kvm-s390.c 86.0 KB
Newer Older
1
/*
2
 * hosting zSeries kernel virtual machines
3
 *
4
 * Copyright IBM Corp. 2008, 2009
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
13
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14
 *               Jason J. Herne <jjherne@us.ibm.com>
15 16 17 18 19
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21 22 23
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
24
#include <linux/mman.h>
25
#include <linux/module.h>
26
#include <linux/random.h>
27
#include <linux/slab.h>
28
#include <linux/timer.h>
29
#include <linux/vmalloc.h>
30
#include <linux/bitmap.h>
31
#include <asm/asm-offsets.h>
32
#include <asm/lowcore.h>
33
#include <asm/stp.h>
34
#include <asm/pgtable.h>
35
#include <asm/gmap.h>
36
#include <asm/nmi.h>
37
#include <asm/switch_to.h>
38
#include <asm/isc.h>
39
#include <asm/sclp.h>
40
#include <asm/cpacf.h>
41
#include <asm/timex.h>
42
#include "kvm-s390.h"
43 44
#include "gaccess.h"

45 46 47 48
#define KMSG_COMPONENT "kvm-s390"
#undef pr_fmt
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

49 50
#define CREATE_TRACE_POINTS
#include "trace.h"
51
#include "trace-s390.h"
52

53
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
54 55 56
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
57

58 59 60 61
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
62
	{ "exit_null", VCPU_STAT(exit_null) },
63 64 65 66
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
67
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
68
	{ "exit_pei", VCPU_STAT(exit_pei) },
69 70
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
71
	{ "exit_operation_exception", VCPU_STAT(exit_operation_exception) },
72
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
73
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
74
	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
75
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
76
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
77
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
78 79
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
80
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
81
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
82 83 84 85 86 87 88
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
89
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
90 91 92 93 94
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
95
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
96 97
	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
98
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
99 100
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
101
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
J
Janosch Frank 已提交
102
	{ "instruction_sthyi", VCPU_STAT(instruction_sthyi) },
103
	{ "instruction_sie", VCPU_STAT(instruction_sie) },
104
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
105
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
106
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
107
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
108 109
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
110
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
111 112
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
113
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
114 115 116
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
117 118 119
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
120
	{ "diagnose_10", VCPU_STAT(diagnose_10) },
121
	{ "diagnose_44", VCPU_STAT(diagnose_44) },
122
	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
123 124 125
	{ "diagnose_258", VCPU_STAT(diagnose_258) },
	{ "diagnose_308", VCPU_STAT(diagnose_308) },
	{ "diagnose_500", VCPU_STAT(diagnose_500) },
126 127 128
	{ NULL }
};

129 130 131 132 133
/* allow nested virtualization in KVM (if enabled by user space) */
static int nested;
module_param(nested, int, S_IRUGO);
MODULE_PARM_DESC(nested, "Nested virtualization support");

134
/* upper facilities limit for kvm */
135 136 137
unsigned long kvm_s390_fac_list_mask[16] = {
	0xffe6000000000000UL,
	0x005e000000000000UL,
138
};
139

140
unsigned long kvm_s390_fac_list_mask_size(void)
141
{
142 143
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
144 145
}

146 147
/* available cpu features supported by kvm */
static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
148 149
/* available subfunctions indicated via query / "test bit" */
static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
150

151
static struct gmap_notifier gmap_notifier;
152
static struct gmap_notifier vsie_gmap_notifier;
153
debug_info_t *kvm_s390_dbf;
154

155
/* Section: not file related */
156
int kvm_arch_hardware_enable(void)
157 158
{
	/* every s390 is virtualization enabled ;-) */
159
	return 0;
160 161
}

162 163
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
			      unsigned long end);
164

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
/*
 * This callback is executed during stop_machine(). All CPUs are therefore
 * temporarily stopped. In order not to change guest behavior, we have to
 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
 * so a CPU won't be stopped while calculating with the epoch.
 */
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
			  void *v)
{
	struct kvm *kvm;
	struct kvm_vcpu *vcpu;
	int i;
	unsigned long long *delta = v;

	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm->arch.epoch -= *delta;
		kvm_for_each_vcpu(i, vcpu, kvm) {
			vcpu->arch.sie_block->epoch -= *delta;
183 184
			if (vcpu->arch.cputm_enabled)
				vcpu->arch.cputm_start += *delta;
185 186
			if (vcpu->arch.vsie_block)
				vcpu->arch.vsie_block->epoch -= *delta;
187 188 189 190 191 192 193 194 195
		}
	}
	return NOTIFY_OK;
}

static struct notifier_block kvm_clock_notifier = {
	.notifier_call = kvm_clock_sync,
};

196 197
int kvm_arch_hardware_setup(void)
{
198
	gmap_notifier.notifier_call = kvm_gmap_notifier;
199
	gmap_register_pte_notifier(&gmap_notifier);
200 201
	vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier;
	gmap_register_pte_notifier(&vsie_gmap_notifier);
202 203
	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
				       &kvm_clock_notifier);
204 205 206 207 208
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
209
	gmap_unregister_pte_notifier(&gmap_notifier);
210
	gmap_unregister_pte_notifier(&vsie_gmap_notifier);
211 212
	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
					 &kvm_clock_notifier);
213 214
}

215 216 217 218 219
static void allow_cpu_feat(unsigned long nr)
{
	set_bit_inv(nr, kvm_s390_available_cpu_feat);
}

220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
static inline int plo_test_bit(unsigned char nr)
{
	register unsigned long r0 asm("0") = (unsigned long) nr | 0x100;
	int cc = 3; /* subfunction not available */

	asm volatile(
		/* Parameter registers are ignored for "test bit" */
		"	plo	0,0,0,0(0)\n"
		"	ipm	%0\n"
		"	srl	%0,28\n"
		: "=d" (cc)
		: "d" (r0)
		: "cc");
	return cc == 0;
}

236 237
static void kvm_s390_cpu_feat_init(void)
{
238 239 240 241 242 243 244 245
	int i;

	for (i = 0; i < 256; ++i) {
		if (plo_test_bit(i))
			kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
	}

	if (test_facility(28)) /* TOD-clock steering */
246 247 248
		ptff(kvm_s390_available_subfunc.ptff,
		     sizeof(kvm_s390_available_subfunc.ptff),
		     PTFF_QAF);
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267

	if (test_facility(17)) { /* MSA */
		__cpacf_query(CPACF_KMAC, kvm_s390_available_subfunc.kmac);
		__cpacf_query(CPACF_KMC, kvm_s390_available_subfunc.kmc);
		__cpacf_query(CPACF_KM, kvm_s390_available_subfunc.km);
		__cpacf_query(CPACF_KIMD, kvm_s390_available_subfunc.kimd);
		__cpacf_query(CPACF_KLMD, kvm_s390_available_subfunc.klmd);
	}
	if (test_facility(76)) /* MSA3 */
		__cpacf_query(CPACF_PCKMO, kvm_s390_available_subfunc.pckmo);
	if (test_facility(77)) { /* MSA4 */
		__cpacf_query(CPACF_KMCTR, kvm_s390_available_subfunc.kmctr);
		__cpacf_query(CPACF_KMF, kvm_s390_available_subfunc.kmf);
		__cpacf_query(CPACF_KMO, kvm_s390_available_subfunc.kmo);
		__cpacf_query(CPACF_PCC, kvm_s390_available_subfunc.pcc);
	}
	if (test_facility(57)) /* MSA5 */
		__cpacf_query(CPACF_PPNO, kvm_s390_available_subfunc.ppno);

268 269
	if (MACHINE_HAS_ESOP)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
270 271 272 273 274
	/*
	 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow),
	 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing).
	 */
	if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao ||
275
	    !test_facility(3) || !nested)
276 277
		return;
	allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2);
278 279
	if (sclp.has_64bscao)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO);
280 281
	if (sclp.has_siif)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF);
282 283
	if (sclp.has_gpere)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE);
284 285
	if (sclp.has_gsls)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS);
286 287
	if (sclp.has_ib)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB);
288 289
	if (sclp.has_cei)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI);
290 291
	if (sclp.has_ibs)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS);
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
	/*
	 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make
	 * all skey handling functions read/set the skey from the PGSTE
	 * instead of the real storage key.
	 *
	 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make
	 * pages being detected as preserved although they are resident.
	 *
	 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will
	 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY.
	 *
	 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and
	 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be
	 * correctly shadowed. We can do that for the PGSTE but not for PTE.I.
	 *
	 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We
	 * cannot easily shadow the SCA because of the ipte lock.
	 */
310 311
}

312 313
int kvm_arch_init(void *opaque)
{
314 315 316 317 318 319 320 321 322
	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
	if (!kvm_s390_dbf)
		return -ENOMEM;

	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
		debug_unregister(kvm_s390_dbf);
		return -ENOMEM;
	}

323 324
	kvm_s390_cpu_feat_init();

325 326
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
327 328
}

329 330 331 332 333
void kvm_arch_exit(void)
{
	debug_unregister(kvm_s390_dbf);
}

334 335 336 337 338 339 340 341 342
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

343
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
344
{
345 346
	int r;

347
	switch (ext) {
348
	case KVM_CAP_S390_PSW:
349
	case KVM_CAP_S390_GMAP:
350
	case KVM_CAP_SYNC_MMU:
351 352 353
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
354
	case KVM_CAP_ASYNC_PF:
355
	case KVM_CAP_SYNC_REGS:
356
	case KVM_CAP_ONE_REG:
357
	case KVM_CAP_ENABLE_CAP:
358
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
359
	case KVM_CAP_IOEVENTFD:
360
	case KVM_CAP_DEVICE_CTRL:
361
	case KVM_CAP_ENABLE_CAP_VM:
362
	case KVM_CAP_S390_IRQCHIP:
363
	case KVM_CAP_VM_ATTRIBUTES:
364
	case KVM_CAP_MP_STATE:
365
	case KVM_CAP_S390_INJECT_IRQ:
366
	case KVM_CAP_S390_USER_SIGP:
367
	case KVM_CAP_S390_USER_STSI:
368
	case KVM_CAP_S390_SKEYS:
369
	case KVM_CAP_S390_IRQ_STATE:
370
	case KVM_CAP_S390_USER_INSTR0:
371 372
		r = 1;
		break;
373 374 375
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
376 377
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
378 379 380
		r = KVM_S390_BSCA_CPU_SLOTS;
		if (sclp.has_esca && sclp.has_64bscao)
			r = KVM_S390_ESCA_CPU_SLOTS;
381
		break;
382 383 384
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
385
	case KVM_CAP_S390_COW:
386
		r = MACHINE_HAS_ESOP;
387
		break;
388 389 390
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
391 392 393
	case KVM_CAP_S390_RI:
		r = test_facility(64);
		break;
394
	default:
395
		r = 0;
396
	}
397
	return r;
398 399
}

400 401 402 403 404 405 406 407 408 409 410 411
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

412
		if (test_and_clear_guest_dirty(gmap->mm, address))
413
			mark_page_dirty(kvm, cur_gfn);
414 415
		if (fatal_signal_pending(current))
			return;
416
		cond_resched();
417 418 419
	}
}

420
/* Section: vm related */
421 422
static void sca_del_vcpu(struct kvm_vcpu *vcpu);

423 424 425 426 427 428
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
429 430
	int r;
	unsigned long n;
431
	struct kvm_memslots *slots;
432 433 434 435 436 437 438 439 440
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

441 442
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
461 462
}

463 464 465 466 467 468 469 470 471 472
static void icpt_operexc_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu);
	}
}

473 474 475 476 477 478 479 480
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
481
	case KVM_CAP_S390_IRQCHIP:
482
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
483 484 485
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
486
	case KVM_CAP_S390_USER_SIGP:
487
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
488 489 490
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
491
	case KVM_CAP_S390_VECTOR_REGISTERS:
492
		mutex_lock(&kvm->lock);
493
		if (kvm->created_vcpus) {
494 495
			r = -EBUSY;
		} else if (MACHINE_HAS_VX) {
496 497
			set_kvm_facility(kvm->arch.model.fac_mask, 129);
			set_kvm_facility(kvm->arch.model.fac_list, 129);
498 499 500
			r = 0;
		} else
			r = -EINVAL;
501
		mutex_unlock(&kvm->lock);
502 503
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
			 r ? "(not available)" : "(success)");
504
		break;
505 506 507
	case KVM_CAP_S390_RI:
		r = -EINVAL;
		mutex_lock(&kvm->lock);
508
		if (kvm->created_vcpus) {
509 510
			r = -EBUSY;
		} else if (test_facility(64)) {
511 512
			set_kvm_facility(kvm->arch.model.fac_mask, 64);
			set_kvm_facility(kvm->arch.model.fac_list, 64);
513 514 515 516 517 518
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
			 r ? "(not available)" : "(success)");
		break;
519
	case KVM_CAP_S390_USER_STSI:
520
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
521 522 523
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
524 525 526 527 528 529
	case KVM_CAP_S390_USER_INSTR0:
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0");
		kvm->arch.user_instr0 = 1;
		icpt_operexc_on_all_vcpus(kvm);
		r = 0;
		break;
530 531 532 533 534 535 536
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

537 538 539 540 541 542 543
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
544
		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
545 546
			 kvm->arch.mem_limit);
		if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
547 548 549 550 551 552 553 554 555 556
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
557 558 559 560 561
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
562
		ret = -ENXIO;
563
		if (!sclp.has_cmma)
564 565
			break;

566
		ret = -EBUSY;
567
		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
568
		mutex_lock(&kvm->lock);
569
		if (!kvm->created_vcpus) {
570 571 572 573 574 575
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
576 577 578
		ret = -ENXIO;
		if (!sclp.has_cmma)
			break;
579 580 581 582
		ret = -EINVAL;
		if (!kvm->arch.use_cmma)
			break;

583
		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
584 585
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
586
		s390_reset_cmma(kvm->arch.gmap->mm);
587 588 589 590
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
591 592 593 594 595 596 597 598 599
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

600 601
		if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
		    new_limit > kvm->arch.mem_limit)
602 603
			return -E2BIG;

604 605 606
		if (!new_limit)
			return -EINVAL;

607
		/* gmap_create takes last usable address */
608 609 610
		if (new_limit != KVM_S390_NO_MEM_LIMIT)
			new_limit -= 1;

611 612
		ret = -EBUSY;
		mutex_lock(&kvm->lock);
613
		if (!kvm->created_vcpus) {
614 615
			/* gmap_create will round the limit up */
			struct gmap *new = gmap_create(current->mm, new_limit);
616 617 618 619

			if (!new) {
				ret = -ENOMEM;
			} else {
620
				gmap_remove(kvm->arch.gmap);
621 622 623 624 625 626
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
627 628 629
		VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
		VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
			 (void *) kvm->arch.gmap->asce);
630 631
		break;
	}
632 633 634 635 636 637 638
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

639 640 641 642 643 644 645
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

646
	if (!test_kvm_facility(kvm, 76))
647 648 649 650 651 652 653 654 655
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
656
		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
657 658 659 660 661 662
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
663
		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
664 665 666 667 668
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
669
		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
670 671 672 673 674
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
675
		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
676 677 678 679 680 681 682 683 684 685 686 687 688 689
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

690 691 692 693 694 695 696 697 698 699
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;
700
	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
701 702 703 704 705 706

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
707
	u64 gtod;
708 709 710 711

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

712
	kvm_s390_set_tod_clock(kvm, gtod);
713
	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;
745
	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
746 747 748 749 750 751

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
752
	u64 gtod;
753

754
	gtod = kvm_s390_get_tod_clock_fast(kvm);
755 756
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;
757
	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

783 784 785
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
786
	u16 lowest_ibc, unblocked_ibc;
787 788 789
	int ret = 0;

	mutex_lock(&kvm->lock);
790
	if (kvm->created_vcpus) {
791 792 793 794 795 796 797 798 799 800
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
801
		kvm->arch.model.cpuid = proc->cpuid;
802 803
		lowest_ibc = sclp.ibc >> 16 & 0xfff;
		unblocked_ibc = sclp.ibc & 0xfff;
804
		if (lowest_ibc && proc->ibc) {
805 806 807 808 809 810 811
			if (proc->ibc > unblocked_ibc)
				kvm->arch.model.ibc = unblocked_ibc;
			else if (proc->ibc < lowest_ibc)
				kvm->arch.model.ibc = lowest_ibc;
			else
				kvm->arch.model.ibc = proc->ibc;
		}
812
		memcpy(kvm->arch.model.fac_list, proc->fac_list,
813 814 815 816 817 818 819 820 821
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
static int kvm_s390_set_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;
	int ret = -EBUSY;

	if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
		return -EFAULT;
	if (!bitmap_subset((unsigned long *) data.feat,
			   kvm_s390_available_cpu_feat,
			   KVM_S390_VM_CPU_FEAT_NR_BITS))
		return -EINVAL;

	mutex_lock(&kvm->lock);
	if (!atomic_read(&kvm->online_vcpus)) {
		bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat,
			    KVM_S390_VM_CPU_FEAT_NR_BITS);
		ret = 0;
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

845 846 847 848 849 850 851 852 853 854
static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once supported by kernel + hw, we have to store the subfunctions
	 * in kvm->arch and remember that user space configured them.
	 */
	return -ENXIO;
}

855 856 857 858 859 860 861 862
static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
863 864 865
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_set_processor_feat(kvm, attr);
		break;
866 867 868
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_set_processor_subfunc(kvm, attr);
		break;
869 870 871 872 873 874 875 876 877 878 879 880 881 882
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
883
	proc->cpuid = kvm->arch.model.cpuid;
884
	proc->ibc = kvm->arch.model.ibc;
885 886
	memcpy(&proc->fac_list, kvm->arch.model.fac_list,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
905
	mach->ibc = sclp.ibc;
906
	memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
907
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
908
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
909
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
910 911 912 913 914 915 916
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
static int kvm_s390_get_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

static int kvm_s390_get_machine_feat(struct kvm *kvm,
				     struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat,
		    kvm_s390_available_cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once we can actually configure subfunctions (kernel + hw support),
	 * we have to check if they were already set by user space, if so copy
	 * them from kvm->arch.
	 */
	return -ENXIO;
}

static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
					struct kvm_device_attr *attr)
{
	if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
	    sizeof(struct kvm_s390_vm_cpu_subfunc)))
		return -EFAULT;
	return 0;
}
961 962 963 964 965 966 967 968 969 970 971
static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
972 973 974 975 976 977
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_get_processor_feat(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_FEAT:
		ret = kvm_s390_get_machine_feat(kvm, attr);
		break;
978 979 980 981 982 983
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_get_processor_subfunc(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
		ret = kvm_s390_get_machine_subfunc(kvm, attr);
		break;
984 985 986 987
	}
	return ret;
}

988 989 990 991 992
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
993
	case KVM_S390_VM_MEM_CTRL:
994
		ret = kvm_s390_set_mem_control(kvm, attr);
995
		break;
996 997 998
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
999 1000 1001
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
1002 1003 1004
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
1015 1016 1017 1018 1019 1020
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
1021 1022 1023
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
1024 1025 1026
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
1027 1028 1029 1030 1031 1032
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
1033 1034 1035 1036 1037 1038 1039
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
1040 1041 1042 1043
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
1044 1045
			ret = sclp.has_cmma ? 0 : -ENXIO;
			break;
1046
		case KVM_S390_VM_MEM_LIMIT_SIZE:
1047 1048 1049 1050 1051 1052 1053
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1065 1066 1067 1068
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
1069 1070
		case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		case KVM_S390_VM_CPU_MACHINE_FEAT:
1071
		case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
1072 1073
			ret = 0;
			break;
1074 1075
		/* configuring subfunctions is not supported yet */
		case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1076 1077 1078 1079 1080
		default:
			ret = -ENXIO;
			break;
		}
		break;
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1094 1095 1096 1097 1098 1099 1100 1101
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
	if (!mm_use_skey(current->mm))
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

1126
	down_read(&current->mm->mmap_sem);
1127 1128 1129 1130
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1131
			break;
1132 1133
		}

1134 1135
		r = get_guest_storage_key(current->mm, hva, &keys[i]);
		if (r)
1136
			break;
1137
	}
1138 1139 1140 1141 1142 1143 1144
	up_read(&current->mm->mmap_sem);

	if (!r) {
		r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
				 sizeof(uint8_t) * args->count);
		if (r)
			r = -EFAULT;
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
	}

	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
1179 1180 1181
	r = s390_enable_skey();
	if (r)
		goto out;
1182

1183
	down_read(&current->mm->mmap_sem);
1184 1185 1186 1187
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1188
			break;
1189 1190 1191 1192 1193
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
1194
			break;
1195 1196
		}

1197
		r = set_guest_storage_key(current->mm, hva, keys[i], 0);
1198
		if (r)
1199
			break;
1200
	}
1201
	up_read(&current->mm->mmap_sem);
1202 1203 1204 1205 1206
out:
	kvfree(keys);
	return r;
}

1207 1208 1209 1210 1211
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
1212
	struct kvm_device_attr attr;
1213 1214 1215
	int r;

	switch (ioctl) {
1216 1217 1218 1219 1220 1221 1222 1223 1224
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
1225 1226 1227 1228 1229 1230 1231 1232
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
1233 1234 1235 1236 1237 1238 1239
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
1240
			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
1241 1242 1243
		}
		break;
	}
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
1285
	default:
1286
		r = -ENOTTY;
1287 1288 1289 1290 1291
	}

	return r;
}

1292 1293 1294
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
1295
	u32 cc = 0;
1296

1297
	memset(config, 0, 128);
1298 1299 1300 1301
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
1302
		"0: ipm %0\n"
1303
		"srl %0,28\n"
1304 1305 1306
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

1319
	if (test_facility(12)) {
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

1341
static u64 kvm_s390_get_initial_cpuid(void)
1342
{
1343 1344 1345 1346 1347
	struct cpuid cpuid;

	get_cpu_id(&cpuid);
	cpuid.version = 0xff;
	return *((u64 *) &cpuid);
1348 1349
}

1350
static void kvm_s390_crypto_init(struct kvm *kvm)
1351
{
1352
	if (!test_kvm_facility(kvm, 76))
1353
		return;
1354

1355
	kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
1356
	kvm_s390_set_crycb_format(kvm);
1357

1358 1359 1360 1361 1362 1363 1364
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1365 1366
}

1367 1368 1369
static void sca_dispose(struct kvm *kvm)
{
	if (kvm->arch.use_esca)
1370
		free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1371 1372 1373 1374 1375
	else
		free_page((unsigned long)(kvm->arch.sca));
	kvm->arch.sca = NULL;
}

1376
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1377
{
1378
	gfp_t alloc_flags = GFP_KERNEL;
1379
	int i, rc;
1380
	char debug_name[16];
1381
	static unsigned long sca_offset;
1382

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

1394 1395
	rc = s390_enable_sie();
	if (rc)
1396
		goto out_err;
1397

1398 1399
	rc = -ENOMEM;

J
Janosch Frank 已提交
1400 1401
	ratelimit_state_init(&kvm->arch.sthyi_limit, 5 * HZ, 500);

1402
	kvm->arch.use_esca = 0; /* start with basic SCA */
1403 1404
	if (!sclp.has_64bscao)
		alloc_flags |= GFP_DMA;
1405
	rwlock_init(&kvm->arch.sca_lock);
1406
	kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags);
1407
	if (!kvm->arch.sca)
1408
		goto out_err;
1409
	spin_lock(&kvm_lock);
1410
	sca_offset += 16;
1411
	if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1412
		sca_offset = 0;
1413 1414
	kvm->arch.sca = (struct bsca_block *)
			((char *) kvm->arch.sca + sca_offset);
1415
	spin_unlock(&kvm_lock);
1416 1417 1418

	sprintf(debug_name, "kvm-%u", current->pid);

1419
	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1420
	if (!kvm->arch.dbf)
1421
		goto out_err;
1422

1423 1424 1425
	kvm->arch.sie_page2 =
	     (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.sie_page2)
1426
		goto out_err;
1427

1428
	/* Populate the facility mask initially. */
1429
	memcpy(kvm->arch.model.fac_mask, S390_lowcore.stfle_fac_list,
1430
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1431 1432
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
1433
			kvm->arch.model.fac_mask[i] &= kvm_s390_fac_list_mask[i];
1434
		else
1435
			kvm->arch.model.fac_mask[i] = 0UL;
1436 1437
	}

1438
	/* Populate the facility list initially. */
1439 1440
	kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
	memcpy(kvm->arch.model.fac_list, kvm->arch.model.fac_mask,
1441 1442
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

J
Janosch Frank 已提交
1443 1444 1445
	set_kvm_facility(kvm->arch.model.fac_mask, 74);
	set_kvm_facility(kvm->arch.model.fac_list, 74);

1446
	kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
1447
	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1448

1449
	kvm_s390_crypto_init(kvm);
1450

1451
	spin_lock_init(&kvm->arch.float_int.lock);
1452 1453
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1454
	init_waitqueue_head(&kvm->arch.ipte_wq);
1455
	mutex_init(&kvm->arch.ipte_mutex);
1456

1457
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1458
	VM_EVENT(kvm, 3, "vm created with type %lu", type);
1459

1460 1461
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
1462
		kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
1463
	} else {
1464 1465 1466 1467 1468
		if (sclp.hamax == U64_MAX)
			kvm->arch.mem_limit = TASK_MAX_SIZE;
		else
			kvm->arch.mem_limit = min_t(unsigned long, TASK_MAX_SIZE,
						    sclp.hamax + 1);
1469
		kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1);
1470
		if (!kvm->arch.gmap)
1471
			goto out_err;
1472
		kvm->arch.gmap->private = kvm;
1473
		kvm->arch.gmap->pfault_enabled = 0;
1474
	}
1475 1476

	kvm->arch.css_support = 0;
1477
	kvm->arch.use_irqchip = 0;
1478
	kvm->arch.epoch = 0;
1479

1480
	spin_lock_init(&kvm->arch.start_stop_lock);
1481
	kvm_s390_vsie_init(kvm);
1482
	KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
1483

1484
	return 0;
1485
out_err:
1486
	free_page((unsigned long)kvm->arch.sie_page2);
1487
	debug_unregister(kvm->arch.dbf);
1488
	sca_dispose(kvm);
1489
	KVM_EVENT(3, "creation of vm failed: %d", rc);
1490
	return rc;
1491 1492
}

1493 1494 1495
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1496
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1497
	kvm_s390_clear_local_irqs(vcpu);
1498
	kvm_clear_async_pf_completion_queue(vcpu);
1499
	if (!kvm_is_ucontrol(vcpu->kvm))
1500
		sca_del_vcpu(vcpu);
1501 1502

	if (kvm_is_ucontrol(vcpu->kvm))
1503
		gmap_remove(vcpu->arch.gmap);
1504

1505
	if (vcpu->kvm->arch.use_cmma)
1506
		kvm_s390_vcpu_unsetup_cmma(vcpu);
1507
	free_page((unsigned long)(vcpu->arch.sie_block));
1508

1509
	kvm_vcpu_uninit(vcpu);
1510
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1511 1512 1513 1514 1515
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
1516
	struct kvm_vcpu *vcpu;
1517

1518 1519 1520 1521 1522 1523 1524 1525 1526
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
1527 1528
}

1529 1530
void kvm_arch_destroy_vm(struct kvm *kvm)
{
1531
	kvm_free_vcpus(kvm);
1532
	sca_dispose(kvm);
1533
	debug_unregister(kvm->arch.dbf);
1534
	free_page((unsigned long)kvm->arch.sie_page2);
1535
	if (!kvm_is_ucontrol(kvm))
1536
		gmap_remove(kvm->arch.gmap);
1537
	kvm_s390_destroy_adapters(kvm);
1538
	kvm_s390_clear_float_irqs(kvm);
1539
	kvm_s390_vsie_destroy(kvm);
1540
	KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
1541 1542 1543
}

/* Section: vcpu related */
1544 1545
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
1546
	vcpu->arch.gmap = gmap_create(current->mm, -1UL);
1547 1548 1549 1550 1551 1552 1553
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

1554 1555
static void sca_del_vcpu(struct kvm_vcpu *vcpu)
{
1556
	read_lock(&vcpu->kvm->arch.sca_lock);
1557 1558
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1559

1560
		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1561
		sca->cpu[vcpu->vcpu_id].sda = 0;
1562 1563 1564 1565
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1566
		sca->cpu[vcpu->vcpu_id].sda = 0;
1567
	}
1568
	read_unlock(&vcpu->kvm->arch.sca_lock);
1569 1570
}

1571
static void sca_add_vcpu(struct kvm_vcpu *vcpu)
1572
{
1573 1574 1575
	read_lock(&vcpu->kvm->arch.sca_lock);
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1576

1577
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1578 1579
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
1580
		vcpu->arch.sie_block->ecb2 |= 0x04U;
1581
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1582
	} else {
1583
		struct bsca_block *sca = vcpu->kvm->arch.sca;
1584

1585
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1586 1587
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
1588
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1589
	}
1590
	read_unlock(&vcpu->kvm->arch.sca_lock);
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
}

/* Basic SCA to Extended SCA data copy routines */
static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
{
	d->sda = s->sda;
	d->sigp_ctrl.c = s->sigp_ctrl.c;
	d->sigp_ctrl.scn = s->sigp_ctrl.scn;
}

static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
{
	int i;

	d->ipte_control = s->ipte_control;
	d->mcn[0] = s->mcn;
	for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
		sca_copy_entry(&d->cpu[i], &s->cpu[i]);
}

static int sca_switch_to_extended(struct kvm *kvm)
{
	struct bsca_block *old_sca = kvm->arch.sca;
	struct esca_block *new_sca;
	struct kvm_vcpu *vcpu;
	unsigned int vcpu_idx;
	u32 scaol, scaoh;

	new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
	if (!new_sca)
		return -ENOMEM;

	scaoh = (u32)((u64)(new_sca) >> 32);
	scaol = (u32)(u64)(new_sca) & ~0x3fU;

	kvm_s390_vcpu_block_all(kvm);
	write_lock(&kvm->arch.sca_lock);

	sca_copy_b_to_e(new_sca, old_sca);

	kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
		vcpu->arch.sie_block->scaoh = scaoh;
		vcpu->arch.sie_block->scaol = scaol;
		vcpu->arch.sie_block->ecb2 |= 0x04U;
	}
	kvm->arch.sca = new_sca;
	kvm->arch.use_esca = 1;

	write_unlock(&kvm->arch.sca_lock);
	kvm_s390_vcpu_unblock_all(kvm);

	free_page((unsigned long)old_sca);

1644 1645
	VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
		 old_sca, kvm->arch.sca);
1646
	return 0;
1647 1648 1649 1650
}

static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
{
1651 1652 1653 1654
	int rc;

	if (id < KVM_S390_BSCA_CPU_SLOTS)
		return true;
1655
	if (!sclp.has_esca || !sclp.has_64bscao)
1656 1657 1658 1659 1660 1661 1662
		return false;

	mutex_lock(&kvm->lock);
	rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
	mutex_unlock(&kvm->lock);

	return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
1663 1664
}

1665 1666
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1667 1668
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1669 1670
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
1671
				    KVM_SYNC_ACRS |
1672 1673 1674
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
1675
	kvm_s390_set_prefix(vcpu, 0);
1676 1677
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
1678 1679 1680 1681
	/* fprs can be synchronized via vrs, even if the guest has no vx. With
	 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
	 */
	if (MACHINE_HAS_VX)
1682
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1683 1684
	else
		vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
1685 1686 1687 1688

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

1689 1690 1691
	return 0;
}

1692 1693 1694 1695
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
1696
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1697
	vcpu->arch.cputm_start = get_tod_clock_fast();
1698
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1699 1700 1701 1702 1703 1704
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
1705
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1706 1707
	vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	vcpu->arch.cputm_start = 0;
1708
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_enabled);
	vcpu->arch.cputm_enabled = true;
	__start_cpu_timer_accounting(vcpu);
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
	__stop_cpu_timer_accounting(vcpu);
	vcpu->arch.cputm_enabled = false;
}

static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__enable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__disable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

1741 1742 1743
/* set the cpu timer - may only be called from the VCPU thread itself */
void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
{
1744
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1745
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1746 1747
	if (vcpu->arch.cputm_enabled)
		vcpu->arch.cputm_start = get_tod_clock_fast();
1748
	vcpu->arch.sie_block->cputm = cputm;
1749
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1750
	preempt_enable();
1751 1752
}

1753
/* update and get the cpu timer - can also be called from other VCPU threads */
1754 1755
__u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
{
1756
	unsigned int seq;
1757 1758 1759 1760 1761
	__u64 value;

	if (unlikely(!vcpu->arch.cputm_enabled))
		return vcpu->arch.sie_block->cputm;

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	do {
		seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
		/*
		 * If the writer would ever execute a read in the critical
		 * section, e.g. in irq context, we have a deadlock.
		 */
		WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
		value = vcpu->arch.sie_block->cputm;
		/* if cputm_start is 0, accounting is being started/stopped */
		if (likely(vcpu->arch.cputm_start))
			value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	} while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
	preempt_enable();
1776
	return value;
1777 1778
}

1779 1780
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
1781
	/* Save host register state */
1782
	save_fpu_regs();
1783 1784
	vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
	vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
1785

1786 1787 1788 1789
	if (MACHINE_HAS_VX)
		current->thread.fpu.regs = vcpu->run->s.regs.vrs;
	else
		current->thread.fpu.regs = vcpu->run->s.regs.fprs;
1790
	current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
1791
	if (test_fp_ctl(current->thread.fpu.fpc))
1792
		/* User space provided an invalid FPC, let's clear it */
1793 1794 1795
		current->thread.fpu.fpc = 0;

	save_access_regs(vcpu->arch.host_acrs);
1796
	restore_access_regs(vcpu->run->s.regs.acrs);
1797
	gmap_enable(vcpu->arch.enabled_gmap);
1798
	atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1799
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1800
		__start_cpu_timer_accounting(vcpu);
1801
	vcpu->cpu = cpu;
1802 1803 1804 1805
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
1806
	vcpu->cpu = -1;
1807
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1808
		__stop_cpu_timer_accounting(vcpu);
1809
	atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1810 1811
	vcpu->arch.enabled_gmap = gmap_get_enabled();
	gmap_disable(vcpu->arch.enabled_gmap);
1812

1813
	/* Save guest register state */
1814
	save_fpu_regs();
1815
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
1816

1817 1818 1819
	/* Restore host register state */
	current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
	current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
1820 1821

	save_access_regs(vcpu->run->s.regs.acrs);
1822 1823 1824 1825 1826 1827 1828 1829
	restore_access_regs(vcpu->arch.host_acrs);
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
1830
	kvm_s390_set_prefix(vcpu, 0);
1831
	kvm_s390_set_cpu_timer(vcpu, 0);
1832 1833 1834 1835 1836
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
1837 1838 1839
	/* make sure the new fpc will be lazily loaded */
	save_fpu_regs();
	current->thread.fpu.fpc = 0;
1840
	vcpu->arch.sie_block->gbea = 1;
1841
	vcpu->arch.sie_block->pp = 0;
1842 1843
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1844 1845
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
1846
	kvm_s390_clear_local_irqs(vcpu);
1847 1848
}

1849
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1850
{
1851
	mutex_lock(&vcpu->kvm->lock);
1852
	preempt_disable();
1853
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1854
	preempt_enable();
1855
	mutex_unlock(&vcpu->kvm->lock);
1856
	if (!kvm_is_ucontrol(vcpu->kvm)) {
1857
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1858
		sca_add_vcpu(vcpu);
1859
	}
1860 1861
	if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0)
		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
1862 1863
	/* make vcpu_load load the right gmap on the first trigger */
	vcpu->arch.enabled_gmap = vcpu->arch.gmap;
1864 1865
}

1866 1867
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
1868
	if (!test_kvm_facility(vcpu->kvm, 76))
1869 1870
		return;

1871 1872 1873 1874 1875 1876 1877
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

1878 1879 1880
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

	vcpu->arch.sie_block->ecb2 |= 0x80;
	vcpu->arch.sie_block->ecb2 &= ~0x08;
	return 0;
}

1898 1899 1900 1901 1902
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.sie_block->ibc = model->ibc;
1903
	if (test_kvm_facility(vcpu->kvm, 7))
1904
		vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list;
1905 1906
}

1907 1908
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
1909
	int rc = 0;
1910

1911 1912
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
1913 1914
						    CPUSTAT_STOPPED);

1915
	if (test_kvm_facility(vcpu->kvm, 78))
1916
		atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1917
	else if (test_kvm_facility(vcpu->kvm, 8))
1918
		atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1919

1920 1921
	kvm_s390_vcpu_setup_model(vcpu);

1922 1923 1924
	/* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */
	if (MACHINE_HAS_ESOP)
		vcpu->arch.sie_block->ecb |= 0x02;
1925 1926
	if (test_kvm_facility(vcpu->kvm, 9))
		vcpu->arch.sie_block->ecb |= 0x04;
1927
	if (test_kvm_facility(vcpu->kvm, 73))
1928 1929
		vcpu->arch.sie_block->ecb |= 0x10;

1930
	if (test_kvm_facility(vcpu->kvm, 8) && sclp.has_pfmfi)
1931
		vcpu->arch.sie_block->ecb2 |= 0x08;
1932 1933 1934
	vcpu->arch.sie_block->eca = 0x1002000U;
	if (sclp.has_cei)
		vcpu->arch.sie_block->eca |= 0x80000000U;
1935 1936
	if (sclp.has_ib)
		vcpu->arch.sie_block->eca |= 0x40000000U;
1937
	if (sclp.has_siif)
1938
		vcpu->arch.sie_block->eca |= 1;
1939
	if (sclp.has_sigpif)
1940
		vcpu->arch.sie_block->eca |= 0x10000000U;
1941 1942
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->arch.sie_block->ecb3 |= 0x01;
1943
	if (test_kvm_facility(vcpu->kvm, 129)) {
1944 1945 1946
		vcpu->arch.sie_block->eca |= 0x00020000;
		vcpu->arch.sie_block->ecd |= 0x20000000;
	}
1947
	vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
1948
	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
1949

1950
	if (vcpu->kvm->arch.use_cmma) {
1951 1952 1953
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
1954
	}
1955
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1956
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1957

1958 1959
	kvm_s390_vcpu_crypto_setup(vcpu);

1960
	return rc;
1961 1962 1963 1964 1965
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
1966
	struct kvm_vcpu *vcpu;
1967
	struct sie_page *sie_page;
1968 1969
	int rc = -EINVAL;

1970
	if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
1971 1972 1973
		goto out;

	rc = -ENOMEM;
1974

1975
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1976
	if (!vcpu)
1977
		goto out;
1978

1979 1980
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
1981 1982
		goto out_free_cpu;

1983 1984 1985
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;

1986 1987 1988 1989
	/* the real guest size will always be smaller than msl */
	vcpu->arch.sie_block->mso = 0;
	vcpu->arch.sie_block->msl = sclp.hamax;

1990
	vcpu->arch.sie_block->icpua = id;
1991 1992
	spin_lock_init(&vcpu->arch.local_int.lock);
	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1993
	vcpu->arch.local_int.wq = &vcpu->wq;
1994
	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1995
	seqcount_init(&vcpu->arch.cputm_seqcount);
1996

1997 1998
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
1999
		goto out_free_sie_block;
2000
	VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
2001
		 vcpu->arch.sie_block);
2002
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
2003 2004

	return vcpu;
2005 2006
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
2007
out_free_cpu:
2008
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2009
out:
2010 2011 2012 2013 2014
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
2015
	return kvm_s390_vcpu_has_irq(vcpu, 0);
2016 2017
}

2018
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
2019
{
2020
	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
2021
	exit_sie(vcpu);
2022 2023
}

2024
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
2025
{
2026
	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
2027 2028
}

2029 2030
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
2031
	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
2032
	exit_sie(vcpu);
2033 2034 2035 2036
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
2037
	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
2038 2039
}

2040 2041 2042 2043 2044 2045
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
2046
	atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
2047 2048 2049 2050
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

2051 2052
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
2053
{
2054 2055
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
2056 2057
}

2058 2059
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
			      unsigned long end)
2060 2061 2062
{
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;
2063 2064
	unsigned long prefix;
	int i;
2065

2066 2067
	if (gmap_is_shadow(gmap))
		return;
2068 2069 2070
	if (start >= 1UL << 31)
		/* We are only interested in prefix pages */
		return;
2071 2072
	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
2073 2074 2075 2076
		prefix = kvm_s390_get_prefix(vcpu);
		if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) {
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx",
				   start, end);
2077
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
2078 2079 2080 2081
		}
	}
}

2082 2083 2084 2085 2086 2087 2088
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

2089 2090 2091 2092 2093 2094
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
2095 2096 2097 2098 2099 2100 2101 2102
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2103
	case KVM_REG_S390_CPU_TIMER:
2104
		r = put_user(kvm_s390_get_cpu_timer(vcpu),
2105 2106 2107 2108 2109 2110
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2123 2124 2125 2126
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2127 2128 2129 2130
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;
2142
	__u64 val;
2143 2144

	switch (reg->id) {
2145 2146 2147 2148 2149 2150 2151 2152
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2153
	case KVM_REG_S390_CPU_TIMER:
2154 2155 2156
		r = get_user(val, (u64 __user *)reg->addr);
		if (!r)
			kvm_s390_set_cpu_timer(vcpu, val);
2157 2158 2159 2160 2161
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2162 2163 2164
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
2165 2166
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2167 2168 2169 2170 2171 2172 2173 2174 2175
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2176 2177 2178 2179
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2180 2181 2182 2183
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2184 2185 2186 2187 2188 2189
	default:
		break;
	}

	return r;
}
2190

2191 2192 2193 2194 2195 2196 2197 2198
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2199
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
2200 2201 2202 2203 2204
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2205
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
2206 2207 2208 2209 2210 2211
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2212
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
2213
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
2214
	restore_access_regs(vcpu->run->s.regs.acrs);
2215 2216 2217 2218 2219 2220
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2221
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
2222 2223 2224 2225 2226 2227
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2228 2229
	/* make sure the new values will be lazily loaded */
	save_fpu_regs();
2230 2231
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
2232 2233 2234 2235 2236
	current->thread.fpu.fpc = fpu->fpc;
	if (MACHINE_HAS_VX)
		convert_fp_to_vx(current->thread.fpu.vxrs, (freg_t *)fpu->fprs);
	else
		memcpy(current->thread.fpu.fprs, &fpu->fprs, sizeof(fpu->fprs));
2237 2238 2239 2240 2241
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2242 2243 2244 2245 2246 2247 2248
	/* make sure we have the latest values */
	save_fpu_regs();
	if (MACHINE_HAS_VX)
		convert_vx_to_fp((freg_t *)fpu->fprs, current->thread.fpu.vxrs);
	else
		memcpy(fpu->fprs, current->thread.fpu.fprs, sizeof(fpu->fprs));
	fpu->fpc = current->thread.fpu.fpc;
2249 2250 2251 2252 2253 2254 2255
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

2256
	if (!is_vcpu_stopped(vcpu))
2257
		rc = -EBUSY;
2258 2259 2260 2261
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
2262 2263 2264 2265 2266 2267 2268 2269 2270
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

2271 2272 2273 2274
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
2275 2276
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
2277
{
2278 2279 2280 2281 2282
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

2283
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
2284
		return -EINVAL;
2285 2286
	if (!sclp.has_gpere)
		return -EINVAL;
2287 2288 2289 2290

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
2291
		atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2292 2293 2294 2295

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
2296
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2297 2298 2299 2300 2301 2302
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
2303
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2304 2305 2306
	}

	return rc;
2307 2308
}

2309 2310 2311
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2312 2313 2314
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
2315 2316 2317 2318 2319
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
2340 2341
}

2342 2343 2344 2345 2346
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
}

2347 2348
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
2349
retry:
2350
	kvm_s390_vcpu_request_handled(vcpu);
2351 2352
	if (!vcpu->requests)
		return 0;
2353 2354
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
2355
	 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock.
2356 2357 2358 2359
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
2360
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
2361
		int rc;
2362 2363 2364
		rc = gmap_mprotect_notify(vcpu->arch.gmap,
					  kvm_s390_get_prefix(vcpu),
					  PAGE_SIZE * 2, PROT_WRITE);
2365 2366
		if (rc) {
			kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
2367
			return rc;
2368
		}
2369
		goto retry;
2370
	}
2371

2372 2373 2374 2375 2376
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

2377 2378 2379
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
2380
			atomic_or(CPUSTAT_IBS,
2381 2382 2383
					&vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
2384
	}
2385 2386 2387 2388

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
2389
			atomic_andnot(CPUSTAT_IBS,
2390 2391 2392 2393 2394
					  &vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
	}

2395 2396 2397 2398 2399
	if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) {
		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
		goto retry;
	}

2400 2401 2402
	/* nothing to do, just clear the request */
	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);

2403 2404 2405
	return 0;
}

2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
{
	struct kvm_vcpu *vcpu;
	int i;

	mutex_lock(&kvm->lock);
	preempt_disable();
	kvm->arch.epoch = tod - get_tod_clock();
	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
	kvm_s390_vcpu_unblock_all(kvm);
	preempt_enable();
	mutex_unlock(&kvm->lock);
}

2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
2433
{
2434 2435
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
2436 2437
}

2438 2439 2440 2441
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
2442
	struct kvm_s390_irq irq;
2443 2444

	if (start_token) {
2445 2446 2447
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
2448 2449
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
2450
		inti.parm64 = token;
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
2497
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
2498 2499 2500 2501 2502 2503
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
2504 2505 2506
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2507 2508 2509 2510 2511 2512
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

2513
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2514
{
2515
	int rc, cpuflags;
2516

2517 2518 2519 2520 2521 2522 2523
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

2524 2525
	vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
	vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
2526 2527 2528 2529

	if (need_resched())
		schedule();

2530
	if (test_cpu_flag(CIF_MCCK_PENDING))
2531 2532
		s390_handle_mcck();

2533 2534 2535 2536 2537
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
2538

2539 2540 2541 2542
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

2543 2544 2545 2546 2547
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

2548
	vcpu->arch.sie_block->icptcode = 0;
2549 2550 2551
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
2552

2553 2554 2555
	return 0;
}

2556 2557
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
2558 2559 2560 2561
	struct kvm_s390_pgm_info pgm_info = {
		.code = PGM_ADDRESSING,
	};
	u8 opcode, ilen;
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
2575
	rc = read_guest_instr(vcpu, &opcode, 1);
2576
	ilen = insn_length(opcode);
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
	if (rc < 0) {
		return rc;
	} else if (rc) {
		/* Instruction-Fetching Exceptions - we can't detect the ilen.
		 * Forward by arbitrary ilc, injection will take care of
		 * nullification if necessary.
		 */
		pgm_info = vcpu->arch.pgm;
		ilen = 4;
	}
2587 2588 2589
	pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
	kvm_s390_forward_psw(vcpu, ilen);
	return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
2590 2591
}

2592 2593
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
2594 2595 2596 2597
	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

2598 2599 2600
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

2601 2602
	vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
	vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616

	if (vcpu->arch.sie_block->icptcode > 0) {
		int rc = kvm_handle_sie_intercept(vcpu);

		if (rc != -EOPNOTSUPP)
			return rc;
		vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
		vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
		vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
		return -EREMOTE;
	} else if (exit_reason != -EFAULT) {
		vcpu->stat.exit_null++;
		return 0;
2617 2618 2619 2620 2621
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
2622
		return -EREMOTE;
2623
	} else if (current->thread.gmap_pfault) {
2624
		trace_kvm_s390_major_guest_pfault(vcpu);
2625
		current->thread.gmap_pfault = 0;
2626 2627 2628
		if (kvm_arch_setup_async_pf(vcpu))
			return 0;
		return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
2629
	}
2630
	return vcpu_post_run_fault_in_sie(vcpu);
2631 2632 2633 2634 2635 2636
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

2637 2638 2639 2640 2641 2642
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

2643 2644 2645 2646
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
2647

2648
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2649 2650 2651 2652
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
2653
		local_irq_disable();
2654
		guest_enter_irqoff();
2655
		__disable_cpu_timer_accounting(vcpu);
2656
		local_irq_enable();
2657 2658
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
2659
		local_irq_disable();
2660
		__enable_cpu_timer_accounting(vcpu);
2661
		guest_exit_irqoff();
2662
		local_irq_enable();
2663
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2664 2665

		rc = vcpu_post_run(vcpu, exit_reason);
2666
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2667

2668
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2669
	return rc;
2670 2671
}

2672 2673 2674 2675 2676 2677 2678 2679
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2680 2681
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2682 2683
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
2684
		kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
2685 2686 2687 2688 2689 2690 2691 2692 2693
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2694 2695
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
	}
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
2706
	kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
2707 2708 2709 2710 2711 2712 2713 2714 2715
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
}

2716 2717
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
2718
	int rc;
2719 2720
	sigset_t sigsaved;

2721 2722 2723 2724 2725
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

2726 2727 2728
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

2729 2730 2731
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
2732
		pr_err_ratelimited("can't run stopped vcpu %d\n",
2733 2734 2735
				   vcpu->vcpu_id);
		return -EINVAL;
	}
2736

2737
	sync_regs(vcpu, kvm_run);
2738
	enable_cpu_timer_accounting(vcpu);
2739

2740
	might_fault();
2741
	rc = __vcpu_run(vcpu);
2742

2743 2744
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
2745
		rc = -EINTR;
2746
	}
2747

2748 2749 2750 2751 2752
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

2753
	if (rc == -EREMOTE) {
2754
		/* userspace support is needed, kvm_run has been prepared */
2755 2756
		rc = 0;
	}
2757

2758
	disable_cpu_timer_accounting(vcpu);
2759
	store_regs(vcpu, kvm_run);
2760

2761 2762 2763 2764
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu->stat.exit_userspace++;
2765
	return rc;
2766 2767 2768 2769 2770 2771 2772 2773
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
2774
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2775
{
2776
	unsigned char archmode = 1;
2777
	freg_t fprs[NUM_FPRS];
2778
	unsigned int px;
2779
	u64 clkcomp, cputm;
2780
	int rc;
2781

2782
	px = kvm_s390_get_prefix(vcpu);
2783 2784
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
2785
			return -EFAULT;
2786
		gpa = 0;
2787 2788
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
2789
			return -EFAULT;
2790 2791 2792
		gpa = px;
	} else
		gpa -= __LC_FPREGS_SAVE_AREA;
2793 2794 2795

	/* manually convert vector registers if necessary */
	if (MACHINE_HAS_VX) {
2796
		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
2797 2798 2799 2800
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
				     fprs, 128);
	} else {
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2801
				     vcpu->run->s.regs.fprs, 128);
2802
	}
2803
	rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
2804
			      vcpu->run->s.regs.gprs, 128);
2805
	rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
2806
			      &vcpu->arch.sie_block->gpsw, 16);
2807
	rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
2808
			      &px, 4);
2809
	rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
2810
			      &vcpu->run->s.regs.fpc, 4);
2811
	rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
2812
			      &vcpu->arch.sie_block->todpr, 4);
2813
	cputm = kvm_s390_get_cpu_timer(vcpu);
2814
	rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
2815
			      &cputm, 8);
2816
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
2817
	rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
2818
			      &clkcomp, 8);
2819
	rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
2820
			      &vcpu->run->s.regs.acrs, 64);
2821
	rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
2822 2823
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
2824 2825
}

2826 2827 2828 2829 2830 2831 2832
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
	 * copying in vcpu load/put. Lets update our copies before we save
	 * it into the save area
	 */
2833
	save_fpu_regs();
2834
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
2835 2836 2837 2838 2839
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

E
Eric Farman 已提交
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
/*
 * store additional status at address
 */
int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
					unsigned long gpa)
{
	/* Only bits 0-53 are used for address formation */
	if (!(gpa & ~0x3ff))
		return 0;

	return write_guest_abs(vcpu, gpa & ~0x3ff,
			       (void *)&vcpu->run->s.regs.vrs, 512);
}

int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	if (!test_kvm_facility(vcpu->kvm, 129))
		return 0;

	/*
	 * The guest VXRS are in the host VXRs due to the lazy
2861 2862 2863 2864 2865
	 * copying in vcpu load/put. We can simply call save_fpu_regs()
	 * to save the current register state because we are in the
	 * middle of a load/put cycle.
	 *
	 * Let's update our copies before we save it into the save area.
E
Eric Farman 已提交
2866
	 */
2867
	save_fpu_regs();
E
Eric Farman 已提交
2868 2869 2870 2871

	return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
}

2872 2873 2874
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2875
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
2890 2891
	if (!sclp.has_ibs)
		return;
2892
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2893
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2894 2895
}

2896 2897
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
2898 2899 2900 2901 2902
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

2903
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2904
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2905
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

2925
	atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2926 2927 2928 2929
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
2930
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2931
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2932
	return;
2933 2934 2935 2936
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
2937 2938 2939 2940 2941 2942
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

2943
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2944
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2945
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2946 2947
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

2948
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2949
	kvm_s390_clear_stop_irq(vcpu);
2950

2951
	atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

2969
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2970
	return;
2971 2972
}

2973 2974 2975 2976 2977 2978 2979 2980 2981
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
2982 2983 2984
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
2985
			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
2986 2987 2988 2989
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
2990 2991 2992 2993 2994 2995 2996
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
3023 3024
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_FETCH);
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
3035 3036
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_STORE);
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

3058 3059 3060 3061 3062
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
3063
	int idx;
3064
	long r;
3065

3066
	switch (ioctl) {
3067 3068 3069 3070 3071 3072 3073 3074 3075
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		r = -EFAULT;
		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
			break;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
		break;
	}
3076
	case KVM_S390_INTERRUPT: {
3077
		struct kvm_s390_interrupt s390int;
3078
		struct kvm_s390_irq s390irq;
3079

3080
		r = -EFAULT;
3081
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
3082
			break;
3083 3084 3085
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
3086
		break;
3087
	}
3088
	case KVM_S390_STORE_STATUS:
3089
		idx = srcu_read_lock(&vcpu->kvm->srcu);
3090
		r = kvm_s390_vcpu_store_status(vcpu, arg);
3091
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3092
		break;
3093 3094 3095
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

3096
		r = -EFAULT;
3097
		if (copy_from_user(&psw, argp, sizeof(psw)))
3098 3099 3100
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
3101 3102
	}
	case KVM_S390_INITIAL_RESET:
3103 3104
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
3153
	case KVM_S390_VCPU_FAULT: {
3154
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
3155 3156
		break;
	}
3157 3158 3159 3160 3161 3162 3163 3164 3165
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
3166 3167 3168 3169 3170 3171 3172 3173 3174
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
3207
	default:
3208
		r = -ENOTTY;
3209
	}
3210
	return r;
3211 3212
}

3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

3226 3227
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
3228 3229 3230 3231
{
	return 0;
}

3232
/* Section: memory related */
3233 3234
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
3235
				   const struct kvm_userspace_memory_region *mem,
3236
				   enum kvm_mr_change change)
3237
{
3238 3239 3240 3241
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
3242

3243
	if (mem->userspace_addr & 0xffffful)
3244 3245
		return -EINVAL;

3246
	if (mem->memory_size & 0xffffful)
3247 3248
		return -EINVAL;

3249 3250 3251
	if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
		return -EINVAL;

3252 3253 3254 3255
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
3256
				const struct kvm_userspace_memory_region *mem,
3257
				const struct kvm_memory_slot *old,
3258
				const struct kvm_memory_slot *new,
3259
				enum kvm_mr_change change)
3260
{
3261
	int rc;
3262

3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
3273 3274 3275 3276

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
3277
		pr_warn("failed to commit memory region\n");
3278
	return;
3279 3280
}

3281 3282 3283 3284 3285 3286 3287
static inline unsigned long nonhyp_mask(int i)
{
	unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;

	return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
}

3288 3289 3290 3291 3292
void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu)
{
	vcpu->valid_wakeup = false;
}

3293 3294
static int __init kvm_s390_init(void)
{
3295 3296
	int i;

3297 3298 3299 3300 3301
	if (!sclp.has_sief2) {
		pr_info("SIE not available\n");
		return -ENODEV;
	}

3302 3303 3304 3305
	for (i = 0; i < 16; i++)
		kvm_s390_fac_list_mask[i] |=
			S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i);

3306
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
3307 3308 3309 3310 3311 3312 3313 3314 3315
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
3316 3317 3318 3319 3320 3321 3322 3323 3324

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");