irq_remapping.c 37.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
J
Joerg Roedel 已提交
2 3 4

#define pr_fmt(fmt)     "DMAR-IR: " fmt

Y
Yinghai Lu 已提交
5
#include <linux/interrupt.h>
6
#include <linux/dmar.h>
7
#include <linux/spinlock.h>
8
#include <linux/slab.h>
9
#include <linux/jiffies.h>
10
#include <linux/hpet.h>
11
#include <linux/pci.h>
12
#include <linux/irq.h>
13 14
#include <linux/intel-iommu.h>
#include <linux/acpi.h>
15
#include <linux/irqdomain.h>
16
#include <linux/crash_dump.h>
17
#include <asm/io_apic.h>
18
#include <asm/apic.h>
Y
Yinghai Lu 已提交
19
#include <asm/smp.h>
20
#include <asm/cpu.h>
21
#include <asm/irq_remapping.h>
22
#include <asm/pci-direct.h>
23

24
#include "../irq_remapping.h"
25

26 27 28 29 30
enum irq_mode {
	IRQ_REMAPPING,
	IRQ_POSTING,
};

31 32 33 34 35 36 37 38 39 40 41 42 43 44
struct ioapic_scope {
	struct intel_iommu *iommu;
	unsigned int id;
	unsigned int bus;	/* PCI bus number */
	unsigned int devfn;	/* PCI devfn number */
};

struct hpet_scope {
	struct intel_iommu *iommu;
	u8 id;
	unsigned int bus;
	unsigned int devfn;
};

45 46 47 48 49
struct irq_2_iommu {
	struct intel_iommu *iommu;
	u16 irte_index;
	u16 sub_handle;
	u8  irte_mask;
50
	enum irq_mode mode;
51 52
};

53 54 55 56 57 58 59 60
struct intel_ir_data {
	struct irq_2_iommu			irq_2_iommu;
	struct irte				irte_entry;
	union {
		struct msi_msg			msi_entry;
	};
};

61
#define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
62
#define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
63

64
static int __read_mostly eim_mode;
65
static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
66
static struct hpet_scope ir_hpet[MAX_HPET_TBS];
67

68 69 70 71 72 73 74 75 76 77 78
/*
 * Lock ordering:
 * ->dmar_global_lock
 *	->irq_2_ir_lock
 *		->qi->q_lock
 *	->iommu->register_lock
 * Note:
 * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
 * in single-threaded environment with interrupt disabled, so no need to tabke
 * the dmar_global_lock.
 */
79
DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
80
static const struct irq_domain_ops intel_ir_domain_ops;
81

82
static void iommu_disable_irq_remapping(struct intel_iommu *iommu);
83 84
static int __init parse_ioapics_under_ir(void);

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
static bool ir_pre_enabled(struct intel_iommu *iommu)
{
	return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED);
}

static void clear_ir_pre_enabled(struct intel_iommu *iommu)
{
	iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
}

static void init_ir_status(struct intel_iommu *iommu)
{
	u32 gsts;

	gsts = readl(iommu->reg + DMAR_GSTS_REG);
	if (gsts & DMA_GSTS_IRES)
		iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
}

J
Jacob Pan 已提交
104
static int alloc_irte(struct intel_iommu *iommu,
105
		      struct irq_2_iommu *irq_iommu, u16 count)
106 107 108
{
	struct ir_table *table = iommu->ir_table;
	unsigned int mask = 0;
109
	unsigned long flags;
110
	int index;
111

112
	if (!count || !irq_iommu)
113 114
		return -1;

115 116 117 118 119 120
	if (count > 1) {
		count = __roundup_pow_of_two(count);
		mask = ilog2(count);
	}

	if (mask > ecap_max_handle_mask(iommu->ecap)) {
J
Joerg Roedel 已提交
121
		pr_err("Requested mask %x exceeds the max invalidation handle"
122 123 124 125 126
		       " mask value %Lx\n", mask,
		       ecap_max_handle_mask(iommu->ecap));
		return -1;
	}

127
	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
128 129 130 131 132 133 134 135 136
	index = bitmap_find_free_region(table->bitmap,
					INTR_REMAP_TABLE_ENTRIES, mask);
	if (index < 0) {
		pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
	} else {
		irq_iommu->iommu = iommu;
		irq_iommu->irte_index =  index;
		irq_iommu->sub_handle = 0;
		irq_iommu->irte_mask = mask;
137
		irq_iommu->mode = IRQ_REMAPPING;
138
	}
139
	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
140 141 142 143

	return index;
}

144
static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
145 146 147
{
	struct qi_desc desc;

148
	desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
149
		   | QI_IEC_SELECTIVE;
150 151 152
	desc.qw1 = 0;
	desc.qw2 = 0;
	desc.qw3 = 0;
153

154
	return qi_submit_sync(iommu, &desc, 1, 0);
155 156
}

157 158
static int modify_irte(struct irq_2_iommu *irq_iommu,
		       struct irte *irte_modified)
159 160
{
	struct intel_iommu *iommu;
161
	unsigned long flags;
162 163
	struct irte *irte;
	int rc, index;
164

165
	if (!irq_iommu)
166
		return -1;
167

168
	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
169

170
	iommu = irq_iommu->iommu;
171

172
	index = irq_iommu->irte_index + irq_iommu->sub_handle;
173 174
	irte = &iommu->ir_table->base[index];

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE)
	if ((irte->pst == 1) || (irte_modified->pst == 1)) {
		bool ret;

		ret = cmpxchg_double(&irte->low, &irte->high,
				     irte->low, irte->high,
				     irte_modified->low, irte_modified->high);
		/*
		 * We use cmpxchg16 to atomically update the 128-bit IRTE,
		 * and it cannot be updated by the hardware or other processors
		 * behind us, so the return value of cmpxchg16 should be the
		 * same as the old value.
		 */
		WARN_ON(!ret);
	} else
#endif
	{
		set_64bit(&irte->low, irte_modified->low);
		set_64bit(&irte->high, irte_modified->high);
	}
195 196
	__iommu_flush_cache(iommu, irte, sizeof(*irte));

197
	rc = qi_flush_iec(iommu, index, 0);
198 199 200

	/* Update iommu mode according to the IRTE mode */
	irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING;
201
	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
202 203

	return rc;
204 205
}

206
static struct intel_iommu *map_hpet_to_iommu(u8 hpet_id)
207 208 209
{
	int i;

210
	for (i = 0; i < MAX_HPET_TBS; i++) {
211
		if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
212
			return ir_hpet[i].iommu;
213
	}
214 215 216
	return NULL;
}

217
static struct intel_iommu *map_ioapic_to_iommu(int apic)
218 219 220
{
	int i;

221
	for (i = 0; i < MAX_IO_APICS; i++) {
222
		if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
223
			return ir_ioapic[i].iommu;
224
	}
225 226 227
	return NULL;
}

228 229 230
static struct irq_domain *map_dev_to_ir(struct pci_dev *dev)
{
	struct dmar_drhd_unit *drhd = dmar_find_matched_drhd_unit(dev);
231

232
	return drhd ? drhd->iommu->ir_msi_domain : NULL;
233 234
}

235 236 237 238 239 240 241 242 243 244
static int clear_entries(struct irq_2_iommu *irq_iommu)
{
	struct irte *start, *entry, *end;
	struct intel_iommu *iommu;
	int index;

	if (irq_iommu->sub_handle)
		return 0;

	iommu = irq_iommu->iommu;
245
	index = irq_iommu->irte_index;
246 247 248 249 250

	start = iommu->ir_table->base + index;
	end = start + (1 << irq_iommu->irte_mask);

	for (entry = start; entry < end; entry++) {
251 252
		set_64bit(&entry->low, 0);
		set_64bit(&entry->high, 0);
253
	}
254 255
	bitmap_release_region(iommu->ir_table->bitmap, index,
			      irq_iommu->irte_mask);
256 257 258 259

	return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
}

260 261 262 263
/*
 * source validation type
 */
#define SVT_NO_VERIFY		0x0  /* no verification is required */
L
Lucas De Marchi 已提交
264
#define SVT_VERIFY_SID_SQ	0x1  /* verify using SID and SQ fields */
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
#define SVT_VERIFY_BUS		0x2  /* verify bus of request-id */

/*
 * source-id qualifier
 */
#define SQ_ALL_16	0x0  /* verify all 16 bits of request-id */
#define SQ_13_IGNORE_1	0x1  /* verify most significant 13 bits, ignore
			      * the third least significant bit
			      */
#define SQ_13_IGNORE_2	0x2  /* verify most significant 13 bits, ignore
			      * the second and third least significant bits
			      */
#define SQ_13_IGNORE_3	0x3  /* verify most significant 13 bits, ignore
			      * the least three significant bits
			      */

/*
 * set SVT, SQ and SID fields of irte to verify
 * source ids of interrupt requests
 */
static void set_irte_sid(struct irte *irte, unsigned int svt,
			 unsigned int sq, unsigned int sid)
{
288 289
	if (disable_sourceid_checking)
		svt = SVT_NO_VERIFY;
290 291 292 293 294
	irte->svt = svt;
	irte->sq = sq;
	irte->sid = sid;
}

295 296 297 298 299 300 301 302 303 304 305 306
/*
 * Set an IRTE to match only the bus number. Interrupt requests that reference
 * this IRTE must have a requester-id whose bus number is between or equal
 * to the start_bus and end_bus arguments.
 */
static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus,
				unsigned int end_bus)
{
	set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
		     (start_bus << 8) | end_bus);
}

307
static int set_ioapic_sid(struct irte *irte, int apic)
308 309 310 311 312 313 314
{
	int i;
	u16 sid = 0;

	if (!irte)
		return -1;

315
	down_read(&dmar_global_lock);
316
	for (i = 0; i < MAX_IO_APICS; i++) {
317
		if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
318 319 320 321
			sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn;
			break;
		}
	}
322
	up_read(&dmar_global_lock);
323 324

	if (sid == 0) {
J
Joerg Roedel 已提交
325
		pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic);
326 327 328
		return -1;
	}

329
	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
330 331 332 333

	return 0;
}

334
static int set_hpet_sid(struct irte *irte, u8 id)
335 336 337 338 339 340 341
{
	int i;
	u16 sid = 0;

	if (!irte)
		return -1;

342
	down_read(&dmar_global_lock);
343
	for (i = 0; i < MAX_HPET_TBS; i++) {
344
		if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
345 346 347 348
			sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn;
			break;
		}
	}
349
	up_read(&dmar_global_lock);
350 351

	if (sid == 0) {
J
Joerg Roedel 已提交
352
		pr_warn("Failed to set source-id of HPET block (%d)\n", id);
353 354 355 356 357 358 359 360 361 362 363 364 365
		return -1;
	}

	/*
	 * Should really use SQ_ALL_16. Some platforms are broken.
	 * While we figure out the right quirks for these broken platforms, use
	 * SQ_13_IGNORE_3 for now.
	 */
	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);

	return 0;
}

366 367 368
struct set_msi_sid_data {
	struct pci_dev *pdev;
	u16 alias;
369 370
	int count;
	int busmatch_count;
371 372 373 374 375 376
};

static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
{
	struct set_msi_sid_data *data = opaque;

377 378 379
	if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias))
		data->busmatch_count++;

380 381
	data->pdev = pdev;
	data->alias = alias;
382 383
	data->count++;

384 385 386
	return 0;
}

387
static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
388
{
389
	struct set_msi_sid_data data;
390 391 392 393

	if (!irte || !dev)
		return -1;

394 395
	data.count = 0;
	data.busmatch_count = 0;
396
	pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
397

398 399 400 401 402 403
	/*
	 * DMA alias provides us with a PCI device and alias.  The only case
	 * where the it will return an alias on a different bus than the
	 * device is the case of a PCIe-to-PCI bridge, where the alias is for
	 * the subordinate bus.  In this case we can only verify the bus.
	 *
404 405 406 407 408
	 * If there are multiple aliases, all with the same bus number,
	 * then all we can do is verify the bus. This is typical in NTB
	 * hardware which use proxy IDs where the device will generate traffic
	 * from multiple devfn numbers on the same bus.
	 *
409 410 411 412 413 414 415 416
	 * If the alias device is on a different bus than our source device
	 * then we have a topology based alias, use it.
	 *
	 * Otherwise, the alias is for a device DMA quirk and we cannot
	 * assume that MSI uses the same requester ID.  Therefore use the
	 * original device.
	 */
	if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
417 418
		set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias),
				    dev->bus->number);
419 420
	else if (data.count >= 2 && data.busmatch_count == data.count)
		set_irte_verify_bus(irte, dev->bus->number, dev->bus->number);
421 422 423 424
	else if (data.pdev->bus->number != dev->bus->number)
		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
	else
		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
425
			     pci_dev_id(dev));
426 427 428 429

	return 0;
}

430 431
static int iommu_load_old_irte(struct intel_iommu *iommu)
{
432
	struct irte *old_ir_table;
433
	phys_addr_t irt_phys;
434
	unsigned int i;
435 436 437 438 439 440 441 442 443 444 445 446 447
	size_t size;
	u64 irta;

	/* Check whether the old ir-table has the same size as ours */
	irta = dmar_readq(iommu->reg + DMAR_IRTA_REG);
	if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK)
	     != INTR_REMAP_TABLE_REG_SIZE)
		return -EINVAL;

	irt_phys = irta & VTD_PAGE_MASK;
	size     = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte);

	/* Map the old IR table */
448
	old_ir_table = memremap(irt_phys, size, MEMREMAP_WB);
449 450 451 452
	if (!old_ir_table)
		return -ENOMEM;

	/* Copy data over */
453
	memcpy(iommu->ir_table->base, old_ir_table, size);
454 455 456

	__iommu_flush_cache(iommu, iommu->ir_table->base, size);

457 458 459 460 461 462 463 464 465
	/*
	 * Now check the table for used entries and mark those as
	 * allocated in the bitmap
	 */
	for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) {
		if (iommu->ir_table->base[i].present)
			bitmap_set(iommu->ir_table->bitmap, i, 1);
	}

466
	memunmap(old_ir_table);
467

468 469 470 471
	return 0;
}


472
static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
473
{
474
	unsigned long flags;
475
	u64 addr;
476
	u32 sts;
477 478 479

	addr = virt_to_phys((void *)iommu->ir_table->base);

480
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
481 482 483 484 485

	dmar_writeq(iommu->reg + DMAR_IRTA_REG,
		    (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);

	/* Set interrupt-remapping table pointer */
486
	writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
487 488 489

	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
		      readl, (sts & DMA_GSTS_IRTPS), sts);
490
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
491 492

	/*
493 494
	 * Global invalidation of interrupt entry cache to make sure the
	 * hardware uses the new irq remapping table.
495 496
	 */
	qi_global_iec(iommu);
497 498 499 500 501 502
}

static void iommu_enable_irq_remapping(struct intel_iommu *iommu)
{
	unsigned long flags;
	u32 sts;
503

504
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
505 506 507

	/* Enable interrupt-remapping */
	iommu->gcmd |= DMA_GCMD_IRE;
508
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
509 510 511
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
		      readl, (sts & DMA_GSTS_IRES), sts);

512 513 514 515 516 517 518 519
	/* Block compatibility-format MSIs */
	if (sts & DMA_GSTS_CFIS) {
		iommu->gcmd &= ~DMA_GCMD_CFI;
		writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
		IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
			      readl, !(sts & DMA_GSTS_CFIS), sts);
	}

520 521 522 523 524 525 526 527 528 529
	/*
	 * With CFI clear in the Global Command register, we should be
	 * protected from dangerous (i.e. compatibility) interrupts
	 * regardless of x2apic status.  Check just to be sure.
	 */
	if (sts & DMA_GSTS_CFIS)
		WARN(1, KERN_WARNING
			"Compatibility-format IRQs enabled despite intr remapping;\n"
			"you are vulnerable to IRQ injection.\n");

530
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
531 532
}

533
static int intel_setup_irq_remapping(struct intel_iommu *iommu)
534 535
{
	struct ir_table *ir_table;
536
	struct fwnode_handle *fn;
537
	unsigned long *bitmap;
538
	struct page *pages;
539

540 541
	if (iommu->ir_table)
		return 0;
542

543
	ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
544
	if (!ir_table)
545 546
		return -ENOMEM;

547
	pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO,
548
				 INTR_REMAP_PAGE_ORDER);
549
	if (!pages) {
550 551
		pr_err("IR%d: failed to allocate pages of order %d\n",
		       iommu->seq_id, INTR_REMAP_PAGE_ORDER);
552
		goto out_free_table;
553 554
	}

555
	bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_ATOMIC);
556 557
	if (bitmap == NULL) {
		pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
558
		goto out_free_pages;
559 560
	}

561 562 563 564 565 566 567 568 569
	fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id);
	if (!fn)
		goto out_free_bitmap;

	iommu->ir_domain =
		irq_domain_create_hierarchy(arch_get_ir_parent_domain(),
					    0, INTR_REMAP_TABLE_ENTRIES,
					    fn, &intel_ir_domain_ops,
					    iommu);
570
	if (!iommu->ir_domain) {
571
		irq_domain_free_fwnode(fn);
572 573 574
		pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id);
		goto out_free_bitmap;
	}
575 576 577 578
	iommu->ir_msi_domain =
		arch_create_remap_msi_irq_domain(iommu->ir_domain,
						 "INTEL-IR-MSI",
						 iommu->seq_id);
579

580
	ir_table->base = page_address(pages);
581
	ir_table->bitmap = bitmap;
582
	iommu->ir_table = ir_table;
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600

	/*
	 * If the queued invalidation is already initialized,
	 * shouldn't disable it.
	 */
	if (!iommu->qi) {
		/*
		 * Clear previous faults.
		 */
		dmar_fault(-1, iommu);
		dmar_disable_qi(iommu);

		if (dmar_enable_qi(iommu)) {
			pr_err("Failed to enable queued invalidation\n");
			goto out_free_bitmap;
		}
	}

601 602 603
	init_ir_status(iommu);

	if (ir_pre_enabled(iommu)) {
604 605 606 607 608 609
		if (!is_kdump_kernel()) {
			pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n",
				iommu->name);
			clear_ir_pre_enabled(iommu);
			iommu_disable_irq_remapping(iommu);
		} else if (iommu_load_old_irte(iommu))
610 611 612 613 614 615 616
			pr_err("Failed to copy IR table for %s from previous kernel\n",
			       iommu->name);
		else
			pr_info("Copied IR table for %s from previous kernel\n",
				iommu->name);
	}

617 618
	iommu_set_irq_remapping(iommu, eim_mode);

619
	return 0;
620

621
out_free_bitmap:
622
	bitmap_free(bitmap);
623 624 625 626
out_free_pages:
	__free_pages(pages, INTR_REMAP_PAGE_ORDER);
out_free_table:
	kfree(ir_table);
627 628 629

	iommu->ir_table  = NULL;

630 631 632 633 634
	return -ENOMEM;
}

static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
{
635 636
	struct fwnode_handle *fn;

637
	if (iommu && iommu->ir_table) {
638
		if (iommu->ir_msi_domain) {
639 640
			fn = iommu->ir_msi_domain->fwnode;

641
			irq_domain_remove(iommu->ir_msi_domain);
642
			irq_domain_free_fwnode(fn);
643 644 645
			iommu->ir_msi_domain = NULL;
		}
		if (iommu->ir_domain) {
646 647
			fn = iommu->ir_domain->fwnode;

648
			irq_domain_remove(iommu->ir_domain);
649
			irq_domain_free_fwnode(fn);
650 651
			iommu->ir_domain = NULL;
		}
652 653
		free_pages((unsigned long)iommu->ir_table->base,
			   INTR_REMAP_PAGE_ORDER);
654
		bitmap_free(iommu->ir_table->bitmap);
655 656 657
		kfree(iommu->ir_table);
		iommu->ir_table = NULL;
	}
658 659
}

660 661 662
/*
 * Disable Interrupt Remapping.
 */
663
static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
664 665 666 667 668 669 670
{
	unsigned long flags;
	u32 sts;

	if (!ecap_ir_support(iommu->ecap))
		return;

671 672 673 674 675 676
	/*
	 * global invalidation of interrupt entry cache before disabling
	 * interrupt-remapping.
	 */
	qi_global_iec(iommu);

677
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
678

679
	sts = readl(iommu->reg + DMAR_GSTS_REG);
680 681 682 683 684 685 686 687 688 689
	if (!(sts & DMA_GSTS_IRES))
		goto end;

	iommu->gcmd &= ~DMA_GCMD_IRE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
		      readl, !(sts & DMA_GSTS_IRES), sts);

end:
690
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
691 692
}

693 694 695 696 697 698 699 700 701
static int __init dmar_x2apic_optout(void)
{
	struct acpi_table_dmar *dmar;
	dmar = (struct acpi_table_dmar *)dmar_tbl;
	if (!dmar || no_x2apic_optout)
		return 0;
	return dmar->flags & DMAR_X2APIC_OPT_OUT;
}

702 703 704 705 706 707 708 709 710 711 712 713 714
static void __init intel_cleanup_irq_remapping(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;

	for_each_iommu(iommu, drhd) {
		if (ecap_ir_support(iommu->ecap)) {
			iommu_disable_irq_remapping(iommu);
			intel_teardown_irq_remapping(iommu);
		}
	}

	if (x2apic_supported())
J
Joerg Roedel 已提交
715
		pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
716 717 718
}

static int __init intel_prepare_irq_remapping(void)
719 720
{
	struct dmar_drhd_unit *drhd;
721
	struct intel_iommu *iommu;
722
	int eim = 0;
723

724
	if (irq_remap_broken) {
J
Joerg Roedel 已提交
725
		pr_warn("This system BIOS has enabled interrupt remapping\n"
726 727 728 729 730 731 732 733
			"on a chipset that contains an erratum making that\n"
			"feature unstable.  To maintain system stability\n"
			"interrupt remapping is being disabled.  Please\n"
			"contact your BIOS vendor for an update\n");
		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
		return -ENODEV;
	}

734
	if (dmar_table_init() < 0)
735 736 737 738
		return -ENODEV;

	if (!dmar_ir_support())
		return -ENODEV;
739

740
	if (parse_ioapics_under_ir()) {
J
Joerg Roedel 已提交
741
		pr_info("Not enabling interrupt remapping\n");
742
		goto error;
743 744
	}

745
	/* First make sure all IOMMUs support IRQ remapping */
746
	for_each_iommu(iommu, drhd)
747 748 749
		if (!ecap_ir_support(iommu->ecap))
			goto error;

750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
	/* Detect remapping mode: lapic or x2apic */
	if (x2apic_supported()) {
		eim = !dmar_x2apic_optout();
		if (!eim) {
			pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
			pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
		}
	}

	for_each_iommu(iommu, drhd) {
		if (eim && !ecap_eim_support(iommu->ecap)) {
			pr_info("%s does not support EIM\n", iommu->name);
			eim = 0;
		}
	}

	eim_mode = eim;
	if (eim)
		pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");

770 771 772 773 774
	/* Do the initializations early */
	for_each_iommu(iommu, drhd) {
		if (intel_setup_irq_remapping(iommu)) {
			pr_err("Failed to setup irq remapping for %s\n",
			       iommu->name);
775
			goto error;
776 777
		}
	}
778

779
	return 0;
780

781 782
error:
	intel_cleanup_irq_remapping();
783
	return -ENODEV;
784 785
}

786 787 788 789 790 791 792 793 794
/*
 * Set Posted-Interrupts capability.
 */
static inline void set_irq_posting_cap(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;

	if (!disable_irq_post) {
795 796 797 798 799 800 801 802
		/*
		 * If IRTE is in posted format, the 'pda' field goes across the
		 * 64-bit boundary, we need use cmpxchg16b to atomically update
		 * it. We only expose posted-interrupt when X86_FEATURE_CX16
		 * is supported. Actually, hardware platforms supporting PI
		 * should have X86_FEATURE_CX16 support, this has been confirmed
		 * with Intel hardware guys.
		 */
803
		if (boot_cpu_has(X86_FEATURE_CX16))
804
			intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP;
805 806 807 808 809 810 811 812 813 814

		for_each_iommu(iommu, drhd)
			if (!cap_pi_support(iommu->cap)) {
				intel_irq_remap_ops.capability &=
						~(1 << IRQ_POSTING_CAP);
				break;
			}
	}
}

815 816 817 818
static int __init intel_enable_irq_remapping(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
819
	bool setup = false;
820 821 822 823

	/*
	 * Setup Interrupt-remapping for all the DRHD's now.
	 */
824
	for_each_iommu(iommu, drhd) {
825 826
		if (!ir_pre_enabled(iommu))
			iommu_enable_irq_remapping(iommu);
827
		setup = true;
828 829 830 831 832
	}

	if (!setup)
		goto error;

833
	irq_remapping_enabled = 1;
834

835 836
	set_irq_posting_cap();

837
	pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic");
838

839
	return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
840 841

error:
842
	intel_cleanup_irq_remapping();
843 844
	return -1;
}
845

846 847 848
static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
				   struct intel_iommu *iommu,
				   struct acpi_dmar_hardware_unit *drhd)
849 850 851
{
	struct acpi_dmar_pci_path *path;
	u8 bus;
852
	int count, free = -1;
853 854 855 856 857 858 859 860 861 862 863

	bus = scope->bus;
	path = (struct acpi_dmar_pci_path *)(scope + 1);
	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
		/ sizeof(struct acpi_dmar_pci_path);

	while (--count > 0) {
		/*
		 * Access PCI directly due to the PCI
		 * subsystem isn't initialized yet.
		 */
L
Lv Zheng 已提交
864
		bus = read_pci_config_byte(bus, path->device, path->function,
865 866 867
					   PCI_SECONDARY_BUS);
		path++;
	}
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888

	for (count = 0; count < MAX_HPET_TBS; count++) {
		if (ir_hpet[count].iommu == iommu &&
		    ir_hpet[count].id == scope->enumeration_id)
			return 0;
		else if (ir_hpet[count].iommu == NULL && free == -1)
			free = count;
	}
	if (free == -1) {
		pr_warn("Exceeded Max HPET blocks\n");
		return -ENOSPC;
	}

	ir_hpet[free].iommu = iommu;
	ir_hpet[free].id    = scope->enumeration_id;
	ir_hpet[free].bus   = bus;
	ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
	pr_info("HPET id %d under DRHD base 0x%Lx\n",
		scope->enumeration_id, drhd->address);

	return 0;
889 890
}

891 892 893
static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
				     struct intel_iommu *iommu,
				     struct acpi_dmar_hardware_unit *drhd)
894 895 896
{
	struct acpi_dmar_pci_path *path;
	u8 bus;
897
	int count, free = -1;
898 899 900 901 902 903 904 905 906 907 908

	bus = scope->bus;
	path = (struct acpi_dmar_pci_path *)(scope + 1);
	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
		/ sizeof(struct acpi_dmar_pci_path);

	while (--count > 0) {
		/*
		 * Access PCI directly due to the PCI
		 * subsystem isn't initialized yet.
		 */
L
Lv Zheng 已提交
909
		bus = read_pci_config_byte(bus, path->device, path->function,
910 911 912 913
					   PCI_SECONDARY_BUS);
		path++;
	}

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
	for (count = 0; count < MAX_IO_APICS; count++) {
		if (ir_ioapic[count].iommu == iommu &&
		    ir_ioapic[count].id == scope->enumeration_id)
			return 0;
		else if (ir_ioapic[count].iommu == NULL && free == -1)
			free = count;
	}
	if (free == -1) {
		pr_warn("Exceeded Max IO APICS\n");
		return -ENOSPC;
	}

	ir_ioapic[free].bus   = bus;
	ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
	ir_ioapic[free].iommu = iommu;
	ir_ioapic[free].id    = scope->enumeration_id;
	pr_info("IOAPIC id %d under DRHD base  0x%Lx IOMMU %d\n",
		scope->enumeration_id, drhd->address, iommu->seq_id);

	return 0;
934 935
}

936 937
static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
				      struct intel_iommu *iommu)
938
{
939
	int ret = 0;
940 941 942 943 944 945 946 947
	struct acpi_dmar_hardware_unit *drhd;
	struct acpi_dmar_device_scope *scope;
	void *start, *end;

	drhd = (struct acpi_dmar_hardware_unit *)header;
	start = (void *)(drhd + 1);
	end = ((void *)drhd) + header->length;

948
	while (start < end && ret == 0) {
949
		scope = start;
950 951 952 953 954 955
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
			ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
		else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
			ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
		start += scope->length;
	}
956

957 958
	return ret;
}
959

960 961 962
static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
{
	int i;
963

964 965 966
	for (i = 0; i < MAX_HPET_TBS; i++)
		if (ir_hpet[i].iommu == iommu)
			ir_hpet[i].iommu = NULL;
967

968 969 970
	for (i = 0; i < MAX_IO_APICS; i++)
		if (ir_ioapic[i].iommu == iommu)
			ir_ioapic[i].iommu = NULL;
971 972 973 974 975 976
}

/*
 * Finds the assocaition between IOAPIC's and its Interrupt-remapping
 * hardware unit.
 */
977
static int __init parse_ioapics_under_ir(void)
978 979
{
	struct dmar_drhd_unit *drhd;
980
	struct intel_iommu *iommu;
981
	bool ir_supported = false;
982
	int ioapic_idx;
983

984 985
	for_each_iommu(iommu, drhd) {
		int ret;
986

987 988 989 990 991 992 993 994 995
		if (!ecap_ir_support(iommu->ecap))
			continue;

		ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu);
		if (ret)
			return ret;

		ir_supported = true;
	}
996

997
	if (!ir_supported)
998
		return -ENODEV;
999 1000 1001

	for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
		int ioapic_id = mpc_ioapic_id(ioapic_idx);
1002
		if (!map_ioapic_to_iommu(ioapic_id)) {
1003 1004 1005 1006 1007
			pr_err(FW_BUG "ioapic %d has no mapping iommu, "
			       "interrupt remapping will be disabled\n",
			       ioapic_id);
			return -1;
		}
1008 1009
	}

1010
	return 0;
1011
}
1012

1013
static int __init ir_dev_scope_init(void)
1014
{
1015 1016
	int ret;

1017
	if (!irq_remapping_enabled)
1018 1019
		return 0;

1020 1021 1022 1023 1024
	down_write(&dmar_global_lock);
	ret = dmar_dev_scope_init();
	up_write(&dmar_global_lock);

	return ret;
1025 1026 1027
}
rootfs_initcall(ir_dev_scope_init);

1028
static void disable_irq_remapping(void)
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;

	/*
	 * Disable Interrupt-remapping for all the DRHD's now.
	 */
	for_each_iommu(iommu, drhd) {
		if (!ecap_ir_support(iommu->ecap))
			continue;

1040
		iommu_disable_irq_remapping(iommu);
1041
	}
1042 1043 1044 1045 1046 1047

	/*
	 * Clear Posted-Interrupts capability.
	 */
	if (!disable_irq_post)
		intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP);
1048 1049
}

1050
static int reenable_irq_remapping(int eim)
1051 1052
{
	struct dmar_drhd_unit *drhd;
1053
	bool setup = false;
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	struct intel_iommu *iommu = NULL;

	for_each_iommu(iommu, drhd)
		if (iommu->qi)
			dmar_reenable_qi(iommu);

	/*
	 * Setup Interrupt-remapping for all the DRHD's now.
	 */
	for_each_iommu(iommu, drhd) {
		if (!ecap_ir_support(iommu->ecap))
			continue;

		/* Set up interrupt remapping for iommu.*/
1068
		iommu_set_irq_remapping(iommu, eim);
1069
		iommu_enable_irq_remapping(iommu);
1070
		setup = true;
1071 1072 1073 1074 1075
	}

	if (!setup)
		goto error;

1076 1077
	set_irq_posting_cap();

1078 1079 1080 1081 1082 1083 1084 1085 1086
	return 0;

error:
	/*
	 * handle error condition gracefully here!
	 */
	return -1;
}

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
/*
 * Store the MSI remapping domain pointer in the device if enabled.
 *
 * This is called from dmar_pci_bus_add_dev() so it works even when DMA
 * remapping is disabled. Only update the pointer if the device is not
 * already handled by a non default PCI/MSI interrupt domain. This protects
 * e.g. VMD devices.
 */
void intel_irq_remap_add_device(struct dmar_pci_notify_info *info)
{
	if (!irq_remapping_enabled || pci_dev_has_special_msi_domain(info->dev))
		return;

	dev_set_msi_domain(&info->dev->dev, map_dev_to_ir(info->dev));
}

1103
static void prepare_irte(struct irte *irte, int vector, unsigned int dest)
1104 1105 1106 1107
{
	memset(irte, 0, sizeof(*irte));

	irte->present = 1;
1108
	irte->dst_mode = apic->dest_mode_logical;
1109 1110 1111 1112 1113 1114 1115 1116
	/*
	 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
	 * actual level or edge trigger will be setup in the IO-APIC
	 * RTE. This will help simplify level triggered irq migration.
	 * For more details, see the comments (in io_apic.c) explainig IO-APIC
	 * irq migration in the presence of interrupt-remapping.
	*/
	irte->trigger_mode = 0;
1117
	irte->dlvry_mode = apic->delivery_mode;
1118 1119 1120 1121 1122
	irte->vector = vector;
	irte->dest_id = IRTE_DEST(dest);
	irte->redir_hint = 1;
}

1123
struct irq_remap_ops intel_irq_remap_ops = {
1124
	.prepare		= intel_prepare_irq_remapping,
1125 1126 1127
	.enable			= intel_enable_irq_remapping,
	.disable		= disable_irq_remapping,
	.reenable		= reenable_irq_remapping,
1128
	.enable_faulting	= enable_drhd_fault_handling,
1129 1130
};

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force)
{
	struct intel_ir_data *ir_data = irqd->chip_data;
	struct irte *irte = &ir_data->irte_entry;
	struct irq_cfg *cfg = irqd_cfg(irqd);

	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	irte->vector = cfg->vector;
	irte->dest_id = IRTE_DEST(cfg->dest_apicid);

	/* Update the hardware only if the interrupt is in remapped mode. */
1145
	if (force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING)
1146 1147 1148
		modify_irte(&ir_data->irq_2_iommu, irte);
}

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
/*
 * Migrate the IO-APIC irq in the presence of intr-remapping.
 *
 * For both level and edge triggered, irq migration is a simple atomic
 * update(of vector and cpu destination) of IRTE and flush the hardware cache.
 *
 * For level triggered, we eliminate the io-apic RTE modification (with the
 * updated vector information), by using a virtual vector (io-apic pin number).
 * Real vector that is used for interrupting cpu will be coming from
 * the interrupt-remapping table entry.
 *
 * As the migration is a simple atomic update of IRTE, the same mechanism
 * is used to migrate MSI irq's in the presence of interrupt-remapping.
 */
static int
intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask,
		      bool force)
{
	struct irq_data *parent = data->parent_data;
1168
	struct irq_cfg *cfg = irqd_cfg(data);
1169 1170 1171 1172 1173 1174
	int ret;

	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;

1175
	intel_ir_reconfigure_irte(data, false);
1176 1177 1178 1179 1180
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
1181
	send_cleanup_vector(cfg);
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193

	return IRQ_SET_MASK_OK_DONE;
}

static void intel_ir_compose_msi_msg(struct irq_data *irq_data,
				     struct msi_msg *msg)
{
	struct intel_ir_data *ir_data = irq_data->chip_data;

	*msg = ir_data->msi_entry;
}

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info)
{
	struct intel_ir_data *ir_data = data->chip_data;
	struct vcpu_data *vcpu_pi_info = info;

	/* stop posting interrupts, back to remapping mode */
	if (!vcpu_pi_info) {
		modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry);
	} else {
		struct irte irte_pi;

		/*
		 * We are not caching the posted interrupt entry. We
		 * copy the data from the remapped entry and modify
		 * the fields which are relevant for posted mode. The
		 * cached remapped entry is used for switching back to
		 * remapped mode.
		 */
		memset(&irte_pi, 0, sizeof(irte_pi));
		dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry);

		/* Update the posted mode fields */
		irte_pi.p_pst = 1;
		irte_pi.p_urgent = 0;
		irte_pi.p_vector = vcpu_pi_info->vector;
		irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >>
				(32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
		irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) &
				~(-1UL << PDA_HIGH_BIT);

		modify_irte(&ir_data->irq_2_iommu, &irte_pi);
	}

	return 0;
}

1230
static struct irq_chip intel_ir_chip = {
1231
	.name			= "INTEL-IR",
1232
	.irq_ack		= apic_ack_irq,
1233 1234 1235
	.irq_set_affinity	= intel_ir_set_affinity,
	.irq_compose_msi_msg	= intel_ir_compose_msi_msg,
	.irq_set_vcpu_affinity	= intel_ir_set_vcpu_affinity,
1236 1237
};

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
static void fill_msi_msg(struct msi_msg *msg, u32 index, u32 subhandle)
{
	memset(msg, 0, sizeof(*msg));

	msg->arch_addr_lo.dmar_base_address = X86_MSI_BASE_ADDRESS_LOW;
	msg->arch_addr_lo.dmar_subhandle_valid = true;
	msg->arch_addr_lo.dmar_format = true;
	msg->arch_addr_lo.dmar_index_0_14 = index & 0x7FFF;
	msg->arch_addr_lo.dmar_index_15 = !!(index & 0x8000);

	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;

	msg->arch_data.dmar_subhandle = subhandle;
}

1253 1254 1255 1256 1257 1258 1259 1260
static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data,
					     struct irq_cfg *irq_cfg,
					     struct irq_alloc_info *info,
					     int index, int sub_handle)
{
	struct irte *irte = &data->irte_entry;

	prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid);
1261

1262 1263 1264
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Set source-id of interrupt request */
1265
		set_ioapic_sid(irte, info->devid);
1266
		apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
1267
			info->devid, irte->present, irte->fpd,
1268 1269 1270 1271
			irte->dst_mode, irte->redir_hint,
			irte->trigger_mode, irte->dlvry_mode,
			irte->avail, irte->vector, irte->dest_id,
			irte->sid, irte->sq, irte->svt);
1272
		sub_handle = info->ioapic.pin;
1273 1274
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
1275 1276
		set_hpet_sid(irte, info->devid);
		break;
1277 1278
	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
1279
		set_msi_sid(irte, msi_desc_to_pci_dev(info->desc));
1280 1281 1282 1283 1284
		break;
	default:
		BUG_ON(1);
		break;
	}
1285
	fill_msi_msg(&data->msi_entry, index, sub_handle);
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
}

static void intel_free_irq_resources(struct irq_domain *domain,
				     unsigned int virq, unsigned int nr_irqs)
{
	struct irq_data *irq_data;
	struct intel_ir_data *data;
	struct irq_2_iommu *irq_iommu;
	unsigned long flags;
	int i;
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irq_iommu = &data->irq_2_iommu;
			raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
			clear_entries(irq_iommu);
			raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
			irq_domain_reset_irq_data(irq_data);
			kfree(data);
		}
	}
}

static int intel_irq_remapping_alloc(struct irq_domain *domain,
				     unsigned int virq, unsigned int nr_irqs,
				     void *arg)
{
	struct intel_iommu *iommu = domain->host_data;
	struct irq_alloc_info *info = arg;
1316
	struct intel_ir_data *data, *ird;
1317 1318 1319 1320 1321 1322
	struct irq_data *irq_data;
	struct irq_cfg *irq_cfg;
	int i, ret, index;

	if (!info || !iommu)
		return -EINVAL;
1323 1324
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_PCI_MSIX)
1325 1326 1327 1328 1329 1330
		return -EINVAL;

	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
1331
	if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI)
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;

	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;

	ret = -ENOMEM;
	data = kzalloc(sizeof(*data), GFP_KERNEL);
	if (!data)
		goto out_free_parent;

	down_read(&dmar_global_lock);
J
Jacob Pan 已提交
1344
	index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs);
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
	up_read(&dmar_global_lock);
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
		kfree(data);
		goto out_free_parent;
	}

	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		irq_cfg = irqd_cfg(irq_data);
		if (!irq_data || !irq_cfg) {
1356 1357
			if (!i)
				kfree(data);
1358 1359 1360 1361 1362
			ret = -EINVAL;
			goto out_free_data;
		}

		if (i > 0) {
1363 1364
			ird = kzalloc(sizeof(*ird), GFP_KERNEL);
			if (!ird)
1365
				goto out_free_data;
1366 1367 1368 1369 1370
			/* Initialize the common data */
			ird->irq_2_iommu = data->irq_2_iommu;
			ird->irq_2_iommu.sub_handle = i;
		} else {
			ird = data;
1371
		}
1372

1373
		irq_data->hwirq = (index << 16) + i;
1374
		irq_data->chip_data = ird;
1375
		irq_data->chip = &intel_ir_chip;
1376
		intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i);
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
	return 0;

out_free_data:
	intel_free_irq_resources(domain, virq, i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
}

static void intel_irq_remapping_free(struct irq_domain *domain,
				     unsigned int virq, unsigned int nr_irqs)
{
	intel_free_irq_resources(domain, virq, nr_irqs);
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}

1395
static int intel_irq_remapping_activate(struct irq_domain *domain,
1396
					struct irq_data *irq_data, bool reserve)
1397
{
1398
	intel_ir_reconfigure_irte(irq_data, true);
1399
	return 0;
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
}

static void intel_irq_remapping_deactivate(struct irq_domain *domain,
					   struct irq_data *irq_data)
{
	struct intel_ir_data *data = irq_data->chip_data;
	struct irte entry;

	memset(&entry, 0, sizeof(entry));
	modify_irte(&data->irq_2_iommu, &entry);
}

1412 1413 1414 1415
static int intel_irq_remapping_select(struct irq_domain *d,
				      struct irq_fwspec *fwspec,
				      enum irq_domain_bus_token bus_token)
{
1416 1417
	struct intel_iommu *iommu = NULL;

1418
	if (x86_fwspec_is_ioapic(fwspec))
1419
		iommu = map_ioapic_to_iommu(fwspec->param[0]);
1420
	else if (x86_fwspec_is_hpet(fwspec))
1421
		iommu = map_hpet_to_iommu(fwspec->param[0]);
1422

1423
	return iommu && d == iommu->ir_domain;
1424 1425
}

1426
static const struct irq_domain_ops intel_ir_domain_ops = {
1427
	.select = intel_irq_remapping_select,
1428 1429 1430 1431
	.alloc = intel_irq_remapping_alloc,
	.free = intel_irq_remapping_free,
	.activate = intel_irq_remapping_activate,
	.deactivate = intel_irq_remapping_deactivate,
1432
};
1433

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
/*
 * Support of Interrupt Remapping Unit Hotplug
 */
static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
{
	int ret;
	int eim = x2apic_enabled();

	if (eim && !ecap_eim_support(iommu->ecap)) {
		pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
			iommu->reg_phys, iommu->ecap);
		return -ENODEV;
	}

	if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
		pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
			iommu->reg_phys);
		return -ENODEV;
	}

	/* TODO: check all IOAPICs are covered by IOMMU */

	/* Setup Interrupt-remapping now. */
	ret = intel_setup_irq_remapping(iommu);
	if (ret) {
1459 1460
		pr_err("Failed to setup irq remapping for %s\n",
		       iommu->name);
1461 1462
		intel_teardown_irq_remapping(iommu);
		ir_remove_ioapic_hpet_scope(iommu);
1463
	} else {
1464
		iommu_enable_irq_remapping(iommu);
1465 1466 1467 1468 1469
	}

	return ret;
}

1470 1471
int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
{
1472 1473 1474 1475 1476 1477 1478 1479 1480
	int ret = 0;
	struct intel_iommu *iommu = dmaru->iommu;

	if (!irq_remapping_enabled)
		return 0;
	if (iommu == NULL)
		return -EINVAL;
	if (!ecap_ir_support(iommu->ecap))
		return 0;
1481 1482 1483
	if (irq_remapping_cap(IRQ_POSTING_CAP) &&
	    !cap_pi_support(iommu->cap))
		return -EBUSY;
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501

	if (insert) {
		if (!iommu->ir_table)
			ret = dmar_ir_add(dmaru, iommu);
	} else {
		if (iommu->ir_table) {
			if (!bitmap_empty(iommu->ir_table->bitmap,
					  INTR_REMAP_TABLE_ENTRIES)) {
				ret = -EBUSY;
			} else {
				iommu_disable_irq_remapping(iommu);
				intel_teardown_irq_remapping(iommu);
				ir_remove_ioapic_hpet_scope(iommu);
			}
		}
	}

	return ret;
1502
}