irq_remapping.c 37.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
J
Joerg Roedel 已提交
2 3 4

#define pr_fmt(fmt)     "DMAR-IR: " fmt

Y
Yinghai Lu 已提交
5
#include <linux/interrupt.h>
6
#include <linux/dmar.h>
7
#include <linux/spinlock.h>
8
#include <linux/slab.h>
9
#include <linux/jiffies.h>
10
#include <linux/hpet.h>
11
#include <linux/pci.h>
12
#include <linux/irq.h>
13 14
#include <linux/intel-iommu.h>
#include <linux/acpi.h>
15
#include <linux/irqdomain.h>
16
#include <linux/crash_dump.h>
17
#include <asm/io_apic.h>
18
#include <asm/apic.h>
Y
Yinghai Lu 已提交
19
#include <asm/smp.h>
20
#include <asm/cpu.h>
21
#include <asm/irq_remapping.h>
22
#include <asm/pci-direct.h>
23
#include <asm/msidef.h>
24

25
#include "../irq_remapping.h"
26

27 28 29 30 31
enum irq_mode {
	IRQ_REMAPPING,
	IRQ_POSTING,
};

32 33 34 35 36 37 38 39 40 41 42 43 44 45
struct ioapic_scope {
	struct intel_iommu *iommu;
	unsigned int id;
	unsigned int bus;	/* PCI bus number */
	unsigned int devfn;	/* PCI devfn number */
};

struct hpet_scope {
	struct intel_iommu *iommu;
	u8 id;
	unsigned int bus;
	unsigned int devfn;
};

46 47 48 49 50
struct irq_2_iommu {
	struct intel_iommu *iommu;
	u16 irte_index;
	u16 sub_handle;
	u8  irte_mask;
51
	enum irq_mode mode;
52 53
};

54 55 56 57 58 59 60 61
struct intel_ir_data {
	struct irq_2_iommu			irq_2_iommu;
	struct irte				irte_entry;
	union {
		struct msi_msg			msi_entry;
	};
};

62
#define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
63
#define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
64

65
static int __read_mostly eim_mode;
66
static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
67
static struct hpet_scope ir_hpet[MAX_HPET_TBS];
68

69 70 71 72 73 74 75 76 77 78 79
/*
 * Lock ordering:
 * ->dmar_global_lock
 *	->irq_2_ir_lock
 *		->qi->q_lock
 *	->iommu->register_lock
 * Note:
 * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
 * in single-threaded environment with interrupt disabled, so no need to tabke
 * the dmar_global_lock.
 */
80
DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
81
static const struct irq_domain_ops intel_ir_domain_ops;
82

83
static void iommu_disable_irq_remapping(struct intel_iommu *iommu);
84 85
static int __init parse_ioapics_under_ir(void);

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
static bool ir_pre_enabled(struct intel_iommu *iommu)
{
	return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED);
}

static void clear_ir_pre_enabled(struct intel_iommu *iommu)
{
	iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
}

static void init_ir_status(struct intel_iommu *iommu)
{
	u32 gsts;

	gsts = readl(iommu->reg + DMAR_GSTS_REG);
	if (gsts & DMA_GSTS_IRES)
		iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
}

J
Jacob Pan 已提交
105
static int alloc_irte(struct intel_iommu *iommu,
106
		      struct irq_2_iommu *irq_iommu, u16 count)
107 108 109
{
	struct ir_table *table = iommu->ir_table;
	unsigned int mask = 0;
110
	unsigned long flags;
111
	int index;
112

113
	if (!count || !irq_iommu)
114 115
		return -1;

116 117 118 119 120 121
	if (count > 1) {
		count = __roundup_pow_of_two(count);
		mask = ilog2(count);
	}

	if (mask > ecap_max_handle_mask(iommu->ecap)) {
J
Joerg Roedel 已提交
122
		pr_err("Requested mask %x exceeds the max invalidation handle"
123 124 125 126 127
		       " mask value %Lx\n", mask,
		       ecap_max_handle_mask(iommu->ecap));
		return -1;
	}

128
	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
129 130 131 132 133 134 135 136 137
	index = bitmap_find_free_region(table->bitmap,
					INTR_REMAP_TABLE_ENTRIES, mask);
	if (index < 0) {
		pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
	} else {
		irq_iommu->iommu = iommu;
		irq_iommu->irte_index =  index;
		irq_iommu->sub_handle = 0;
		irq_iommu->irte_mask = mask;
138
		irq_iommu->mode = IRQ_REMAPPING;
139
	}
140
	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
141 142 143 144

	return index;
}

145
static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
146 147 148
{
	struct qi_desc desc;

149
	desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
150
		   | QI_IEC_SELECTIVE;
151 152 153
	desc.qw1 = 0;
	desc.qw2 = 0;
	desc.qw3 = 0;
154

155
	return qi_submit_sync(iommu, &desc, 1, 0);
156 157
}

158 159
static int modify_irte(struct irq_2_iommu *irq_iommu,
		       struct irte *irte_modified)
160 161
{
	struct intel_iommu *iommu;
162
	unsigned long flags;
163 164
	struct irte *irte;
	int rc, index;
165

166
	if (!irq_iommu)
167
		return -1;
168

169
	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
170

171
	iommu = irq_iommu->iommu;
172

173
	index = irq_iommu->irte_index + irq_iommu->sub_handle;
174 175
	irte = &iommu->ir_table->base[index];

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE)
	if ((irte->pst == 1) || (irte_modified->pst == 1)) {
		bool ret;

		ret = cmpxchg_double(&irte->low, &irte->high,
				     irte->low, irte->high,
				     irte_modified->low, irte_modified->high);
		/*
		 * We use cmpxchg16 to atomically update the 128-bit IRTE,
		 * and it cannot be updated by the hardware or other processors
		 * behind us, so the return value of cmpxchg16 should be the
		 * same as the old value.
		 */
		WARN_ON(!ret);
	} else
#endif
	{
		set_64bit(&irte->low, irte_modified->low);
		set_64bit(&irte->high, irte_modified->high);
	}
196 197
	__iommu_flush_cache(iommu, irte, sizeof(*irte));

198
	rc = qi_flush_iec(iommu, index, 0);
199 200 201

	/* Update iommu mode according to the IRTE mode */
	irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING;
202
	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
203 204

	return rc;
205 206
}

207
static struct intel_iommu *map_hpet_to_ir(u8 hpet_id)
208 209 210 211
{
	int i;

	for (i = 0; i < MAX_HPET_TBS; i++)
212
		if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
213 214 215 216
			return ir_hpet[i].iommu;
	return NULL;
}

217
static struct intel_iommu *map_ioapic_to_ir(int apic)
218 219 220 221
{
	int i;

	for (i = 0; i < MAX_IO_APICS; i++)
222
		if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
223 224 225 226
			return ir_ioapic[i].iommu;
	return NULL;
}

227
static struct intel_iommu *map_dev_to_ir(struct pci_dev *dev)
228 229 230 231 232 233 234 235 236 237
{
	struct dmar_drhd_unit *drhd;

	drhd = dmar_find_matched_drhd_unit(dev);
	if (!drhd)
		return NULL;

	return drhd->iommu;
}

238 239 240 241 242 243 244 245 246 247
static int clear_entries(struct irq_2_iommu *irq_iommu)
{
	struct irte *start, *entry, *end;
	struct intel_iommu *iommu;
	int index;

	if (irq_iommu->sub_handle)
		return 0;

	iommu = irq_iommu->iommu;
248
	index = irq_iommu->irte_index;
249 250 251 252 253

	start = iommu->ir_table->base + index;
	end = start + (1 << irq_iommu->irte_mask);

	for (entry = start; entry < end; entry++) {
254 255
		set_64bit(&entry->low, 0);
		set_64bit(&entry->high, 0);
256
	}
257 258
	bitmap_release_region(iommu->ir_table->bitmap, index,
			      irq_iommu->irte_mask);
259 260 261 262

	return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
}

263 264 265 266
/*
 * source validation type
 */
#define SVT_NO_VERIFY		0x0  /* no verification is required */
L
Lucas De Marchi 已提交
267
#define SVT_VERIFY_SID_SQ	0x1  /* verify using SID and SQ fields */
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
#define SVT_VERIFY_BUS		0x2  /* verify bus of request-id */

/*
 * source-id qualifier
 */
#define SQ_ALL_16	0x0  /* verify all 16 bits of request-id */
#define SQ_13_IGNORE_1	0x1  /* verify most significant 13 bits, ignore
			      * the third least significant bit
			      */
#define SQ_13_IGNORE_2	0x2  /* verify most significant 13 bits, ignore
			      * the second and third least significant bits
			      */
#define SQ_13_IGNORE_3	0x3  /* verify most significant 13 bits, ignore
			      * the least three significant bits
			      */

/*
 * set SVT, SQ and SID fields of irte to verify
 * source ids of interrupt requests
 */
static void set_irte_sid(struct irte *irte, unsigned int svt,
			 unsigned int sq, unsigned int sid)
{
291 292
	if (disable_sourceid_checking)
		svt = SVT_NO_VERIFY;
293 294 295 296 297
	irte->svt = svt;
	irte->sq = sq;
	irte->sid = sid;
}

298 299 300 301 302 303 304 305 306 307 308 309
/*
 * Set an IRTE to match only the bus number. Interrupt requests that reference
 * this IRTE must have a requester-id whose bus number is between or equal
 * to the start_bus and end_bus arguments.
 */
static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus,
				unsigned int end_bus)
{
	set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
		     (start_bus << 8) | end_bus);
}

310
static int set_ioapic_sid(struct irte *irte, int apic)
311 312 313 314 315 316 317
{
	int i;
	u16 sid = 0;

	if (!irte)
		return -1;

318
	down_read(&dmar_global_lock);
319
	for (i = 0; i < MAX_IO_APICS; i++) {
320
		if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
321 322 323 324
			sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn;
			break;
		}
	}
325
	up_read(&dmar_global_lock);
326 327

	if (sid == 0) {
J
Joerg Roedel 已提交
328
		pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic);
329 330 331
		return -1;
	}

332
	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
333 334 335 336

	return 0;
}

337
static int set_hpet_sid(struct irte *irte, u8 id)
338 339 340 341 342 343 344
{
	int i;
	u16 sid = 0;

	if (!irte)
		return -1;

345
	down_read(&dmar_global_lock);
346
	for (i = 0; i < MAX_HPET_TBS; i++) {
347
		if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
348 349 350 351
			sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn;
			break;
		}
	}
352
	up_read(&dmar_global_lock);
353 354

	if (sid == 0) {
J
Joerg Roedel 已提交
355
		pr_warn("Failed to set source-id of HPET block (%d)\n", id);
356 357 358 359 360 361 362 363 364 365 366 367 368
		return -1;
	}

	/*
	 * Should really use SQ_ALL_16. Some platforms are broken.
	 * While we figure out the right quirks for these broken platforms, use
	 * SQ_13_IGNORE_3 for now.
	 */
	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);

	return 0;
}

369 370 371
struct set_msi_sid_data {
	struct pci_dev *pdev;
	u16 alias;
372 373
	int count;
	int busmatch_count;
374 375 376 377 378 379
};

static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
{
	struct set_msi_sid_data *data = opaque;

380 381 382
	if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias))
		data->busmatch_count++;

383 384
	data->pdev = pdev;
	data->alias = alias;
385 386
	data->count++;

387 388 389
	return 0;
}

390
static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
391
{
392
	struct set_msi_sid_data data;
393 394 395 396

	if (!irte || !dev)
		return -1;

397 398
	data.count = 0;
	data.busmatch_count = 0;
399
	pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
400

401 402 403 404 405 406
	/*
	 * DMA alias provides us with a PCI device and alias.  The only case
	 * where the it will return an alias on a different bus than the
	 * device is the case of a PCIe-to-PCI bridge, where the alias is for
	 * the subordinate bus.  In this case we can only verify the bus.
	 *
407 408 409 410 411
	 * If there are multiple aliases, all with the same bus number,
	 * then all we can do is verify the bus. This is typical in NTB
	 * hardware which use proxy IDs where the device will generate traffic
	 * from multiple devfn numbers on the same bus.
	 *
412 413 414 415 416 417 418 419
	 * If the alias device is on a different bus than our source device
	 * then we have a topology based alias, use it.
	 *
	 * Otherwise, the alias is for a device DMA quirk and we cannot
	 * assume that MSI uses the same requester ID.  Therefore use the
	 * original device.
	 */
	if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
420 421
		set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias),
				    dev->bus->number);
422 423
	else if (data.count >= 2 && data.busmatch_count == data.count)
		set_irte_verify_bus(irte, dev->bus->number, dev->bus->number);
424 425 426 427
	else if (data.pdev->bus->number != dev->bus->number)
		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
	else
		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
428
			     pci_dev_id(dev));
429 430 431 432

	return 0;
}

433 434
static int iommu_load_old_irte(struct intel_iommu *iommu)
{
435
	struct irte *old_ir_table;
436
	phys_addr_t irt_phys;
437
	unsigned int i;
438 439 440 441 442 443 444 445 446 447 448 449 450
	size_t size;
	u64 irta;

	/* Check whether the old ir-table has the same size as ours */
	irta = dmar_readq(iommu->reg + DMAR_IRTA_REG);
	if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK)
	     != INTR_REMAP_TABLE_REG_SIZE)
		return -EINVAL;

	irt_phys = irta & VTD_PAGE_MASK;
	size     = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte);

	/* Map the old IR table */
451
	old_ir_table = memremap(irt_phys, size, MEMREMAP_WB);
452 453 454 455
	if (!old_ir_table)
		return -ENOMEM;

	/* Copy data over */
456
	memcpy(iommu->ir_table->base, old_ir_table, size);
457 458 459

	__iommu_flush_cache(iommu, iommu->ir_table->base, size);

460 461 462 463 464 465 466 467 468
	/*
	 * Now check the table for used entries and mark those as
	 * allocated in the bitmap
	 */
	for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) {
		if (iommu->ir_table->base[i].present)
			bitmap_set(iommu->ir_table->bitmap, i, 1);
	}

469
	memunmap(old_ir_table);
470

471 472 473 474
	return 0;
}


475
static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
476
{
477
	unsigned long flags;
478
	u64 addr;
479
	u32 sts;
480 481 482

	addr = virt_to_phys((void *)iommu->ir_table->base);

483
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
484 485 486 487 488

	dmar_writeq(iommu->reg + DMAR_IRTA_REG,
		    (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);

	/* Set interrupt-remapping table pointer */
489
	writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
490 491 492

	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
		      readl, (sts & DMA_GSTS_IRTPS), sts);
493
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
494 495

	/*
496 497
	 * Global invalidation of interrupt entry cache to make sure the
	 * hardware uses the new irq remapping table.
498 499
	 */
	qi_global_iec(iommu);
500 501 502 503 504 505
}

static void iommu_enable_irq_remapping(struct intel_iommu *iommu)
{
	unsigned long flags;
	u32 sts;
506

507
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
508 509 510

	/* Enable interrupt-remapping */
	iommu->gcmd |= DMA_GCMD_IRE;
511
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
512 513 514
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
		      readl, (sts & DMA_GSTS_IRES), sts);

515 516 517 518 519 520 521 522
	/* Block compatibility-format MSIs */
	if (sts & DMA_GSTS_CFIS) {
		iommu->gcmd &= ~DMA_GCMD_CFI;
		writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
		IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
			      readl, !(sts & DMA_GSTS_CFIS), sts);
	}

523 524 525 526 527 528 529 530 531 532
	/*
	 * With CFI clear in the Global Command register, we should be
	 * protected from dangerous (i.e. compatibility) interrupts
	 * regardless of x2apic status.  Check just to be sure.
	 */
	if (sts & DMA_GSTS_CFIS)
		WARN(1, KERN_WARNING
			"Compatibility-format IRQs enabled despite intr remapping;\n"
			"you are vulnerable to IRQ injection.\n");

533
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
534 535
}

536
static int intel_setup_irq_remapping(struct intel_iommu *iommu)
537 538
{
	struct ir_table *ir_table;
539
	struct fwnode_handle *fn;
540
	unsigned long *bitmap;
541
	struct page *pages;
542

543 544
	if (iommu->ir_table)
		return 0;
545

546
	ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
547
	if (!ir_table)
548 549
		return -ENOMEM;

550
	pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO,
551
				 INTR_REMAP_PAGE_ORDER);
552
	if (!pages) {
553 554
		pr_err("IR%d: failed to allocate pages of order %d\n",
		       iommu->seq_id, INTR_REMAP_PAGE_ORDER);
555
		goto out_free_table;
556 557
	}

558
	bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_ATOMIC);
559 560
	if (bitmap == NULL) {
		pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
561
		goto out_free_pages;
562 563
	}

564 565 566 567 568 569 570 571 572
	fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id);
	if (!fn)
		goto out_free_bitmap;

	iommu->ir_domain =
		irq_domain_create_hierarchy(arch_get_ir_parent_domain(),
					    0, INTR_REMAP_TABLE_ENTRIES,
					    fn, &intel_ir_domain_ops,
					    iommu);
573
	if (!iommu->ir_domain) {
574
		irq_domain_free_fwnode(fn);
575 576 577
		pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id);
		goto out_free_bitmap;
	}
578 579 580 581
	iommu->ir_msi_domain =
		arch_create_remap_msi_irq_domain(iommu->ir_domain,
						 "INTEL-IR-MSI",
						 iommu->seq_id);
582

583
	ir_table->base = page_address(pages);
584
	ir_table->bitmap = bitmap;
585
	iommu->ir_table = ir_table;
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603

	/*
	 * If the queued invalidation is already initialized,
	 * shouldn't disable it.
	 */
	if (!iommu->qi) {
		/*
		 * Clear previous faults.
		 */
		dmar_fault(-1, iommu);
		dmar_disable_qi(iommu);

		if (dmar_enable_qi(iommu)) {
			pr_err("Failed to enable queued invalidation\n");
			goto out_free_bitmap;
		}
	}

604 605 606
	init_ir_status(iommu);

	if (ir_pre_enabled(iommu)) {
607 608 609 610 611 612
		if (!is_kdump_kernel()) {
			pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n",
				iommu->name);
			clear_ir_pre_enabled(iommu);
			iommu_disable_irq_remapping(iommu);
		} else if (iommu_load_old_irte(iommu))
613 614 615 616 617 618 619
			pr_err("Failed to copy IR table for %s from previous kernel\n",
			       iommu->name);
		else
			pr_info("Copied IR table for %s from previous kernel\n",
				iommu->name);
	}

620 621
	iommu_set_irq_remapping(iommu, eim_mode);

622
	return 0;
623

624
out_free_bitmap:
625
	bitmap_free(bitmap);
626 627 628 629
out_free_pages:
	__free_pages(pages, INTR_REMAP_PAGE_ORDER);
out_free_table:
	kfree(ir_table);
630 631 632

	iommu->ir_table  = NULL;

633 634 635 636 637
	return -ENOMEM;
}

static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
{
638 639
	struct fwnode_handle *fn;

640
	if (iommu && iommu->ir_table) {
641
		if (iommu->ir_msi_domain) {
642 643
			fn = iommu->ir_msi_domain->fwnode;

644
			irq_domain_remove(iommu->ir_msi_domain);
645
			irq_domain_free_fwnode(fn);
646 647 648
			iommu->ir_msi_domain = NULL;
		}
		if (iommu->ir_domain) {
649 650
			fn = iommu->ir_domain->fwnode;

651
			irq_domain_remove(iommu->ir_domain);
652
			irq_domain_free_fwnode(fn);
653 654
			iommu->ir_domain = NULL;
		}
655 656
		free_pages((unsigned long)iommu->ir_table->base,
			   INTR_REMAP_PAGE_ORDER);
657
		bitmap_free(iommu->ir_table->bitmap);
658 659 660
		kfree(iommu->ir_table);
		iommu->ir_table = NULL;
	}
661 662
}

663 664 665
/*
 * Disable Interrupt Remapping.
 */
666
static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
667 668 669 670 671 672 673
{
	unsigned long flags;
	u32 sts;

	if (!ecap_ir_support(iommu->ecap))
		return;

674 675 676 677 678 679
	/*
	 * global invalidation of interrupt entry cache before disabling
	 * interrupt-remapping.
	 */
	qi_global_iec(iommu);

680
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
681

682
	sts = readl(iommu->reg + DMAR_GSTS_REG);
683 684 685 686 687 688 689 690 691 692
	if (!(sts & DMA_GSTS_IRES))
		goto end;

	iommu->gcmd &= ~DMA_GCMD_IRE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
		      readl, !(sts & DMA_GSTS_IRES), sts);

end:
693
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
694 695
}

696 697 698 699 700 701 702 703 704
static int __init dmar_x2apic_optout(void)
{
	struct acpi_table_dmar *dmar;
	dmar = (struct acpi_table_dmar *)dmar_tbl;
	if (!dmar || no_x2apic_optout)
		return 0;
	return dmar->flags & DMAR_X2APIC_OPT_OUT;
}

705 706 707 708 709 710 711 712 713 714 715 716 717
static void __init intel_cleanup_irq_remapping(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;

	for_each_iommu(iommu, drhd) {
		if (ecap_ir_support(iommu->ecap)) {
			iommu_disable_irq_remapping(iommu);
			intel_teardown_irq_remapping(iommu);
		}
	}

	if (x2apic_supported())
J
Joerg Roedel 已提交
718
		pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
719 720 721
}

static int __init intel_prepare_irq_remapping(void)
722 723
{
	struct dmar_drhd_unit *drhd;
724
	struct intel_iommu *iommu;
725
	int eim = 0;
726

727
	if (irq_remap_broken) {
J
Joerg Roedel 已提交
728
		pr_warn("This system BIOS has enabled interrupt remapping\n"
729 730 731 732 733 734 735 736
			"on a chipset that contains an erratum making that\n"
			"feature unstable.  To maintain system stability\n"
			"interrupt remapping is being disabled.  Please\n"
			"contact your BIOS vendor for an update\n");
		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
		return -ENODEV;
	}

737
	if (dmar_table_init() < 0)
738 739 740 741
		return -ENODEV;

	if (!dmar_ir_support())
		return -ENODEV;
742

743
	if (parse_ioapics_under_ir()) {
J
Joerg Roedel 已提交
744
		pr_info("Not enabling interrupt remapping\n");
745
		goto error;
746 747
	}

748
	/* First make sure all IOMMUs support IRQ remapping */
749
	for_each_iommu(iommu, drhd)
750 751 752
		if (!ecap_ir_support(iommu->ecap))
			goto error;

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
	/* Detect remapping mode: lapic or x2apic */
	if (x2apic_supported()) {
		eim = !dmar_x2apic_optout();
		if (!eim) {
			pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
			pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
		}
	}

	for_each_iommu(iommu, drhd) {
		if (eim && !ecap_eim_support(iommu->ecap)) {
			pr_info("%s does not support EIM\n", iommu->name);
			eim = 0;
		}
	}

	eim_mode = eim;
	if (eim)
		pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");

773 774 775 776 777
	/* Do the initializations early */
	for_each_iommu(iommu, drhd) {
		if (intel_setup_irq_remapping(iommu)) {
			pr_err("Failed to setup irq remapping for %s\n",
			       iommu->name);
778
			goto error;
779 780
		}
	}
781

782
	return 0;
783

784 785
error:
	intel_cleanup_irq_remapping();
786
	return -ENODEV;
787 788
}

789 790 791 792 793 794 795 796 797
/*
 * Set Posted-Interrupts capability.
 */
static inline void set_irq_posting_cap(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;

	if (!disable_irq_post) {
798 799 800 801 802 803 804 805
		/*
		 * If IRTE is in posted format, the 'pda' field goes across the
		 * 64-bit boundary, we need use cmpxchg16b to atomically update
		 * it. We only expose posted-interrupt when X86_FEATURE_CX16
		 * is supported. Actually, hardware platforms supporting PI
		 * should have X86_FEATURE_CX16 support, this has been confirmed
		 * with Intel hardware guys.
		 */
806
		if (boot_cpu_has(X86_FEATURE_CX16))
807
			intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP;
808 809 810 811 812 813 814 815 816 817

		for_each_iommu(iommu, drhd)
			if (!cap_pi_support(iommu->cap)) {
				intel_irq_remap_ops.capability &=
						~(1 << IRQ_POSTING_CAP);
				break;
			}
	}
}

818 819 820 821
static int __init intel_enable_irq_remapping(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
822
	bool setup = false;
823 824 825 826

	/*
	 * Setup Interrupt-remapping for all the DRHD's now.
	 */
827
	for_each_iommu(iommu, drhd) {
828 829
		if (!ir_pre_enabled(iommu))
			iommu_enable_irq_remapping(iommu);
830
		setup = true;
831 832 833 834 835
	}

	if (!setup)
		goto error;

836
	irq_remapping_enabled = 1;
837

838 839
	set_irq_posting_cap();

840
	pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic");
841

842
	return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
843 844

error:
845
	intel_cleanup_irq_remapping();
846 847
	return -1;
}
848

849 850 851
static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
				   struct intel_iommu *iommu,
				   struct acpi_dmar_hardware_unit *drhd)
852 853 854
{
	struct acpi_dmar_pci_path *path;
	u8 bus;
855
	int count, free = -1;
856 857 858 859 860 861 862 863 864 865 866

	bus = scope->bus;
	path = (struct acpi_dmar_pci_path *)(scope + 1);
	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
		/ sizeof(struct acpi_dmar_pci_path);

	while (--count > 0) {
		/*
		 * Access PCI directly due to the PCI
		 * subsystem isn't initialized yet.
		 */
L
Lv Zheng 已提交
867
		bus = read_pci_config_byte(bus, path->device, path->function,
868 869 870
					   PCI_SECONDARY_BUS);
		path++;
	}
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891

	for (count = 0; count < MAX_HPET_TBS; count++) {
		if (ir_hpet[count].iommu == iommu &&
		    ir_hpet[count].id == scope->enumeration_id)
			return 0;
		else if (ir_hpet[count].iommu == NULL && free == -1)
			free = count;
	}
	if (free == -1) {
		pr_warn("Exceeded Max HPET blocks\n");
		return -ENOSPC;
	}

	ir_hpet[free].iommu = iommu;
	ir_hpet[free].id    = scope->enumeration_id;
	ir_hpet[free].bus   = bus;
	ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
	pr_info("HPET id %d under DRHD base 0x%Lx\n",
		scope->enumeration_id, drhd->address);

	return 0;
892 893
}

894 895 896
static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
				     struct intel_iommu *iommu,
				     struct acpi_dmar_hardware_unit *drhd)
897 898 899
{
	struct acpi_dmar_pci_path *path;
	u8 bus;
900
	int count, free = -1;
901 902 903 904 905 906 907 908 909 910 911

	bus = scope->bus;
	path = (struct acpi_dmar_pci_path *)(scope + 1);
	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
		/ sizeof(struct acpi_dmar_pci_path);

	while (--count > 0) {
		/*
		 * Access PCI directly due to the PCI
		 * subsystem isn't initialized yet.
		 */
L
Lv Zheng 已提交
912
		bus = read_pci_config_byte(bus, path->device, path->function,
913 914 915 916
					   PCI_SECONDARY_BUS);
		path++;
	}

917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
	for (count = 0; count < MAX_IO_APICS; count++) {
		if (ir_ioapic[count].iommu == iommu &&
		    ir_ioapic[count].id == scope->enumeration_id)
			return 0;
		else if (ir_ioapic[count].iommu == NULL && free == -1)
			free = count;
	}
	if (free == -1) {
		pr_warn("Exceeded Max IO APICS\n");
		return -ENOSPC;
	}

	ir_ioapic[free].bus   = bus;
	ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
	ir_ioapic[free].iommu = iommu;
	ir_ioapic[free].id    = scope->enumeration_id;
	pr_info("IOAPIC id %d under DRHD base  0x%Lx IOMMU %d\n",
		scope->enumeration_id, drhd->address, iommu->seq_id);

	return 0;
937 938
}

939 940
static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
				      struct intel_iommu *iommu)
941
{
942
	int ret = 0;
943 944 945 946 947 948 949 950
	struct acpi_dmar_hardware_unit *drhd;
	struct acpi_dmar_device_scope *scope;
	void *start, *end;

	drhd = (struct acpi_dmar_hardware_unit *)header;
	start = (void *)(drhd + 1);
	end = ((void *)drhd) + header->length;

951
	while (start < end && ret == 0) {
952
		scope = start;
953 954 955 956 957 958
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
			ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
		else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
			ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
		start += scope->length;
	}
959

960 961
	return ret;
}
962

963 964 965
static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
{
	int i;
966

967 968 969
	for (i = 0; i < MAX_HPET_TBS; i++)
		if (ir_hpet[i].iommu == iommu)
			ir_hpet[i].iommu = NULL;
970

971 972 973
	for (i = 0; i < MAX_IO_APICS; i++)
		if (ir_ioapic[i].iommu == iommu)
			ir_ioapic[i].iommu = NULL;
974 975 976 977 978 979
}

/*
 * Finds the assocaition between IOAPIC's and its Interrupt-remapping
 * hardware unit.
 */
980
static int __init parse_ioapics_under_ir(void)
981 982
{
	struct dmar_drhd_unit *drhd;
983
	struct intel_iommu *iommu;
984
	bool ir_supported = false;
985
	int ioapic_idx;
986

987 988
	for_each_iommu(iommu, drhd) {
		int ret;
989

990 991 992 993 994 995 996 997 998
		if (!ecap_ir_support(iommu->ecap))
			continue;

		ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu);
		if (ret)
			return ret;

		ir_supported = true;
	}
999

1000
	if (!ir_supported)
1001
		return -ENODEV;
1002 1003 1004 1005 1006 1007 1008 1009 1010

	for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
		int ioapic_id = mpc_ioapic_id(ioapic_idx);
		if (!map_ioapic_to_ir(ioapic_id)) {
			pr_err(FW_BUG "ioapic %d has no mapping iommu, "
			       "interrupt remapping will be disabled\n",
			       ioapic_id);
			return -1;
		}
1011 1012
	}

1013
	return 0;
1014
}
1015

1016
static int __init ir_dev_scope_init(void)
1017
{
1018 1019
	int ret;

1020
	if (!irq_remapping_enabled)
1021 1022
		return 0;

1023 1024 1025 1026 1027
	down_write(&dmar_global_lock);
	ret = dmar_dev_scope_init();
	up_write(&dmar_global_lock);

	return ret;
1028 1029 1030
}
rootfs_initcall(ir_dev_scope_init);

1031
static void disable_irq_remapping(void)
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;

	/*
	 * Disable Interrupt-remapping for all the DRHD's now.
	 */
	for_each_iommu(iommu, drhd) {
		if (!ecap_ir_support(iommu->ecap))
			continue;

1043
		iommu_disable_irq_remapping(iommu);
1044
	}
1045 1046 1047 1048 1049 1050

	/*
	 * Clear Posted-Interrupts capability.
	 */
	if (!disable_irq_post)
		intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP);
1051 1052
}

1053
static int reenable_irq_remapping(int eim)
1054 1055
{
	struct dmar_drhd_unit *drhd;
1056
	bool setup = false;
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
	struct intel_iommu *iommu = NULL;

	for_each_iommu(iommu, drhd)
		if (iommu->qi)
			dmar_reenable_qi(iommu);

	/*
	 * Setup Interrupt-remapping for all the DRHD's now.
	 */
	for_each_iommu(iommu, drhd) {
		if (!ecap_ir_support(iommu->ecap))
			continue;

		/* Set up interrupt remapping for iommu.*/
1071
		iommu_set_irq_remapping(iommu, eim);
1072
		iommu_enable_irq_remapping(iommu);
1073
		setup = true;
1074 1075 1076 1077 1078
	}

	if (!setup)
		goto error;

1079 1080
	set_irq_posting_cap();

1081 1082 1083 1084 1085 1086 1087 1088 1089
	return 0;

error:
	/*
	 * handle error condition gracefully here!
	 */
	return -1;
}

1090
static void prepare_irte(struct irte *irte, int vector, unsigned int dest)
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
{
	memset(irte, 0, sizeof(*irte));

	irte->present = 1;
	irte->dst_mode = apic->irq_dest_mode;
	/*
	 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
	 * actual level or edge trigger will be setup in the IO-APIC
	 * RTE. This will help simplify level triggered irq migration.
	 * For more details, see the comments (in io_apic.c) explainig IO-APIC
	 * irq migration in the presence of interrupt-remapping.
	*/
	irte->trigger_mode = 0;
	irte->dlvry_mode = apic->irq_delivery_mode;
	irte->vector = vector;
	irte->dest_id = IRTE_DEST(dest);
	irte->redir_hint = 1;
}

1110 1111 1112 1113 1114 1115 1116 1117
static struct irq_domain *intel_get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct intel_iommu *iommu = NULL;

	if (!info)
		return NULL;

	switch (info->type) {
1118
	case X86_IRQ_ALLOC_TYPE_IOAPIC_GET_PARENT:
1119 1120
		iommu = map_ioapic_to_ir(info->ioapic_id);
		break;
1121
	case X86_IRQ_ALLOC_TYPE_HPET_GET_PARENT:
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
		iommu = map_hpet_to_ir(info->hpet_id);
		break;
	default:
		BUG_ON(1);
		break;
	}

	return iommu ? iommu->ir_domain : NULL;
}

static struct irq_domain *intel_get_irq_domain(struct irq_alloc_info *info)
{
	struct intel_iommu *iommu;

	if (!info)
		return NULL;

	switch (info->type) {
1140 1141
	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
		iommu = map_dev_to_ir(info->msi_dev);
		if (iommu)
			return iommu->ir_msi_domain;
		break;
	default:
		break;
	}

	return NULL;
}

1153
struct irq_remap_ops intel_irq_remap_ops = {
1154
	.prepare		= intel_prepare_irq_remapping,
1155 1156 1157
	.enable			= intel_enable_irq_remapping,
	.disable		= disable_irq_remapping,
	.reenable		= reenable_irq_remapping,
1158
	.enable_faulting	= enable_drhd_fault_handling,
1159 1160 1161 1162
	.get_ir_irq_domain	= intel_get_ir_irq_domain,
	.get_irq_domain		= intel_get_irq_domain,
};

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force)
{
	struct intel_ir_data *ir_data = irqd->chip_data;
	struct irte *irte = &ir_data->irte_entry;
	struct irq_cfg *cfg = irqd_cfg(irqd);

	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	irte->vector = cfg->vector;
	irte->dest_id = IRTE_DEST(cfg->dest_apicid);

	/* Update the hardware only if the interrupt is in remapped mode. */
1177
	if (force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING)
1178 1179 1180
		modify_irte(&ir_data->irq_2_iommu, irte);
}

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
/*
 * Migrate the IO-APIC irq in the presence of intr-remapping.
 *
 * For both level and edge triggered, irq migration is a simple atomic
 * update(of vector and cpu destination) of IRTE and flush the hardware cache.
 *
 * For level triggered, we eliminate the io-apic RTE modification (with the
 * updated vector information), by using a virtual vector (io-apic pin number).
 * Real vector that is used for interrupting cpu will be coming from
 * the interrupt-remapping table entry.
 *
 * As the migration is a simple atomic update of IRTE, the same mechanism
 * is used to migrate MSI irq's in the presence of interrupt-remapping.
 */
static int
intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask,
		      bool force)
{
	struct irq_data *parent = data->parent_data;
1200
	struct irq_cfg *cfg = irqd_cfg(data);
1201 1202 1203 1204 1205 1206
	int ret;

	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;

1207
	intel_ir_reconfigure_irte(data, false);
1208 1209 1210 1211 1212
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
1213
	send_cleanup_vector(cfg);
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

	return IRQ_SET_MASK_OK_DONE;
}

static void intel_ir_compose_msi_msg(struct irq_data *irq_data,
				     struct msi_msg *msg)
{
	struct intel_ir_data *ir_data = irq_data->chip_data;

	*msg = ir_data->msi_entry;
}

1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info)
{
	struct intel_ir_data *ir_data = data->chip_data;
	struct vcpu_data *vcpu_pi_info = info;

	/* stop posting interrupts, back to remapping mode */
	if (!vcpu_pi_info) {
		modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry);
	} else {
		struct irte irte_pi;

		/*
		 * We are not caching the posted interrupt entry. We
		 * copy the data from the remapped entry and modify
		 * the fields which are relevant for posted mode. The
		 * cached remapped entry is used for switching back to
		 * remapped mode.
		 */
		memset(&irte_pi, 0, sizeof(irte_pi));
		dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry);

		/* Update the posted mode fields */
		irte_pi.p_pst = 1;
		irte_pi.p_urgent = 0;
		irte_pi.p_vector = vcpu_pi_info->vector;
		irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >>
				(32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
		irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) &
				~(-1UL << PDA_HIGH_BIT);

		modify_irte(&ir_data->irq_2_iommu, &irte_pi);
	}

	return 0;
}

1262
static struct irq_chip intel_ir_chip = {
1263
	.name			= "INTEL-IR",
1264
	.irq_ack		= apic_ack_irq,
1265 1266 1267
	.irq_set_affinity	= intel_ir_set_affinity,
	.irq_compose_msi_msg	= intel_ir_compose_msi_msg,
	.irq_set_vcpu_affinity	= intel_ir_set_vcpu_affinity,
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
};

static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data,
					     struct irq_cfg *irq_cfg,
					     struct irq_alloc_info *info,
					     int index, int sub_handle)
{
	struct IR_IO_APIC_route_entry *entry;
	struct irte *irte = &data->irte_entry;
	struct msi_msg *msg = &data->msi_entry;

	prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid);
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Set source-id of interrupt request */
		set_ioapic_sid(irte, info->ioapic_id);
		apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
			info->ioapic_id, irte->present, irte->fpd,
			irte->dst_mode, irte->redir_hint,
			irte->trigger_mode, irte->dlvry_mode,
			irte->avail, irte->vector, irte->dest_id,
			irte->sid, irte->sq, irte->svt);

		entry = (struct IR_IO_APIC_route_entry *)info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->index2	= (index >> 15) & 0x1;
		entry->zero	= 0;
		entry->format	= 1;
		entry->index	= (index & 0x7fff);
		/*
		 * IO-APIC RTE will be configured with virtual vector.
		 * irq handler will do the explicit EOI to the io-apic.
		 */
		entry->vector	= info->ioapic_pin;
		entry->mask	= 0;			/* enable IRQ */
		entry->trigger	= info->ioapic_trigger;
		entry->polarity	= info->ioapic_polarity;
		if (info->ioapic_trigger)
			entry->mask = 1; /* Mask level triggered irqs. */
		break;

	case X86_IRQ_ALLOC_TYPE_HPET:
1311 1312
	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
		if (info->type == X86_IRQ_ALLOC_TYPE_HPET)
			set_hpet_sid(irte, info->hpet_id);
		else
			set_msi_sid(irte, info->msi_dev);

		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->data = sub_handle;
		msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
				  MSI_ADDR_IR_SHV |
				  MSI_ADDR_IR_INDEX1(index) |
				  MSI_ADDR_IR_INDEX2(index);
		break;

	default:
		BUG_ON(1);
		break;
	}
}

static void intel_free_irq_resources(struct irq_domain *domain,
				     unsigned int virq, unsigned int nr_irqs)
{
	struct irq_data *irq_data;
	struct intel_ir_data *data;
	struct irq_2_iommu *irq_iommu;
	unsigned long flags;
	int i;
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irq_iommu = &data->irq_2_iommu;
			raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
			clear_entries(irq_iommu);
			raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
			irq_domain_reset_irq_data(irq_data);
			kfree(data);
		}
	}
}

static int intel_irq_remapping_alloc(struct irq_domain *domain,
				     unsigned int virq, unsigned int nr_irqs,
				     void *arg)
{
	struct intel_iommu *iommu = domain->host_data;
	struct irq_alloc_info *info = arg;
1360
	struct intel_ir_data *data, *ird;
1361 1362 1363 1364 1365 1366
	struct irq_data *irq_data;
	struct irq_cfg *irq_cfg;
	int i, ret, index;

	if (!info || !iommu)
		return -EINVAL;
1367 1368
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_PCI_MSIX)
1369 1370 1371 1372 1373 1374
		return -EINVAL;

	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
1375
	if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI)
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;

	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;

	ret = -ENOMEM;
	data = kzalloc(sizeof(*data), GFP_KERNEL);
	if (!data)
		goto out_free_parent;

	down_read(&dmar_global_lock);
J
Jacob Pan 已提交
1388
	index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs);
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
	up_read(&dmar_global_lock);
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
		kfree(data);
		goto out_free_parent;
	}

	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		irq_cfg = irqd_cfg(irq_data);
		if (!irq_data || !irq_cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}

		if (i > 0) {
1405 1406
			ird = kzalloc(sizeof(*ird), GFP_KERNEL);
			if (!ird)
1407
				goto out_free_data;
1408 1409 1410 1411 1412
			/* Initialize the common data */
			ird->irq_2_iommu = data->irq_2_iommu;
			ird->irq_2_iommu.sub_handle = i;
		} else {
			ird = data;
1413
		}
1414

1415
		irq_data->hwirq = (index << 16) + i;
1416
		irq_data->chip_data = ird;
1417
		irq_data->chip = &intel_ir_chip;
1418
		intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i);
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
	return 0;

out_free_data:
	intel_free_irq_resources(domain, virq, i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
}

static void intel_irq_remapping_free(struct irq_domain *domain,
				     unsigned int virq, unsigned int nr_irqs)
{
	intel_free_irq_resources(domain, virq, nr_irqs);
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}

1437
static int intel_irq_remapping_activate(struct irq_domain *domain,
1438
					struct irq_data *irq_data, bool reserve)
1439
{
1440
	intel_ir_reconfigure_irte(irq_data, true);
1441
	return 0;
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
}

static void intel_irq_remapping_deactivate(struct irq_domain *domain,
					   struct irq_data *irq_data)
{
	struct intel_ir_data *data = irq_data->chip_data;
	struct irte entry;

	memset(&entry, 0, sizeof(entry));
	modify_irte(&data->irq_2_iommu, &entry);
}

1454
static const struct irq_domain_ops intel_ir_domain_ops = {
1455 1456 1457 1458
	.alloc = intel_irq_remapping_alloc,
	.free = intel_irq_remapping_free,
	.activate = intel_irq_remapping_activate,
	.deactivate = intel_irq_remapping_deactivate,
1459
};
1460

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
/*
 * Support of Interrupt Remapping Unit Hotplug
 */
static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
{
	int ret;
	int eim = x2apic_enabled();

	if (eim && !ecap_eim_support(iommu->ecap)) {
		pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
			iommu->reg_phys, iommu->ecap);
		return -ENODEV;
	}

	if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
		pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
			iommu->reg_phys);
		return -ENODEV;
	}

	/* TODO: check all IOAPICs are covered by IOMMU */

	/* Setup Interrupt-remapping now. */
	ret = intel_setup_irq_remapping(iommu);
	if (ret) {
1486 1487
		pr_err("Failed to setup irq remapping for %s\n",
		       iommu->name);
1488 1489
		intel_teardown_irq_remapping(iommu);
		ir_remove_ioapic_hpet_scope(iommu);
1490
	} else {
1491
		iommu_enable_irq_remapping(iommu);
1492 1493 1494 1495 1496
	}

	return ret;
}

1497 1498
int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
{
1499 1500 1501 1502 1503 1504 1505 1506 1507
	int ret = 0;
	struct intel_iommu *iommu = dmaru->iommu;

	if (!irq_remapping_enabled)
		return 0;
	if (iommu == NULL)
		return -EINVAL;
	if (!ecap_ir_support(iommu->ecap))
		return 0;
1508 1509 1510
	if (irq_remapping_cap(IRQ_POSTING_CAP) &&
	    !cap_pi_support(iommu->cap))
		return -EBUSY;
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528

	if (insert) {
		if (!iommu->ir_table)
			ret = dmar_ir_add(dmaru, iommu);
	} else {
		if (iommu->ir_table) {
			if (!bitmap_empty(iommu->ir_table->bitmap,
					  INTR_REMAP_TABLE_ENTRIES)) {
				ret = -EBUSY;
			} else {
				iommu_disable_irq_remapping(iommu);
				intel_teardown_irq_remapping(iommu);
				ir_remove_ioapic_hpet_scope(iommu);
			}
		}
	}

	return ret;
1529
}