spi.c 89.0 KB
Newer Older
1
/*
G
Grant Likely 已提交
2
 * SPI init/core code
3 4
 *
 * Copyright (C) 2005 David Brownell
5
 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/cache.h>
22 23
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
24
#include <linux/mutex.h>
25
#include <linux/of_device.h>
26
#include <linux/of_irq.h>
27
#include <linux/clk/clk-conf.h>
28
#include <linux/slab.h>
29
#include <linux/mod_devicetable.h>
30
#include <linux/spi/spi.h>
31
#include <linux/of_gpio.h>
M
Mark Brown 已提交
32
#include <linux/pm_runtime.h>
33
#include <linux/pm_domain.h>
34
#include <linux/property.h>
35
#include <linux/export.h>
36
#include <linux/sched/rt.h>
37
#include <uapi/linux/sched/types.h>
38 39
#include <linux/delay.h>
#include <linux/kthread.h>
40 41
#include <linux/ioport.h>
#include <linux/acpi.h>
42
#include <linux/highmem.h>
43

44 45 46
#define CREATE_TRACE_POINTS
#include <trace/events/spi.h>

47 48
static void spidev_release(struct device *dev)
{
49
	struct spi_device	*spi = to_spi_device(dev);
50 51 52 53 54

	/* spi masters may cleanup for released devices */
	if (spi->master->cleanup)
		spi->master->cleanup(spi);

D
David Brownell 已提交
55
	spi_master_put(spi->master);
56
	kfree(spi);
57 58 59 60 61 62
}

static ssize_t
modalias_show(struct device *dev, struct device_attribute *a, char *buf)
{
	const struct spi_device	*spi = to_spi_device(dev);
63 64 65 66 67
	int len;

	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
	if (len != -ENODEV)
		return len;
68

69
	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
70
}
71
static DEVICE_ATTR_RO(modalias);
72

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
#define SPI_STATISTICS_ATTRS(field, file)				\
static ssize_t spi_master_##field##_show(struct device *dev,		\
					 struct device_attribute *attr,	\
					 char *buf)			\
{									\
	struct spi_master *master = container_of(dev,			\
						 struct spi_master, dev); \
	return spi_statistics_##field##_show(&master->statistics, buf);	\
}									\
static struct device_attribute dev_attr_spi_master_##field = {		\
	.attr = { .name = file, .mode = S_IRUGO },			\
	.show = spi_master_##field##_show,				\
};									\
static ssize_t spi_device_##field##_show(struct device *dev,		\
					 struct device_attribute *attr,	\
					char *buf)			\
{									\
G
Geliang Tang 已提交
90
	struct spi_device *spi = to_spi_device(dev);			\
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
	return spi_statistics_##field##_show(&spi->statistics, buf);	\
}									\
static struct device_attribute dev_attr_spi_device_##field = {		\
	.attr = { .name = file, .mode = S_IRUGO },			\
	.show = spi_device_##field##_show,				\
}

#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
					    char *buf)			\
{									\
	unsigned long flags;						\
	ssize_t len;							\
	spin_lock_irqsave(&stat->lock, flags);				\
	len = sprintf(buf, format_string, stat->field);			\
	spin_unlock_irqrestore(&stat->lock, flags);			\
	return len;							\
}									\
SPI_STATISTICS_ATTRS(name, file)

#define SPI_STATISTICS_SHOW(field, format_string)			\
	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
				 field, format_string)

SPI_STATISTICS_SHOW(messages, "%lu");
SPI_STATISTICS_SHOW(transfers, "%lu");
SPI_STATISTICS_SHOW(errors, "%lu");
SPI_STATISTICS_SHOW(timedout, "%lu");

SPI_STATISTICS_SHOW(spi_sync, "%lu");
SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
SPI_STATISTICS_SHOW(spi_async, "%lu");

SPI_STATISTICS_SHOW(bytes, "%llu");
SPI_STATISTICS_SHOW(bytes_rx, "%llu");
SPI_STATISTICS_SHOW(bytes_tx, "%llu");

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
				 "transfer_bytes_histo_" number,	\
				 transfer_bytes_histo[index],  "%lu")
SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");

150 151
SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");

152 153 154
static struct attribute *spi_dev_attrs[] = {
	&dev_attr_modalias.attr,
	NULL,
155
};
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

static const struct attribute_group spi_dev_group = {
	.attrs  = spi_dev_attrs,
};

static struct attribute *spi_device_statistics_attrs[] = {
	&dev_attr_spi_device_messages.attr,
	&dev_attr_spi_device_transfers.attr,
	&dev_attr_spi_device_errors.attr,
	&dev_attr_spi_device_timedout.attr,
	&dev_attr_spi_device_spi_sync.attr,
	&dev_attr_spi_device_spi_sync_immediate.attr,
	&dev_attr_spi_device_spi_async.attr,
	&dev_attr_spi_device_bytes.attr,
	&dev_attr_spi_device_bytes_rx.attr,
	&dev_attr_spi_device_bytes_tx.attr,
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
	&dev_attr_spi_device_transfer_bytes_histo0.attr,
	&dev_attr_spi_device_transfer_bytes_histo1.attr,
	&dev_attr_spi_device_transfer_bytes_histo2.attr,
	&dev_attr_spi_device_transfer_bytes_histo3.attr,
	&dev_attr_spi_device_transfer_bytes_histo4.attr,
	&dev_attr_spi_device_transfer_bytes_histo5.attr,
	&dev_attr_spi_device_transfer_bytes_histo6.attr,
	&dev_attr_spi_device_transfer_bytes_histo7.attr,
	&dev_attr_spi_device_transfer_bytes_histo8.attr,
	&dev_attr_spi_device_transfer_bytes_histo9.attr,
	&dev_attr_spi_device_transfer_bytes_histo10.attr,
	&dev_attr_spi_device_transfer_bytes_histo11.attr,
	&dev_attr_spi_device_transfer_bytes_histo12.attr,
	&dev_attr_spi_device_transfer_bytes_histo13.attr,
	&dev_attr_spi_device_transfer_bytes_histo14.attr,
	&dev_attr_spi_device_transfer_bytes_histo15.attr,
	&dev_attr_spi_device_transfer_bytes_histo16.attr,
189
	&dev_attr_spi_device_transfers_split_maxsize.attr,
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
	NULL,
};

static const struct attribute_group spi_device_statistics_group = {
	.name  = "statistics",
	.attrs  = spi_device_statistics_attrs,
};

static const struct attribute_group *spi_dev_groups[] = {
	&spi_dev_group,
	&spi_device_statistics_group,
	NULL,
};

static struct attribute *spi_master_statistics_attrs[] = {
	&dev_attr_spi_master_messages.attr,
	&dev_attr_spi_master_transfers.attr,
	&dev_attr_spi_master_errors.attr,
	&dev_attr_spi_master_timedout.attr,
	&dev_attr_spi_master_spi_sync.attr,
	&dev_attr_spi_master_spi_sync_immediate.attr,
	&dev_attr_spi_master_spi_async.attr,
	&dev_attr_spi_master_bytes.attr,
	&dev_attr_spi_master_bytes_rx.attr,
	&dev_attr_spi_master_bytes_tx.attr,
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
	&dev_attr_spi_master_transfer_bytes_histo0.attr,
	&dev_attr_spi_master_transfer_bytes_histo1.attr,
	&dev_attr_spi_master_transfer_bytes_histo2.attr,
	&dev_attr_spi_master_transfer_bytes_histo3.attr,
	&dev_attr_spi_master_transfer_bytes_histo4.attr,
	&dev_attr_spi_master_transfer_bytes_histo5.attr,
	&dev_attr_spi_master_transfer_bytes_histo6.attr,
	&dev_attr_spi_master_transfer_bytes_histo7.attr,
	&dev_attr_spi_master_transfer_bytes_histo8.attr,
	&dev_attr_spi_master_transfer_bytes_histo9.attr,
	&dev_attr_spi_master_transfer_bytes_histo10.attr,
	&dev_attr_spi_master_transfer_bytes_histo11.attr,
	&dev_attr_spi_master_transfer_bytes_histo12.attr,
	&dev_attr_spi_master_transfer_bytes_histo13.attr,
	&dev_attr_spi_master_transfer_bytes_histo14.attr,
	&dev_attr_spi_master_transfer_bytes_histo15.attr,
	&dev_attr_spi_master_transfer_bytes_histo16.attr,
232
	&dev_attr_spi_master_transfers_split_maxsize.attr,
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
	NULL,
};

static const struct attribute_group spi_master_statistics_group = {
	.name  = "statistics",
	.attrs  = spi_master_statistics_attrs,
};

static const struct attribute_group *spi_master_groups[] = {
	&spi_master_statistics_group,
	NULL,
};

void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
				       struct spi_transfer *xfer,
				       struct spi_master *master)
{
	unsigned long flags;
251 252 253 254
	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;

	if (l2len < 0)
		l2len = 0;
255 256 257 258

	spin_lock_irqsave(&stats->lock, flags);

	stats->transfers++;
259
	stats->transfer_bytes_histo[l2len]++;
260 261 262 263 264 265 266 267 268 269 270 271

	stats->bytes += xfer->len;
	if ((xfer->tx_buf) &&
	    (xfer->tx_buf != master->dummy_tx))
		stats->bytes_tx += xfer->len;
	if ((xfer->rx_buf) &&
	    (xfer->rx_buf != master->dummy_rx))
		stats->bytes_rx += xfer->len;

	spin_unlock_irqrestore(&stats->lock, flags);
}
EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
272 273 274 275 276

/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 * and the sysfs version makes coldplug work too.
 */

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
						const struct spi_device *sdev)
{
	while (id->name[0]) {
		if (!strcmp(sdev->modalias, id->name))
			return id;
		id++;
	}
	return NULL;
}

const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
{
	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);

	return spi_match_id(sdrv->id_table, sdev);
}
EXPORT_SYMBOL_GPL(spi_get_device_id);

296 297 298
static int spi_match_device(struct device *dev, struct device_driver *drv)
{
	const struct spi_device	*spi = to_spi_device(dev);
299 300
	const struct spi_driver	*sdrv = to_spi_driver(drv);

301 302 303 304
	/* Attempt an OF style match */
	if (of_driver_match_device(dev, drv))
		return 1;

305 306 307 308
	/* Then try ACPI */
	if (acpi_driver_match_device(dev, drv))
		return 1;

309 310
	if (sdrv->id_table)
		return !!spi_match_id(sdrv->id_table, spi);
311

312
	return strcmp(spi->modalias, drv->name) == 0;
313 314
}

315
static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
316 317
{
	const struct spi_device		*spi = to_spi_device(dev);
318 319 320 321 322
	int rc;

	rc = acpi_device_uevent_modalias(dev, env);
	if (rc != -ENODEV)
		return rc;
323

324
	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
325 326 327 328 329
	return 0;
}

struct bus_type spi_bus_type = {
	.name		= "spi",
330
	.dev_groups	= spi_dev_groups,
331 332 333 334 335
	.match		= spi_match_device,
	.uevent		= spi_uevent,
};
EXPORT_SYMBOL_GPL(spi_bus_type);

336 337 338 339

static int spi_drv_probe(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
340
	struct spi_device		*spi = to_spi_device(dev);
341 342
	int ret;

343 344 345 346
	ret = of_clk_set_defaults(dev->of_node, false);
	if (ret)
		return ret;

347 348 349 350 351 352 353 354
	if (dev->of_node) {
		spi->irq = of_irq_get(dev->of_node, 0);
		if (spi->irq == -EPROBE_DEFER)
			return -EPROBE_DEFER;
		if (spi->irq < 0)
			spi->irq = 0;
	}

355 356
	ret = dev_pm_domain_attach(dev, true);
	if (ret != -EPROBE_DEFER) {
357
		ret = sdrv->probe(spi);
358 359 360
		if (ret)
			dev_pm_domain_detach(dev, true);
	}
361

362
	return ret;
363 364 365 366 367
}

static int spi_drv_remove(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
368 369
	int ret;

370
	ret = sdrv->remove(to_spi_device(dev));
371
	dev_pm_domain_detach(dev, true);
372

373
	return ret;
374 375 376 377 378 379 380 381 382
}

static void spi_drv_shutdown(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	sdrv->shutdown(to_spi_device(dev));
}

D
David Brownell 已提交
383
/**
384
 * __spi_register_driver - register a SPI driver
385
 * @owner: owner module of the driver to register
D
David Brownell 已提交
386 387
 * @sdrv: the driver to register
 * Context: can sleep
388 389
 *
 * Return: zero on success, else a negative error code.
D
David Brownell 已提交
390
 */
391
int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
392
{
393
	sdrv->driver.owner = owner;
394 395 396 397 398 399 400 401 402
	sdrv->driver.bus = &spi_bus_type;
	if (sdrv->probe)
		sdrv->driver.probe = spi_drv_probe;
	if (sdrv->remove)
		sdrv->driver.remove = spi_drv_remove;
	if (sdrv->shutdown)
		sdrv->driver.shutdown = spi_drv_shutdown;
	return driver_register(&sdrv->driver);
}
403
EXPORT_SYMBOL_GPL(__spi_register_driver);
404

405 406 407 408 409 410 411 412 413 414
/*-------------------------------------------------------------------------*/

/* SPI devices should normally not be created by SPI device drivers; that
 * would make them board-specific.  Similarly with SPI master drivers.
 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 * with other readonly (flashable) information about mainboard devices.
 */

struct boardinfo {
	struct list_head	list;
415
	struct spi_board_info	board_info;
416 417 418
};

static LIST_HEAD(board_list);
419 420 421 422 423 424
static LIST_HEAD(spi_master_list);

/*
 * Used to protect add/del opertion for board_info list and
 * spi_master list, and their matching process
 */
425
static DEFINE_MUTEX(board_lock);
426

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
/**
 * spi_alloc_device - Allocate a new SPI device
 * @master: Controller to which device is connected
 * Context: can sleep
 *
 * Allows a driver to allocate and initialize a spi_device without
 * registering it immediately.  This allows a driver to directly
 * fill the spi_device with device parameters before calling
 * spi_add_device() on it.
 *
 * Caller is responsible to call spi_add_device() on the returned
 * spi_device structure to add it to the SPI master.  If the caller
 * needs to discard the spi_device without adding it, then it should
 * call spi_dev_put() on it.
 *
442
 * Return: a pointer to the new device, or NULL.
443 444 445 446 447 448 449 450
 */
struct spi_device *spi_alloc_device(struct spi_master *master)
{
	struct spi_device	*spi;

	if (!spi_master_get(master))
		return NULL;

J
Jingoo Han 已提交
451
	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
452 453 454 455 456 457
	if (!spi) {
		spi_master_put(master);
		return NULL;
	}

	spi->master = master;
458
	spi->dev.parent = &master->dev;
459 460
	spi->dev.bus = &spi_bus_type;
	spi->dev.release = spidev_release;
461
	spi->cs_gpio = -ENOENT;
462 463 464

	spin_lock_init(&spi->statistics.lock);

465 466 467 468 469
	device_initialize(&spi->dev);
	return spi;
}
EXPORT_SYMBOL_GPL(spi_alloc_device);

470 471 472 473 474 475 476 477 478 479 480 481 482
static void spi_dev_set_name(struct spi_device *spi)
{
	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);

	if (adev) {
		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
		return;
	}

	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
		     spi->chip_select);
}

483 484 485 486 487 488 489 490 491 492 493
static int spi_dev_check(struct device *dev, void *data)
{
	struct spi_device *spi = to_spi_device(dev);
	struct spi_device *new_spi = data;

	if (spi->master == new_spi->master &&
	    spi->chip_select == new_spi->chip_select)
		return -EBUSY;
	return 0;
}

494 495 496 497 498 499 500
/**
 * spi_add_device - Add spi_device allocated with spi_alloc_device
 * @spi: spi_device to register
 *
 * Companion function to spi_alloc_device.  Devices allocated with
 * spi_alloc_device can be added onto the spi bus with this function.
 *
501
 * Return: 0 on success; negative errno on failure
502 503 504
 */
int spi_add_device(struct spi_device *spi)
{
505
	static DEFINE_MUTEX(spi_add_lock);
506 507
	struct spi_master *master = spi->master;
	struct device *dev = master->dev.parent;
508 509 510
	int status;

	/* Chipselects are numbered 0..max; validate. */
511
	if (spi->chip_select >= master->num_chipselect) {
512 513
		dev_err(dev, "cs%d >= max %d\n",
			spi->chip_select,
514
			master->num_chipselect);
515 516 517 518
		return -EINVAL;
	}

	/* Set the bus ID string */
519
	spi_dev_set_name(spi);
520 521 522 523 524 525 526

	/* We need to make sure there's no other device with this
	 * chipselect **BEFORE** we call setup(), else we'll trash
	 * its configuration.  Lock against concurrent add() calls.
	 */
	mutex_lock(&spi_add_lock);

527 528
	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
	if (status) {
529 530 531 532 533
		dev_err(dev, "chipselect %d already in use\n",
				spi->chip_select);
		goto done;
	}

534 535 536
	if (master->cs_gpios)
		spi->cs_gpio = master->cs_gpios[spi->chip_select];

537 538 539 540
	/* Drivers may modify this initial i/o setup, but will
	 * normally rely on the device being setup.  Devices
	 * using SPI_CS_HIGH can't coexist well otherwise...
	 */
541
	status = spi_setup(spi);
542
	if (status < 0) {
543 544
		dev_err(dev, "can't setup %s, status %d\n",
				dev_name(&spi->dev), status);
545
		goto done;
546 547
	}

548
	/* Device may be bound to an active driver when this returns */
549
	status = device_add(&spi->dev);
550
	if (status < 0)
551 552
		dev_err(dev, "can't add %s, status %d\n",
				dev_name(&spi->dev), status);
553
	else
554
		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
555

556 557 558
done:
	mutex_unlock(&spi_add_lock);
	return status;
559 560
}
EXPORT_SYMBOL_GPL(spi_add_device);
561

D
David Brownell 已提交
562 563 564 565 566 567 568
/**
 * spi_new_device - instantiate one new SPI device
 * @master: Controller to which device is connected
 * @chip: Describes the SPI device
 * Context: can sleep
 *
 * On typical mainboards, this is purely internal; and it's not needed
569 570 571 572
 * after board init creates the hard-wired devices.  Some development
 * platforms may not be able to use spi_register_board_info though, and
 * this is exported so that for example a USB or parport based adapter
 * driver could add devices (which it would learn about out-of-band).
573
 *
574
 * Return: the new device, or NULL.
575
 */
576 577
struct spi_device *spi_new_device(struct spi_master *master,
				  struct spi_board_info *chip)
578 579 580 581
{
	struct spi_device	*proxy;
	int			status;

582 583 584 585 586 587 588
	/* NOTE:  caller did any chip->bus_num checks necessary.
	 *
	 * Also, unless we change the return value convention to use
	 * error-or-pointer (not NULL-or-pointer), troubleshootability
	 * suggests syslogged diagnostics are best here (ugh).
	 */

589 590
	proxy = spi_alloc_device(master);
	if (!proxy)
591 592
		return NULL;

593 594
	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));

595 596
	proxy->chip_select = chip->chip_select;
	proxy->max_speed_hz = chip->max_speed_hz;
597
	proxy->mode = chip->mode;
598
	proxy->irq = chip->irq;
599
	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
600 601 602 603
	proxy->dev.platform_data = (void *) chip->platform_data;
	proxy->controller_data = chip->controller_data;
	proxy->controller_state = NULL;

604 605 606 607 608 609 610 611
	if (chip->properties) {
		status = device_add_properties(&proxy->dev, chip->properties);
		if (status) {
			dev_err(&master->dev,
				"failed to add properties to '%s': %d\n",
				chip->modalias, status);
			goto err_dev_put;
		}
612 613
	}

614 615 616 617
	status = spi_add_device(proxy);
	if (status < 0)
		goto err_remove_props;

618
	return proxy;
619 620 621 622 623 624 625

err_remove_props:
	if (chip->properties)
		device_remove_properties(&proxy->dev);
err_dev_put:
	spi_dev_put(proxy);
	return NULL;
626 627 628
}
EXPORT_SYMBOL_GPL(spi_new_device);

629 630 631 632 633 634 635 636 637
/**
 * spi_unregister_device - unregister a single SPI device
 * @spi: spi_device to unregister
 *
 * Start making the passed SPI device vanish. Normally this would be handled
 * by spi_unregister_master().
 */
void spi_unregister_device(struct spi_device *spi)
{
638 639 640
	if (!spi)
		return;

J
Johan Hovold 已提交
641
	if (spi->dev.of_node) {
642
		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
J
Johan Hovold 已提交
643 644
		of_node_put(spi->dev.of_node);
	}
645 646
	if (ACPI_COMPANION(&spi->dev))
		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
647
	device_unregister(&spi->dev);
648 649 650
}
EXPORT_SYMBOL_GPL(spi_unregister_device);

651 652 653 654 655 656 657 658 659 660 661 662 663 664
static void spi_match_master_to_boardinfo(struct spi_master *master,
				struct spi_board_info *bi)
{
	struct spi_device *dev;

	if (master->bus_num != bi->bus_num)
		return;

	dev = spi_new_device(master, bi);
	if (!dev)
		dev_err(master->dev.parent, "can't create new device for %s\n",
			bi->modalias);
}

D
David Brownell 已提交
665 666 667 668 669 670
/**
 * spi_register_board_info - register SPI devices for a given board
 * @info: array of chip descriptors
 * @n: how many descriptors are provided
 * Context: can sleep
 *
671 672 673 674 675 676 677 678 679 680 681 682
 * Board-specific early init code calls this (probably during arch_initcall)
 * with segments of the SPI device table.  Any device nodes are created later,
 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 * this table of devices forever, so that reloading a controller driver will
 * not make Linux forget about these hard-wired devices.
 *
 * Other code can also call this, e.g. a particular add-on board might provide
 * SPI devices through its expansion connector, so code initializing that board
 * would naturally declare its SPI devices.
 *
 * The board info passed can safely be __initdata ... but be careful of
 * any embedded pointers (platform_data, etc), they're copied as-is.
683
 * Device properties are deep-copied though.
684 685
 *
 * Return: zero on success, else a negative error code.
686
 */
687
int spi_register_board_info(struct spi_board_info const *info, unsigned n)
688
{
689 690
	struct boardinfo *bi;
	int i;
691

692
	if (!n)
693
		return 0;
694

695
	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
696 697 698
	if (!bi)
		return -ENOMEM;

699 700
	for (i = 0; i < n; i++, bi++, info++) {
		struct spi_master *master;
701

702
		memcpy(&bi->board_info, info, sizeof(*info));
703 704 705 706 707 708 709
		if (info->properties) {
			bi->board_info.properties =
					property_entries_dup(info->properties);
			if (IS_ERR(bi->board_info.properties))
				return PTR_ERR(bi->board_info.properties);
		}

710 711 712 713 714
		mutex_lock(&board_lock);
		list_add_tail(&bi->list, &board_list);
		list_for_each_entry(master, &spi_master_list, list)
			spi_match_master_to_boardinfo(master, &bi->board_info);
		mutex_unlock(&board_lock);
715
	}
716 717

	return 0;
718 719 720 721
}

/*-------------------------------------------------------------------------*/

722 723 724 725 726
static void spi_set_cs(struct spi_device *spi, bool enable)
{
	if (spi->mode & SPI_CS_HIGH)
		enable = !enable;

727
	if (gpio_is_valid(spi->cs_gpio)) {
728
		gpio_set_value(spi->cs_gpio, !enable);
729 730 731 732 733
		/* Some SPI masters need both GPIO CS & slave_select */
		if ((spi->master->flags & SPI_MASTER_GPIO_SS) &&
		    spi->master->set_cs)
			spi->master->set_cs(spi, !enable);
	} else if (spi->master->set_cs) {
734
		spi->master->set_cs(spi, !enable);
735
	}
736 737
}

738
#ifdef CONFIG_HAS_DMA
739 740 741 742 743
static int spi_map_buf(struct spi_master *master, struct device *dev,
		       struct sg_table *sgt, void *buf, size_t len,
		       enum dma_data_direction dir)
{
	const bool vmalloced_buf = is_vmalloc_addr(buf);
744
	unsigned int max_seg_size = dma_get_max_seg_size(dev);
745 746 747 748 749 750 751
#ifdef CONFIG_HIGHMEM
	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
				(unsigned long)buf < (PKMAP_BASE +
					(LAST_PKMAP * PAGE_SIZE)));
#else
	const bool kmap_buf = false;
#endif
752 753
	int desc_len;
	int sgs;
754
	struct page *vm_page;
755
	struct scatterlist *sg;
756 757 758 759
	void *sg_buf;
	size_t min;
	int i, ret;

760
	if (vmalloced_buf || kmap_buf) {
761
		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
762
		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
763
	} else if (virt_addr_valid(buf)) {
764
		desc_len = min_t(int, max_seg_size, master->max_dma_len);
765
		sgs = DIV_ROUND_UP(len, desc_len);
766 767
	} else {
		return -EINVAL;
768 769
	}

770 771 772 773
	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
	if (ret != 0)
		return ret;

774
	sg = &sgt->sgl[0];
775 776
	for (i = 0; i < sgs; i++) {

777
		if (vmalloced_buf || kmap_buf) {
778 779
			min = min_t(size_t,
				    len, desc_len - offset_in_page(buf));
780 781 782 783
			if (vmalloced_buf)
				vm_page = vmalloc_to_page(buf);
			else
				vm_page = kmap_to_page(buf);
784 785 786 787
			if (!vm_page) {
				sg_free_table(sgt);
				return -ENOMEM;
			}
788
			sg_set_page(sg, vm_page,
789
				    min, offset_in_page(buf));
790
		} else {
791
			min = min_t(size_t, len, desc_len);
792
			sg_buf = buf;
793
			sg_set_buf(sg, sg_buf, min);
794 795 796 797
		}

		buf += min;
		len -= min;
798
		sg = sg_next(sg);
799 800 801
	}

	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
802 803
	if (!ret)
		ret = -ENOMEM;
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
	if (ret < 0) {
		sg_free_table(sgt);
		return ret;
	}

	sgt->nents = ret;

	return 0;
}

static void spi_unmap_buf(struct spi_master *master, struct device *dev,
			  struct sg_table *sgt, enum dma_data_direction dir)
{
	if (sgt->orig_nents) {
		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
		sg_free_table(sgt);
	}
}

823
static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
824 825 826
{
	struct device *tx_dev, *rx_dev;
	struct spi_transfer *xfer;
827
	int ret;
828

829
	if (!master->can_dma)
830 831
		return 0;

832 833 834
	if (master->dma_tx)
		tx_dev = master->dma_tx->device->dev;
	else
835
		tx_dev = master->dev.parent;
836 837 838 839

	if (master->dma_rx)
		rx_dev = master->dma_rx->device->dev;
	else
840
		rx_dev = master->dev.parent;
841 842 843 844 845 846

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		if (!master->can_dma(master, msg->spi, xfer))
			continue;

		if (xfer->tx_buf != NULL) {
847 848 849 850 851
			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
					  (void *)xfer->tx_buf, xfer->len,
					  DMA_TO_DEVICE);
			if (ret != 0)
				return ret;
852 853 854
		}

		if (xfer->rx_buf != NULL) {
855 856 857 858 859 860 861
			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
					  xfer->rx_buf, xfer->len,
					  DMA_FROM_DEVICE);
			if (ret != 0) {
				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
					      DMA_TO_DEVICE);
				return ret;
862 863 864 865 866 867 868 869 870
			}
		}
	}

	master->cur_msg_mapped = true;

	return 0;
}

871
static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
872 873 874 875
{
	struct spi_transfer *xfer;
	struct device *tx_dev, *rx_dev;

876
	if (!master->cur_msg_mapped || !master->can_dma)
877 878
		return 0;

879 880 881
	if (master->dma_tx)
		tx_dev = master->dma_tx->device->dev;
	else
882
		tx_dev = master->dev.parent;
883 884 885 886

	if (master->dma_rx)
		rx_dev = master->dma_rx->device->dev;
	else
887
		rx_dev = master->dev.parent;
888 889 890 891 892

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		if (!master->can_dma(master, msg->spi, xfer))
			continue;

893 894
		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
895 896 897 898
	}

	return 0;
}
899
#else /* !CONFIG_HAS_DMA */
900 901 902 903 904 905 906 907 908 909 910 911 912 913
static inline int spi_map_buf(struct spi_master *master,
			      struct device *dev, struct sg_table *sgt,
			      void *buf, size_t len,
			      enum dma_data_direction dir)
{
	return -EINVAL;
}

static inline void spi_unmap_buf(struct spi_master *master,
				 struct device *dev, struct sg_table *sgt,
				 enum dma_data_direction dir)
{
}

914 915 916 917 918 919
static inline int __spi_map_msg(struct spi_master *master,
				struct spi_message *msg)
{
	return 0;
}

920 921
static inline int __spi_unmap_msg(struct spi_master *master,
				  struct spi_message *msg)
922 923 924 925 926
{
	return 0;
}
#endif /* !CONFIG_HAS_DMA */

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
static inline int spi_unmap_msg(struct spi_master *master,
				struct spi_message *msg)
{
	struct spi_transfer *xfer;

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		/*
		 * Restore the original value of tx_buf or rx_buf if they are
		 * NULL.
		 */
		if (xfer->tx_buf == master->dummy_tx)
			xfer->tx_buf = NULL;
		if (xfer->rx_buf == master->dummy_rx)
			xfer->rx_buf = NULL;
	}

	return __spi_unmap_msg(master, msg);
}

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
{
	struct spi_transfer *xfer;
	void *tmp;
	unsigned int max_tx, max_rx;

	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
		max_tx = 0;
		max_rx = 0;

		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
			if ((master->flags & SPI_MASTER_MUST_TX) &&
			    !xfer->tx_buf)
				max_tx = max(xfer->len, max_tx);
			if ((master->flags & SPI_MASTER_MUST_RX) &&
			    !xfer->rx_buf)
				max_rx = max(xfer->len, max_rx);
		}

		if (max_tx) {
			tmp = krealloc(master->dummy_tx, max_tx,
				       GFP_KERNEL | GFP_DMA);
			if (!tmp)
				return -ENOMEM;
			master->dummy_tx = tmp;
			memset(tmp, 0, max_tx);
		}

		if (max_rx) {
			tmp = krealloc(master->dummy_rx, max_rx,
				       GFP_KERNEL | GFP_DMA);
			if (!tmp)
				return -ENOMEM;
			master->dummy_rx = tmp;
		}

		if (max_tx || max_rx) {
			list_for_each_entry(xfer, &msg->transfers,
					    transfer_list) {
				if (!xfer->tx_buf)
					xfer->tx_buf = master->dummy_tx;
				if (!xfer->rx_buf)
					xfer->rx_buf = master->dummy_rx;
			}
		}
	}

	return __spi_map_msg(master, msg);
}
995

996 997 998 999
/*
 * spi_transfer_one_message - Default implementation of transfer_one_message()
 *
 * This is a standard implementation of transfer_one_message() for
1000
 * drivers which implement a transfer_one() operation.  It provides
1001 1002 1003 1004 1005 1006 1007 1008
 * standard handling of delays and chip select management.
 */
static int spi_transfer_one_message(struct spi_master *master,
				    struct spi_message *msg)
{
	struct spi_transfer *xfer;
	bool keep_cs = false;
	int ret = 0;
1009
	unsigned long long ms = 1;
1010 1011
	struct spi_statistics *statm = &master->statistics;
	struct spi_statistics *stats = &msg->spi->statistics;
1012 1013 1014

	spi_set_cs(msg->spi, true);

1015 1016 1017
	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);

1018 1019 1020
	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		trace_spi_transfer_start(msg, xfer);

1021 1022 1023
		spi_statistics_add_transfer_stats(statm, xfer, master);
		spi_statistics_add_transfer_stats(stats, xfer, master);

1024 1025
		if (xfer->tx_buf || xfer->rx_buf) {
			reinit_completion(&master->xfer_completion);
1026

1027 1028
			ret = master->transfer_one(master, msg->spi, xfer);
			if (ret < 0) {
1029 1030 1031 1032
				SPI_STATISTICS_INCREMENT_FIELD(statm,
							       errors);
				SPI_STATISTICS_INCREMENT_FIELD(stats,
							       errors);
1033 1034 1035 1036
				dev_err(&msg->spi->dev,
					"SPI transfer failed: %d\n", ret);
				goto out;
			}
1037

1038 1039
			if (ret > 0) {
				ret = 0;
1040 1041
				ms = 8LL * 1000LL * xfer->len;
				do_div(ms, xfer->speed_hz);
H
Hauke Mehrtens 已提交
1042
				ms += ms + 200; /* some tolerance */
1043

1044 1045 1046
				if (ms > UINT_MAX)
					ms = UINT_MAX;

1047 1048 1049
				ms = wait_for_completion_timeout(&master->xfer_completion,
								 msecs_to_jiffies(ms));
			}
1050

1051
			if (ms == 0) {
1052 1053 1054 1055
				SPI_STATISTICS_INCREMENT_FIELD(statm,
							       timedout);
				SPI_STATISTICS_INCREMENT_FIELD(stats,
							       timedout);
1056 1057 1058 1059 1060 1061 1062 1063 1064
				dev_err(&msg->spi->dev,
					"SPI transfer timed out\n");
				msg->status = -ETIMEDOUT;
			}
		} else {
			if (xfer->len)
				dev_err(&msg->spi->dev,
					"Bufferless transfer has length %u\n",
					xfer->len);
1065
		}
1066 1067 1068 1069 1070 1071

		trace_spi_transfer_stop(msg, xfer);

		if (msg->status != -EINPROGRESS)
			goto out;

1072 1073 1074 1075 1076 1077 1078 1079
		if (xfer->delay_usecs) {
			u16 us = xfer->delay_usecs;

			if (us <= 10)
				udelay(us);
			else
				usleep_range(us, us + DIV_ROUND_UP(us, 10));
		}
1080 1081 1082 1083 1084 1085

		if (xfer->cs_change) {
			if (list_is_last(&xfer->transfer_list,
					 &msg->transfers)) {
				keep_cs = true;
			} else {
1086 1087 1088
				spi_set_cs(msg->spi, false);
				udelay(10);
				spi_set_cs(msg->spi, true);
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
			}
		}

		msg->actual_length += xfer->len;
	}

out:
	if (ret != 0 || !keep_cs)
		spi_set_cs(msg->spi, false);

	if (msg->status == -EINPROGRESS)
		msg->status = ret;

1102
	if (msg->status && master->handle_err)
1103 1104
		master->handle_err(master, msg);

1105 1106
	spi_res_release(master, msg);

1107 1108 1109 1110 1111 1112 1113
	spi_finalize_current_message(master);

	return ret;
}

/**
 * spi_finalize_current_transfer - report completion of a transfer
T
Thierry Reding 已提交
1114
 * @master: the master reporting completion
1115 1116 1117
 *
 * Called by SPI drivers using the core transfer_one_message()
 * implementation to notify it that the current interrupt driven
1118
 * transfer has finished and the next one may be scheduled.
1119 1120 1121 1122 1123 1124 1125
 */
void spi_finalize_current_transfer(struct spi_master *master)
{
	complete(&master->xfer_completion);
}
EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);

1126
/**
1127 1128 1129
 * __spi_pump_messages - function which processes spi message queue
 * @master: master to process queue for
 * @in_kthread: true if we are in the context of the message pump thread
1130 1131 1132 1133 1134
 *
 * This function checks if there is any spi message in the queue that
 * needs processing and if so call out to the driver to initialize hardware
 * and transfer each message.
 *
1135 1136 1137
 * Note that it is called both from the kthread itself and also from
 * inside spi_sync(); the queue extraction handling at the top of the
 * function should deal with this safely.
1138
 */
M
Mark Brown 已提交
1139
static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
1140 1141 1142 1143 1144
{
	unsigned long flags;
	bool was_busy = false;
	int ret;

1145
	/* Lock queue */
1146
	spin_lock_irqsave(&master->queue_lock, flags);
1147 1148 1149 1150 1151 1152 1153

	/* Make sure we are not already running a message */
	if (master->cur_msg) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return;
	}

1154 1155
	/* If another context is idling the device then defer */
	if (master->idling) {
P
Petr Mladek 已提交
1156
		kthread_queue_work(&master->kworker, &master->pump_messages);
1157 1158 1159 1160
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return;
	}

1161
	/* Check if the queue is idle */
1162
	if (list_empty(&master->queue) || !master->running) {
1163 1164 1165
		if (!master->busy) {
			spin_unlock_irqrestore(&master->queue_lock, flags);
			return;
1166
		}
1167 1168 1169

		/* Only do teardown in the thread */
		if (!in_kthread) {
P
Petr Mladek 已提交
1170
			kthread_queue_work(&master->kworker,
1171 1172 1173 1174 1175
					   &master->pump_messages);
			spin_unlock_irqrestore(&master->queue_lock, flags);
			return;
		}

1176
		master->busy = false;
1177
		master->idling = true;
1178
		spin_unlock_irqrestore(&master->queue_lock, flags);
1179

1180 1181 1182 1183
		kfree(master->dummy_rx);
		master->dummy_rx = NULL;
		kfree(master->dummy_tx);
		master->dummy_tx = NULL;
1184 1185 1186 1187
		if (master->unprepare_transfer_hardware &&
		    master->unprepare_transfer_hardware(master))
			dev_err(&master->dev,
				"failed to unprepare transfer hardware\n");
1188 1189 1190 1191
		if (master->auto_runtime_pm) {
			pm_runtime_mark_last_busy(master->dev.parent);
			pm_runtime_put_autosuspend(master->dev.parent);
		}
1192
		trace_spi_master_idle(master);
1193

1194 1195
		spin_lock_irqsave(&master->queue_lock, flags);
		master->idling = false;
1196 1197 1198 1199 1200 1201
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return;
	}

	/* Extract head of queue */
	master->cur_msg =
1202
		list_first_entry(&master->queue, struct spi_message, queue);
1203 1204 1205 1206 1207 1208 1209 1210

	list_del_init(&master->cur_msg->queue);
	if (master->busy)
		was_busy = true;
	else
		master->busy = true;
	spin_unlock_irqrestore(&master->queue_lock, flags);

M
Mark Brown 已提交
1211 1212
	mutex_lock(&master->io_mutex);

1213 1214 1215 1216 1217
	if (!was_busy && master->auto_runtime_pm) {
		ret = pm_runtime_get_sync(master->dev.parent);
		if (ret < 0) {
			dev_err(&master->dev, "Failed to power device: %d\n",
				ret);
M
Mark Brown 已提交
1218
			mutex_unlock(&master->io_mutex);
1219 1220 1221 1222
			return;
		}
	}

1223 1224 1225
	if (!was_busy)
		trace_spi_master_busy(master);

1226
	if (!was_busy && master->prepare_transfer_hardware) {
1227 1228 1229 1230
		ret = master->prepare_transfer_hardware(master);
		if (ret) {
			dev_err(&master->dev,
				"failed to prepare transfer hardware\n");
1231 1232 1233

			if (master->auto_runtime_pm)
				pm_runtime_put(master->dev.parent);
M
Mark Brown 已提交
1234
			mutex_unlock(&master->io_mutex);
1235 1236 1237 1238
			return;
		}
	}

1239 1240
	trace_spi_message_start(master->cur_msg);

1241 1242 1243 1244 1245 1246 1247
	if (master->prepare_message) {
		ret = master->prepare_message(master, master->cur_msg);
		if (ret) {
			dev_err(&master->dev,
				"failed to prepare message: %d\n", ret);
			master->cur_msg->status = ret;
			spi_finalize_current_message(master);
1248
			goto out;
1249 1250 1251 1252
		}
		master->cur_msg_prepared = true;
	}

1253 1254 1255 1256
	ret = spi_map_msg(master, master->cur_msg);
	if (ret) {
		master->cur_msg->status = ret;
		spi_finalize_current_message(master);
1257
		goto out;
1258 1259
	}

1260 1261 1262
	ret = master->transfer_one_message(master, master->cur_msg);
	if (ret) {
		dev_err(&master->dev,
1263
			"failed to transfer one message from queue\n");
1264
		goto out;
1265
	}
1266 1267

out:
M
Mark Brown 已提交
1268
	mutex_unlock(&master->io_mutex);
1269 1270

	/* Prod the scheduler in case transfer_one() was busy waiting */
1271 1272
	if (!ret)
		cond_resched();
1273 1274
}

1275 1276 1277 1278 1279 1280 1281 1282 1283
/**
 * spi_pump_messages - kthread work function which processes spi message queue
 * @work: pointer to kthread work struct contained in the master struct
 */
static void spi_pump_messages(struct kthread_work *work)
{
	struct spi_master *master =
		container_of(work, struct spi_master, pump_messages);

M
Mark Brown 已提交
1284
	__spi_pump_messages(master, true);
1285 1286
}

1287 1288 1289 1290 1291 1292 1293
static int spi_init_queue(struct spi_master *master)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };

	master->running = false;
	master->busy = false;

P
Petr Mladek 已提交
1294
	kthread_init_worker(&master->kworker);
1295
	master->kworker_task = kthread_run(kthread_worker_fn,
1296
					   &master->kworker, "%s",
1297 1298 1299
					   dev_name(&master->dev));
	if (IS_ERR(master->kworker_task)) {
		dev_err(&master->dev, "failed to create message pump task\n");
1300
		return PTR_ERR(master->kworker_task);
1301
	}
P
Petr Mladek 已提交
1302
	kthread_init_work(&master->pump_messages, spi_pump_messages);
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326

	/*
	 * Master config will indicate if this controller should run the
	 * message pump with high (realtime) priority to reduce the transfer
	 * latency on the bus by minimising the delay between a transfer
	 * request and the scheduling of the message pump thread. Without this
	 * setting the message pump thread will remain at default priority.
	 */
	if (master->rt) {
		dev_info(&master->dev,
			"will run message pump with realtime priority\n");
		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
	}

	return 0;
}

/**
 * spi_get_next_queued_message() - called by driver to check for queued
 * messages
 * @master: the master to check for queued messages
 *
 * If there are more messages in the queue, the next message is returned from
 * this call.
1327 1328
 *
 * Return: the next message in the queue, else NULL if the queue is empty.
1329 1330 1331 1332 1333 1334 1335 1336
 */
struct spi_message *spi_get_next_queued_message(struct spi_master *master)
{
	struct spi_message *next;
	unsigned long flags;

	/* get a pointer to the next message, if any */
	spin_lock_irqsave(&master->queue_lock, flags);
1337 1338
	next = list_first_entry_or_null(&master->queue, struct spi_message,
					queue);
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
	spin_unlock_irqrestore(&master->queue_lock, flags);

	return next;
}
EXPORT_SYMBOL_GPL(spi_get_next_queued_message);

/**
 * spi_finalize_current_message() - the current message is complete
 * @master: the master to return the message to
 *
 * Called by the driver to notify the core that the message in the front of the
 * queue is complete and can be removed from the queue.
 */
void spi_finalize_current_message(struct spi_master *master)
{
	struct spi_message *mesg;
	unsigned long flags;
1356
	int ret;
1357 1358 1359 1360 1361

	spin_lock_irqsave(&master->queue_lock, flags);
	mesg = master->cur_msg;
	spin_unlock_irqrestore(&master->queue_lock, flags);

1362 1363
	spi_unmap_msg(master, mesg);

1364 1365 1366 1367 1368 1369 1370
	if (master->cur_msg_prepared && master->unprepare_message) {
		ret = master->unprepare_message(master, mesg);
		if (ret) {
			dev_err(&master->dev,
				"failed to unprepare message: %d\n", ret);
		}
	}
1371

1372 1373
	spin_lock_irqsave(&master->queue_lock, flags);
	master->cur_msg = NULL;
1374
	master->cur_msg_prepared = false;
P
Petr Mladek 已提交
1375
	kthread_queue_work(&master->kworker, &master->pump_messages);
1376 1377 1378
	spin_unlock_irqrestore(&master->queue_lock, flags);

	trace_spi_message_done(mesg);
1379

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
	mesg->state = NULL;
	if (mesg->complete)
		mesg->complete(mesg->context);
}
EXPORT_SYMBOL_GPL(spi_finalize_current_message);

static int spi_start_queue(struct spi_master *master)
{
	unsigned long flags;

	spin_lock_irqsave(&master->queue_lock, flags);

	if (master->running || master->busy) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return -EBUSY;
	}

	master->running = true;
	master->cur_msg = NULL;
	spin_unlock_irqrestore(&master->queue_lock, flags);

P
Petr Mladek 已提交
1401
	kthread_queue_work(&master->kworker, &master->pump_messages);
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421

	return 0;
}

static int spi_stop_queue(struct spi_master *master)
{
	unsigned long flags;
	unsigned limit = 500;
	int ret = 0;

	spin_lock_irqsave(&master->queue_lock, flags);

	/*
	 * This is a bit lame, but is optimized for the common execution path.
	 * A wait_queue on the master->busy could be used, but then the common
	 * execution path (pump_messages) would be required to call wake_up or
	 * friends on every SPI message. Do this instead.
	 */
	while ((!list_empty(&master->queue) || master->busy) && limit--) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
1422
		usleep_range(10000, 11000);
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
		spin_lock_irqsave(&master->queue_lock, flags);
	}

	if (!list_empty(&master->queue) || master->busy)
		ret = -EBUSY;
	else
		master->running = false;

	spin_unlock_irqrestore(&master->queue_lock, flags);

	if (ret) {
		dev_warn(&master->dev,
			 "could not stop message queue\n");
		return ret;
	}
	return ret;
}

static int spi_destroy_queue(struct spi_master *master)
{
	int ret;

	ret = spi_stop_queue(master);

	/*
P
Petr Mladek 已提交
1448
	 * kthread_flush_worker will block until all work is done.
1449 1450 1451 1452 1453 1454 1455 1456 1457
	 * If the reason that stop_queue timed out is that the work will never
	 * finish, then it does no good to call flush/stop thread, so
	 * return anyway.
	 */
	if (ret) {
		dev_err(&master->dev, "problem destroying queue\n");
		return ret;
	}

P
Petr Mladek 已提交
1458
	kthread_flush_worker(&master->kworker);
1459 1460 1461 1462 1463
	kthread_stop(master->kworker_task);

	return 0;
}

1464 1465 1466
static int __spi_queued_transfer(struct spi_device *spi,
				 struct spi_message *msg,
				 bool need_pump)
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
{
	struct spi_master *master = spi->master;
	unsigned long flags;

	spin_lock_irqsave(&master->queue_lock, flags);

	if (!master->running) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return -ESHUTDOWN;
	}
	msg->actual_length = 0;
	msg->status = -EINPROGRESS;

	list_add_tail(&msg->queue, &master->queue);
1481
	if (!master->busy && need_pump)
P
Petr Mladek 已提交
1482
		kthread_queue_work(&master->kworker, &master->pump_messages);
1483 1484 1485 1486 1487

	spin_unlock_irqrestore(&master->queue_lock, flags);
	return 0;
}

1488 1489 1490 1491
/**
 * spi_queued_transfer - transfer function for queued transfers
 * @spi: spi device which is requesting transfer
 * @msg: spi message which is to handled is queued to driver queue
1492 1493
 *
 * Return: zero on success, else a negative error code.
1494 1495 1496 1497 1498 1499
 */
static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
{
	return __spi_queued_transfer(spi, msg, true);
}

1500 1501 1502 1503 1504
static int spi_master_initialize_queue(struct spi_master *master)
{
	int ret;

	master->transfer = spi_queued_transfer;
1505 1506
	if (!master->transfer_one_message)
		master->transfer_one_message = spi_transfer_one_message;
1507 1508 1509 1510 1511 1512 1513

	/* Initialize and start queue */
	ret = spi_init_queue(master);
	if (ret) {
		dev_err(&master->dev, "problem initializing queue\n");
		goto err_init_queue;
	}
1514
	master->queued = true;
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
	ret = spi_start_queue(master);
	if (ret) {
		dev_err(&master->dev, "problem starting queue\n");
		goto err_start_queue;
	}

	return 0;

err_start_queue:
	spi_destroy_queue(master);
1525
err_init_queue:
1526 1527 1528 1529 1530
	return ret;
}

/*-------------------------------------------------------------------------*/

1531
#if defined(CONFIG_OF)
1532 1533
static int of_spi_parse_dt(struct spi_master *master, struct spi_device *spi,
			   struct device_node *nc)
1534 1535
{
	u32 value;
1536
	int rc;
1537 1538 1539 1540 1541 1542

	/* Device address */
	rc = of_property_read_u32(nc, "reg", &value);
	if (rc) {
		dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
			nc->full_name, rc);
1543
		return rc;
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
	}
	spi->chip_select = value;

	/* Mode (clock phase/polarity/etc.) */
	if (of_find_property(nc, "spi-cpha", NULL))
		spi->mode |= SPI_CPHA;
	if (of_find_property(nc, "spi-cpol", NULL))
		spi->mode |= SPI_CPOL;
	if (of_find_property(nc, "spi-cs-high", NULL))
		spi->mode |= SPI_CS_HIGH;
	if (of_find_property(nc, "spi-3wire", NULL))
		spi->mode |= SPI_3WIRE;
	if (of_find_property(nc, "spi-lsb-first", NULL))
		spi->mode |= SPI_LSB_FIRST;

	/* Device DUAL/QUAD mode */
	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
		switch (value) {
		case 1:
			break;
		case 2:
			spi->mode |= SPI_TX_DUAL;
			break;
		case 4:
			spi->mode |= SPI_TX_QUAD;
			break;
		default:
			dev_warn(&master->dev,
				"spi-tx-bus-width %d not supported\n",
				value);
			break;
		}
	}

	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
		switch (value) {
		case 1:
			break;
		case 2:
			spi->mode |= SPI_RX_DUAL;
			break;
		case 4:
			spi->mode |= SPI_RX_QUAD;
			break;
		default:
			dev_warn(&master->dev,
				"spi-rx-bus-width %d not supported\n",
				value);
			break;
		}
	}

	/* Device speed */
	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
	if (rc) {
		dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
			nc->full_name, rc);
1601
		return rc;
1602 1603 1604
	}
	spi->max_speed_hz = value;

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
	return 0;
}

static struct spi_device *
of_register_spi_device(struct spi_master *master, struct device_node *nc)
{
	struct spi_device *spi;
	int rc;

	/* Alloc an spi_device */
	spi = spi_alloc_device(master);
	if (!spi) {
		dev_err(&master->dev, "spi_device alloc error for %s\n",
			nc->full_name);
		rc = -ENOMEM;
		goto err_out;
	}

	/* Select device driver */
	rc = of_modalias_node(nc, spi->modalias,
				sizeof(spi->modalias));
	if (rc < 0) {
		dev_err(&master->dev, "cannot find modalias for %s\n",
			nc->full_name);
		goto err_out;
	}

	rc = of_spi_parse_dt(master, spi, nc);
	if (rc)
		goto err_out;

1636 1637 1638 1639 1640 1641 1642 1643 1644
	/* Store a pointer to the node in the device structure */
	of_node_get(nc);
	spi->dev.of_node = nc;

	/* Register the new device */
	rc = spi_add_device(spi);
	if (rc) {
		dev_err(&master->dev, "spi_device register error %s\n",
			nc->full_name);
J
Johan Hovold 已提交
1645
		goto err_of_node_put;
1646 1647 1648 1649
	}

	return spi;

J
Johan Hovold 已提交
1650 1651
err_of_node_put:
	of_node_put(nc);
1652 1653 1654 1655 1656
err_out:
	spi_dev_put(spi);
	return ERR_PTR(rc);
}

1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
/**
 * of_register_spi_devices() - Register child devices onto the SPI bus
 * @master:	Pointer to spi_master device
 *
 * Registers an spi_device for each child node of master node which has a 'reg'
 * property.
 */
static void of_register_spi_devices(struct spi_master *master)
{
	struct spi_device *spi;
	struct device_node *nc;

	if (!master->dev.of_node)
		return;

1672
	for_each_available_child_of_node(master->dev.of_node, nc) {
1673 1674
		if (of_node_test_and_set_flag(nc, OF_POPULATED))
			continue;
1675
		spi = of_register_spi_device(master, nc);
1676
		if (IS_ERR(spi)) {
1677
			dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1678
				nc->full_name);
1679 1680
			of_node_clear_flag(nc, OF_POPULATED);
		}
1681 1682 1683 1684 1685 1686
	}
}
#else
static void of_register_spi_devices(struct spi_master *master) { }
#endif

1687 1688 1689 1690
#ifdef CONFIG_ACPI
static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
{
	struct spi_device *spi = data;
1691
	struct spi_master *master = spi->master;
1692 1693 1694 1695 1696 1697

	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
		struct acpi_resource_spi_serialbus *sb;

		sb = &ares->data.spi_serial_bus;
		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
			/*
			 * ACPI DeviceSelection numbering is handled by the
			 * host controller driver in Windows and can vary
			 * from driver to driver. In Linux we always expect
			 * 0 .. max - 1 so we need to ask the driver to
			 * translate between the two schemes.
			 */
			if (master->fw_translate_cs) {
				int cs = master->fw_translate_cs(master,
						sb->device_selection);
				if (cs < 0)
					return cs;
				spi->chip_select = cs;
			} else {
				spi->chip_select = sb->device_selection;
			}

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
			spi->max_speed_hz = sb->connection_speed;

			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
				spi->mode |= SPI_CPHA;
			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
				spi->mode |= SPI_CPOL;
			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
				spi->mode |= SPI_CS_HIGH;
		}
	} else if (spi->irq < 0) {
		struct resource r;

		if (acpi_dev_resource_interrupt(ares, 0, &r))
			spi->irq = r.start;
	}

	/* Always tell the ACPI core to skip this resource */
	return 1;
}

1735 1736
static acpi_status acpi_register_spi_device(struct spi_master *master,
					    struct acpi_device *adev)
1737 1738 1739 1740 1741
{
	struct list_head resource_list;
	struct spi_device *spi;
	int ret;

1742 1743
	if (acpi_bus_get_status(adev) || !adev->status.present ||
	    acpi_device_enumerated(adev))
1744 1745 1746 1747 1748 1749 1750 1751 1752
		return AE_OK;

	spi = spi_alloc_device(master);
	if (!spi) {
		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
			dev_name(&adev->dev));
		return AE_NO_MEMORY;
	}

1753
	ACPI_COMPANION_SET(&spi->dev, adev);
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
	spi->irq = -1;

	INIT_LIST_HEAD(&resource_list);
	ret = acpi_dev_get_resources(adev, &resource_list,
				     acpi_spi_add_resource, spi);
	acpi_dev_free_resource_list(&resource_list);

	if (ret < 0 || !spi->max_speed_hz) {
		spi_dev_put(spi);
		return AE_OK;
	}

1766 1767 1768
	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
			  sizeof(spi->modalias));

1769 1770 1771
	if (spi->irq < 0)
		spi->irq = acpi_dev_gpio_irq_get(adev, 0);

1772 1773
	acpi_device_set_enumerated(adev);

1774
	adev->power.flags.ignore_parent = true;
1775
	if (spi_add_device(spi)) {
1776
		adev->power.flags.ignore_parent = false;
1777 1778 1779 1780 1781 1782 1783 1784
		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
			dev_name(&adev->dev));
		spi_dev_put(spi);
	}

	return AE_OK;
}

1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
				       void *data, void **return_value)
{
	struct spi_master *master = data;
	struct acpi_device *adev;

	if (acpi_bus_get_device(handle, &adev))
		return AE_OK;

	return acpi_register_spi_device(master, adev);
}

1797 1798 1799 1800 1801
static void acpi_register_spi_devices(struct spi_master *master)
{
	acpi_status status;
	acpi_handle handle;

1802
	handle = ACPI_HANDLE(master->dev.parent);
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
	if (!handle)
		return;

	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
				     acpi_spi_add_device, NULL,
				     master, NULL);
	if (ACPI_FAILURE(status))
		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
}
#else
static inline void acpi_register_spi_devices(struct spi_master *master) {}
#endif /* CONFIG_ACPI */

T
Tony Jones 已提交
1816
static void spi_master_release(struct device *dev)
1817 1818 1819
{
	struct spi_master *master;

T
Tony Jones 已提交
1820
	master = container_of(dev, struct spi_master, dev);
1821 1822 1823 1824 1825 1826
	kfree(master);
}

static struct class spi_master_class = {
	.name		= "spi_master",
	.owner		= THIS_MODULE,
T
Tony Jones 已提交
1827
	.dev_release	= spi_master_release,
1828
	.dev_groups	= spi_master_groups,
1829 1830 1831 1832 1833 1834
};


/**
 * spi_alloc_master - allocate SPI master controller
 * @dev: the controller, possibly using the platform_bus
D
David Brownell 已提交
1835
 * @size: how much zeroed driver-private data to allocate; the pointer to this
T
Tony Jones 已提交
1836
 *	memory is in the driver_data field of the returned device,
D
David Brownell 已提交
1837
 *	accessible with spi_master_get_devdata().
D
David Brownell 已提交
1838
 * Context: can sleep
1839 1840 1841
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.  It's how they allocate
D
dmitry pervushin 已提交
1842
 * an spi_master structure, prior to calling spi_register_master().
1843
 *
1844
 * This must be called from context that can sleep.
1845 1846
 *
 * The caller is responsible for assigning the bus number and initializing
D
dmitry pervushin 已提交
1847
 * the master's methods before calling spi_register_master(); and (after errors
1848
 * adding the device) calling spi_master_put() to prevent a memory leak.
1849 1850
 *
 * Return: the SPI master structure on success, else NULL.
1851
 */
1852
struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1853 1854 1855
{
	struct spi_master	*master;

D
David Brownell 已提交
1856 1857 1858
	if (!dev)
		return NULL;

J
Jingoo Han 已提交
1859
	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1860 1861 1862
	if (!master)
		return NULL;

T
Tony Jones 已提交
1863
	device_initialize(&master->dev);
1864 1865
	master->bus_num = -1;
	master->num_chipselect = 1;
T
Tony Jones 已提交
1866
	master->dev.class = &spi_master_class;
1867
	master->dev.parent = dev;
1868
	pm_suspend_ignore_children(&master->dev, true);
D
David Brownell 已提交
1869
	spi_master_set_devdata(master, &master[1]);
1870 1871 1872 1873 1874

	return master;
}
EXPORT_SYMBOL_GPL(spi_alloc_master);

1875 1876 1877
#ifdef CONFIG_OF
static int of_spi_register_master(struct spi_master *master)
{
1878
	int nb, i, *cs;
1879 1880 1881 1882 1883 1884
	struct device_node *np = master->dev.of_node;

	if (!np)
		return 0;

	nb = of_gpio_named_count(np, "cs-gpios");
J
Jingoo Han 已提交
1885
	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1886

1887 1888
	/* Return error only for an incorrectly formed cs-gpios property */
	if (nb == 0 || nb == -ENOENT)
1889
		return 0;
1890 1891
	else if (nb < 0)
		return nb;
1892 1893 1894 1895 1896 1897 1898 1899 1900

	cs = devm_kzalloc(&master->dev,
			  sizeof(int) * master->num_chipselect,
			  GFP_KERNEL);
	master->cs_gpios = cs;

	if (!master->cs_gpios)
		return -ENOMEM;

1901
	for (i = 0; i < master->num_chipselect; i++)
1902
		cs[i] = -ENOENT;
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915

	for (i = 0; i < nb; i++)
		cs[i] = of_get_named_gpio(np, "cs-gpios", i);

	return 0;
}
#else
static int of_spi_register_master(struct spi_master *master)
{
	return 0;
}
#endif

1916 1917 1918
/**
 * spi_register_master - register SPI master controller
 * @master: initialized master, originally from spi_alloc_master()
D
David Brownell 已提交
1919
 * Context: can sleep
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
 *
 * SPI master controllers connect to their drivers using some non-SPI bus,
 * such as the platform bus.  The final stage of probe() in that code
 * includes calling spi_register_master() to hook up to this SPI bus glue.
 *
 * SPI controllers use board specific (often SOC specific) bus numbers,
 * and board-specific addressing for SPI devices combines those numbers
 * with chip select numbers.  Since SPI does not directly support dynamic
 * device identification, boards need configuration tables telling which
 * chip is at which address.
 *
 * This must be called from context that can sleep.  It returns zero on
 * success, else a negative error code (dropping the master's refcount).
D
David Brownell 已提交
1933 1934
 * After a successful return, the caller is responsible for calling
 * spi_unregister_master().
1935 1936
 *
 * Return: zero on success, else a negative error code.
1937
 */
1938
int spi_register_master(struct spi_master *master)
1939
{
1940
	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
T
Tony Jones 已提交
1941
	struct device		*dev = master->dev.parent;
1942
	struct boardinfo	*bi;
1943 1944 1945
	int			status = -ENODEV;
	int			dynamic = 0;

D
David Brownell 已提交
1946 1947 1948
	if (!dev)
		return -ENODEV;

1949 1950 1951 1952
	status = of_spi_register_master(master);
	if (status)
		return status;

1953 1954 1955 1956 1957 1958
	/* even if it's just one always-selected device, there must
	 * be at least one chipselect
	 */
	if (master->num_chipselect == 0)
		return -EINVAL;

1959 1960 1961
	if ((master->bus_num < 0) && master->dev.of_node)
		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");

1962
	/* convention:  dynamically assigned bus IDs count down from the max */
1963
	if (master->bus_num < 0) {
1964 1965 1966
		/* FIXME switch to an IDR based scheme, something like
		 * I2C now uses, so we can't run out of "dynamic" IDs
		 */
1967
		master->bus_num = atomic_dec_return(&dyn_bus_id);
1968
		dynamic = 1;
1969 1970
	}

1971 1972
	INIT_LIST_HEAD(&master->queue);
	spin_lock_init(&master->queue_lock);
1973 1974
	spin_lock_init(&master->bus_lock_spinlock);
	mutex_init(&master->bus_lock_mutex);
M
Mark Brown 已提交
1975
	mutex_init(&master->io_mutex);
1976
	master->bus_lock_flag = 0;
1977
	init_completion(&master->xfer_completion);
1978 1979
	if (!master->max_dma_len)
		master->max_dma_len = INT_MAX;
1980

1981 1982 1983
	/* register the device, then userspace will see it.
	 * registration fails if the bus ID is in use.
	 */
1984
	dev_set_name(&master->dev, "spi%u", master->bus_num);
T
Tony Jones 已提交
1985
	status = device_add(&master->dev);
1986
	if (status < 0)
1987
		goto done;
1988
	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1989 1990
			dynamic ? " (dynamic)" : "");

1991 1992 1993 1994 1995 1996
	/* If we're using a queued driver, start the queue */
	if (master->transfer)
		dev_info(dev, "master is unqueued, this is deprecated\n");
	else {
		status = spi_master_initialize_queue(master);
		if (status) {
1997
			device_del(&master->dev);
1998 1999 2000
			goto done;
		}
	}
2001 2002
	/* add statistics */
	spin_lock_init(&master->statistics.lock);
2003

2004 2005 2006 2007 2008 2009
	mutex_lock(&board_lock);
	list_add_tail(&master->list, &spi_master_list);
	list_for_each_entry(bi, &board_list, list)
		spi_match_master_to_boardinfo(master, &bi->board_info);
	mutex_unlock(&board_lock);

2010
	/* Register devices from the device tree and ACPI */
2011
	of_register_spi_devices(master);
2012
	acpi_register_spi_devices(master);
2013 2014 2015 2016 2017
done:
	return status;
}
EXPORT_SYMBOL_GPL(spi_register_master);

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
static void devm_spi_unregister(struct device *dev, void *res)
{
	spi_unregister_master(*(struct spi_master **)res);
}

/**
 * dev_spi_register_master - register managed SPI master controller
 * @dev:    device managing SPI master
 * @master: initialized master, originally from spi_alloc_master()
 * Context: can sleep
 *
 * Register a SPI device as with spi_register_master() which will
 * automatically be unregister
2031 2032
 *
 * Return: zero on success, else a negative error code.
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
 */
int devm_spi_register_master(struct device *dev, struct spi_master *master)
{
	struct spi_master **ptr;
	int ret;

	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return -ENOMEM;

	ret = spi_register_master(master);
2044
	if (!ret) {
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
		*ptr = master;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return ret;
}
EXPORT_SYMBOL_GPL(devm_spi_register_master);

2055
static int __unregister(struct device *dev, void *null)
2056
{
2057
	spi_unregister_device(to_spi_device(dev));
2058 2059 2060 2061 2062 2063
	return 0;
}

/**
 * spi_unregister_master - unregister SPI master controller
 * @master: the master being unregistered
D
David Brownell 已提交
2064
 * Context: can sleep
2065 2066 2067 2068 2069 2070 2071 2072
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.
 *
 * This must be called from context that can sleep.
 */
void spi_unregister_master(struct spi_master *master)
{
2073 2074
	int dummy;

2075 2076 2077 2078 2079
	if (master->queued) {
		if (spi_destroy_queue(master))
			dev_err(&master->dev, "queue remove failed\n");
	}

2080 2081 2082 2083
	mutex_lock(&board_lock);
	list_del(&master->list);
	mutex_unlock(&board_lock);

2084
	dummy = device_for_each_child(&master->dev, NULL, __unregister);
T
Tony Jones 已提交
2085
	device_unregister(&master->dev);
2086 2087 2088
}
EXPORT_SYMBOL_GPL(spi_unregister_master);

2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
int spi_master_suspend(struct spi_master *master)
{
	int ret;

	/* Basically no-ops for non-queued masters */
	if (!master->queued)
		return 0;

	ret = spi_stop_queue(master);
	if (ret)
		dev_err(&master->dev, "queue stop failed\n");

	return ret;
}
EXPORT_SYMBOL_GPL(spi_master_suspend);

int spi_master_resume(struct spi_master *master)
{
	int ret;

	if (!master->queued)
		return 0;

	ret = spi_start_queue(master);
	if (ret)
		dev_err(&master->dev, "queue restart failed\n");

	return ret;
}
EXPORT_SYMBOL_GPL(spi_master_resume);

2120
static int __spi_master_match(struct device *dev, const void *data)
D
Dave Young 已提交
2121 2122
{
	struct spi_master *m;
2123
	const u16 *bus_num = data;
D
Dave Young 已提交
2124 2125 2126 2127 2128

	m = container_of(dev, struct spi_master, dev);
	return m->bus_num == *bus_num;
}

2129 2130 2131
/**
 * spi_busnum_to_master - look up master associated with bus_num
 * @bus_num: the master's bus number
D
David Brownell 已提交
2132
 * Context: can sleep
2133 2134 2135 2136 2137
 *
 * This call may be used with devices that are registered after
 * arch init time.  It returns a refcounted pointer to the relevant
 * spi_master (which the caller must release), or NULL if there is
 * no such master registered.
2138 2139
 *
 * Return: the SPI master structure on success, else NULL.
2140 2141 2142
 */
struct spi_master *spi_busnum_to_master(u16 bus_num)
{
T
Tony Jones 已提交
2143
	struct device		*dev;
2144
	struct spi_master	*master = NULL;
D
Dave Young 已提交
2145

2146
	dev = class_find_device(&spi_master_class, NULL, &bus_num,
D
Dave Young 已提交
2147 2148 2149 2150
				__spi_master_match);
	if (dev)
		master = container_of(dev, struct spi_master, dev);
	/* reference got in class_find_device */
2151
	return master;
2152 2153 2154
}
EXPORT_SYMBOL_GPL(spi_busnum_to_master);

2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
/*-------------------------------------------------------------------------*/

/* Core methods for SPI resource management */

/**
 * spi_res_alloc - allocate a spi resource that is life-cycle managed
 *                 during the processing of a spi_message while using
 *                 spi_transfer_one
 * @spi:     the spi device for which we allocate memory
 * @release: the release code to execute for this resource
 * @size:    size to alloc and return
 * @gfp:     GFP allocation flags
 *
 * Return: the pointer to the allocated data
 *
 * This may get enhanced in the future to allocate from a memory pool
 * of the @spi_device or @spi_master to avoid repeated allocations.
 */
void *spi_res_alloc(struct spi_device *spi,
		    spi_res_release_t release,
		    size_t size, gfp_t gfp)
{
	struct spi_res *sres;

	sres = kzalloc(sizeof(*sres) + size, gfp);
	if (!sres)
		return NULL;

	INIT_LIST_HEAD(&sres->entry);
	sres->release = release;

	return sres->data;
}
EXPORT_SYMBOL_GPL(spi_res_alloc);

/**
 * spi_res_free - free an spi resource
 * @res: pointer to the custom data of a resource
 *
 */
void spi_res_free(void *res)
{
	struct spi_res *sres = container_of(res, struct spi_res, data);

	if (!res)
		return;

	WARN_ON(!list_empty(&sres->entry));
	kfree(sres);
}
EXPORT_SYMBOL_GPL(spi_res_free);

/**
 * spi_res_add - add a spi_res to the spi_message
 * @message: the spi message
 * @res:     the spi_resource
 */
void spi_res_add(struct spi_message *message, void *res)
{
	struct spi_res *sres = container_of(res, struct spi_res, data);

	WARN_ON(!list_empty(&sres->entry));
	list_add_tail(&sres->entry, &message->resources);
}
EXPORT_SYMBOL_GPL(spi_res_add);

/**
 * spi_res_release - release all spi resources for this message
 * @master:  the @spi_master
 * @message: the @spi_message
 */
void spi_res_release(struct spi_master *master,
		     struct spi_message *message)
{
	struct spi_res *res;

	while (!list_empty(&message->resources)) {
		res = list_last_entry(&message->resources,
				      struct spi_res, entry);

		if (res->release)
			res->release(master, message, res->data);

		list_del(&res->entry);

		kfree(res);
	}
}
EXPORT_SYMBOL_GPL(spi_res_release);
2244 2245 2246

/*-------------------------------------------------------------------------*/

2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
/* Core methods for spi_message alterations */

static void __spi_replace_transfers_release(struct spi_master *master,
					    struct spi_message *msg,
					    void *res)
{
	struct spi_replaced_transfers *rxfer = res;
	size_t i;

	/* call extra callback if requested */
	if (rxfer->release)
		rxfer->release(master, msg, res);

	/* insert replaced transfers back into the message */
	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);

	/* remove the formerly inserted entries */
	for (i = 0; i < rxfer->inserted; i++)
		list_del(&rxfer->inserted_transfers[i].transfer_list);
}

/**
 * spi_replace_transfers - replace transfers with several transfers
 *                         and register change with spi_message.resources
 * @msg:           the spi_message we work upon
 * @xfer_first:    the first spi_transfer we want to replace
 * @remove:        number of transfers to remove
 * @insert:        the number of transfers we want to insert instead
 * @release:       extra release code necessary in some circumstances
 * @extradatasize: extra data to allocate (with alignment guarantees
 *                 of struct @spi_transfer)
2278
 * @gfp:           gfp flags
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
 *
 * Returns: pointer to @spi_replaced_transfers,
 *          PTR_ERR(...) in case of errors.
 */
struct spi_replaced_transfers *spi_replace_transfers(
	struct spi_message *msg,
	struct spi_transfer *xfer_first,
	size_t remove,
	size_t insert,
	spi_replaced_release_t release,
	size_t extradatasize,
	gfp_t gfp)
{
	struct spi_replaced_transfers *rxfer;
	struct spi_transfer *xfer;
	size_t i;

	/* allocate the structure using spi_res */
	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
			      insert * sizeof(struct spi_transfer)
			      + sizeof(struct spi_replaced_transfers)
			      + extradatasize,
			      gfp);
	if (!rxfer)
		return ERR_PTR(-ENOMEM);

	/* the release code to invoke before running the generic release */
	rxfer->release = release;

	/* assign extradata */
	if (extradatasize)
		rxfer->extradata =
			&rxfer->inserted_transfers[insert];

	/* init the replaced_transfers list */
	INIT_LIST_HEAD(&rxfer->replaced_transfers);

	/* assign the list_entry after which we should reinsert
	 * the @replaced_transfers - it may be spi_message.messages!
	 */
	rxfer->replaced_after = xfer_first->transfer_list.prev;

	/* remove the requested number of transfers */
	for (i = 0; i < remove; i++) {
		/* if the entry after replaced_after it is msg->transfers
		 * then we have been requested to remove more transfers
		 * than are in the list
		 */
		if (rxfer->replaced_after->next == &msg->transfers) {
			dev_err(&msg->spi->dev,
				"requested to remove more spi_transfers than are available\n");
			/* insert replaced transfers back into the message */
			list_splice(&rxfer->replaced_transfers,
				    rxfer->replaced_after);

			/* free the spi_replace_transfer structure */
			spi_res_free(rxfer);

			/* and return with an error */
			return ERR_PTR(-EINVAL);
		}

		/* remove the entry after replaced_after from list of
		 * transfers and add it to list of replaced_transfers
		 */
		list_move_tail(rxfer->replaced_after->next,
			       &rxfer->replaced_transfers);
	}

	/* create copy of the given xfer with identical settings
	 * based on the first transfer to get removed
	 */
	for (i = 0; i < insert; i++) {
		/* we need to run in reverse order */
		xfer = &rxfer->inserted_transfers[insert - 1 - i];

		/* copy all spi_transfer data */
		memcpy(xfer, xfer_first, sizeof(*xfer));

		/* add to list */
		list_add(&xfer->transfer_list, rxfer->replaced_after);

		/* clear cs_change and delay_usecs for all but the last */
		if (i) {
			xfer->cs_change = false;
			xfer->delay_usecs = 0;
		}
	}

	/* set up inserted */
	rxfer->inserted = insert;

	/* and register it with spi_res/spi_message */
	spi_res_add(msg, rxfer);

	return rxfer;
}
EXPORT_SYMBOL_GPL(spi_replace_transfers);

2378 2379 2380 2381 2382
static int __spi_split_transfer_maxsize(struct spi_master *master,
					struct spi_message *msg,
					struct spi_transfer **xferp,
					size_t maxsize,
					gfp_t gfp)
2383 2384 2385 2386 2387 2388 2389 2390
{
	struct spi_transfer *xfer = *xferp, *xfers;
	struct spi_replaced_transfers *srt;
	size_t offset;
	size_t count, i;

	/* warn once about this fact that we are splitting a transfer */
	dev_warn_once(&msg->spi->dev,
2391
		      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2392 2393 2394 2395 2396 2397 2398
		      xfer->len, maxsize);

	/* calculate how many we have to replace */
	count = DIV_ROUND_UP(xfer->len, maxsize);

	/* create replacement */
	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2399 2400
	if (IS_ERR(srt))
		return PTR_ERR(srt);
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
	xfers = srt->inserted_transfers;

	/* now handle each of those newly inserted spi_transfers
	 * note that the replacements spi_transfers all are preset
	 * to the same values as *xferp, so tx_buf, rx_buf and len
	 * are all identical (as well as most others)
	 * so we just have to fix up len and the pointers.
	 *
	 * this also includes support for the depreciated
	 * spi_message.is_dma_mapped interface
	 */

	/* the first transfer just needs the length modified, so we
	 * run it outside the loop
	 */
F
Fabio Estevam 已提交
2416
	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452

	/* all the others need rx_buf/tx_buf also set */
	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
		/* update rx_buf, tx_buf and dma */
		if (xfers[i].rx_buf)
			xfers[i].rx_buf += offset;
		if (xfers[i].rx_dma)
			xfers[i].rx_dma += offset;
		if (xfers[i].tx_buf)
			xfers[i].tx_buf += offset;
		if (xfers[i].tx_dma)
			xfers[i].tx_dma += offset;

		/* update length */
		xfers[i].len = min(maxsize, xfers[i].len - offset);
	}

	/* we set up xferp to the last entry we have inserted,
	 * so that we skip those already split transfers
	 */
	*xferp = &xfers[count - 1];

	/* increment statistics counters */
	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
				       transfers_split_maxsize);
	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
				       transfers_split_maxsize);

	return 0;
}

/**
 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
 *                              when an individual transfer exceeds a
 *                              certain size
 * @master:    the @spi_master for this transfer
2453 2454
 * @msg:   the @spi_message to transform
 * @maxsize:  the maximum when to apply this
2455
 * @gfp: GFP allocation flags
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
 *
 * Return: status of transformation
 */
int spi_split_transfers_maxsize(struct spi_master *master,
				struct spi_message *msg,
				size_t maxsize,
				gfp_t gfp)
{
	struct spi_transfer *xfer;
	int ret;

	/* iterate over the transfer_list,
	 * but note that xfer is advanced to the last transfer inserted
	 * to avoid checking sizes again unnecessarily (also xfer does
	 * potentiall belong to a different list by the time the
	 * replacement has happened
	 */
	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		if (xfer->len > maxsize) {
			ret = __spi_split_transfer_maxsize(
				master, msg, &xfer, maxsize, gfp);
			if (ret)
				return ret;
		}
	}

	return 0;
}
EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2485 2486 2487

/*-------------------------------------------------------------------------*/

2488 2489 2490 2491
/* Core methods for SPI master protocol drivers.  Some of the
 * other core methods are currently defined as inline functions.
 */

2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
{
	if (master->bits_per_word_mask) {
		/* Only 32 bits fit in the mask */
		if (bits_per_word > 32)
			return -EINVAL;
		if (!(master->bits_per_word_mask &
				SPI_BPW_MASK(bits_per_word)))
			return -EINVAL;
	}

	return 0;
}

2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
/**
 * spi_setup - setup SPI mode and clock rate
 * @spi: the device whose settings are being modified
 * Context: can sleep, and no requests are queued to the device
 *
 * SPI protocol drivers may need to update the transfer mode if the
 * device doesn't work with its default.  They may likewise need
 * to update clock rates or word sizes from initial values.  This function
 * changes those settings, and must be called from a context that can sleep.
 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
 * effect the next time the device is selected and data is transferred to
 * or from it.  When this function returns, the spi device is deselected.
 *
 * Note that this call will fail if the protocol driver specifies an option
 * that the underlying controller or its driver does not support.  For
 * example, not all hardware supports wire transfers using nine bit words,
 * LSB-first wire encoding, or active-high chipselects.
2523 2524
 *
 * Return: zero on success, else a negative error code.
2525 2526 2527
 */
int spi_setup(struct spi_device *spi)
{
2528
	unsigned	bad_bits, ugly_bits;
2529
	int		status;
2530

W
wangyuhang 已提交
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
	/* check mode to prevent that DUAL and QUAD set at the same time
	 */
	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
		dev_err(&spi->dev,
		"setup: can not select dual and quad at the same time\n");
		return -EINVAL;
	}
	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
	 */
	if ((spi->mode & SPI_3WIRE) && (spi->mode &
		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
		return -EINVAL;
2544 2545 2546 2547
	/* help drivers fail *cleanly* when they need options
	 * that aren't supported with their current master
	 */
	bad_bits = spi->mode & ~spi->master->mode_bits;
2548 2549 2550 2551 2552 2553 2554 2555 2556
	ugly_bits = bad_bits &
		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
	if (ugly_bits) {
		dev_warn(&spi->dev,
			 "setup: ignoring unsupported mode bits %x\n",
			 ugly_bits);
		spi->mode &= ~ugly_bits;
		bad_bits &= ~ugly_bits;
	}
2557
	if (bad_bits) {
2558
		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2559 2560 2561 2562
			bad_bits);
		return -EINVAL;
	}

2563 2564 2565
	if (!spi->bits_per_word)
		spi->bits_per_word = 8;

2566 2567 2568
	status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
	if (status)
		return status;
2569

2570 2571 2572
	if (!spi->max_speed_hz)
		spi->max_speed_hz = spi->master->max_speed_hz;

2573 2574
	if (spi->master->setup)
		status = spi->master->setup(spi);
2575

2576 2577
	spi_set_cs(spi, false);

J
Jingoo Han 已提交
2578
	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
			(spi->mode & SPI_LOOP) ? "loopback, " : "",
			spi->bits_per_word, spi->max_speed_hz,
			status);

	return status;
}
EXPORT_SYMBOL_GPL(spi_setup);

2591
static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2592 2593
{
	struct spi_master *master = spi->master;
2594
	struct spi_transfer *xfer;
2595
	int w_size;
2596

2597 2598 2599
	if (list_empty(&message->transfers))
		return -EINVAL;

2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
	/* Half-duplex links include original MicroWire, and ones with
	 * only one data pin like SPI_3WIRE (switches direction) or where
	 * either MOSI or MISO is missing.  They can also be caused by
	 * software limitations.
	 */
	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
			|| (spi->mode & SPI_3WIRE)) {
		unsigned flags = master->flags;

		list_for_each_entry(xfer, &message->transfers, transfer_list) {
			if (xfer->rx_buf && xfer->tx_buf)
				return -EINVAL;
			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
				return -EINVAL;
			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
				return -EINVAL;
		}
	}

2619
	/**
2620 2621
	 * Set transfer bits_per_word and max speed as spi device default if
	 * it is not set for this transfer.
W
wangyuhang 已提交
2622 2623
	 * Set transfer tx_nbits and rx_nbits as single transfer default
	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2624
	 */
2625
	message->frame_length = 0;
2626
	list_for_each_entry(xfer, &message->transfers, transfer_list) {
2627
		message->frame_length += xfer->len;
2628 2629
		if (!xfer->bits_per_word)
			xfer->bits_per_word = spi->bits_per_word;
2630 2631

		if (!xfer->speed_hz)
2632
			xfer->speed_hz = spi->max_speed_hz;
2633 2634
		if (!xfer->speed_hz)
			xfer->speed_hz = master->max_speed_hz;
2635 2636 2637 2638

		if (master->max_speed_hz &&
		    xfer->speed_hz > master->max_speed_hz)
			xfer->speed_hz = master->max_speed_hz;
2639

2640 2641
		if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
			return -EINVAL;
2642

2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
		/*
		 * SPI transfer length should be multiple of SPI word size
		 * where SPI word size should be power-of-two multiple
		 */
		if (xfer->bits_per_word <= 8)
			w_size = 1;
		else if (xfer->bits_per_word <= 16)
			w_size = 2;
		else
			w_size = 4;

		/* No partial transfers accepted */
2655
		if (xfer->len % w_size)
2656 2657
			return -EINVAL;

2658 2659 2660
		if (xfer->speed_hz && master->min_speed_hz &&
		    xfer->speed_hz < master->min_speed_hz)
			return -EINVAL;
W
wangyuhang 已提交
2661 2662 2663 2664 2665 2666

		if (xfer->tx_buf && !xfer->tx_nbits)
			xfer->tx_nbits = SPI_NBITS_SINGLE;
		if (xfer->rx_buf && !xfer->rx_nbits)
			xfer->rx_nbits = SPI_NBITS_SINGLE;
		/* check transfer tx/rx_nbits:
2667 2668
		 * 1. check the value matches one of single, dual and quad
		 * 2. check tx/rx_nbits match the mode in spi_device
W
wangyuhang 已提交
2669
		 */
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
		if (xfer->tx_buf) {
			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
				xfer->tx_nbits != SPI_NBITS_DUAL &&
				xfer->tx_nbits != SPI_NBITS_QUAD)
				return -EINVAL;
			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
				return -EINVAL;
			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
				!(spi->mode & SPI_TX_QUAD))
				return -EINVAL;
		}
W
wangyuhang 已提交
2682
		/* check transfer rx_nbits */
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
		if (xfer->rx_buf) {
			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
				xfer->rx_nbits != SPI_NBITS_DUAL &&
				xfer->rx_nbits != SPI_NBITS_QUAD)
				return -EINVAL;
			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
				return -EINVAL;
			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
				!(spi->mode & SPI_RX_QUAD))
				return -EINVAL;
		}
2695 2696
	}

2697
	message->status = -EINPROGRESS;
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707

	return 0;
}

static int __spi_async(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;

	message->spi = spi;

2708 2709 2710
	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);

2711 2712
	trace_spi_message_submit(message);

2713 2714 2715
	return master->transfer(spi, message);
}

D
David Brownell 已提交
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
/**
 * spi_async - asynchronous SPI transfer
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
2744 2745
 *
 * Return: zero on success, else a negative error code.
D
David Brownell 已提交
2746 2747 2748 2749
 */
int spi_async(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
2750 2751
	int ret;
	unsigned long flags;
D
David Brownell 已提交
2752

2753 2754 2755 2756
	ret = __spi_validate(spi, message);
	if (ret != 0)
		return ret;

2757
	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
D
David Brownell 已提交
2758

2759 2760 2761 2762
	if (master->bus_lock_flag)
		ret = -EBUSY;
	else
		ret = __spi_async(spi, message);
D
David Brownell 已提交
2763

2764 2765 2766
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	return ret;
D
David Brownell 已提交
2767 2768 2769
}
EXPORT_SYMBOL_GPL(spi_async);

2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
/**
 * spi_async_locked - version of spi_async with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
2798 2799
 *
 * Return: zero on success, else a negative error code.
2800 2801 2802 2803 2804 2805 2806
 */
int spi_async_locked(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
	int ret;
	unsigned long flags;

2807 2808 2809 2810
	ret = __spi_validate(spi, message);
	if (ret != 0)
		return ret;

2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
	spin_lock_irqsave(&master->bus_lock_spinlock, flags);

	ret = __spi_async(spi, message);

	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	return ret;

}
EXPORT_SYMBOL_GPL(spi_async_locked);

2822

2823 2824 2825 2826 2827
int spi_flash_read(struct spi_device *spi,
		   struct spi_flash_read_message *msg)

{
	struct spi_master *master = spi->master;
2828
	struct device *rx_dev = NULL;
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
	int ret;

	if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
	     msg->addr_nbits == SPI_NBITS_DUAL) &&
	    !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
		return -EINVAL;
	if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
	     msg->addr_nbits == SPI_NBITS_QUAD) &&
	    !(spi->mode & SPI_TX_QUAD))
		return -EINVAL;
	if (msg->data_nbits == SPI_NBITS_DUAL &&
	    !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
		return -EINVAL;
	if (msg->data_nbits == SPI_NBITS_QUAD &&
	    !(spi->mode &  SPI_RX_QUAD))
		return -EINVAL;

	if (master->auto_runtime_pm) {
		ret = pm_runtime_get_sync(master->dev.parent);
		if (ret < 0) {
			dev_err(&master->dev, "Failed to power device: %d\n",
				ret);
			return ret;
		}
	}
2854

2855
	mutex_lock(&master->bus_lock_mutex);
M
Mark Brown 已提交
2856
	mutex_lock(&master->io_mutex);
2857
	if (master->dma_rx && master->spi_flash_can_dma(spi, msg)) {
2858 2859 2860 2861 2862 2863 2864
		rx_dev = master->dma_rx->device->dev;
		ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
				  msg->buf, msg->len,
				  DMA_FROM_DEVICE);
		if (!ret)
			msg->cur_msg_mapped = true;
	}
2865
	ret = master->spi_flash_read(spi, msg);
2866 2867 2868
	if (msg->cur_msg_mapped)
		spi_unmap_buf(master, rx_dev, &msg->rx_sg,
			      DMA_FROM_DEVICE);
M
Mark Brown 已提交
2869
	mutex_unlock(&master->io_mutex);
2870
	mutex_unlock(&master->bus_lock_mutex);
2871

2872 2873 2874 2875 2876 2877 2878
	if (master->auto_runtime_pm)
		pm_runtime_put(master->dev.parent);

	return ret;
}
EXPORT_SYMBOL_GPL(spi_flash_read);

2879 2880 2881 2882 2883 2884 2885
/*-------------------------------------------------------------------------*/

/* Utility methods for SPI master protocol drivers, layered on
 * top of the core.  Some other utility methods are defined as
 * inline functions.
 */

2886 2887 2888 2889 2890
static void spi_complete(void *arg)
{
	complete(arg);
}

M
Mark Brown 已提交
2891
static int __spi_sync(struct spi_device *spi, struct spi_message *message)
2892 2893 2894 2895
{
	DECLARE_COMPLETION_ONSTACK(done);
	int status;
	struct spi_master *master = spi->master;
2896 2897 2898 2899 2900
	unsigned long flags;

	status = __spi_validate(spi, message);
	if (status != 0)
		return status;
2901 2902 2903

	message->complete = spi_complete;
	message->context = &done;
2904
	message->spi = spi;
2905

2906 2907 2908
	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);

2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
	/* If we're not using the legacy transfer method then we will
	 * try to transfer in the calling context so special case.
	 * This code would be less tricky if we could remove the
	 * support for driver implemented message queues.
	 */
	if (master->transfer == spi_queued_transfer) {
		spin_lock_irqsave(&master->bus_lock_spinlock, flags);

		trace_spi_message_submit(message);

		status = __spi_queued_transfer(spi, message, false);

		spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
	} else {
		status = spi_async_locked(spi, message);
	}
2925 2926

	if (status == 0) {
2927 2928 2929
		/* Push out the messages in the calling context if we
		 * can.
		 */
2930 2931 2932 2933 2934
		if (master->transfer == spi_queued_transfer) {
			SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
						       spi_sync_immediate);
			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
						       spi_sync_immediate);
M
Mark Brown 已提交
2935
			__spi_pump_messages(master, false);
2936
		}
2937

2938 2939 2940 2941 2942 2943 2944
		wait_for_completion(&done);
		status = message->status;
	}
	message->context = NULL;
	return status;
}

2945 2946 2947 2948
/**
 * spi_sync - blocking/synchronous SPI data transfers
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
D
David Brownell 已提交
2949
 * Context: can sleep
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * Note that the SPI device's chip select is active during the message,
 * and then is normally disabled between messages.  Drivers for some
 * frequently-used devices may want to minimize costs of selecting a chip,
 * by leaving it selected in anticipation that the next message will go
 * to the same chip.  (That may increase power usage.)
 *
D
David Brownell 已提交
2961 2962 2963
 * Also, the caller is guaranteeing that the memory associated with the
 * message will not be freed before this call returns.
 *
2964
 * Return: zero on success, else a negative error code.
2965 2966 2967
 */
int spi_sync(struct spi_device *spi, struct spi_message *message)
{
M
Mark Brown 已提交
2968 2969 2970 2971 2972 2973 2974
	int ret;

	mutex_lock(&spi->master->bus_lock_mutex);
	ret = __spi_sync(spi, message);
	mutex_unlock(&spi->master->bus_lock_mutex);

	return ret;
2975 2976 2977
}
EXPORT_SYMBOL_GPL(spi_sync);

2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
/**
 * spi_sync_locked - version of spi_sync with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * This call should be used by drivers that require exclusive access to the
L
Lucas De Marchi 已提交
2989
 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2990 2991
 * be released by a spi_bus_unlock call when the exclusive access is over.
 *
2992
 * Return: zero on success, else a negative error code.
2993 2994 2995
 */
int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
{
M
Mark Brown 已提交
2996
	return __spi_sync(spi, message);
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
}
EXPORT_SYMBOL_GPL(spi_sync_locked);

/**
 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
 * @master: SPI bus master that should be locked for exclusive bus access
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call should be used by drivers that require exclusive access to the
 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
 * exclusive access is over. Data transfer must be done by spi_sync_locked
 * and spi_async_locked calls when the SPI bus lock is held.
 *
3013
 * Return: always zero.
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
 */
int spi_bus_lock(struct spi_master *master)
{
	unsigned long flags;

	mutex_lock(&master->bus_lock_mutex);

	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
	master->bus_lock_flag = 1;
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	/* mutex remains locked until spi_bus_unlock is called */

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_lock);

/**
 * spi_bus_unlock - release the lock for exclusive SPI bus usage
 * @master: SPI bus master that was locked for exclusive bus access
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
 * call.
 *
3042
 * Return: always zero.
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
 */
int spi_bus_unlock(struct spi_master *master)
{
	master->bus_lock_flag = 0;

	mutex_unlock(&master->bus_lock_mutex);

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_unlock);

3054
/* portable code must never pass more than 32 bytes */
J
Jingoo Han 已提交
3055
#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3056 3057 3058 3059 3060 3061 3062 3063

static u8	*buf;

/**
 * spi_write_then_read - SPI synchronous write followed by read
 * @spi: device with which data will be exchanged
 * @txbuf: data to be written (need not be dma-safe)
 * @n_tx: size of txbuf, in bytes
3064 3065
 * @rxbuf: buffer into which data will be read (need not be dma-safe)
 * @n_rx: size of rxbuf, in bytes
D
David Brownell 已提交
3066
 * Context: can sleep
3067 3068 3069 3070
 *
 * This performs a half duplex MicroWire style transaction with the
 * device, sending txbuf and then reading rxbuf.  The return value
 * is zero for success, else a negative errno status code.
3071
 * This call may only be used from a context that may sleep.
3072
 *
D
David Brownell 已提交
3073
 * Parameters to this routine are always copied using a small buffer;
D
David Brownell 已提交
3074 3075
 * portable code should never use this for more than 32 bytes.
 * Performance-sensitive or bulk transfer code should instead use
D
David Brownell 已提交
3076
 * spi_{async,sync}() calls with dma-safe buffers.
3077 3078
 *
 * Return: zero on success, else a negative error code.
3079 3080
 */
int spi_write_then_read(struct spi_device *spi,
3081 3082
		const void *txbuf, unsigned n_tx,
		void *rxbuf, unsigned n_rx)
3083
{
D
David Brownell 已提交
3084
	static DEFINE_MUTEX(lock);
3085 3086 3087

	int			status;
	struct spi_message	message;
3088
	struct spi_transfer	x[2];
3089 3090
	u8			*local_buf;

3091 3092 3093 3094
	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
	 * copying here, (as a pure convenience thing), but we can
	 * keep heap costs out of the hot path unless someone else is
	 * using the pre-allocated buffer or the transfer is too large.
3095
	 */
3096
	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3097 3098
		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
				    GFP_KERNEL | GFP_DMA);
3099 3100 3101 3102 3103
		if (!local_buf)
			return -ENOMEM;
	} else {
		local_buf = buf;
	}
3104

3105
	spi_message_init(&message);
J
Jingoo Han 已提交
3106
	memset(x, 0, sizeof(x));
3107 3108 3109 3110 3111 3112 3113 3114
	if (n_tx) {
		x[0].len = n_tx;
		spi_message_add_tail(&x[0], &message);
	}
	if (n_rx) {
		x[1].len = n_rx;
		spi_message_add_tail(&x[1], &message);
	}
3115

3116
	memcpy(local_buf, txbuf, n_tx);
3117 3118
	x[0].tx_buf = local_buf;
	x[1].rx_buf = local_buf + n_tx;
3119 3120 3121

	/* do the i/o */
	status = spi_sync(spi, &message);
3122
	if (status == 0)
3123
		memcpy(rxbuf, x[1].rx_buf, n_rx);
3124

3125
	if (x[0].tx_buf == buf)
D
David Brownell 已提交
3126
		mutex_unlock(&lock);
3127 3128 3129 3130 3131 3132 3133 3134 3135
	else
		kfree(local_buf);

	return status;
}
EXPORT_SYMBOL_GPL(spi_write_then_read);

/*-------------------------------------------------------------------------*/

3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
#if IS_ENABLED(CONFIG_OF_DYNAMIC)
static int __spi_of_device_match(struct device *dev, void *data)
{
	return dev->of_node == data;
}

/* must call put_device() when done with returned spi_device device */
static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
{
	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
						__spi_of_device_match);
	return dev ? to_spi_device(dev) : NULL;
}

static int __spi_of_master_match(struct device *dev, const void *data)
{
	return dev->of_node == data;
}

/* the spi masters are not using spi_bus, so we find it with another way */
static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
{
	struct device *dev;

	dev = class_find_device(&spi_master_class, NULL, node,
				__spi_of_master_match);
	if (!dev)
		return NULL;

	/* reference got in class_find_device */
	return container_of(dev, struct spi_master, dev);
}

static int of_spi_notify(struct notifier_block *nb, unsigned long action,
			 void *arg)
{
	struct of_reconfig_data *rd = arg;
	struct spi_master *master;
	struct spi_device *spi;

	switch (of_reconfig_get_state_change(action, arg)) {
	case OF_RECONFIG_CHANGE_ADD:
		master = of_find_spi_master_by_node(rd->dn->parent);
		if (master == NULL)
			return NOTIFY_OK;	/* not for us */

3182 3183 3184 3185 3186
		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
			put_device(&master->dev);
			return NOTIFY_OK;
		}

3187 3188 3189 3190 3191 3192
		spi = of_register_spi_device(master, rd->dn);
		put_device(&master->dev);

		if (IS_ERR(spi)) {
			pr_err("%s: failed to create for '%s'\n",
					__func__, rd->dn->full_name);
3193
			of_node_clear_flag(rd->dn, OF_POPULATED);
3194 3195 3196 3197 3198
			return notifier_from_errno(PTR_ERR(spi));
		}
		break;

	case OF_RECONFIG_CHANGE_REMOVE:
3199 3200 3201 3202
		/* already depopulated? */
		if (!of_node_check_flag(rd->dn, OF_POPULATED))
			return NOTIFY_OK;

3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
		/* find our device by node */
		spi = of_find_spi_device_by_node(rd->dn);
		if (spi == NULL)
			return NOTIFY_OK;	/* no? not meant for us */

		/* unregister takes one ref away */
		spi_unregister_device(spi);

		/* and put the reference of the find */
		put_device(&spi->dev);
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block spi_of_notifier = {
	.notifier_call = of_spi_notify,
};
#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
extern struct notifier_block spi_of_notifier;
#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */

3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
#if IS_ENABLED(CONFIG_ACPI)
static int spi_acpi_master_match(struct device *dev, const void *data)
{
	return ACPI_COMPANION(dev->parent) == data;
}

static int spi_acpi_device_match(struct device *dev, void *data)
{
	return ACPI_COMPANION(dev) == data;
}

static struct spi_master *acpi_spi_find_master_by_adev(struct acpi_device *adev)
{
	struct device *dev;

	dev = class_find_device(&spi_master_class, NULL, adev,
				spi_acpi_master_match);
	if (!dev)
		return NULL;

	return container_of(dev, struct spi_master, dev);
}

static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
{
	struct device *dev;

	dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);

	return dev ? to_spi_device(dev) : NULL;
}

static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
			   void *arg)
{
	struct acpi_device *adev = arg;
	struct spi_master *master;
	struct spi_device *spi;

	switch (value) {
	case ACPI_RECONFIG_DEVICE_ADD:
		master = acpi_spi_find_master_by_adev(adev->parent);
		if (!master)
			break;

		acpi_register_spi_device(master, adev);
		put_device(&master->dev);
		break;
	case ACPI_RECONFIG_DEVICE_REMOVE:
		if (!acpi_device_enumerated(adev))
			break;

		spi = acpi_spi_find_device_by_adev(adev);
		if (!spi)
			break;

		spi_unregister_device(spi);
		put_device(&spi->dev);
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block spi_acpi_notifier = {
	.notifier_call = acpi_spi_notify,
};
#else
extern struct notifier_block spi_acpi_notifier;
#endif

3297 3298
static int __init spi_init(void)
{
3299 3300
	int	status;

3301
	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3302 3303 3304 3305 3306 3307 3308 3309
	if (!buf) {
		status = -ENOMEM;
		goto err0;
	}

	status = bus_register(&spi_bus_type);
	if (status < 0)
		goto err1;
3310

3311 3312 3313
	status = class_register(&spi_master_class);
	if (status < 0)
		goto err2;
3314

3315
	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3316
		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3317 3318
	if (IS_ENABLED(CONFIG_ACPI))
		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3319

3320
	return 0;
3321 3322 3323 3324 3325 3326 3327 3328

err2:
	bus_unregister(&spi_bus_type);
err1:
	kfree(buf);
	buf = NULL;
err0:
	return status;
3329
}
3330

3331 3332
/* board_info is normally registered in arch_initcall(),
 * but even essential drivers wait till later
3333 3334 3335 3336
 *
 * REVISIT only boardinfo really needs static linking. the rest (device and
 * driver registration) _could_ be dynamically linked (modular) ... costs
 * include needing to have boardinfo data structures be much more public.
3337
 */
3338
postcore_initcall(spi_init);
3339