == 0) {
J
Joerg Roedel 已提交
353
		pr_warn("Failed to set source-id of HPET block (%d)\n", id);
354 355 356 357 358 359 360 361 362 363 364 365 366
		return -1;
	}

	/*
	 * Should really use SQ_ALL_16. Some platforms are broken.
	 * While we figure out the right quirks for these broken platforms, use
	 * SQ_13_IGNORE_3 for now.
	 */
	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);

	return 0;
}

367 368 369
struct set_msi_sid_data {
	struct pci_dev *pdev;
	u16 alias;
370 371
	int count;
	int busmatch_count;
372 373 374 375 376 377
};

static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
{
	struct set_msi_sid_data *data = opaque;

378 379 380
	if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias))
		data->busmatch_count++;

381 382
	data->pdev = pdev;
	data->alias = alias;
383 384
	data->count++;

385 386 387
	return 0;
}

388
static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
389
{
390
	struct set_msi_sid_data data;
391 392 393 394

	if (!irte || !dev)
		return -1;

395 396
	data.count = 0;
	data.busmatch_count = 0;
397
	pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
398

399 400 401 402 403 404
	/*
	 * DMA alias provides us with a PCI device and alias.  The only case
	 * where the it will return an alias on a different bus than the
	 * device is the case of a PCIe-to-PCI bridge, where the alias is for
	 * the subordinate bus.  In this case we can only verify the bus.
	 *
405 406 407 408 409
	 * If there are multiple aliases, all with the same bus number,
	 * then all we can do is verify the bus. This is typical in NTB
	 * hardware which use proxy IDs where the device will generate traffic
	 * from multiple devfn numbers on the same bus.
	 *
410 411 412 413 414 415 416 417
	 * If the alias device is on a different bus than our source device
	 * then we have a topology based alias, use it.
	 *
	 * Otherwise, the alias is for a device DMA quirk and we cannot
	 * assume that MSI uses the same requester ID.  Therefore use the
	 * original device.
	 */
	if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
418 419
		set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias),
				    dev->bus->number);
420 421
	else if (data.count >= 2 && data.busmatch_count == data.count)
		set_irte_verify_bus(irte, dev->bus->number, dev->bus->number);
422 423 424 425
	else if (data.pdev->bus->number != dev->bus->number)
		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
	else
		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
426
			     pci_dev_id(dev));
427 428 429 430

	return 0;
}

431 432
static int iommu_load_old_irte(struct intel_iommu *iommu)
{
433
	struct irte *old_ir_table;
434
	phys_addr_t irt_phys;
435
	unsigned int i;
436 437 438 439 440 441 442 443 444 445 446 447 448
	size_t size;
	u64 irta;

	/* Check whether the old ir-table has the same size as ours */
	irta = dmar_readq(iommu->reg + DMAR_IRTA_REG);
	if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK)
	     != INTR_REMAP_TABLE_REG_SIZE)
		return -EINVAL;

	irt_phys = irta & VTD_PAGE_MASK;
	size     = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte);

	/* Map the old IR table */
449
	old_ir_table = memremap(irt_phys, size, MEMREMAP_WB);
450 451 452 453
	if (!old_ir_table)
		return -ENOMEM;

	/* Copy data over */
454
	memcpy(iommu->ir_table->base, old_ir_table, size);
455 456 457

	__iommu_flush_cache(iommu, iommu->ir_table->base, size);

458 459 460 461 462 463 464 465 466
	/*
	 * Now check the table for used entries and mark those as
	 * allocated in the bitmap
	 */
	for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) {
		if (iommu->ir_table->base[i].present)
			bitmap_set(iommu->ir_table->bitmap, i, 1);
	}

467
	memunmap(old_ir_table);
468

469 470 471 472
	return 0;
}


473
static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
474
{
475
	unsigned long flags;
476
	u64 addr;
477
	u32 sts;
478 479 480

	addr = virt_to_phys((void *)iommu->ir_table->base);

481
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
482 483 484 485 486

	dmar_writeq(iommu->reg + DMAR_IRTA_REG,
		    (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);

	/* Set interrupt-remapping table pointer */
487
	writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
488 489 490

	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
		      readl, (sts & DMA_GSTS_IRTPS), sts);
491
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
492 493

	/*
494 495
	 * Global invalidation of interrupt entry cache to make sure the
	 * hardware uses the new irq remapping table.
496 497
	 */
	qi_global_iec(iommu);
498 499 500 501 502 503
}

static void iommu_enable_irq_remapping(struct intel_iommu *iommu)
{
	unsigned long flags;
	u32 sts;
504

505
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
506 507 508

	/* Enable interrupt-remapping */
	iommu->gcmd |= DMA_GCMD_IRE;
509
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
510 511 512
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
		      readl, (sts & DMA_GSTS_IRES), sts);

513 514 515 516 517 518 519 520
	/* Block compatibility-format MSIs */
	if (sts & DMA_GSTS_CFIS) {
		iommu->gcmd &= ~DMA_GCMD_CFI;
		writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
		IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
			      readl, !(sts & DMA_GSTS_CFIS), sts);
	}

521 522 523 524 525 526 527 528 529 530
	/*
	 * With CFI clear in the Global Command register, we should be
	 * protected from dangerous (i.e. compatibility) interrupts
	 * regardless of x2apic status.  Check just to be sure.
	 */
	if (sts & DMA_GSTS_CFIS)
		WARN(1, KERN_WARNING
			"Compatibility-format IRQs enabled despite intr remapping;\n"
			"you are vulnerable to IRQ injection.\n");

531
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
532 533
}

534
static int intel_setup_irq_remapping(struct intel_iommu *iommu)
535 536
{
	struct ir_table *ir_table;
537
	struct fwnode_handle *fn;
538
	unsigned long *bitmap;
539
	struct page *pages;
540

541 542
	if (iommu->ir_table)
		return 0;
543

544
	ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
545
	if (!ir_table)
546 547
		return -ENOMEM;

548
	pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO,
549
				 INTR_REMAP_PAGE_ORDER);
550
	if (!pages) {
551 552
		pr_err("IR%d: failed to allocate pages of order %d\n",
		       iommu->seq_id, INTR_REMAP_PAGE_ORDER);
553
		goto out_free_table;
554 555
	}

556
	bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_ATOMIC);
557 558
	if (bitmap == NULL) {
		pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
559
		goto out_free_pages;
560 561
	}

562 563 564 565 566 567 568 569 570
	fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id);
	if (!fn)
		goto out_free_bitmap;

	iommu->ir_domain =
		irq_domain_create_hierarchy(arch_get_ir_parent_domain(),
					    0, INTR_REMAP_TABLE_ENTRIES,
					    fn, &intel_ir_domain_ops,
					    iommu);
571
	if (!iommu->ir_domain) {
572
		irq_domain_free_fwnode(fn);
573 574 575
		pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id);
		goto out_free_bitmap;
	}
576 577 578 579
	iommu->ir_msi_domain =
		arch_create_remap_msi_irq_domain(iommu->ir_domain,
						 "INTEL-IR-MSI",
						 iommu->seq_id);
580

581
	ir_table->base = page_address(pages);
582
	ir_table->bitmap = bitmap;
583
	iommu->ir_table = ir_table;
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601

	/*
	 * If the queued invalidation is already initialized,
	 * shouldn't disable it.
	 */
	if (!iommu->qi) {
		/*
		 * Clear previous faults.
		 */
		dmar_fault(-1, iommu);
		dmar_disable_qi(iommu);

		if (dmar_enable_qi(iommu)) {
			pr_err("Failed to enable queued invalidation\n");
			goto out_free_bitmap;
		}
	}

602 603 604
	init_ir_status(iommu);

	if (ir_pre_enabled(iommu)) {
605 606 607 608 609 610
		if (!is_kdump_kernel()) {
			pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n",
				iommu->name);
			clear_ir_pre_enabled(iommu);
			iommu_disable_irq_remapping(iommu);
		} else if (iommu_load_old_irte(iommu))
611 612 613 614 615 616 617
			pr_err("Failed to copy IR table for %s from previous kernel\n",
			       iommu->name);
		else
			pr_info("Copied IR table for %s from previous kernel\n",
				iommu->name);
	}

618 619
	iommu_set_irq_remapping(iommu, eim_mode);

620
	return 0;
621

622
out_free_bitmap:
623
	bitmap_free(bitmap);
624 625 626 627
out_free_pages:
	__free_pages(pages, INTR_REMAP_PAGE_ORDER);
out_free_table:
	kfree(ir_table);
628 629 630

	iommu->ir_table  = NULL;

631 632 633 634 635
	return -ENOMEM;
}

static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
{
636 637
	struct fwnode_handle *fn;

638
	if (iommu && iommu->ir_table) {
639
		if (iommu->ir_msi_domain) {
640 641
			fn = iommu->ir_msi_domain->fwnode;

642
			irq_domain_remove(iommu->ir_msi_domain);
643
			irq_domain_free_fwnode(fn);
644 645 646
			iommu->ir_msi_domain = NULL;
		}
		if (iommu->ir_domain) {
647 648
			fn = iommu->ir_domain->fwnode;

649
			irq_domain_remove(iommu->ir_domain);
650
			irq_domain_free_fwnode(fn);
651 652
			iommu->ir_domain = NULL;
		}
653 654
		free_pages((unsigned long)iommu->ir_table->base,
			   INTR_REMAP_PAGE_ORDER);
655
		bitmap_free(iommu->ir_table->bitmap);
656 657 658
		kfree(iommu->ir_table);
		iommu->ir_table = NULL;
	}
659 660
}

661 662 663
/*
 * Disable Interrupt Remapping.
 */
664
static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
665 666 667 668 669 670 671
{
	unsigned long flags;
	u32 sts;

	if (!ecap_ir_support(iommu->ecap))
		return;

672 673 674 675 676 677
	/*
	 * global invalidation of interrupt entry cache before disabling
	 * interrupt-remapping.
	 */
	qi_global_iec(iommu);

678
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
679

680
	sts = readl(iommu->reg + DMAR_GSTS_REG);
681 682 683 684 685 686 687 688 689 690
	if (!(sts & DMA_GSTS_IRES))
		goto end;

	iommu->gcmd &= ~DMA_GCMD_IRE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
		      readl, !(sts & DMA_GSTS_IRES), sts);

end:
691
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
692 693
}

694 695 696 697 698 699 700 701 702
static int __init dmar_x2apic_optout(void)
{
	struct acpi_table_dmar *dmar;
	dmar = (struct acpi_table_dmar *)dmar_tbl;
	if (!dmar || no_x2apic_optout)
		return 0;
	return dmar->flags & DMAR_X2APIC_OPT_OUT;
}

703 704 705 706 707 708 709 710 711 712 713 714 715
static void __init intel_cleanup_irq_remapping(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;

	for_each_iommu(iommu, drhd) {
		if (ecap_ir_support(iommu->ecap)) {
			iommu_disable_irq_remapping(iommu);
			intel_teardown_irq_remapping(iommu);
		}
	}

	if (x2apic_supported())
J
Joerg Roedel 已提交
716
		pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
717 718 719
}

static int __init intel_prepare_irq_remapping(void)
720 721
{
	struct dmar_drhd_unit *drhd;
722
	struct intel_iommu *iommu;
723
	int eim = 0;
724

725
	if (irq_remap_broken) {
J
Joerg Roedel 已提交
726
		pr_warn("This system BIOS has enabled interrupt remapping\n"
727 728 729 730 731 732 733 734
			"on a chipset that contains an erratum making that\n"
			"feature unstable.  To maintain system stability\n"
			"interrupt remapping is being disabled.  Please\n"
			"contact your BIOS vendor for an update\n");
		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
		return -ENODEV;
	}

735
	if (dmar_table_init() < 0)
736 737
		return -ENODEV;

738 739 740
	if (intel_cap_audit(CAP_AUDIT_STATIC_IRQR, NULL))
		goto error;

741 742
	if (!dmar_ir_support())
		return -ENODEV;
743

744
	if (parse_ioapics_under_ir()) {
J
Joerg Roedel 已提交
745
		pr_info("Not enabling interrupt remapping\n");
746
		goto error;
747 748
	}

749
	/* First make sure all IOMMUs support IRQ remapping */
750
	for_each_iommu(iommu, drhd)
751 752 753
		if (!ecap_ir_support(iommu->ecap))
			goto error;

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
	/* Detect remapping mode: lapic or x2apic */
	if (x2apic_supported()) {
		eim = !dmar_x2apic_optout();
		if (!eim) {
			pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
			pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
		}
	}

	for_each_iommu(iommu, drhd) {
		if (eim && !ecap_eim_support(iommu->ecap)) {
			pr_info("%s does not support EIM\n", iommu->name);
			eim = 0;
		}
	}

	eim_mode = eim;
	if (eim)
		pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");

774 775 776 777 778
	/* Do the initializations early */
	for_each_iommu(iommu, drhd) {
		if (intel_setup_irq_remapping(iommu)) {
			pr_err("Failed to setup irq remapping for %s\n",
			       iommu->name);
779
			goto error;
780 781
		}
	}
782

783
	return 0;
784

785 786
error:
	intel_cleanup_irq_remapping();
787
	return -ENODEV;
788 789
}

790 791 792 793 794 795 796 797 798
/*
 * Set Posted-Interrupts capability.
 */
static inline void set_irq_posting_cap(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;

	if (!disable_irq_post) {
799 800 801 802 803 804 805 806
		/*
		 * If IRTE is in posted format, the 'pda' field goes across the
		 * 64-bit boundary, we need use cmpxchg16b to atomically update
		 * it. We only expose posted-interrupt when X86_FEATURE_CX16
		 * is supported. Actually, hardware platforms supporting PI
		 * should have X86_FEATURE_CX16 support, this has been confirmed
		 * with Intel hardware guys.
		 */
807
		if (boot_cpu_has(X86_FEATURE_CX16))
808
			intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP;
809 810 811 812 813 814 815 816 817 818

		for_each_iommu(iommu, drhd)
			if (!cap_pi_support(iommu->cap)) {
				intel_irq_remap_ops.capability &=
						~(1 << IRQ_POSTING_CAP);
				break;
			}
	}
}

819 820 821 822
static int __init intel_enable_irq_remapping(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
823
	bool setup = false;
824 825 826 827

	/*
	 * Setup Interrupt-remapping for all the DRHD's now.
	 */
828
	for_each_iommu(iommu, drhd) {
829 830
		if (!ir_pre_enabled(iommu))
			iommu_enable_irq_remapping(iommu);
831
		setup = true;
832 833 834 835 836
	}

	if (!setup)
		goto error;

837
	irq_remapping_enabled = 1;
838

839 840
	set_irq_posting_cap();

841
	pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic");
842

843
	return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
844 845

error:
846
	intel_cleanup_irq_remapping();
847 848
	return -1;
}
849

850 851 852
static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
				   struct intel_iommu *iommu,
				   struct acpi_dmar_hardware_unit *drhd)
853 854 855
{
	struct acpi_dmar_pci_path *path;
	u8 bus;
856
	int count, free = -1;
857 858 859 860 861 862 863 864 865 866 867

	bus = scope->bus;
	path = (struct acpi_dmar_pci_path *)(scope + 1);
	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
		/ sizeof(struct acpi_dmar_pci_path);

	while (--count > 0) {
		/*
		 * Access PCI directly due to the PCI
		 * subsystem isn't initialized yet.
		 */
L
Lv Zheng 已提交
868
		bus = read_pci_config_byte(bus, path->device, path->function,
869 870 871
					   PCI_SECONDARY_BUS);
		path++;
	}
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892

	for (count = 0; count < MAX_HPET_TBS; count++) {
		if (ir_hpet[count].iommu == iommu &&
		    ir_hpet[count].id == scope->enumeration_id)
			return 0;
		else if (ir_hpet[count].iommu == NULL && free == -1)
			free = count;
	}
	if (free == -1) {
		pr_warn("Exceeded Max HPET blocks\n");
		return -ENOSPC;
	}

	ir_hpet[free].iommu = iommu;
	ir_hpet[free].id    = scope->enumeration_id;
	ir_hpet[free].bus   = bus;
	ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
	pr_info("HPET id %d under DRHD base 0x%Lx\n",
		scope->enumeration_id, drhd->address);

	return 0;
893 894
}

895 896 897
static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
				     struct intel_iommu *iommu,
				     struct acpi_dmar_hardware_unit *drhd)
898 899 900
{
	struct acpi_dmar_pci_path *path;
	u8 bus;
901
	int count, free = -1;
902 903 904 905 906 907 908 909 910 911 912

	bus = scope->bus;
	path = (struct acpi_dmar_pci_path *)(scope + 1);
	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
		/ sizeof(struct acpi_dmar_pci_path);

	while (--count > 0) {
		/*
		 * Access PCI directly due to the PCI
		 * subsystem isn't initialized yet.
		 */
L
Lv Zheng 已提交
913
		bus = read_pci_config_byte(bus, path->device, path->function,
914 915 916 917
					   PCI_SECONDARY_BUS);
		path++;
	}

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
	for (count = 0; count < MAX_IO_APICS; count++) {
		if (ir_ioapic[count].iommu == iommu &&
		    ir_ioapic[count].id == scope->enumeration_id)
			return 0;
		else if (ir_ioapic[count].iommu == NULL && free == -1)
			free = count;
	}
	if (free == -1) {
		pr_warn("Exceeded Max IO APICS\n");
		return -ENOSPC;
	}

	ir_ioapic[free].bus   = bus;
	ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
	ir_ioapic[free].iommu = iommu;
	ir_ioapic[free].id    = scope->enumeration_id;
	pr_info("IOAPIC id %d under DRHD base  0x%Lx IOMMU %d\n",
		scope->enumeration_id, drhd->address, iommu->seq_id);

	return 0;
938 939
}

940 941
static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
				      struct intel_iommu *iommu)
942
{
943
	int ret = 0;
944 945 946 947 948 949 950 951
	struct acpi_dmar_hardware_unit *drhd;
	struct acpi_dmar_device_scope *scope;
	void *start, *end;

	drhd = (struct acpi_dmar_hardware_unit *)header;
	start = (void *)(drhd + 1);
	end = ((void *)drhd) + header->length;

952
	while (start < end && ret == 0) {
953
		scope = start;
954 955 956 957 958 959
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
			ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
		else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
			ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
		start += scope->length;
	}
960

961 962
	return ret;
}
963

964 965 966
static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
{
	int i;
967

968 969 970
	for (i = 0; i < MAX_HPET_TBS; i++)
		if (ir_hpet[i].iommu == iommu)
			ir_hpet[i].iommu = NULL;
971

972 973 974
	for (i = 0; i < MAX_IO_APICS; i++)
		if (ir_ioapic[i].iommu == iommu)
			ir_ioapic[i].iommu = NULL;
975 976 977 978 979 980
}

/*
 * Finds the assocaition between IOAPIC's and its Interrupt-remapping
 * hardware unit.
 */
981
static int __init parse_ioapics_under_ir(void)
982 983
{
	struct dmar_drhd_unit *drhd;
984
	struct intel_iommu *iommu;
985
	bool ir_supported = false;
986
	int ioapic_idx;
987

988 989
	for_each_iommu(iommu, drhd) {
		int ret;
990

991 992 993 994 995 996 997 998 999
		if (!ecap_ir_support(iommu->ecap))
			continue;

		ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu);
		if (ret)
			return ret;

		ir_supported = true;
	}
1000

1001
	if (!ir_supported)
1002
		return -ENODEV;
1003 1004 1005

	for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
		int ioapic_id = mpc_ioapic_id(ioapic_idx);
1006
		if (!map_ioapic_to_iommu(ioapic_id)) {
1007 1008 1009 1010 1011
			pr_err(FW_BUG "ioapic %d has no mapping iommu, "
			       "interrupt remapping will be disabled\n",
			       ioapic_id);
			return -1;
		}
1012 1013
	}

1014
	return 0;
1015
}
1016

1017
static int __init ir_dev_scope_init(void)
1018
{
1019 1020
	int ret;

1021
	if (!irq_remapping_enabled)
1022 1023
		return 0;

1024 1025 1026 1027 1028
	down_write(&dmar_global_lock);
	ret = dmar_dev_scope_init();
	up_write(&dmar_global_lock);

	return ret;
1029 1030 1031
}
rootfs_initcall(ir_dev_scope_init);

1032
static void disable_irq_remapping(void)
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;

	/*
	 * Disable Interrupt-remapping for all the DRHD's now.
	 */
	for_each_iommu(iommu, drhd) {
		if (!ecap_ir_support(iommu->ecap))
			continue;

1044
		iommu_disable_irq_remapping(iommu);
1045
	}
1046 1047 1048 1049 1050 1051

	/*
	 * Clear Posted-Interrupts capability.
	 */
	if (!disable_irq_post)
		intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP);
1052 1053
}

1054
static int reenable_irq_remapping(int eim)
1055 1056
{
	struct dmar_drhd_unit *drhd;
1057
	bool setup = false;
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
	struct intel_iommu *iommu = NULL;

	for_each_iommu(iommu, drhd)
		if (iommu->qi)
			dmar_reenable_qi(iommu);

	/*
	 * Setup Interrupt-remapping for all the DRHD's now.
	 */
	for_each_iommu(iommu, drhd) {
		if (!ecap_ir_support(iommu->ecap))
			continue;

		/* Set up interrupt remapping for iommu.*/
1072
		iommu_set_irq_remapping(iommu, eim);
1073
		iommu_enable_irq_remapping(iommu);
1074
		setup = true;
1075 1076 1077 1078 1079
	}

	if (!setup)
		goto error;

1080 1081
	set_irq_posting_cap();

1082 1083 1084 1085 1086 1087 1088 1089 1090
	return 0;

error:
	/*
	 * handle error condition gracefully here!
	 */
	return -1;
}

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
/*
 * Store the MSI remapping domain pointer in the device if enabled.
 *
 * This is called from dmar_pci_bus_add_dev() so it works even when DMA
 * remapping is disabled. Only update the pointer if the device is not
 * already handled by a non default PCI/MSI interrupt domain. This protects
 * e.g. VMD devices.
 */
void intel_irq_remap_add_device(struct dmar_pci_notify_info *info)
{
	if (!irq_remapping_enabled || pci_dev_has_special_msi_domain(info->dev))
		return;

	dev_set_msi_domain(&info->dev->dev, map_dev_to_ir(info->dev));
}

1107
static void prepare_irte(struct irte *irte, int vector, unsigned int dest)
1108 1109 1110 1111
{
	memset(irte, 0, sizeof(*irte));

	irte->present = 1;
1112
	irte->dst_mode = apic->dest_mode_logical;
1113 1114 1115 1116 1117 1118 1119 1120
	/*
	 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
	 * actual level or edge trigger will be setup in the IO-APIC
	 * RTE. This will help simplify level triggered irq migration.
	 * For more details, see the comments (in io_apic.c) explainig IO-APIC
	 * irq migration in the presence of interrupt-remapping.
	*/
	irte->trigger_mode = 0;
1121
	irte->dlvry_mode = apic->delivery_mode;
1122 1123 1124 1125 1126
	irte->vector = vector;
	irte->dest_id = IRTE_DEST(dest);
	irte->redir_hint = 1;
}

1127
struct irq_remap_ops intel_irq_remap_ops = {
1128
	.prepare		= intel_prepare_irq_remapping,
1129 1130 1131
	.enable			= intel_enable_irq_remapping,
	.disable		= disable_irq_remapping,
	.reenable		= reenable_irq_remapping,
1132
	.enable_faulting	= enable_drhd_fault_handling,
1133 1134
};

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force)
{
	struct intel_ir_data *ir_data = irqd->chip_data;
	struct irte *irte = &ir_data->irte_entry;
	struct irq_cfg *cfg = irqd_cfg(irqd);

	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	irte->vector = cfg->vector;
	irte->dest_id = IRTE_DEST(cfg->dest_apicid);

	/* Update the hardware only if the interrupt is in remapped mode. */
1149
	if (force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING)
1150 1151 1152
		modify_irte(&ir_data->irq_2_iommu, irte);
}

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
/*
 * Migrate the IO-APIC irq in the presence of intr-remapping.
 *
 * For both level and edge triggered, irq migration is a simple atomic
 * update(of vector and cpu destination) of IRTE and flush the hardware cache.
 *
 * For level triggered, we eliminate the io-apic RTE modification (with the
 * updated vector information), by using a virtual vector (io-apic pin number).
 * Real vector that is used for interrupting cpu will be coming from
 * the interrupt-remapping table entry.
 *
 * As the migration is a simple atomic update of IRTE, the same mechanism
 * is used to migrate MSI irq's in the presence of interrupt-remapping.
 */
static int
intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask,
		      bool force)
{
	struct irq_data *parent = data->parent_data;
1172
	struct irq_cfg *cfg = irqd_cfg(data);
1173 1174 1175 1176 1177 1178
	int ret;

	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;

1179
	intel_ir_reconfigure_irte(data, false);
1180 1181 1182 1183 1184
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
1185
	send_cleanup_vector(cfg);
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197

	return IRQ_SET_MASK_OK_DONE;
}

static void intel_ir_compose_msi_msg(struct irq_data *irq_data,
				     struct msi_msg *msg)
{
	struct intel_ir_data *ir_data = irq_data->chip_data;

	*msg = ir_data->msi_entry;
}

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info)
{
	struct intel_ir_data *ir_data = data->chip_data;
	struct vcpu_data *vcpu_pi_info = info;

	/* stop posting interrupts, back to remapping mode */
	if (!vcpu_pi_info) {
		modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry);
	} else {
		struct irte irte_pi;

		/*
		 * We are not caching the posted interrupt entry. We
		 * copy the data from the remapped entry and modify
		 * the fields which are relevant for posted mode. The
		 * cached remapped entry is used for switching back to
		 * remapped mode.
		 */
		memset(&irte_pi, 0, sizeof(irte_pi));
		dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry);

		/* Update the posted mode fields */
		irte_pi.p_pst = 1;
		irte_pi.p_urgent = 0;
		irte_pi.p_vector = vcpu_pi_info->vector;
		irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >>
				(32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
		irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) &
				~(-1UL << PDA_HIGH_BIT);

		modify_irte(&ir_data->irq_2_iommu, &irte_pi);
	}

	return 0;
}

1234
static struct irq_chip intel_ir_chip = {
1235
	.name			= "INTEL-IR",
1236
	.irq_ack		= apic_ack_irq,
1237 1238 1239
	.irq_set_affinity	= intel_ir_set_affinity,
	.irq_compose_msi_msg	= intel_ir_compose_msi_msg,
	.irq_set_vcpu_affinity	= intel_ir_set_vcpu_affinity,
1240 1241
};

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
static void fill_msi_msg(struct msi_msg *msg, u32 index, u32 subhandle)
{
	memset(msg, 0, sizeof(*msg));

	msg->arch_addr_lo.dmar_base_address = X86_MSI_BASE_ADDRESS_LOW;
	msg->arch_addr_lo.dmar_subhandle_valid = true;
	msg->arch_addr_lo.dmar_format = true;
	msg->arch_addr_lo.dmar_index_0_14 = index & 0x7FFF;
	msg->arch_addr_lo.dmar_index_15 = !!(index & 0x8000);

	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;

	msg->arch_data.dmar_subhandle = subhandle;
}

1257 1258 1259 1260 1261 1262 1263 1264
static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data,
					     struct irq_cfg *irq_cfg,
					     struct irq_alloc_info *info,
					     int index, int sub_handle)
{
	struct irte *irte = &data->irte_entry;

	prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid);
1265

1266 1267 1268
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Set source-id of interrupt request */
1269
		set_ioapic_sid(irte, info->devid);
1270
		apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
1271
			info->devid, irte->present, irte->fpd,
1272 1273 1274 1275
			irte->dst_mode, irte->redir_hint,
			irte->trigger_mode, irte->dlvry_mode,
			irte->avail, irte->vector, irte->dest_id,
			irte->sid, irte->sq, irte->svt);
1276
		sub_handle = info->ioapic.pin;
1277 1278
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
1279 1280
		set_hpet_sid(irte, info->devid);
		break;
1281 1282
	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
1283
		set_msi_sid(irte, msi_desc_to_pci_dev(info->desc));
1284 1285 1286 1287 1288
		break;
	default:
		BUG_ON(1);
		break;
	}
1289
	fill_msi_msg(&data->msi_entry, index, sub_handle);
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
}

static void intel_free_irq_resources(struct irq_domain *domain,
				     unsigned int virq, unsigned int nr_irqs)
{
	struct irq_data *irq_data;
	struct intel_ir_data *data;
	struct irq_2_iommu *irq_iommu;
	unsigned long flags;
	int i;
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irq_iommu = &data->irq_2_iommu;
			raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
			clear_entries(irq_iommu);
			raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
			irq_domain_reset_irq_data(irq_data);
			kfree(data);
		}
	}
}

static int intel_irq_remapping_alloc(struct irq_domain *domain,
				     unsigned int virq, unsigned int nr_irqs,
				     void *arg)
{
	struct intel_iommu *iommu = domain->host_data;
	struct irq_alloc_info *info = arg;
1320
	struct intel_ir_data *data, *ird;
1321 1322 1323 1324 1325 1326
	struct irq_data *irq_data;
	struct irq_cfg *irq_cfg;
	int i, ret, index;

	if (!info || !iommu)
		return -EINVAL;
1327 1328
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_PCI_MSIX)
1329 1330 1331 1332 1333 1334
		return -EINVAL;

	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
1335
	if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI)
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;

	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;

	ret = -ENOMEM;
	data = kzalloc(sizeof(*data), GFP_KERNEL);
	if (!data)
		goto out_free_parent;

	down_read(&dmar_global_lock);
J
Jacob Pan 已提交
1348
	index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs);
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
	up_read(&dmar_global_lock);
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
		kfree(data);
		goto out_free_parent;
	}

	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		irq_cfg = irqd_cfg(irq_data);
		if (!irq_data || !irq_cfg) {
1360 1361
			if (!i)
				kfree(data);
1362 1363 1364 1365 1366
			ret = -EINVAL;
			goto out_free_data;
		}

		if (i > 0) {
1367 1368
			ird = kzalloc(sizeof(*ird), GFP_KERNEL);
			if (!ird)
1369
				goto out_free_data;
1370 1371 1372 1373 1374
			/* Initialize the common data */
			ird->irq_2_iommu = data->irq_2_iommu;
			ird->irq_2_iommu.sub_handle = i;
		} else {
			ird = data;
1375
		}
1376

1377
		irq_data->hwirq = (index << 16) + i;
1378
		irq_data->chip_data = ird;
1379
		irq_data->chip = &intel_ir_chip;
1380
		intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i);
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
	return 0;

out_free_data:
	intel_free_irq_resources(domain, virq, i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
}

static void intel_irq_remapping_free(struct irq_domain *domain,
				     unsigned int virq, unsigned int nr_irqs)
{
	intel_free_irq_resources(domain, virq, nr_irqs);
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}

1399
static int intel_irq_remapping_activate(struct irq_domain *domain,
1400
					struct irq_data *irq_data, bool reserve)
1401
{
1402
	intel_ir_reconfigure_irte(irq_data, true);
1403
	return 0;
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
}

static void intel_irq_remapping_deactivate(struct irq_domain *domain,
					   struct irq_data *irq_data)
{
	struct intel_ir_data *data = irq_data->chip_data;
	struct irte entry;

	memset(&entry, 0, sizeof(entry));
	modify_irte(&data->irq_2_iommu, &entry);
}

1416 1417 1418 1419
static int intel_irq_remapping_select(struct irq_domain *d,
				      struct irq_fwspec *fwspec,
				      enum irq_domain_bus_token bus_token)
{
1420 1421
	struct intel_iommu *iommu = NULL;

1422
	if (x86_fwspec_is_ioapic(fwspec))
1423
		iommu = map_ioapic_to_iommu(fwspec->param[0]);
1424
	else if (x86_fwspec_is_hpet(fwspec))
1425
		iommu = map_hpet_to_iommu(fwspec->param[0]);
1426

1427
	return iommu && d == iommu->ir_domain;
1428 1429
}

1430
static const struct irq_domain_ops intel_ir_domain_ops = {
1431
	.select = intel_irq_remapping_select,
1432 1433 1434 1435
	.alloc = intel_irq_remapping_alloc,
	.free = intel_irq_remapping_free,
	.activate = intel_irq_remapping_activate,
	.deactivate = intel_irq_remapping_deactivate,
1436
};
1437

1438 1439 1440 1441 1442 1443 1444 1445
/*
 * Support of Interrupt Remapping Unit Hotplug
 */
static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
{
	int ret;
	int eim = x2apic_enabled();

1446 1447 1448 1449
	ret = intel_cap_audit(CAP_AUDIT_HOTPLUG_IRQR, iommu);
	if (ret)
		return ret;

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
	if (eim && !ecap_eim_support(iommu->ecap)) {
		pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
			iommu->reg_phys, iommu->ecap);
		return -ENODEV;
	}

	if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
		pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
			iommu->reg_phys);
		return -ENODEV;
	}

	/* TODO: check all IOAPICs are covered by IOMMU */

	/* Setup Interrupt-remapping now. */
	ret = intel_setup_irq_remapping(iommu);
	if (ret) {
1467 1468
		pr_err("Failed to setup irq remapping for %s\n",
		       iommu->name);
1469 1470
		intel_teardown_irq_remapping(iommu);
		ir_remove_ioapic_hpet_scope(iommu);
1471
	} else {
1472
		iommu_enable_irq_remapping(iommu);
1473 1474 1475 1476 1477
	}

	return ret;
}

1478 1479
int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
{
1480 1481 1482 1483 1484 1485 1486 1487 1488
	int ret = 0;
	struct intel_iommu *iommu = dmaru->iommu;

	if (!irq_remapping_enabled)
		return 0;
	if (iommu == NULL)
		return -EINVAL;
	if (!ecap_ir_support(iommu->ecap))
		return 0;
1489 1490 1491
	if (irq_remapping_cap(IRQ_POSTING_CAP) &&
	    !cap_pi_support(iommu->cap))
		return -EBUSY;
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509

	if (insert) {
		if (!iommu->ir_table)
			ret = dmar_ir_add(dmaru, iommu);
	} else {
		if (iommu->ir_table) {
			if (!bitmap_empty(iommu->ir_table->bitmap,
					  INTR_REMAP_TABLE_ENTRIES)) {
				ret = -EBUSY;
			} else {
				iommu_disable_irq_remapping(iommu);
				intel_teardown_irq_remapping(iommu);
				ir_remove_ioapic_hpet_scope(iommu);
			}
		}
	}

	return ret;
1510
}