irq_remapping.c 37.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
J
Joerg Roedel 已提交
2 3 4

#define pr_fmt(fmt)     "DMAR-IR: " fmt

Y
Yinghai Lu 已提交
5
#include <linux/interrupt.h>
6
#include <linux/dmar.h>
7
#include <linux/spinlock.h>
8
#include <linux/slab.h>
9
#include <linux/jiffies.h>
10
#include <linux/hpet.h>
11
#include <linux/pci.h>
12
#include <linux/irq.h>
13 14
#include <linux/intel-iommu.h>
#include <linux/acpi.h>
15
#include <linux/irqdomain.h>
16
#include <linux/crash_dump.h>
17
#include <asm/io_apic.h>
18
#include <asm/apic.h>
Y
Yinghai Lu 已提交
19
#include <asm/smp.h>
20
#include <asm/cpu.h>
21
#include <asm/irq_remapping.h>
22
#include <asm/pci-direct.h>
23

24
#include "../irq_remapping.h"
25

26 27 28 29 30
enum irq_mode {
	IRQ_REMAPPING,
	IRQ_POSTING,
};

31 32 33 34 35 36 37 38 39 40 41 42 43 44
struct ioapic_scope {
	struct intel_iommu *iommu;
	unsigned int id;
	unsigned int bus;	/* PCI bus number */
	unsigned int devfn;	/* PCI devfn number */
};

struct hpet_scope {
	struct intel_iommu *iommu;
	u8 id;
	unsigned int bus;
	unsigned int devfn;
};

45 46 47 48 49
struct irq_2_iommu {
	struct intel_iommu *iommu;
	u16 irte_index;
	u16 sub_handle;
	u8  irte_mask;
50
	enum irq_mode mode;
51 52
};

53 54 55 56 57 58 59 60
struct intel_ir_data {
	struct irq_2_iommu			irq_2_iommu;
	struct irte				irte_entry;
	union {
		struct msi_msg			msi_entry;
	};
};

61
#define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
62
#define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
63

64
static int __read_mostly eim_mode;
65
static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
66
static struct hpet_scope ir_hpet[MAX_HPET_TBS];
67

68 69 70 71 72 73 74 75 76 77 78
/*
 * Lock ordering:
 * ->dmar_global_lock
 *	->irq_2_ir_lock
 *		->qi->q_lock
 *	->iommu->register_lock
 * Note:
 * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
 * in single-threaded environment with interrupt disabled, so no need to tabke
 * the dmar_global_lock.
 */
79
DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
80
static const struct irq_domain_ops intel_ir_domain_ops;
81

82
static void iommu_disable_irq_remapping(struct intel_iommu *iommu);
83 84
static int __init parse_ioapics_under_ir(void);

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
static bool ir_pre_enabled(struct intel_iommu *iommu)
{
	return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED);
}

static void clear_ir_pre_enabled(struct intel_iommu *iommu)
{
	iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
}

static void init_ir_status(struct intel_iommu *iommu)
{
	u32 gsts;

	gsts = readl(iommu->reg + DMAR_GSTS_REG);
	if (gsts & DMA_GSTS_IRES)
		iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
}

J
Jacob Pan 已提交
104
static int alloc_irte(struct intel_iommu *iommu,
105
		      struct irq_2_iommu *irq_iommu, u16 count)
106 107 108
{
	struct ir_table *table = iommu->ir_table;
	unsigned int mask = 0;
109
	unsigned long flags;
110
	int index;
111

112
	if (!count || !irq_iommu)
113 114
		return -1;

115 116 117 118 119 120
	if (count > 1) {
		count = __roundup_pow_of_two(count);
		mask = ilog2(count);
	}

	if (mask > ecap_max_handle_mask(iommu->ecap)) {
J
Joerg Roedel 已提交
121
		pr_err("Requested mask %x exceeds the max invalidation handle"
122 123 124 125 126
		       " mask value %Lx\n", mask,
		       ecap_max_handle_mask(iommu->ecap));
		return -1;
	}

127
	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
128 129 130 131 132 133 134 135 136
	index = bitmap_find_free_region(table->bitmap,
					INTR_REMAP_TABLE_ENTRIES, mask);
	if (index < 0) {
		pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
	} else {
		irq_iommu->iommu = iommu;
		irq_iommu->irte_index =  index;
		irq_iommu->sub_handle = 0;
		irq_iommu->irte_mask = mask;
137
		irq_iommu->mode = IRQ_REMAPPING;
138
	}
139
	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
140 141 142 143

	return index;
}

144
static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
145 146 147
{
	struct qi_desc desc;

148
	desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
149
		   | QI_IEC_SELECTIVE;
150 151 152
	desc.qw1 = 0;
	desc.qw2 = 0;
	desc.qw3 = 0;
153

154
	return qi_submit_sync(iommu, &desc, 1, 0);
155 156
}

157 158
static int modify_irte(struct irq_2_iommu *irq_iommu,
		       struct irte *irte_modified)
159 160
{
	struct intel_iommu *iommu;
161
	unsigned long flags;
162 163
	struct irte *irte;
	int rc, index;
164

165
	if (!irq_iommu)
166
		return -1;
167

168
	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
169

170
	iommu = irq_iommu->iommu;
171

172
	index = irq_iommu->irte_index + irq_iommu->sub_handle;
173 174
	irte = &iommu->ir_table->base[index];

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE)
	if ((irte->pst == 1) || (irte_modified->pst == 1)) {
		bool ret;

		ret = cmpxchg_double(&irte->low, &irte->high,
				     irte->low, irte->high,
				     irte_modified->low, irte_modified->high);
		/*
		 * We use cmpxchg16 to atomically update the 128-bit IRTE,
		 * and it cannot be updated by the hardware or other processors
		 * behind us, so the return value of cmpxchg16 should be the
		 * same as the old value.
		 */
		WARN_ON(!ret);
	} else
#endif
	{
		set_64bit(&irte->low, irte_modified->low);
		set_64bit(&irte->high, irte_modified->high);
	}
195 196
	__iommu_flush_cache(iommu, irte, sizeof(*irte));

197
	rc = qi_flush_iec(iommu, index, 0);
198 199 200

	/* Update iommu mode according to the IRTE mode */
	irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING;
201
	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
202 203

	return rc;
204 205
}

206
static struct irq_domain *map_hpet_to_ir(u8 hpet_id)
207 208 209
{
	int i;

210
	for (i = 0; i < MAX_HPET_TBS; i++) {
211
		if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
212 213
			return ir_hpet[i].iommu->ir_domain;
	}
214 215 216
	return NULL;
}

217
static struct intel_iommu *map_ioapic_to_iommu(int apic)
218 219 220
{
	int i;

221
	for (i = 0; i < MAX_IO_APICS; i++) {
222
		if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
223
			return ir_ioapic[i].iommu;
224
	}
225 226 227
	return NULL;
}

228
static struct irq_domain *map_ioapic_to_ir(int apic)
229
{
230
	struct intel_iommu *iommu = map_ioapic_to_iommu(apic);
231

232 233 234 235 236 237
	return iommu ? iommu->ir_domain : NULL;
}

static struct irq_domain *map_dev_to_ir(struct pci_dev *dev)
{
	struct dmar_drhd_unit *drhd = dmar_find_matched_drhd_unit(dev);
238

239
	return drhd ? drhd->iommu->ir_msi_domain : NULL;
240 241
}

242 243 244 245 246 247 248 249 250 251
static int clear_entries(struct irq_2_iommu *irq_iommu)
{
	struct irte *start, *entry, *end;
	struct intel_iommu *iommu;
	int index;

	if (irq_iommu->sub_handle)
		return 0;

	iommu = irq_iommu->iommu;
252
	index = irq_iommu->irte_index;
253 254 255 256 257

	start = iommu->ir_table->base + index;
	end = start + (1 << irq_iommu->irte_mask);

	for (entry = start; entry < end; entry++) {
258 259
		set_64bit(&entry->low, 0);
		set_64bit(&entry->high, 0);
260
	}
261 262
	bitmap_release_region(iommu->ir_table->bitmap, index,
			      irq_iommu->irte_mask);
263 264 265 266

	return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
}

267 268 269 270
/*
 * source validation type
 */
#define SVT_NO_VERIFY		0x0  /* no verification is required */
L
Lucas De Marchi 已提交
271
#define SVT_VERIFY_SID_SQ	0x1  /* verify using SID and SQ fields */
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
#define SVT_VERIFY_BUS		0x2  /* verify bus of request-id */

/*
 * source-id qualifier
 */
#define SQ_ALL_16	0x0  /* verify all 16 bits of request-id */
#define SQ_13_IGNORE_1	0x1  /* verify most significant 13 bits, ignore
			      * the third least significant bit
			      */
#define SQ_13_IGNORE_2	0x2  /* verify most significant 13 bits, ignore
			      * the second and third least significant bits
			      */
#define SQ_13_IGNORE_3	0x3  /* verify most significant 13 bits, ignore
			      * the least three significant bits
			      */

/*
 * set SVT, SQ and SID fields of irte to verify
 * source ids of interrupt requests
 */
static void set_irte_sid(struct irte *irte, unsigned int svt,
			 unsigned int sq, unsigned int sid)
{
295 296
	if (disable_sourceid_checking)
		svt = SVT_NO_VERIFY;
297 298 299 300 301
	irte->svt = svt;
	irte->sq = sq;
	irte->sid = sid;
}

302 303 304 305 306 307 308 309 310 311 312 313
/*
 * Set an IRTE to match only the bus number. Interrupt requests that reference
 * this IRTE must have a requester-id whose bus number is between or equal
 * to the start_bus and end_bus arguments.
 */
static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus,
				unsigned int end_bus)
{
	set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
		     (start_bus << 8) | end_bus);
}

314
static int set_ioapic_sid(struct irte *irte, int apic)
315 316 317 318 319 320 321
{
	int i;
	u16 sid = 0;

	if (!irte)
		return -1;

322
	down_read(&dmar_global_lock);
323
	for (i = 0; i < MAX_IO_APICS; i++) {
324
		if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
325 326 327 328
			sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn;
			break;
		}
	}
329
	up_read(&dmar_global_lock);
330 331

	if (sid == 0) {
J
Joerg Roedel 已提交
332
		pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic);
333 334 335
		return -1;
	}

336
	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
337 338 339 340

	return 0;
}

341
static int set_hpet_sid(struct irte *irte, u8 id)
342 343 344 345 346 347 348
{
	int i;
	u16 sid = 0;

	if (!irte)
		return -1;

349
	down_read(&dmar_global_lock);
350
	for (i = 0; i < MAX_HPET_TBS; i++) {
351
		if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
352 353 354 355
			sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn;
			break;
		}
	}
356
	up_read(&dmar_global_lock);
357 358

	if (sid == 0) {
J
Joerg Roedel 已提交
359
		pr_warn("Failed to set source-id of HPET block (%d)\n", id);
360 361 362 363 364 365 366 367 368 369 370 371 372
		return -1;
	}

	/*
	 * Should really use SQ_ALL_16. Some platforms are broken.
	 * While we figure out the right quirks for these broken platforms, use
	 * SQ_13_IGNORE_3 for now.
	 */
	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);

	return 0;
}

373 374 375
struct set_msi_sid_data {
	struct pci_dev *pdev;
	u16 alias;
376 377
	int count;
	int busmatch_count;
378 379 380 381 382 383
};

static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
{
	struct set_msi_sid_data *data = opaque;

384 385 386
	if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias))
		data->busmatch_count++;

387 388
	data->pdev = pdev;
	data->alias = alias;
389 390
	data->count++;

391 392 393
	return 0;
}

394
static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
395
{
396
	struct set_msi_sid_data data;
397 398 399 400

	if (!irte || !dev)
		return -1;

401 402
	data.count = 0;
	data.busmatch_count = 0;
403
	pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
404

405 406 407 408 409 410
	/*
	 * DMA alias provides us with a PCI device and alias.  The only case
	 * where the it will return an alias on a different bus than the
	 * device is the case of a PCIe-to-PCI bridge, where the alias is for
	 * the subordinate bus.  In this case we can only verify the bus.
	 *
411 412 413 414 415
	 * If there are multiple aliases, all with the same bus number,
	 * then all we can do is verify the bus. This is typical in NTB
	 * hardware which use proxy IDs where the device will generate traffic
	 * from multiple devfn numbers on the same bus.
	 *
416 417 418 419 420 421 422 423
	 * If the alias device is on a different bus than our source device
	 * then we have a topology based alias, use it.
	 *
	 * Otherwise, the alias is for a device DMA quirk and we cannot
	 * assume that MSI uses the same requester ID.  Therefore use the
	 * original device.
	 */
	if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
424 425
		set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias),
				    dev->bus->number);
426 427
	else if (data.count >= 2 && data.busmatch_count == data.count)
		set_irte_verify_bus(irte, dev->bus->number, dev->bus->number);
428 429 430 431
	else if (data.pdev->bus->number != dev->bus->number)
		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
	else
		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
432
			     pci_dev_id(dev));
433 434 435 436

	return 0;
}

437 438
static int iommu_load_old_irte(struct intel_iommu *iommu)
{
439
	struct irte *old_ir_table;
440
	phys_addr_t irt_phys;
441
	unsigned int i;
442 443 444 445 446 447 448 449 450 451 452 453 454
	size_t size;
	u64 irta;

	/* Check whether the old ir-table has the same size as ours */
	irta = dmar_readq(iommu->reg + DMAR_IRTA_REG);
	if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK)
	     != INTR_REMAP_TABLE_REG_SIZE)
		return -EINVAL;

	irt_phys = irta & VTD_PAGE_MASK;
	size     = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte);

	/* Map the old IR table */
455
	old_ir_table = memremap(irt_phys, size, MEMREMAP_WB);
456 457 458 459
	if (!old_ir_table)
		return -ENOMEM;

	/* Copy data over */
460
	memcpy(iommu->ir_table->base, old_ir_table, size);
461 462 463

	__iommu_flush_cache(iommu, iommu->ir_table->base, size);

464 465 466 467 468 469 470 471 472
	/*
	 * Now check the table for used entries and mark those as
	 * allocated in the bitmap
	 */
	for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) {
		if (iommu->ir_table->base[i].present)
			bitmap_set(iommu->ir_table->bitmap, i, 1);
	}

473
	memunmap(old_ir_table);
474

475 476 477 478
	return 0;
}


479
static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
480
{
481
	unsigned long flags;
482
	u64 addr;
483
	u32 sts;
484 485 486

	addr = virt_to_phys((void *)iommu->ir_table->base);

487
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
488 489 490 491 492

	dmar_writeq(iommu->reg + DMAR_IRTA_REG,
		    (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);

	/* Set interrupt-remapping table pointer */
493
	writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
494 495 496

	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
		      readl, (sts & DMA_GSTS_IRTPS), sts);
497
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
498 499

	/*
500 501
	 * Global invalidation of interrupt entry cache to make sure the
	 * hardware uses the new irq remapping table.
502 503
	 */
	qi_global_iec(iommu);
504 505 506 507 508 509
}

static void iommu_enable_irq_remapping(struct intel_iommu *iommu)
{
	unsigned long flags;
	u32 sts;
510

511
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
512 513 514

	/* Enable interrupt-remapping */
	iommu->gcmd |= DMA_GCMD_IRE;
515
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
516 517 518
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
		      readl, (sts & DMA_GSTS_IRES), sts);

519 520 521 522 523 524 525 526
	/* Block compatibility-format MSIs */
	if (sts & DMA_GSTS_CFIS) {
		iommu->gcmd &= ~DMA_GCMD_CFI;
		writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
		IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
			      readl, !(sts & DMA_GSTS_CFIS), sts);
	}

527 528 529 530 531 532 533 534 535 536
	/*
	 * With CFI clear in the Global Command register, we should be
	 * protected from dangerous (i.e. compatibility) interrupts
	 * regardless of x2apic status.  Check just to be sure.
	 */
	if (sts & DMA_GSTS_CFIS)
		WARN(1, KERN_WARNING
			"Compatibility-format IRQs enabled despite intr remapping;\n"
			"you are vulnerable to IRQ injection.\n");

537
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
538 539
}

540
static int intel_setup_irq_remapping(struct intel_iommu *iommu)
541 542
{
	struct ir_table *ir_table;
543
	struct fwnode_handle *fn;
544
	unsigned long *bitmap;
545
	struct page *pages;
546

547 548
	if (iommu->ir_table)
		return 0;
549

550
	ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
551
	if (!ir_table)
552 553
		return -ENOMEM;

554
	pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO,
555
				 INTR_REMAP_PAGE_ORDER);
556
	if (!pages) {
557 558
		pr_err("IR%d: failed to allocate pages of order %d\n",
		       iommu->seq_id, INTR_REMAP_PAGE_ORDER);
559
		goto out_free_table;
560 561
	}

562
	bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_ATOMIC);
563 564
	if (bitmap == NULL) {
		pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
565
		goto out_free_pages;
566 567
	}

568 569 570 571 572 573 574 575 576
	fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id);
	if (!fn)
		goto out_free_bitmap;

	iommu->ir_domain =
		irq_domain_create_hierarchy(arch_get_ir_parent_domain(),
					    0, INTR_REMAP_TABLE_ENTRIES,
					    fn, &intel_ir_domain_ops,
					    iommu);
577
	if (!iommu->ir_domain) {
578
		irq_domain_free_fwnode(fn);
579 580 581
		pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id);
		goto out_free_bitmap;
	}
582 583 584 585
	iommu->ir_msi_domain =
		arch_create_remap_msi_irq_domain(iommu->ir_domain,
						 "INTEL-IR-MSI",
						 iommu->seq_id);
586

587
	ir_table->base = page_address(pages);
588
	ir_table->bitmap = bitmap;
589
	iommu->ir_table = ir_table;
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607

	/*
	 * If the queued invalidation is already initialized,
	 * shouldn't disable it.
	 */
	if (!iommu->qi) {
		/*
		 * Clear previous faults.
		 */
		dmar_fault(-1, iommu);
		dmar_disable_qi(iommu);

		if (dmar_enable_qi(iommu)) {
			pr_err("Failed to enable queued invalidation\n");
			goto out_free_bitmap;
		}
	}

608 609 610
	init_ir_status(iommu);

	if (ir_pre_enabled(iommu)) {
611 612 613 614 615 616
		if (!is_kdump_kernel()) {
			pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n",
				iommu->name);
			clear_ir_pre_enabled(iommu);
			iommu_disable_irq_remapping(iommu);
		} else if (iommu_load_old_irte(iommu))
617 618 619 620 621 622 623
			pr_err("Failed to copy IR table for %s from previous kernel\n",
			       iommu->name);
		else
			pr_info("Copied IR table for %s from previous kernel\n",
				iommu->name);
	}

624 625
	iommu_set_irq_remapping(iommu, eim_mode);

626
	return 0;
627

628
out_free_bitmap:
629
	bitmap_free(bitmap);
630 631 632 633
out_free_pages:
	__free_pages(pages, INTR_REMAP_PAGE_ORDER);
out_free_table:
	kfree(ir_table);
634 635 636

	iommu->ir_table  = NULL;

637 638 639 640 641
	return -ENOMEM;
}

static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
{
642 643
	struct fwnode_handle *fn;

644
	if (iommu && iommu->ir_table) {
645
		if (iommu->ir_msi_domain) {
646 647
			fn = iommu->ir_msi_domain->fwnode;

648
			irq_domain_remove(iommu->ir_msi_domain);
649
			irq_domain_free_fwnode(fn);
650 651 652
			iommu->ir_msi_domain = NULL;
		}
		if (iommu->ir_domain) {
653 654
			fn = iommu->ir_domain->fwnode;

655
			irq_domain_remove(iommu->ir_domain);
656
			irq_domain_free_fwnode(fn);
657 658
			iommu->ir_domain = NULL;
		}
659 660
		free_pages((unsigned long)iommu->ir_table->base,
			   INTR_REMAP_PAGE_ORDER);
661
		bitmap_free(iommu->ir_table->bitmap);
662 663 664
		kfree(iommu->ir_table);
		iommu->ir_table = NULL;
	}
665 666
}

667 668 669
/*
 * Disable Interrupt Remapping.
 */
670
static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
671 672 673 674 675 676 677
{
	unsigned long flags;
	u32 sts;

	if (!ecap_ir_support(iommu->ecap))
		return;

678 679 680 681 682 683
	/*
	 * global invalidation of interrupt entry cache before disabling
	 * interrupt-remapping.
	 */
	qi_global_iec(iommu);

684
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
685

686
	sts = readl(iommu->reg + DMAR_GSTS_REG);
687 688 689 690 691 692 693 694 695 696
	if (!(sts & DMA_GSTS_IRES))
		goto end;

	iommu->gcmd &= ~DMA_GCMD_IRE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
		      readl, !(sts & DMA_GSTS_IRES), sts);

end:
697
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
698 699
}

700 701 702 703 704 705 706 707 708
static int __init dmar_x2apic_optout(void)
{
	struct acpi_table_dmar *dmar;
	dmar = (struct acpi_table_dmar *)dmar_tbl;
	if (!dmar || no_x2apic_optout)
		return 0;
	return dmar->flags & DMAR_X2APIC_OPT_OUT;
}

709 710 711 712 713 714 715 716 717 718 719 720 721
static void __init intel_cleanup_irq_remapping(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;

	for_each_iommu(iommu, drhd) {
		if (ecap_ir_support(iommu->ecap)) {
			iommu_disable_irq_remapping(iommu);
			intel_teardown_irq_remapping(iommu);
		}
	}

	if (x2apic_supported())
J
Joerg Roedel 已提交
722
		pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
723 724 725
}

static int __init intel_prepare_irq_remapping(void)
726 727
{
	struct dmar_drhd_unit *drhd;
728
	struct intel_iommu *iommu;
729
	int eim = 0;
730

731
	if (irq_remap_broken) {
J
Joerg Roedel 已提交
732
		pr_warn("This system BIOS has enabled interrupt remapping\n"
733 734 735 736 737 738 739 740
			"on a chipset that contains an erratum making that\n"
			"feature unstable.  To maintain system stability\n"
			"interrupt remapping is being disabled.  Please\n"
			"contact your BIOS vendor for an update\n");
		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
		return -ENODEV;
	}

741
	if (dmar_table_init() < 0)
742 743 744 745
		return -ENODEV;

	if (!dmar_ir_support())
		return -ENODEV;
746

747
	if (parse_ioapics_under_ir()) {
J
Joerg Roedel 已提交
748
		pr_info("Not enabling interrupt remapping\n");
749
		goto error;
750 751
	}

752
	/* First make sure all IOMMUs support IRQ remapping */
753
	for_each_iommu(iommu, drhd)
754 755 756
		if (!ecap_ir_support(iommu->ecap))
			goto error;

757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
	/* Detect remapping mode: lapic or x2apic */
	if (x2apic_supported()) {
		eim = !dmar_x2apic_optout();
		if (!eim) {
			pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
			pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
		}
	}

	for_each_iommu(iommu, drhd) {
		if (eim && !ecap_eim_support(iommu->ecap)) {
			pr_info("%s does not support EIM\n", iommu->name);
			eim = 0;
		}
	}

	eim_mode = eim;
	if (eim)
		pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");

777 778 779 780 781
	/* Do the initializations early */
	for_each_iommu(iommu, drhd) {
		if (intel_setup_irq_remapping(iommu)) {
			pr_err("Failed to setup irq remapping for %s\n",
			       iommu->name);
782
			goto error;
783 784
		}
	}
785

786
	return 0;
787

788 789
error:
	intel_cleanup_irq_remapping();
790
	return -ENODEV;
791 792
}

793 794 795 796 797 798 799 800 801
/*
 * Set Posted-Interrupts capability.
 */
static inline void set_irq_posting_cap(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;

	if (!disable_irq_post) {
802 803 804 805 806 807 808 809
		/*
		 * If IRTE is in posted format, the 'pda' field goes across the
		 * 64-bit boundary, we need use cmpxchg16b to atomically update
		 * it. We only expose posted-interrupt when X86_FEATURE_CX16
		 * is supported. Actually, hardware platforms supporting PI
		 * should have X86_FEATURE_CX16 support, this has been confirmed
		 * with Intel hardware guys.
		 */
810
		if (boot_cpu_has(X86_FEATURE_CX16))
811
			intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP;
812 813 814 815 816 817 818 819 820 821

		for_each_iommu(iommu, drhd)
			if (!cap_pi_support(iommu->cap)) {
				intel_irq_remap_ops.capability &=
						~(1 << IRQ_POSTING_CAP);
				break;
			}
	}
}

822 823 824 825
static int __init intel_enable_irq_remapping(void)
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu;
826
	bool setup = false;
827 828 829 830

	/*
	 * Setup Interrupt-remapping for all the DRHD's now.
	 */
831
	for_each_iommu(iommu, drhd) {
832 833
		if (!ir_pre_enabled(iommu))
			iommu_enable_irq_remapping(iommu);
834
		setup = true;
835 836 837 838 839
	}

	if (!setup)
		goto error;

840
	irq_remapping_enabled = 1;
841

842 843
	set_irq_posting_cap();

844
	pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic");
845

846
	return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
847 848

error:
849
	intel_cleanup_irq_remapping();
850 851
	return -1;
}
852

853 854 855
static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
				   struct intel_iommu *iommu,
				   struct acpi_dmar_hardware_unit *drhd)
856 857 858
{
	struct acpi_dmar_pci_path *path;
	u8 bus;
859
	int count, free = -1;
860 861 862 863 864 865 866 867 868 869 870

	bus = scope->bus;
	path = (struct acpi_dmar_pci_path *)(scope + 1);
	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
		/ sizeof(struct acpi_dmar_pci_path);

	while (--count > 0) {
		/*
		 * Access PCI directly due to the PCI
		 * subsystem isn't initialized yet.
		 */
L
Lv Zheng 已提交
871
		bus = read_pci_config_byte(bus, path->device, path->function,
872 873 874
					   PCI_SECONDARY_BUS);
		path++;
	}
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895

	for (count = 0; count < MAX_HPET_TBS; count++) {
		if (ir_hpet[count].iommu == iommu &&
		    ir_hpet[count].id == scope->enumeration_id)
			return 0;
		else if (ir_hpet[count].iommu == NULL && free == -1)
			free = count;
	}
	if (free == -1) {
		pr_warn("Exceeded Max HPET blocks\n");
		return -ENOSPC;
	}

	ir_hpet[free].iommu = iommu;
	ir_hpet[free].id    = scope->enumeration_id;
	ir_hpet[free].bus   = bus;
	ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
	pr_info("HPET id %d under DRHD base 0x%Lx\n",
		scope->enumeration_id, drhd->address);

	return 0;
896 897
}

898 899 900
static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
				     struct intel_iommu *iommu,
				     struct acpi_dmar_hardware_unit *drhd)
901 902 903
{
	struct acpi_dmar_pci_path *path;
	u8 bus;
904
	int count, free = -1;
905 906 907 908 909 910 911 912 913 914 915

	bus = scope->bus;
	path = (struct acpi_dmar_pci_path *)(scope + 1);
	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
		/ sizeof(struct acpi_dmar_pci_path);

	while (--count > 0) {
		/*
		 * Access PCI directly due to the PCI
		 * subsystem isn't initialized yet.
		 */
L
Lv Zheng 已提交
916
		bus = read_pci_config_byte(bus, path->device, path->function,
917 918 919 920
					   PCI_SECONDARY_BUS);
		path++;
	}

921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
	for (count = 0; count < MAX_IO_APICS; count++) {
		if (ir_ioapic[count].iommu == iommu &&
		    ir_ioapic[count].id == scope->enumeration_id)
			return 0;
		else if (ir_ioapic[count].iommu == NULL && free == -1)
			free = count;
	}
	if (free == -1) {
		pr_warn("Exceeded Max IO APICS\n");
		return -ENOSPC;
	}

	ir_ioapic[free].bus   = bus;
	ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
	ir_ioapic[free].iommu = iommu;
	ir_ioapic[free].id    = scope->enumeration_id;
	pr_info("IOAPIC id %d under DRHD base  0x%Lx IOMMU %d\n",
		scope->enumeration_id, drhd->address, iommu->seq_id);

	return 0;
941 942
}

943 944
static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
				      struct intel_iommu *iommu)
945
{
946
	int ret = 0;
947 948 949 950 951 952 953 954
	struct acpi_dmar_hardware_unit *drhd;
	struct acpi_dmar_device_scope *scope;
	void *start, *end;

	drhd = (struct acpi_dmar_hardware_unit *)header;
	start = (void *)(drhd + 1);
	end = ((void *)drhd) + header->length;

955
	while (start < end && ret == 0) {
956
		scope = start;
957 958 959 960 961 962
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
			ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
		else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
			ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
		start += scope->length;
	}
963

964 965
	return ret;
}
966

967 968 969
static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
{
	int i;
970

971 972 973
	for (i = 0; i < MAX_HPET_TBS; i++)
		if (ir_hpet[i].iommu == iommu)
			ir_hpet[i].iommu = NULL;
974

975 976 977
	for (i = 0; i < MAX_IO_APICS; i++)
		if (ir_ioapic[i].iommu == iommu)
			ir_ioapic[i].iommu = NULL;
978 979 980 981 982 983
}

/*
 * Finds the assocaition between IOAPIC's and its Interrupt-remapping
 * hardware unit.
 */
984
static int __init parse_ioapics_under_ir(void)
985 986
{
	struct dmar_drhd_unit *drhd;
987
	struct intel_iommu *iommu;
988
	bool ir_supported = false;
989
	int ioapic_idx;
990

991 992
	for_each_iommu(iommu, drhd) {
		int ret;
993

994 995 996 997 998 999 1000 1001 1002
		if (!ecap_ir_support(iommu->ecap))
			continue;

		ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu);
		if (ret)
			return ret;

		ir_supported = true;
	}
1003

1004
	if (!ir_supported)
1005
		return -ENODEV;
1006 1007 1008

	for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
		int ioapic_id = mpc_ioapic_id(ioapic_idx);
1009
		if (!map_ioapic_to_iommu(ioapic_id)) {
1010 1011 1012 1013 1014
			pr_err(FW_BUG "ioapic %d has no mapping iommu, "
			       "interrupt remapping will be disabled\n",
			       ioapic_id);
			return -1;
		}
1015 1016
	}

1017
	return 0;
1018
}
1019

1020
static int __init ir_dev_scope_init(void)
1021
{
1022 1023
	int ret;

1024
	if (!irq_remapping_enabled)
1025 1026
		return 0;

1027 1028 1029 1030 1031
	down_write(&dmar_global_lock);
	ret = dmar_dev_scope_init();
	up_write(&dmar_global_lock);

	return ret;
1032 1033 1034
}
rootfs_initcall(ir_dev_scope_init);

1035
static void disable_irq_remapping(void)
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
{
	struct dmar_drhd_unit *drhd;
	struct intel_iommu *iommu = NULL;

	/*
	 * Disable Interrupt-remapping for all the DRHD's now.
	 */
	for_each_iommu(iommu, drhd) {
		if (!ecap_ir_support(iommu->ecap))
			continue;

1047
		iommu_disable_irq_remapping(iommu);
1048
	}
1049 1050 1051 1052 1053 1054

	/*
	 * Clear Posted-Interrupts capability.
	 */
	if (!disable_irq_post)
		intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP);
1055 1056
}

1057
static int reenable_irq_remapping(int eim)
1058 1059
{
	struct dmar_drhd_unit *drhd;
1060
	bool setup = false;
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
	struct intel_iommu *iommu = NULL;

	for_each_iommu(iommu, drhd)
		if (iommu->qi)
			dmar_reenable_qi(iommu);

	/*
	 * Setup Interrupt-remapping for all the DRHD's now.
	 */
	for_each_iommu(iommu, drhd) {
		if (!ecap_ir_support(iommu->ecap))
			continue;

		/* Set up interrupt remapping for iommu.*/
1075
		iommu_set_irq_remapping(iommu, eim);
1076
		iommu_enable_irq_remapping(iommu);
1077
		setup = true;
1078 1079 1080 1081 1082
	}

	if (!setup)
		goto error;

1083 1084
	set_irq_posting_cap();

1085 1086 1087 1088 1089 1090 1091 1092 1093
	return 0;

error:
	/*
	 * handle error condition gracefully here!
	 */
	return -1;
}

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
/*
 * Store the MSI remapping domain pointer in the device if enabled.
 *
 * This is called from dmar_pci_bus_add_dev() so it works even when DMA
 * remapping is disabled. Only update the pointer if the device is not
 * already handled by a non default PCI/MSI interrupt domain. This protects
 * e.g. VMD devices.
 */
void intel_irq_remap_add_device(struct dmar_pci_notify_info *info)
{
	if (!irq_remapping_enabled || pci_dev_has_special_msi_domain(info->dev))
		return;

	dev_set_msi_domain(&info->dev->dev, map_dev_to_ir(info->dev));
}

1110
static void prepare_irte(struct irte *irte, int vector, unsigned int dest)
1111 1112 1113 1114
{
	memset(irte, 0, sizeof(*irte));

	irte->present = 1;
1115
	irte->dst_mode = apic->dest_mode_logical;
1116 1117 1118 1119 1120 1121 1122 1123
	/*
	 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
	 * actual level or edge trigger will be setup in the IO-APIC
	 * RTE. This will help simplify level triggered irq migration.
	 * For more details, see the comments (in io_apic.c) explainig IO-APIC
	 * irq migration in the presence of interrupt-remapping.
	*/
	irte->trigger_mode = 0;
1124
	irte->dlvry_mode = apic->delivery_mode;
1125 1126 1127 1128 1129
	irte->vector = vector;
	irte->dest_id = IRTE_DEST(dest);
	irte->redir_hint = 1;
}

1130
static struct irq_domain *intel_get_irq_domain(struct irq_alloc_info *info)
1131 1132 1133 1134 1135
{
	if (!info)
		return NULL;

	switch (info->type) {
1136
	case X86_IRQ_ALLOC_TYPE_IOAPIC_GET_PARENT:
1137
		return map_ioapic_to_ir(info->devid);
1138
	case X86_IRQ_ALLOC_TYPE_HPET_GET_PARENT:
1139
		return map_hpet_to_ir(info->devid);
1140
	default:
1141 1142
		WARN_ON_ONCE(1);
		return NULL;
1143 1144 1145
	}
}

1146
struct irq_remap_ops intel_irq_remap_ops = {
1147
	.prepare		= intel_prepare_irq_remapping,
1148 1149 1150
	.enable			= intel_enable_irq_remapping,
	.disable		= disable_irq_remapping,
	.reenable		= reenable_irq_remapping,
1151
	.enable_faulting	= enable_drhd_fault_handling,
1152 1153 1154
	.get_irq_domain		= intel_get_irq_domain,
};

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force)
{
	struct intel_ir_data *ir_data = irqd->chip_data;
	struct irte *irte = &ir_data->irte_entry;
	struct irq_cfg *cfg = irqd_cfg(irqd);

	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	irte->vector = cfg->vector;
	irte->dest_id = IRTE_DEST(cfg->dest_apicid);

	/* Update the hardware only if the interrupt is in remapped mode. */
1169
	if (force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING)
1170 1171 1172
		modify_irte(&ir_data->irq_2_iommu, irte);
}

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
/*
 * Migrate the IO-APIC irq in the presence of intr-remapping.
 *
 * For both level and edge triggered, irq migration is a simple atomic
 * update(of vector and cpu destination) of IRTE and flush the hardware cache.
 *
 * For level triggered, we eliminate the io-apic RTE modification (with the
 * updated vector information), by using a virtual vector (io-apic pin number).
 * Real vector that is used for interrupting cpu will be coming from
 * the interrupt-remapping table entry.
 *
 * As the migration is a simple atomic update of IRTE, the same mechanism
 * is used to migrate MSI irq's in the presence of interrupt-remapping.
 */
static int
intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask,
		      bool force)
{
	struct irq_data *parent = data->parent_data;
1192
	struct irq_cfg *cfg = irqd_cfg(data);
1193 1194 1195 1196 1197 1198
	int ret;

	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;

1199
	intel_ir_reconfigure_irte(data, false);
1200 1201 1202 1203 1204
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
1205
	send_cleanup_vector(cfg);
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217

	return IRQ_SET_MASK_OK_DONE;
}

static void intel_ir_compose_msi_msg(struct irq_data *irq_data,
				     struct msi_msg *msg)
{
	struct intel_ir_data *ir_data = irq_data->chip_data;

	*msg = ir_data->msi_entry;
}

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info)
{
	struct intel_ir_data *ir_data = data->chip_data;
	struct vcpu_data *vcpu_pi_info = info;

	/* stop posting interrupts, back to remapping mode */
	if (!vcpu_pi_info) {
		modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry);
	} else {
		struct irte irte_pi;

		/*
		 * We are not caching the posted interrupt entry. We
		 * copy the data from the remapped entry and modify
		 * the fields which are relevant for posted mode. The
		 * cached remapped entry is used for switching back to
		 * remapped mode.
		 */
		memset(&irte_pi, 0, sizeof(irte_pi));
		dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry);

		/* Update the posted mode fields */
		irte_pi.p_pst = 1;
		irte_pi.p_urgent = 0;
		irte_pi.p_vector = vcpu_pi_info->vector;
		irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >>
				(32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
		irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) &
				~(-1UL << PDA_HIGH_BIT);

		modify_irte(&ir_data->irq_2_iommu, &irte_pi);
	}

	return 0;
}

1254
static struct irq_chip intel_ir_chip = {
1255
	.name			= "INTEL-IR",
1256
	.irq_ack		= apic_ack_irq,
1257 1258 1259
	.irq_set_affinity	= intel_ir_set_affinity,
	.irq_compose_msi_msg	= intel_ir_compose_msi_msg,
	.irq_set_vcpu_affinity	= intel_ir_set_vcpu_affinity,
1260 1261
};

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
static void fill_msi_msg(struct msi_msg *msg, u32 index, u32 subhandle)
{
	memset(msg, 0, sizeof(*msg));

	msg->arch_addr_lo.dmar_base_address = X86_MSI_BASE_ADDRESS_LOW;
	msg->arch_addr_lo.dmar_subhandle_valid = true;
	msg->arch_addr_lo.dmar_format = true;
	msg->arch_addr_lo.dmar_index_0_14 = index & 0x7FFF;
	msg->arch_addr_lo.dmar_index_15 = !!(index & 0x8000);

	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;

	msg->arch_data.dmar_subhandle = subhandle;
}

1277 1278 1279 1280 1281 1282
static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data,
					     struct irq_cfg *irq_cfg,
					     struct irq_alloc_info *info,
					     int index, int sub_handle)
{
	struct irte *irte = &data->irte_entry;
1283
	struct IO_APIC_route_entry *entry;
1284 1285 1286 1287 1288

	prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid);
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Set source-id of interrupt request */
1289
		set_ioapic_sid(irte, info->devid);
1290
		apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
1291
			info->devid, irte->present, irte->fpd,
1292 1293 1294 1295 1296
			irte->dst_mode, irte->redir_hint,
			irte->trigger_mode, irte->dlvry_mode,
			irte->avail, irte->vector, irte->dest_id,
			irte->sid, irte->sq, irte->svt);

1297
		entry = info->ioapic.entry;
1298
		info->ioapic.entry = NULL;
1299
		memset(entry, 0, sizeof(*entry));
1300 1301 1302
		entry->ir_index_15	= !!(index & 0x8000);
		entry->ir_format	= true;
		entry->ir_index_0_14	= index & 0x7fff;
1303 1304 1305 1306
		/*
		 * IO-APIC RTE will be configured with virtual vector.
		 * irq handler will do the explicit EOI to the io-apic.
		 */
1307 1308 1309
		entry->vector		= info->ioapic.pin;
		entry->is_level		= info->ioapic.is_level;
		entry->active_low	= info->ioapic.active_low;
1310
		/* Mask level triggered irqs. */
1311
		entry->masked		= info->ioapic.is_level;
1312 1313 1314
		break;

	case X86_IRQ_ALLOC_TYPE_HPET:
1315 1316
	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
1317
		if (info->type == X86_IRQ_ALLOC_TYPE_HPET)
1318
			set_hpet_sid(irte, info->devid);
1319
		else
1320
			set_msi_sid(irte, msi_desc_to_pci_dev(info->desc));
1321

1322
		fill_msi_msg(&data->msi_entry, index, sub_handle);
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
		break;

	default:
		BUG_ON(1);
		break;
	}
}

static void intel_free_irq_resources(struct irq_domain *domain,
				     unsigned int virq, unsigned int nr_irqs)
{
	struct irq_data *irq_data;
	struct intel_ir_data *data;
	struct irq_2_iommu *irq_iommu;
	unsigned long flags;
	int i;
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irq_iommu = &data->irq_2_iommu;
			raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
			clear_entries(irq_iommu);
			raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
			irq_domain_reset_irq_data(irq_data);
			kfree(data);
		}
	}
}

static int intel_irq_remapping_alloc(struct irq_domain *domain,
				     unsigned int virq, unsigned int nr_irqs,
				     void *arg)
{
	struct intel_iommu *iommu = domain->host_data;
	struct irq_alloc_info *info = arg;
1359
	struct intel_ir_data *data, *ird;
1360 1361 1362 1363 1364 1365
	struct irq_data *irq_data;
	struct irq_cfg *irq_cfg;
	int i, ret, index;

	if (!info || !iommu)
		return -EINVAL;
1366 1367
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_PCI_MSIX)
1368 1369 1370 1371 1372 1373
		return -EINVAL;

	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
1374
	if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI)
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;

	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;

	ret = -ENOMEM;
	data = kzalloc(sizeof(*data), GFP_KERNEL);
	if (!data)
		goto out_free_parent;

	down_read(&dmar_global_lock);
J
Jacob Pan 已提交
1387
	index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs);
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
	up_read(&dmar_global_lock);
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
		kfree(data);
		goto out_free_parent;
	}

	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		irq_cfg = irqd_cfg(irq_data);
		if (!irq_data || !irq_cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}

		if (i > 0) {
1404 1405
			ird = kzalloc(sizeof(*ird), GFP_KERNEL);
			if (!ird)
1406
				goto out_free_data;
1407 1408 1409 1410 1411
			/* Initialize the common data */
			ird->irq_2_iommu = data->irq_2_iommu;
			ird->irq_2_iommu.sub_handle = i;
		} else {
			ird = data;
1412
		}
1413

1414
		irq_data->hwirq = (index << 16) + i;
1415
		irq_data->chip_data = ird;
1416
		irq_data->chip = &intel_ir_chip;
1417
		intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i);
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
	return 0;

out_free_data:
	intel_free_irq_resources(domain, virq, i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
}

static void intel_irq_remapping_free(struct irq_domain *domain,
				     unsigned int virq, unsigned int nr_irqs)
{
	intel_free_irq_resources(domain, virq, nr_irqs);
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}

1436
static int intel_irq_remapping_activate(struct irq_domain *domain,
1437
					struct irq_data *irq_data, bool reserve)
1438
{
1439
	intel_ir_reconfigure_irte(irq_data, true);
1440
	return 0;
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
}

static void intel_irq_remapping_deactivate(struct irq_domain *domain,
					   struct irq_data *irq_data)
{
	struct intel_ir_data *data = irq_data->chip_data;
	struct irte entry;

	memset(&entry, 0, sizeof(entry));
	modify_irte(&data->irq_2_iommu, &entry);
}

1453
static const struct irq_domain_ops intel_ir_domain_ops = {
1454 1455 1456 1457
	.alloc = intel_irq_remapping_alloc,
	.free = intel_irq_remapping_free,
	.activate = intel_irq_remapping_activate,
	.deactivate = intel_irq_remapping_deactivate,
1458
};
1459

1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
/*
 * Support of Interrupt Remapping Unit Hotplug
 */
static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
{
	int ret;
	int eim = x2apic_enabled();

	if (eim && !ecap_eim_support(iommu->ecap)) {
		pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
			iommu->reg_phys, iommu->ecap);
		return -ENODEV;
	}

	if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
		pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
			iommu->reg_phys);
		return -ENODEV;
	}

	/* TODO: check all IOAPICs are covered by IOMMU */

	/* Setup Interrupt-remapping now. */
	ret = intel_setup_irq_remapping(iommu);
	if (ret) {
1485 1486
		pr_err("Failed to setup irq remapping for %s\n",
		       iommu->name);
1487 1488
		intel_teardown_irq_remapping(iommu);
		ir_remove_ioapic_hpet_scope(iommu);
1489
	} else {
1490
		iommu_enable_irq_remapping(iommu);
1491 1492 1493 1494 1495
	}

	return ret;
}

1496 1497
int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
{
1498 1499 1500 1501 1502 1503 1504 1505 1506
	int ret = 0;
	struct intel_iommu *iommu = dmaru->iommu;

	if (!irq_remapping_enabled)
		return 0;
	if (iommu == NULL)
		return -EINVAL;
	if (!ecap_ir_support(iommu->ecap))
		return 0;
1507 1508 1509
	if (irq_remapping_cap(IRQ_POSTING_CAP) &&
	    !cap_pi_support(iommu->cap))
		return -EBUSY;
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527

	if (insert) {
		if (!iommu->ir_table)
			ret = dmar_ir_add(dmaru, iommu);
	} else {
		if (iommu->ir_table) {
			if (!bitmap_empty(iommu->ir_table->bitmap,
					  INTR_REMAP_TABLE_ENTRIES)) {
				ret = -EBUSY;
			} else {
				iommu_disable_irq_remapping(iommu);
				intel_teardown_irq_remapping(iommu);
				ir_remove_ioapic_hpet_scope(iommu);
			}
		}
	}

	return ret;
1528
}