irq_remapping.c 37.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
J
Joerg Roedel 已提交
2 3 4

#define pr_fmt(fmt)     "DMAR-IR: " fmt

Y
Yinghai Lu 已提交
5
#include <linux/interrupt.h>
6
#include <linux/dmar.h>
7
#include <linux/spinlock.h>
8
#include <linux/slab.h>
9
#include <linux/jiffies.h>
10
#include <linux/hpet.h>
11
#include <linux/pci.h>
12
#include <linux/irq.h>
13 14
#include <linux/intel-iommu.h>
#include <linux/acpi.h>
15
#include <linux/irqdomain.h>
16
#include <linux/crash_dump.h>
17
#include <asm/io_apic.h>
Y
Yinghai Lu 已提交
18
#include <asm/smp.h>
19
#include <asm/cpu.h>
20
#include <asm/irq_remapping.h>
21
#include <asm/pci-direct.h>
22
#include <asm/msidef.h>
23

24
#include "../irq_remapping.h"
25

26 27 28 29 30
enum irq_mode {
	IRQ_REMAPPING,
	IRQ_POSTING,
};

31 32 33 34 35 36 37 38 39 40 41 42 43 44
struct ioapic_scope {
	struct intel_iommu *iommu;
	unsigned int id;
	unsigned int bus;	/* PCI bus number */
	unsigned int devfn;	/* PCI devfn number */
};

struct hpet_scope {
	struct intel_iommu *iommu;
	u8 id;
	unsigned int bus;
	unsigned int devfn;
};

45 46 47 48 49
struct irq_2_iommu {
	struct intel_iommu *iommu;
	u16 irte_index;
	u16 sub_handle;
	u8  irte_mask;
50
	enum irq_mode mode;
51 52
};

53 54 55 56 57 58 59 60
struct intel_ir_data {
	struct irq_2_iommu			irq_2_iommu;
	struct irte				irte_entry;
	union {
		struct msi_msg			msi_entry;
	};
};

61
#define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
62
#define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
63

64
static int __read_mostly eim_mode;
65
static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
66
static struct hpet_scope ir_hpet[MAX_HPET_TBS];
67

68 69 70 71 72 73 74 75 76 77 78
/*
 * Lock ordering:
 * ->dmar_global_lock
 *	->irq_2_ir_lock
 *		->qi->q_lock
 *	->iommu->register_lock
 * Note:
 * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
 * in single-threaded environment with interrupt disabled, so no need to tabke
 * the dmar_global_lock.
 */
79
DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
80
static const struct irq_domain_ops intel_ir_domain_ops;
81

82
static void iommu_disable_irq_remapping(struct intel_iommu *iommu);
83 84
static int __init parse_ioapics_under_ir(void);

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
static bool ir_pre_enabled(struct intel_iommu *iommu)
{
	return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED);
}

static void clear_ir_pre_enabled(struct intel_iommu *iommu)
{
	iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
}

static void init_ir_status(struct intel_iommu *iommu)
{
	u32 gsts;

	gsts = readl(iommu->reg + DMAR_GSTS_REG);
	if (gsts & DMA_GSTS_IRES)
		iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
}

J
Jacob Pan 已提交
104
static int alloc_irte(struct intel_iommu *iommu,
105
		      struct irq_2_iommu *irq_iommu, u16 count)
106 107 108
{
	struct ir_table *table = iommu->ir_table;
	unsigned int mask = 0;
109
	unsigned long flags;
110
	int index;
111

112
	if (!count || !irq_iommu)
113 114
		return -1;

115 116 117 118 119 120
	if (count > 1) {
		count = __roundup_pow_of_two(count);
		mask = ilog2(count);
	}

	if (mask > ecap_max_handle_mask(iommu->ecap)) {
J
Joerg Roedel 已提交
121
		pr_err("Requested mask %x exceeds the max invalidation handle"
122 123 124 125 126
		       " mask value %Lx\n", mask,
		       ecap_max_handle_mask(iommu->ecap));
		return -1;
	}

127
	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
128 129 130 131 132 133 134 135 136
	index = bitmap_find_free_region(table->bitmap,
					INTR_REMAP_TABLE_ENTRIES, mask);
	if (index < 0) {
		pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
	} else {
		irq_iommu->iommu = iommu;
		irq_iommu->irte_index =  index;
		irq_iommu->sub_handle = 0;
		irq_iommu->irte_mask = mask;
137
		irq_iommu->mode = IRQ_REMAPPING;
138
	}
139
	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
140 141 142 143

	return index;
}

144
static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
145 146 147
{
	struct qi_desc desc;

148
	desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
149
		   | QI_IEC_SELECTIVE;
150 151 152
	desc.qw1 = 0;
	desc.qw2 = 0;
	desc.qw3 = 0;
153

154
	return qi_submit_sync(iommu, &desc, 1, 0);
155 156
}

157 158
static int modify_irte(struct irq_2_iommu *irq_iommu,
		       struct irte *irte_modified)
159 160
{
	struct intel_iommu *iommu;
161
	unsigned long flags;
162 163
	struct irte *irte;
	int rc, index;
164

165
	if (!irq_iommu)
166
		return -1;
167

168
	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
169

170
	iommu = irq_iommu->iommu;
171

172
	index = irq_iommu->irte_index + irq_iommu->sub_handle;
173 174
	irte = &iommu->ir_table->base[index];

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE)
	if ((irte->pst == 1) || (irte_modified->pst == 1)) {
		bool ret;

		ret = cmpxchg_double(&irte->low, &irte->high,
				     irte->low, irte->high,
				     irte_modified->low, irte_modified->high);
		/*
		 * We use cmpxchg16 to atomically update the 128-bit IRTE,
		 * and it cannot be updated by the hardware or other processors
		 * behind us, so the return value of cmpxchg16 should be the
		 * same as the old value.
		 */
		WARN_ON(!ret);
	} else
#endif
	{
		set_64bit(&irte->low, irte_modified->low);
		set_64bit(&irte->high, irte_modified->high);
	}
195 196
	__iommu_flush_cache(iommu, irte, sizeof(*irte));

197
	rc = qi_flush_iec(iommu, index, 0);
198 199 200

	/* Update iommu mode according to the IRTE mode */
	irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING;
201
	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
202 203

	return rc;
204 205
}

206
static struct intel_iommu *map_hpet_to_ir(u8 hpet_id)
207 208 209 210
{
	int i;

	for (i = 0; i < MAX_HPET_TBS; i++)
211
		if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
212 213 214 215
			return ir_hpet[i].iommu;
	return NULL;
}

216
static struct intel_iommu *map_ioapic_to_ir(int apic)
217 218 219 220
{
	int i;

	for (i = 0; i < MAX_IO_APICS; i++)
221
		if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
222 223 224 225
			return ir_ioapic[i].iommu;
	return NULL;
}

226
static struct intel_iommu *map_dev_to_ir(struct pci_dev *dev)
227 228 229 230 231 232 233 234 235 236
{
	struct dmar_drhd_unit *drhd;

	drhd = dmar_find_matched_drhd_unit(dev);
	if (!drhd)
		return NULL;

	return drhd->iommu;
}

237 238 239 240 241 242 243 244 245 246
static int clear_entries(struct irq_2_iommu *irq_iommu)
{
	struct irte *start, *entry, *end;
	struct intel_iommu *iommu;
	int index;

	if (irq_iommu->sub_handle)
		return 0;

	iommu = irq_iommu->iommu;
247
	index = irq_iommu->irte_index;
248 249 250 251 252

	start = iommu->ir_table->base + index;
	end = start + (1 << irq_iommu->irte_mask);

	for (entry = start; entry < end; entry++) {
253 254
		set_64bit(&entry->low, 0);
		set_64bit(&entry->high, 0);
255
	}
256 257
	bitmap_release_region(iommu->ir_table->bitmap, index,
			      irq_iommu->irte_mask);
258 259 260 261

	return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
}

262 263 264 265
/*
 * source validation type
 */
#define SVT_NO_VERIFY		0x0  /* no verification is required */
L
Lucas De Marchi 已提交
266
#define SVT_VERIFY_SID_SQ	0x1  /* verify using SID and SQ fields */
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
#define SVT_VERIFY_BUS		0x2  /* verify bus of request-id */

/*
 * source-id qualifier
 */
#define SQ_ALL_16	0x0  /* verify all 16 bits of request-id */
#define SQ_13_IGNORE_1	0x1  /* verify most significant 13 bits, ignore
			      * the third least significant bit
			      */
#define SQ_13_IGNORE_2	0x2  /* verify most significant 13 bits, ignore
			      * the second and third least significant bits
			      */
#define SQ_13_IGNORE_3	0x3  /* verify most significant 13 bits, ignore
			      * the least three significant bits
			      */

/*
 * set SVT, SQ and SID fields of irte to verify
 * source ids of interrupt requests
 */
static void set_irte_sid(struct irte *irte, unsigned int svt,
			 unsigned int sq, unsigned int sid)
{
290 291
	if (disable_sourceid_checking)
		svt = SVT_NO_VERIFY;
292 293 294 295 296
	irte->svt = svt;
	irte->sq = sq;
	irte->sid = sid;
}

297 298 299 300 301 302 303 304 305 306 307 308
/*
 * Set an IRTE to match only the bus number. Interrupt requests that reference
 * this IRTE must have a requester-id whose bus number is between or equal
 * to the start_bus and end_bus arguments.
 */
static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus,
				unsigned int end_bus)
{
	set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
		     (start_bus << 8) | end_bus);
}

309
static int set_ioapic_sid(struct irte *irte, int apic)
310 311 312 313 314 315 316
{
	int i;
	u16 sid = 0;

	if (!irte)
		return -1;

317
	down_read(&dmar_global_lock);
318
	for (i = 0; i < MAX_IO_APICS; i++) {
319
		if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
320 321 322 323
			sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn;
			break;
		}
	}
324
	up_read(&dmar_global_lock);
325 326

	if (sid == 0) {
J
Joerg Roedel 已提交
327
		pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic);
328 329 330
		return -1;
	}

331
	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
332 333 334 335

	return 0;
}

336
static int set_hpet_sid(struct irte *irte, u8 id)
337 338 339 340 341 342 343
{
	int i;
	u16 sid = 0;

	if (!irte)
		return -1;

344
	down_read(&dmar_global_lock);
345
	for (i = 0; i < MAX_HPET_TBS; i++) {
346
		if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
347 348 349 350
			sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn;
			break;
		}
	}
351
	up_read(&dmar_global_lock);
352 353

	if (sid == 0) {
J
Joerg Roedel 已提交
354
		pr_warn("Failed to set source-id of HPET block (%d)\n", id);
355 356 357 358 359 360 361 362 363 364 365 366 367
		return -1;
	}

	/*
	 * Should really use SQ_ALL_16. Some platforms are broken.
	 * While we figure out the right quirks for these broken platforms, use
	 * SQ_13_IGNORE_3 for now.
	 */
	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);

	return 0;
}

368 369 370
struct set_msi_sid_data {
	struct pci_dev *pdev;
	u16 alias;
371 372
	int count;
	int busmatch_count;
373 374 375 376 377 378
};

static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
{
	struct set_msi_sid_data *data = opaque;

379 380 381
	if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias))
		data->busmatch_count++;

382 383
	data->pdev = pdev;
	data->alias = alias;
384 385
	data->count++;

386 387 388
	return 0;
}

389
static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
390
{
391
	struct set_msi_sid_data data;
392 393 394 395

	if (!irte || !dev)
		return -1;

396 397
	data.count = 0;
	data.busmatch_count = 0;
398
	pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
399

400 401 402 403 404 405
	/*
	 * DMA alias provides us with a PCI device and alias.  The only case
	 * where the it will return an alias on a different bus than the
	 * device is the case of a PCIe-to-PCI bridge, where the alias is for
	 * the subordinate bus.  In this case we can only verify the bus.
	 *
406 407 408 409 410
	 * If there are multiple aliases, all with the same bus number,
	 * then all we can do is verify the bus. This is typical in NTB
	 * hardware which use proxy IDs where the device will generate traffic
	 * from multiple devfn numbers on the same bus.
	 *
411 412 413 414 415 416 417 418
	 * If the alias device is on a different bus than our source device
	 * then we have a topology based alias, use it.
	 *
	 * Otherwise, the alias is for a device DMA quirk and we cannot
	 * assume that MSI uses the same requester ID.  Therefore use the
	 * original device.
	 */
	if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
419 420
		set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias),
				    dev->bus->number);
421 422
	else if (data.count >= 2 && data.busmatch_count == data.count)
		set_irte_verify_bus(irte, dev->bus->number, dev->bus->number);
423 424 425 426
	else if (data.pdev->bus->number != dev->bus->number)
		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
	else
		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
427
			     pci_dev_id(dev));
428 429 430 431

	return 0;
}

432 433
static int iommu_load_old_irte(struct intel_iommu *iommu)
{
434
	struct irte *old_ir_table;
435
	phys_addr_t irt_phys;
436
	unsigned int i;
437 438 439 440 441 442 443 444 445 446 447 448 449
	size_t size;
	u64 irta;

	/* Check whether the old ir-table has the same size as ours */
	irta = dmar_readq(iommu->reg + DMAR_IRTA_REG);
	if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK)
	     != INTR_REMAP_TABLE_REG_SIZE)
		return -EINVAL;

	irt_phys = irta & VTD_PAGE_MASK;
	size     = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte);

	/* Map the old IR table */
450
	old_ir_table = memremap(irt_phys, size, MEMREMAP_WB);
451 452 453 454
	if (!old_ir_table)
		return -ENOMEM;

	/* Copy data over */
455
	memcpy(iommu->ir_table->base, old_ir_table, size);
456 457 458

	__iommu_flush_cache(iommu, iommu->ir_table->base, size);

459 460 461 462 463 464 465 466 467
	/*
	 * Now check the table for used entries and mark those as
	 * allocated in the bitmap
	 */
	for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) {
		if (iommu->ir_table->base[i].present)
			bitmap_set(iommu->ir_table->bitmap, i, 1);
	}

468
	memunmap(old_ir_table);
469

470 471 472 473
	return 0;
}


474
static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
475
{
476
	unsigned long flags;
477
	u64 addr;
478
	u32 sts;
479 480 481

	addr = virt_to_phys((void *)iommu->ir_table->base);

482
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
483 484 485 486 487

	dmar_writeq(iommu->reg + DMAR_IRTA_REG,
		    (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);

	/* Set interrupt-remapping table pointer */
488
	writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
489 490 491

	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
		      readl, (sts & DMA_GSTS_IRTPS), sts);
492
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
493 494

	/*
495 496
	 * Global invalidation of interrupt entry cache to make sure the
	 * hardware uses the new irq remapping table.
497 498
	 */
	qi_global_iec(iommu);
499 500 501 502 503 504
}

static void iommu_enable_irq_remapping(struct intel_iommu *iommu)
{
	unsigned long flags;
	u32 sts;
505

506
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
507 508 509

	/* Enable interrupt-remapping */
	iommu->gcmd |= DMA_GCMD_IRE;
510
	iommu->gcmd &= ~DMA_GCMD_CFI;  /* Block compatibility-format MSIs */
511
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
512 513 514 515

	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
		      readl, (sts & DMA_GSTS_IRES), sts);

516 517 518 519 520 521 522 523 524 525
	/*
	 * With CFI clear in the Global Command register, we should be
	 * protected from dangerous (i.e. compatibility) interrupts
	 * regardless of x2apic status.  Check just to be sure.
	 */
	if (sts & DMA_GSTS_CFIS)
		WARN(1, KERN_WARNING
			"Compatibility-format IRQs enabled despite intr remapping;\n"
			"you are vulnerable to IRQ injection.\n");

526
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
527 528
}

529
static int intel_setup_irq_remapping(struct intel_iommu *iommu)
530 531
{
	struct ir_table *ir_table;
532
	struct fwnode_handle *fn;
533
	unsigned long *bitmap;
534
	struct page *pages;
535

536 537
	if (iommu->ir_table)
		return 0;
538

539
	ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
540
	if (!ir_table)
541 542
		return -ENOMEM;

543
	pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO,
544
				 INTR_REMAP_PAGE_ORDER);
545
	if (!pages) {
546 547
		pr_err("IR%d: failed to allocate pages of order %d\n",
		       iommu->seq_id, INTR_REMAP_PAGE_ORDER);
548
		goto out_free_table;
549 550
	}

551
	bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_ATOMIC);
552 553
	if (bitmap == NULL) {
		pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
554
		goto out_free_pages;
555 556
	}

557 558 559 560 561 562 563 564 565 566
	fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id);
	if (!fn)
		goto out_free_bitmap;

	iommu->ir_domain =
		irq_domain_create_hierarchy(arch_get_ir_parent_domain(),
					    0, INTR_REMAP_TABLE_ENTRIES,
					    fn, &intel_ir_domain_ops,
					    iommu);
	irq_domain_free_fwnode(fn);
567 568 569 570
	if (!iommu->ir_domain) {
		pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id);
		goto out_free_bitmap;
	}
571 572 573 574
	iommu->ir_msi_domain =
		arch_create_remap_msi_irq_domain(iommu->ir_domain,
						 "INTEL-IR-MSI",
						 iommu->seq_id);
575

576
	ir_table->base = page_address(pages);
577
	ir_table->bitmap = bitmap;
578
	iommu->ir_table = ir_table;
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596

	/*
	 * If the queued invalidation is already initialized,
	 * shouldn't disable it.
	 */
	if (!iommu->qi) {
		/*
		 * Clear previous faults.
		 */
		dmar_fault(-1, iommu);
		dmar_disable_qi(iommu);

		if (dmar_enable_qi(iommu)) {
			pr_err("Failed to enable queued invalidation\n");
			goto out_free_bitmap;
		}
	}

597 598 599
	init_ir_status(iommu);

	if (ir_pre_enabled(iommu)) {
600 601 602 603 604 605
		if (!is_kdump_kernel()) {
			pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n",
				iommu->name);
			clear_ir_pre_enabled(iommu);
			iommu_disable_irq_remapping(iommu);
		} else if (iommu_load_old_irte(iommu))
606 607 608 609 610 611 612
			pr_err("Failed to copy IR table for %s from previous kernel\n",
			       iommu->name);
		else
			pr_info("Copied IR table for %s from previous kernel\n",
				iommu->name);
	}

613 614
	iommu_set_irq_remapping(iommu, eim_mode);

615
	return 0;
616

617
out_free_bitmap:
618
	bitmap_free(bitmap);
619 620 621 622
out_free_pages:
	__free_pages(pages, INTR_REMAP_PAGE_ORDER);
out_free_table:
	kfree(ir_table);
623 624 625

	iommu->ir_table  = NULL;

626 627 628 629 630 631
	return -ENOMEM;
}

static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
{
	if (iommu && iommu->ir_table) {
632 633 634 635 636 637 638 639
		if (iommu->ir_msi_domain) {
			irq_domain_remove(iommu->ir_msi_domain);
			iommu->ir_msi_domain = NULL;
		}
		if (iommu->ir_domain) {
			irq_domain_remove(iommu->ir_domain);
			iommu->ir_domain = NULL;
		}
640 641
		free_pages((unsigned long)iommu->ir_table->base,
			   INTR_REMAP_PAGE_ORDER);
642
		bitmap_free(iommu->ir_table->bitmap);
643 644 645
		kfree(iommu->ir_table);
		iommu->ir_table = NULL;
	}
646 647
}

648 649 650
/*
 * Disable Interrupt Remapping.
 */
651
static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
652 653 654 655 656 657 658
{
	unsigned long flags;
	u32 sts;

	if (!ecap_ir_support(iommu->ecap))
		return;

659 660 661 662 663 664
	/*
	 * global invalidation of interrupt entry cache before disabling
	 * interrupt-remapping.
	 */
	qi_global_iec(iommu);

665
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
666

667
	sts = readl(iommu->reg + DMAR_GSTS_REG);
668 669 670 671 672 673 674 675 676 677
	if (!(sts & DMA_GSTS_IRES))
		goto end;

	iommu->gcmd &= ~DMA_GCMD_IRE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
		      readl, !(sts & DMA_GSTS_IRES), sts);

end:
678
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
679 680
}

681 682 683 684 685 686 687 688 689
static int __init dmar_x2apic_optout(void)
{
	struct acpi_table_dmar *dmar;
	dmar = (struct acpi_table_dmar *)dmar_tbl;
	if (!dmar || no_x2apic_optout)
		return 0;
	return dmar->flags & DMAR_X2APIC_OPT_OUT;
}

690 691 692 693 694 695 696 697 698 699 700 701 702
static void __init intel_cleanup_irq_remapping(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;

	for_each_iommu(iommu, drhd) {
		if (ecap_ir_support(iommu->ecap)) {
			iommu_disable_irq_remapping(iommu);
			intel_teardown_irq_remapping(iommu);
		}
	}

	if (x2apic_supported())
J
Joerg Roedel 已提交
703
		pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
704 705 706
}

static int __init intel_prepare_irq_remapping(void)
707 708
{
	struct dmar_drhd_unit *drhd;
709
	struct intel_iommu *iommu;
710
	int eim = 0;
711

712
	if (irq_remap_broken) {
J
Joerg Roedel 已提交
713
		pr_warn("This system BIOS has enabled interrupt remapping\n"
714 715 716 717 718 719 720 721
			"on a chipset that contains an erratum making that\n"
			"feature unstable.  To maintain system stability\n"
			"interrupt remapping is being disabled.  Please\n"
			"contact your BIOS vendor for an update\n");
		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
		return -ENODEV;
	}

722
	if (dmar_table_init() < 0)
723 724 725 726
		return -ENODEV;

	if (!dmar_ir_support())
		return -ENODEV;
727

728
	if (parse_ioapics_under_ir()) {
J
Joerg Roedel 已提交
729
		pr_info("Not enabling interrupt remapping\n");
730
		goto error;
731 732
	}

733
	/* First make sure all IOMMUs support IRQ remapping */
734
	for_each_iommu(iommu, drhd)
735 736 737
		if (!ecap_ir_support(iommu->ecap))
			goto error;

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
	/* Detect remapping mode: lapic or x2apic */
	if (x2apic_supported()) {
		eim = !dmar_x2apic_optout();
		if (!eim) {
			pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
			pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
		}
	}

	for_each_iommu(iommu, drhd) {
		if (eim && !ecap_eim_support(iommu->ecap)) {
			pr_info("%s does not support EIM\n", iommu->name);
			eim = 0;
		}
	}

	eim_mode = eim;
	if (eim)
		pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");

758 759 760 761 762
	/* Do the initializations early */
	for_each_iommu(iommu, drhd) {
		if (intel_setup_irq_remapping(iommu)) {
			pr_err("Failed to setup irq remapping for %s\n",
			       iommu->name);
763
			goto error;
764 765
		}
	}
766

767
	return 0;
768

769 770
error:
	intel_cleanup_irq_remapping();
771
	return -ENODEV;
772 773
}

774 775 776 777 778 779 780 781 782
/*
 * Set Posted-Interrupts capability.
 */
static inline void set_irq_posting_cap(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;

	if (!disable_irq_post) {
783 784 785 786 787 788 789 790
		/*
		 * If IRTE is in posted format, the 'pda' field goes across the
		 * 64-bit boundary, we need use cmpxchg16b to atomically update
		 * it. We only expose posted-interrupt when X86_FEATURE_CX16
		 * is supported. Actually, hardware platforms supporting PI
		 * should have X86_FEATURE_CX16 support, this has been confirmed
		 * with Intel hardware guys.
		 */
791
		if (boot_cpu_has(X86_FEATURE_CX16))
792
			intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP;
793 794 795 796 797 798 799 800 801 802

		for_each_iommu(iommu, drhd)
			if (!cap_pi_support(iommu->cap)) {
				intel_irq_remap_ops.capability &=
						~(1 << IRQ_POSTING_CAP);
				break;
			}
	}
}

803 804 805 806
static int __init intel_enable_irq_remapping(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
807
	bool setup = false;
808 809 810 811

	/*
	 * Setup Interrupt-remapping for all the DRHD's now.
	 */
812
	for_each_iommu(iommu, drhd) {
813 814
		if (!ir_pre_enabled(iommu))
			iommu_enable_irq_remapping(iommu);
815
		setup = true;
816 817 818 819 820
	}

	if (!setup)
		goto error;

821
	irq_remapping_enabled = 1;
822

823 824
	set_irq_posting_cap();

825
	pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic");
826

827
	return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
828 829

error:
830
	intel_cleanup_irq_remapping();
831 832
	return -1;
}
833

834 835 836
static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
				   struct intel_iommu *iommu,
				   struct acpi_dmar_hardware_unit *drhd)
837 838 839
{
	struct acpi_dmar_pci_path *path;
	u8 bus;
840
	int count, free = -1;
841 842 843 844 845 846 847 848 849 850 851

	bus = scope->bus;
	path = (struct acpi_dmar_pci_path *)(scope + 1);
	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
		/ sizeof(struct acpi_dmar_pci_path);

	while (--count > 0) {
		/*
		 * Access PCI directly due to the PCI
		 * subsystem isn't initialized yet.
		 */
L
Lv Zheng 已提交
852
		bus = read_pci_config_byte(bus, path->device, path->function,
853 854 855
					   PCI_SECONDARY_BUS);
		path++;
	}
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876

	for (count = 0; count < MAX_HPET_TBS; count++) {
		if (ir_hpet[count].iommu == iommu &&
		    ir_hpet[count].id == scope->enumeration_id)
			return 0;
		else if (ir_hpet[count].iommu == NULL && free == -1)
			free = count;
	}
	if (free == -1) {
		pr_warn("Exceeded Max HPET blocks\n");
		return -ENOSPC;
	}

	ir_hpet[free].iommu = iommu;
	ir_hpet[free].id    = scope->enumeration_id;
	ir_hpet[free].bus   = bus;
	ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
	pr_info("HPET id %d under DRHD base 0x%Lx\n",
		scope->enumeration_id, drhd->address);

	return 0;
877 878
}

879 880 881
static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
				     struct intel_iommu *iommu,
				     struct acpi_dmar_hardware_unit *drhd)
882 883 884
{
	struct acpi_dmar_pci_path *path;
	u8 bus;
885
	int count, free = -1;
886 887 888 889 890 891 892 893 894 895 896

	bus = scope->bus;
	path = (struct acpi_dmar_pci_path *)(scope + 1);
	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
		/ sizeof(struct acpi_dmar_pci_path);

	while (--count > 0) {
		/*
		 * Access PCI directly due to the PCI
		 * subsystem isn't initialized yet.
		 */
L
Lv Zheng 已提交
897
		bus = read_pci_config_byte(bus, path->device, path->function,
898 899 900 901
					   PCI_SECONDARY_BUS);
		path++;
	}

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
	for (count = 0; count < MAX_IO_APICS; count++) {
		if (ir_ioapic[count].iommu == iommu &&
		    ir_ioapic[count].id == scope->enumeration_id)
			return 0;
		else if (ir_ioapic[count].iommu == NULL && free == -1)
			free = count;
	}
	if (free == -1) {
		pr_warn("Exceeded Max IO APICS\n");
		return -ENOSPC;
	}

	ir_ioapic[free].bus   = bus;
	ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
	ir_ioapic[free].iommu = iommu;
	ir_ioapic[free].id    = scope->enumeration_id;
	pr_info("IOAPIC id %d under DRHD base  0x%Lx IOMMU %d\n",
		scope->enumeration_id, drhd->address, iommu->seq_id);

	return 0;
922 923
}

924 925
static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
				      struct intel_iommu *iommu)
926
{
927
	int ret = 0;
928 929 930 931 932 933 934 935
	struct acpi_dmar_hardware_unit *drhd;
	struct acpi_dmar_device_scope *scope;
	void *start, *end;

	drhd = (struct acpi_dmar_hardware_unit *)header;
	start = (void *)(drhd + 1);
	end = ((void *)drhd) + header->length;

936
	while (start < end && ret == 0) {
937
		scope = start;
938 939 940 941 942 943
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
			ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
		else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
			ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
		start += scope->length;
	}
944

945 946
	return ret;
}
947

948 949 950
static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
{
	int i;
951

952 953 954
	for (i = 0; i < MAX_HPET_TBS; i++)
		if (ir_hpet[i].iommu == iommu)
			ir_hpet[i].iommu = NULL;
955

956 957 958
	for (i = 0; i < MAX_IO_APICS; i++)
		if (ir_ioapic[i].iommu == iommu)
			ir_ioapic[i].iommu = NULL;
959 960 961 962 963 964
}

/*
 * Finds the assocaition between IOAPIC's and its Interrupt-remapping
 * hardware unit.
 */
965
static int __init parse_ioapics_under_ir(void)
966 967
{
	struct dmar_drhd_unit *drhd;
968
	struct intel_iommu *iommu;
969
	bool ir_supported = false;
970
	int ioapic_idx;
971

972 973
	for_each_iommu(iommu, drhd) {
		int ret;
974

975 976 977 978 979 980 981 982 983
		if (!ecap_ir_support(iommu->ecap))
			continue;

		ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu);
		if (ret)
			return ret;

		ir_supported = true;
	}
984

985
	if (!ir_supported)
986
		return -ENODEV;
987 988 989 990 991 992 993 994 995

	for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
		int ioapic_id = mpc_ioapic_id(ioapic_idx);
		if (!map_ioapic_to_ir(ioapic_id)) {
			pr_err(FW_BUG "ioapic %d has no mapping iommu, "
			       "interrupt remapping will be disabled\n",
			       ioapic_id);
			return -1;
		}
996 997
	}

998
	return 0;
999
}
1000

1001
static int __init ir_dev_scope_init(void)
1002
{
1003 1004
	int ret;

1005
	if (!irq_remapping_enabled)
1006 1007
		return 0;

1008 1009 1010 1011 1012
	down_write(&dmar_global_lock);
	ret = dmar_dev_scope_init();
	up_write(&dmar_global_lock);

	return ret;
1013 1014 1015
}
rootfs_initcall(ir_dev_scope_init);

1016
static void disable_irq_remapping(void)
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;

	/*
	 * Disable Interrupt-remapping for all the DRHD's now.
	 */
	for_each_iommu(iommu, drhd) {
		if (!ecap_ir_support(iommu->ecap))
			continue;

1028
		iommu_disable_irq_remapping(iommu);
1029
	}
1030 1031 1032 1033 1034 1035

	/*
	 * Clear Posted-Interrupts capability.
	 */
	if (!disable_irq_post)
		intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP);
1036 1037
}

1038
static int reenable_irq_remapping(int eim)
1039 1040
{
	struct dmar_drhd_unit *drhd;
1041
	bool setup = false;
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	struct intel_iommu *iommu = NULL;

	for_each_iommu(iommu, drhd)
		if (iommu->qi)
			dmar_reenable_qi(iommu);

	/*
	 * Setup Interrupt-remapping for all the DRHD's now.
	 */
	for_each_iommu(iommu, drhd) {
		if (!ecap_ir_support(iommu->ecap))
			continue;

		/* Set up interrupt remapping for iommu.*/
1056
		iommu_set_irq_remapping(iommu, eim);
1057
		iommu_enable_irq_remapping(iommu);
1058
		setup = true;
1059 1060 1061 1062 1063
	}

	if (!setup)
		goto error;

1064 1065
	set_irq_posting_cap();

1066 1067 1068 1069 1070 1071 1072 1073 1074
	return 0;

error:
	/*
	 * handle error condition gracefully here!
	 */
	return -1;
}

1075
static void prepare_irte(struct irte *irte, int vector, unsigned int dest)
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
{
	memset(irte, 0, sizeof(*irte));

	irte->present = 1;
	irte->dst_mode = apic->irq_dest_mode;
	/*
	 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
	 * actual level or edge trigger will be setup in the IO-APIC
	 * RTE. This will help simplify level triggered irq migration.
	 * For more details, see the comments (in io_apic.c) explainig IO-APIC
	 * irq migration in the presence of interrupt-remapping.
	*/
	irte->trigger_mode = 0;
	irte->dlvry_mode = apic->irq_delivery_mode;
	irte->vector = vector;
	irte->dest_id = IRTE_DEST(dest);
	irte->redir_hint = 1;
}

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
static struct irq_domain *intel_get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct intel_iommu *iommu = NULL;

	if (!info)
		return NULL;

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		iommu = map_ioapic_to_ir(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		iommu = map_hpet_to_ir(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		iommu = map_dev_to_ir(info->msi_dev);
		break;
	default:
		BUG_ON(1);
		break;
	}

	return iommu ? iommu->ir_domain : NULL;
}

static struct irq_domain *intel_get_irq_domain(struct irq_alloc_info *info)
{
	struct intel_iommu *iommu;

	if (!info)
		return NULL;

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		iommu = map_dev_to_ir(info->msi_dev);
		if (iommu)
			return iommu->ir_msi_domain;
		break;
	default:
		break;
	}

	return NULL;
}

1142
struct irq_remap_ops intel_irq_remap_ops = {
1143
	.prepare		= intel_prepare_irq_remapping,
1144 1145 1146
	.enable			= intel_enable_irq_remapping,
	.disable		= disable_irq_remapping,
	.reenable		= reenable_irq_remapping,
1147
	.enable_faulting	= enable_drhd_fault_handling,
1148 1149 1150 1151
	.get_ir_irq_domain	= intel_get_ir_irq_domain,
	.get_irq_domain		= intel_get_irq_domain,
};

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force)
{
	struct intel_ir_data *ir_data = irqd->chip_data;
	struct irte *irte = &ir_data->irte_entry;
	struct irq_cfg *cfg = irqd_cfg(irqd);

	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	irte->vector = cfg->vector;
	irte->dest_id = IRTE_DEST(cfg->dest_apicid);

	/* Update the hardware only if the interrupt is in remapped mode. */
1166
	if (force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING)
1167 1168 1169
		modify_irte(&ir_data->irq_2_iommu, irte);
}

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
/*
 * Migrate the IO-APIC irq in the presence of intr-remapping.
 *
 * For both level and edge triggered, irq migration is a simple atomic
 * update(of vector and cpu destination) of IRTE and flush the hardware cache.
 *
 * For level triggered, we eliminate the io-apic RTE modification (with the
 * updated vector information), by using a virtual vector (io-apic pin number).
 * Real vector that is used for interrupting cpu will be coming from
 * the interrupt-remapping table entry.
 *
 * As the migration is a simple atomic update of IRTE, the same mechanism
 * is used to migrate MSI irq's in the presence of interrupt-remapping.
 */
static int
intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask,
		      bool force)
{
	struct irq_data *parent = data->parent_data;
1189
	struct irq_cfg *cfg = irqd_cfg(data);
1190 1191 1192 1193 1194 1195
	int ret;

	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;

1196
	intel_ir_reconfigure_irte(data, false);
1197 1198 1199 1200 1201
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
1202
	send_cleanup_vector(cfg);
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214

	return IRQ_SET_MASK_OK_DONE;
}

static void intel_ir_compose_msi_msg(struct irq_data *irq_data,
				     struct msi_msg *msg)
{
	struct intel_ir_data *ir_data = irq_data->chip_data;

	*msg = ir_data->msi_entry;
}

1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info)
{
	struct intel_ir_data *ir_data = data->chip_data;
	struct vcpu_data *vcpu_pi_info = info;

	/* stop posting interrupts, back to remapping mode */
	if (!vcpu_pi_info) {
		modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry);
	} else {
		struct irte irte_pi;

		/*
		 * We are not caching the posted interrupt entry. We
		 * copy the data from the remapped entry and modify
		 * the fields which are relevant for posted mode. The
		 * cached remapped entry is used for switching back to
		 * remapped mode.
		 */
		memset(&irte_pi, 0, sizeof(irte_pi));
		dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry);

		/* Update the posted mode fields */
		irte_pi.p_pst = 1;
		irte_pi.p_urgent = 0;
		irte_pi.p_vector = vcpu_pi_info->vector;
		irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >>
				(32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
		irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) &
				~(-1UL << PDA_HIGH_BIT);

		modify_irte(&ir_data->irq_2_iommu, &irte_pi);
	}

	return 0;
}

1251
static struct irq_chip intel_ir_chip = {
1252
	.name			= "INTEL-IR",
1253
	.irq_ack		= apic_ack_irq,
1254 1255 1256
	.irq_set_affinity	= intel_ir_set_affinity,
	.irq_compose_msi_msg	= intel_ir_compose_msi_msg,
	.irq_set_vcpu_affinity	= intel_ir_set_vcpu_affinity,
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
};

static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data,
					     struct irq_cfg *irq_cfg,
					     struct irq_alloc_info *info,
					     int index, int sub_handle)
{
	struct IR_IO_APIC_route_entry *entry;
	struct irte *irte = &data->irte_entry;
	struct msi_msg *msg = &data->msi_entry;

	prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid);
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Set source-id of interrupt request */
		set_ioapic_sid(irte, info->ioapic_id);
		apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
			info->ioapic_id, irte->present, irte->fpd,
			irte->dst_mode, irte->redir_hint,
			irte->trigger_mode, irte->dlvry_mode,
			irte->avail, irte->vector, irte->dest_id,
			irte->sid, irte->sq, irte->svt);

		entry = (struct IR_IO_APIC_route_entry *)info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->index2	= (index >> 15) & 0x1;
		entry->zero	= 0;
		entry->format	= 1;
		entry->index	= (index & 0x7fff);
		/*
		 * IO-APIC RTE will be configured with virtual vector.
		 * irq handler will do the explicit EOI to the io-apic.
		 */
		entry->vector	= info->ioapic_pin;
		entry->mask	= 0;			/* enable IRQ */
		entry->trigger	= info->ioapic_trigger;
		entry->polarity	= info->ioapic_polarity;
		if (info->ioapic_trigger)
			entry->mask = 1; /* Mask level triggered irqs. */
		break;

	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		if (info->type == X86_IRQ_ALLOC_TYPE_HPET)
			set_hpet_sid(irte, info->hpet_id);
		else
			set_msi_sid(irte, info->msi_dev);

		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->data = sub_handle;
		msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
				  MSI_ADDR_IR_SHV |
				  MSI_ADDR_IR_INDEX1(index) |
				  MSI_ADDR_IR_INDEX2(index);
		break;

	default:
		BUG_ON(1);
		break;
	}
}

static void intel_free_irq_resources(struct irq_domain *domain,
				     unsigned int virq, unsigned int nr_irqs)
{
	struct irq_data *irq_data;
	struct intel_ir_data *data;
	struct irq_2_iommu *irq_iommu;
	unsigned long flags;
	int i;
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irq_iommu = &data->irq_2_iommu;
			raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
			clear_entries(irq_iommu);
			raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
			irq_domain_reset_irq_data(irq_data);
			kfree(data);
		}
	}
}

static int intel_irq_remapping_alloc(struct irq_domain *domain,
				     unsigned int virq, unsigned int nr_irqs,
				     void *arg)
{
	struct intel_iommu *iommu = domain->host_data;
	struct irq_alloc_info *info = arg;
1349
	struct intel_ir_data *data, *ird;
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
	struct irq_data *irq_data;
	struct irq_cfg *irq_cfg;
	int i, ret, index;

	if (!info || !iommu)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
		return -EINVAL;

	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;

	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;

	ret = -ENOMEM;
	data = kzalloc(sizeof(*data), GFP_KERNEL);
	if (!data)
		goto out_free_parent;

	down_read(&dmar_global_lock);
J
Jacob Pan 已提交
1377
	index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs);
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
	up_read(&dmar_global_lock);
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
		kfree(data);
		goto out_free_parent;
	}

	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		irq_cfg = irqd_cfg(irq_data);
		if (!irq_data || !irq_cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}

		if (i > 0) {
1394 1395
			ird = kzalloc(sizeof(*ird), GFP_KERNEL);
			if (!ird)
1396
				goto out_free_data;
1397 1398 1399 1400 1401
			/* Initialize the common data */
			ird->irq_2_iommu = data->irq_2_iommu;
			ird->irq_2_iommu.sub_handle = i;
		} else {
			ird = data;
1402
		}
1403

1404
		irq_data->hwirq = (index << 16) + i;
1405
		irq_data->chip_data = ird;
1406
		irq_data->chip = &intel_ir_chip;
1407
		intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i);
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
	return 0;

out_free_data:
	intel_free_irq_resources(domain, virq, i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
}

static void intel_irq_remapping_free(struct irq_domain *domain,
				     unsigned int virq, unsigned int nr_irqs)
{
	intel_free_irq_resources(domain, virq, nr_irqs);
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}

1426
static int intel_irq_remapping_activate(struct irq_domain *domain,
1427
					struct irq_data *irq_data, bool reserve)
1428
{
1429
	intel_ir_reconfigure_irte(irq_data, true);
1430
	return 0;
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
}

static void intel_irq_remapping_deactivate(struct irq_domain *domain,
					   struct irq_data *irq_data)
{
	struct intel_ir_data *data = irq_data->chip_data;
	struct irte entry;

	memset(&entry, 0, sizeof(entry));
	modify_irte(&data->irq_2_iommu, &entry);
}

1443
static const struct irq_domain_ops intel_ir_domain_ops = {
1444 1445 1446 1447
	.alloc = intel_irq_remapping_alloc,
	.free = intel_irq_remapping_free,
	.activate = intel_irq_remapping_activate,
	.deactivate = intel_irq_remapping_deactivate,
1448
};
1449

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
/*
 * Support of Interrupt Remapping Unit Hotplug
 */
static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
{
	int ret;
	int eim = x2apic_enabled();

	if (eim && !ecap_eim_support(iommu->ecap)) {
		pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
			iommu->reg_phys, iommu->ecap);
		return -ENODEV;
	}

	if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
		pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
			iommu->reg_phys);
		return -ENODEV;
	}

	/* TODO: check all IOAPICs are covered by IOMMU */

	/* Setup Interrupt-remapping now. */
	ret = intel_setup_irq_remapping(iommu);
	if (ret) {
1475 1476
		pr_err("Failed to setup irq remapping for %s\n",
		       iommu->name);
1477 1478
		intel_teardown_irq_remapping(iommu);
		ir_remove_ioapic_hpet_scope(iommu);
1479
	} else {
1480
		iommu_enable_irq_remapping(iommu);
1481 1482 1483 1484 1485
	}

	return ret;
}

1486 1487
int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
{
1488 1489 1490 1491 1492 1493 1494 1495 1496
	int ret = 0;
	struct intel_iommu *iommu = dmaru->iommu;

	if (!irq_remapping_enabled)
		return 0;
	if (iommu == NULL)
		return -EINVAL;
	if (!ecap_ir_support(iommu->ecap))
		return 0;
1497 1498 1499
	if (irq_remapping_cap(IRQ_POSTING_CAP) &&
	    !cap_pi_support(iommu->cap))
		return -EBUSY;
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517

	if (insert) {
		if (!iommu->ir_table)
			ret = dmar_ir_add(dmaru, iommu);
	} else {
		if (iommu->ir_table) {
			if (!bitmap_empty(iommu->ir_table->bitmap,
					  INTR_REMAP_TABLE_ENTRIES)) {
				ret = -EBUSY;
			} else {
				iommu_disable_irq_remapping(iommu);
				intel_teardown_irq_remapping(iommu);
				ir_remove_ioapic_hpet_scope(iommu);
			}
		}
	}

	return ret;
1518
}