spi.c 69.0 KB
Newer Older
1
/*
G
Grant Likely 已提交
2
 * SPI init/core code
3 4
 *
 * Copyright (C) 2005 David Brownell
5
 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/cache.h>
22 23
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
24
#include <linux/mutex.h>
25
#include <linux/of_device.h>
26
#include <linux/of_irq.h>
27
#include <linux/clk/clk-conf.h>
28
#include <linux/slab.h>
29
#include <linux/mod_devicetable.h>
30
#include <linux/spi/spi.h>
31
#include <linux/of_gpio.h>
M
Mark Brown 已提交
32
#include <linux/pm_runtime.h>
33
#include <linux/pm_domain.h>
34
#include <linux/export.h>
35
#include <linux/sched/rt.h>
36 37
#include <linux/delay.h>
#include <linux/kthread.h>
38 39
#include <linux/ioport.h>
#include <linux/acpi.h>
40

41 42 43
#define CREATE_TRACE_POINTS
#include <trace/events/spi.h>

44 45
static void spidev_release(struct device *dev)
{
46
	struct spi_device	*spi = to_spi_device(dev);
47 48 49 50 51

	/* spi masters may cleanup for released devices */
	if (spi->master->cleanup)
		spi->master->cleanup(spi);

D
David Brownell 已提交
52
	spi_master_put(spi->master);
53
	kfree(spi);
54 55 56 57 58 59
}

static ssize_t
modalias_show(struct device *dev, struct device_attribute *a, char *buf)
{
	const struct spi_device	*spi = to_spi_device(dev);
60 61 62 63 64
	int len;

	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
	if (len != -ENODEV)
		return len;
65

66
	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67
}
68
static DEVICE_ATTR_RO(modalias);
69

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
#define SPI_STATISTICS_ATTRS(field, file)				\
static ssize_t spi_master_##field##_show(struct device *dev,		\
					 struct device_attribute *attr,	\
					 char *buf)			\
{									\
	struct spi_master *master = container_of(dev,			\
						 struct spi_master, dev); \
	return spi_statistics_##field##_show(&master->statistics, buf);	\
}									\
static struct device_attribute dev_attr_spi_master_##field = {		\
	.attr = { .name = file, .mode = S_IRUGO },			\
	.show = spi_master_##field##_show,				\
};									\
static ssize_t spi_device_##field##_show(struct device *dev,		\
					 struct device_attribute *attr,	\
					char *buf)			\
{									\
	struct spi_device *spi = container_of(dev,			\
					      struct spi_device, dev);	\
	return spi_statistics_##field##_show(&spi->statistics, buf);	\
}									\
static struct device_attribute dev_attr_spi_device_##field = {		\
	.attr = { .name = file, .mode = S_IRUGO },			\
	.show = spi_device_##field##_show,				\
}

#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
					    char *buf)			\
{									\
	unsigned long flags;						\
	ssize_t len;							\
	spin_lock_irqsave(&stat->lock, flags);				\
	len = sprintf(buf, format_string, stat->field);			\
	spin_unlock_irqrestore(&stat->lock, flags);			\
	return len;							\
}									\
SPI_STATISTICS_ATTRS(name, file)

#define SPI_STATISTICS_SHOW(field, format_string)			\
	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
				 field, format_string)

SPI_STATISTICS_SHOW(messages, "%lu");
SPI_STATISTICS_SHOW(transfers, "%lu");
SPI_STATISTICS_SHOW(errors, "%lu");
SPI_STATISTICS_SHOW(timedout, "%lu");

SPI_STATISTICS_SHOW(spi_sync, "%lu");
SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
SPI_STATISTICS_SHOW(spi_async, "%lu");

SPI_STATISTICS_SHOW(bytes, "%llu");
SPI_STATISTICS_SHOW(bytes_rx, "%llu");
SPI_STATISTICS_SHOW(bytes_tx, "%llu");

126 127 128
static struct attribute *spi_dev_attrs[] = {
	&dev_attr_modalias.attr,
	NULL,
129
};
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

static const struct attribute_group spi_dev_group = {
	.attrs  = spi_dev_attrs,
};

static struct attribute *spi_device_statistics_attrs[] = {
	&dev_attr_spi_device_messages.attr,
	&dev_attr_spi_device_transfers.attr,
	&dev_attr_spi_device_errors.attr,
	&dev_attr_spi_device_timedout.attr,
	&dev_attr_spi_device_spi_sync.attr,
	&dev_attr_spi_device_spi_sync_immediate.attr,
	&dev_attr_spi_device_spi_async.attr,
	&dev_attr_spi_device_bytes.attr,
	&dev_attr_spi_device_bytes_rx.attr,
	&dev_attr_spi_device_bytes_tx.attr,
	NULL,
};

static const struct attribute_group spi_device_statistics_group = {
	.name  = "statistics",
	.attrs  = spi_device_statistics_attrs,
};

static const struct attribute_group *spi_dev_groups[] = {
	&spi_dev_group,
	&spi_device_statistics_group,
	NULL,
};

static struct attribute *spi_master_statistics_attrs[] = {
	&dev_attr_spi_master_messages.attr,
	&dev_attr_spi_master_transfers.attr,
	&dev_attr_spi_master_errors.attr,
	&dev_attr_spi_master_timedout.attr,
	&dev_attr_spi_master_spi_sync.attr,
	&dev_attr_spi_master_spi_sync_immediate.attr,
	&dev_attr_spi_master_spi_async.attr,
	&dev_attr_spi_master_bytes.attr,
	&dev_attr_spi_master_bytes_rx.attr,
	&dev_attr_spi_master_bytes_tx.attr,
	NULL,
};

static const struct attribute_group spi_master_statistics_group = {
	.name  = "statistics",
	.attrs  = spi_master_statistics_attrs,
};

static const struct attribute_group *spi_master_groups[] = {
	&spi_master_statistics_group,
	NULL,
};

void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
				       struct spi_transfer *xfer,
				       struct spi_master *master)
{
	unsigned long flags;

	spin_lock_irqsave(&stats->lock, flags);

	stats->transfers++;

	stats->bytes += xfer->len;
	if ((xfer->tx_buf) &&
	    (xfer->tx_buf != master->dummy_tx))
		stats->bytes_tx += xfer->len;
	if ((xfer->rx_buf) &&
	    (xfer->rx_buf != master->dummy_rx))
		stats->bytes_rx += xfer->len;

	spin_unlock_irqrestore(&stats->lock, flags);
}
EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
205 206 207 208 209

/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 * and the sysfs version makes coldplug work too.
 */

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
						const struct spi_device *sdev)
{
	while (id->name[0]) {
		if (!strcmp(sdev->modalias, id->name))
			return id;
		id++;
	}
	return NULL;
}

const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
{
	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);

	return spi_match_id(sdrv->id_table, sdev);
}
EXPORT_SYMBOL_GPL(spi_get_device_id);

229 230 231
static int spi_match_device(struct device *dev, struct device_driver *drv)
{
	const struct spi_device	*spi = to_spi_device(dev);
232 233
	const struct spi_driver	*sdrv = to_spi_driver(drv);

234 235 236 237
	/* Attempt an OF style match */
	if (of_driver_match_device(dev, drv))
		return 1;

238 239 240 241
	/* Then try ACPI */
	if (acpi_driver_match_device(dev, drv))
		return 1;

242 243
	if (sdrv->id_table)
		return !!spi_match_id(sdrv->id_table, spi);
244

245
	return strcmp(spi->modalias, drv->name) == 0;
246 247
}

248
static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
249 250
{
	const struct spi_device		*spi = to_spi_device(dev);
251 252 253 254 255
	int rc;

	rc = acpi_device_uevent_modalias(dev, env);
	if (rc != -ENODEV)
		return rc;
256

257
	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
258 259 260 261 262
	return 0;
}

struct bus_type spi_bus_type = {
	.name		= "spi",
263
	.dev_groups	= spi_dev_groups,
264 265 266 267 268
	.match		= spi_match_device,
	.uevent		= spi_uevent,
};
EXPORT_SYMBOL_GPL(spi_bus_type);

269 270 271 272

static int spi_drv_probe(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
273
	struct spi_device		*spi = to_spi_device(dev);
274 275
	int ret;

276 277 278 279
	ret = of_clk_set_defaults(dev->of_node, false);
	if (ret)
		return ret;

280 281 282 283 284 285 286 287
	if (dev->of_node) {
		spi->irq = of_irq_get(dev->of_node, 0);
		if (spi->irq == -EPROBE_DEFER)
			return -EPROBE_DEFER;
		if (spi->irq < 0)
			spi->irq = 0;
	}

288 289
	ret = dev_pm_domain_attach(dev, true);
	if (ret != -EPROBE_DEFER) {
290
		ret = sdrv->probe(spi);
291 292 293
		if (ret)
			dev_pm_domain_detach(dev, true);
	}
294

295
	return ret;
296 297 298 299 300
}

static int spi_drv_remove(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
301 302
	int ret;

303
	ret = sdrv->remove(to_spi_device(dev));
304
	dev_pm_domain_detach(dev, true);
305

306
	return ret;
307 308 309 310 311 312 313 314 315
}

static void spi_drv_shutdown(struct device *dev)
{
	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);

	sdrv->shutdown(to_spi_device(dev));
}

D
David Brownell 已提交
316 317 318 319 320
/**
 * spi_register_driver - register a SPI driver
 * @sdrv: the driver to register
 * Context: can sleep
 */
321 322 323 324 325 326 327 328 329 330 331 332 333
int spi_register_driver(struct spi_driver *sdrv)
{
	sdrv->driver.bus = &spi_bus_type;
	if (sdrv->probe)
		sdrv->driver.probe = spi_drv_probe;
	if (sdrv->remove)
		sdrv->driver.remove = spi_drv_remove;
	if (sdrv->shutdown)
		sdrv->driver.shutdown = spi_drv_shutdown;
	return driver_register(&sdrv->driver);
}
EXPORT_SYMBOL_GPL(spi_register_driver);

334 335 336 337 338 339 340 341 342 343
/*-------------------------------------------------------------------------*/

/* SPI devices should normally not be created by SPI device drivers; that
 * would make them board-specific.  Similarly with SPI master drivers.
 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 * with other readonly (flashable) information about mainboard devices.
 */

struct boardinfo {
	struct list_head	list;
344
	struct spi_board_info	board_info;
345 346 347
};

static LIST_HEAD(board_list);
348 349 350 351 352 353
static LIST_HEAD(spi_master_list);

/*
 * Used to protect add/del opertion for board_info list and
 * spi_master list, and their matching process
 */
354
static DEFINE_MUTEX(board_lock);
355

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
/**
 * spi_alloc_device - Allocate a new SPI device
 * @master: Controller to which device is connected
 * Context: can sleep
 *
 * Allows a driver to allocate and initialize a spi_device without
 * registering it immediately.  This allows a driver to directly
 * fill the spi_device with device parameters before calling
 * spi_add_device() on it.
 *
 * Caller is responsible to call spi_add_device() on the returned
 * spi_device structure to add it to the SPI master.  If the caller
 * needs to discard the spi_device without adding it, then it should
 * call spi_dev_put() on it.
 *
 * Returns a pointer to the new device, or NULL.
 */
struct spi_device *spi_alloc_device(struct spi_master *master)
{
	struct spi_device	*spi;

	if (!spi_master_get(master))
		return NULL;

J
Jingoo Han 已提交
380
	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
381 382 383 384 385 386
	if (!spi) {
		spi_master_put(master);
		return NULL;
	}

	spi->master = master;
387
	spi->dev.parent = &master->dev;
388 389
	spi->dev.bus = &spi_bus_type;
	spi->dev.release = spidev_release;
390
	spi->cs_gpio = -ENOENT;
391 392 393

	spin_lock_init(&spi->statistics.lock);

394 395 396 397 398
	device_initialize(&spi->dev);
	return spi;
}
EXPORT_SYMBOL_GPL(spi_alloc_device);

399 400 401 402 403 404 405 406 407 408 409 410 411
static void spi_dev_set_name(struct spi_device *spi)
{
	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);

	if (adev) {
		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
		return;
	}

	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
		     spi->chip_select);
}

412 413 414 415 416 417 418 419 420 421 422
static int spi_dev_check(struct device *dev, void *data)
{
	struct spi_device *spi = to_spi_device(dev);
	struct spi_device *new_spi = data;

	if (spi->master == new_spi->master &&
	    spi->chip_select == new_spi->chip_select)
		return -EBUSY;
	return 0;
}

423 424 425 426 427 428 429
/**
 * spi_add_device - Add spi_device allocated with spi_alloc_device
 * @spi: spi_device to register
 *
 * Companion function to spi_alloc_device.  Devices allocated with
 * spi_alloc_device can be added onto the spi bus with this function.
 *
430
 * Returns 0 on success; negative errno on failure
431 432 433
 */
int spi_add_device(struct spi_device *spi)
{
434
	static DEFINE_MUTEX(spi_add_lock);
435 436
	struct spi_master *master = spi->master;
	struct device *dev = master->dev.parent;
437 438 439
	int status;

	/* Chipselects are numbered 0..max; validate. */
440
	if (spi->chip_select >= master->num_chipselect) {
441 442
		dev_err(dev, "cs%d >= max %d\n",
			spi->chip_select,
443
			master->num_chipselect);
444 445 446 447
		return -EINVAL;
	}

	/* Set the bus ID string */
448
	spi_dev_set_name(spi);
449 450 451 452 453 454 455

	/* We need to make sure there's no other device with this
	 * chipselect **BEFORE** we call setup(), else we'll trash
	 * its configuration.  Lock against concurrent add() calls.
	 */
	mutex_lock(&spi_add_lock);

456 457
	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
	if (status) {
458 459 460 461 462
		dev_err(dev, "chipselect %d already in use\n",
				spi->chip_select);
		goto done;
	}

463 464 465
	if (master->cs_gpios)
		spi->cs_gpio = master->cs_gpios[spi->chip_select];

466 467 468 469
	/* Drivers may modify this initial i/o setup, but will
	 * normally rely on the device being setup.  Devices
	 * using SPI_CS_HIGH can't coexist well otherwise...
	 */
470
	status = spi_setup(spi);
471
	if (status < 0) {
472 473
		dev_err(dev, "can't setup %s, status %d\n",
				dev_name(&spi->dev), status);
474
		goto done;
475 476
	}

477
	/* Device may be bound to an active driver when this returns */
478
	status = device_add(&spi->dev);
479
	if (status < 0)
480 481
		dev_err(dev, "can't add %s, status %d\n",
				dev_name(&spi->dev), status);
482
	else
483
		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
484

485 486 487
done:
	mutex_unlock(&spi_add_lock);
	return status;
488 489
}
EXPORT_SYMBOL_GPL(spi_add_device);
490

D
David Brownell 已提交
491 492 493 494 495 496 497
/**
 * spi_new_device - instantiate one new SPI device
 * @master: Controller to which device is connected
 * @chip: Describes the SPI device
 * Context: can sleep
 *
 * On typical mainboards, this is purely internal; and it's not needed
498 499 500 501
 * after board init creates the hard-wired devices.  Some development
 * platforms may not be able to use spi_register_board_info though, and
 * this is exported so that for example a USB or parport based adapter
 * driver could add devices (which it would learn about out-of-band).
502 503
 *
 * Returns the new device, or NULL.
504
 */
505 506
struct spi_device *spi_new_device(struct spi_master *master,
				  struct spi_board_info *chip)
507 508 509 510
{
	struct spi_device	*proxy;
	int			status;

511 512 513 514 515 516 517
	/* NOTE:  caller did any chip->bus_num checks necessary.
	 *
	 * Also, unless we change the return value convention to use
	 * error-or-pointer (not NULL-or-pointer), troubleshootability
	 * suggests syslogged diagnostics are best here (ugh).
	 */

518 519
	proxy = spi_alloc_device(master);
	if (!proxy)
520 521
		return NULL;

522 523
	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));

524 525
	proxy->chip_select = chip->chip_select;
	proxy->max_speed_hz = chip->max_speed_hz;
526
	proxy->mode = chip->mode;
527
	proxy->irq = chip->irq;
528
	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
529 530 531 532
	proxy->dev.platform_data = (void *) chip->platform_data;
	proxy->controller_data = chip->controller_data;
	proxy->controller_state = NULL;

533
	status = spi_add_device(proxy);
534
	if (status < 0) {
535 536
		spi_dev_put(proxy);
		return NULL;
537 538 539 540 541 542
	}

	return proxy;
}
EXPORT_SYMBOL_GPL(spi_new_device);

543 544 545 546 547 548 549 550 551 552 553 554 555 556
static void spi_match_master_to_boardinfo(struct spi_master *master,
				struct spi_board_info *bi)
{
	struct spi_device *dev;

	if (master->bus_num != bi->bus_num)
		return;

	dev = spi_new_device(master, bi);
	if (!dev)
		dev_err(master->dev.parent, "can't create new device for %s\n",
			bi->modalias);
}

D
David Brownell 已提交
557 558 559 560 561 562
/**
 * spi_register_board_info - register SPI devices for a given board
 * @info: array of chip descriptors
 * @n: how many descriptors are provided
 * Context: can sleep
 *
563 564 565 566 567 568 569 570 571 572 573 574 575
 * Board-specific early init code calls this (probably during arch_initcall)
 * with segments of the SPI device table.  Any device nodes are created later,
 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 * this table of devices forever, so that reloading a controller driver will
 * not make Linux forget about these hard-wired devices.
 *
 * Other code can also call this, e.g. a particular add-on board might provide
 * SPI devices through its expansion connector, so code initializing that board
 * would naturally declare its SPI devices.
 *
 * The board info passed can safely be __initdata ... but be careful of
 * any embedded pointers (platform_data, etc), they're copied as-is.
 */
576
int spi_register_board_info(struct spi_board_info const *info, unsigned n)
577
{
578 579
	struct boardinfo *bi;
	int i;
580

581 582 583
	if (!n)
		return -EINVAL;

584
	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
585 586 587
	if (!bi)
		return -ENOMEM;

588 589
	for (i = 0; i < n; i++, bi++, info++) {
		struct spi_master *master;
590

591 592 593 594 595 596
		memcpy(&bi->board_info, info, sizeof(*info));
		mutex_lock(&board_lock);
		list_add_tail(&bi->list, &board_list);
		list_for_each_entry(master, &spi_master_list, list)
			spi_match_master_to_boardinfo(master, &bi->board_info);
		mutex_unlock(&board_lock);
597
	}
598 599

	return 0;
600 601 602 603
}

/*-------------------------------------------------------------------------*/

604 605 606 607 608 609 610 611 612 613 614
static void spi_set_cs(struct spi_device *spi, bool enable)
{
	if (spi->mode & SPI_CS_HIGH)
		enable = !enable;

	if (spi->cs_gpio >= 0)
		gpio_set_value(spi->cs_gpio, !enable);
	else if (spi->master->set_cs)
		spi->master->set_cs(spi, !enable);
}

615
#ifdef CONFIG_HAS_DMA
616 617 618 619 620
static int spi_map_buf(struct spi_master *master, struct device *dev,
		       struct sg_table *sgt, void *buf, size_t len,
		       enum dma_data_direction dir)
{
	const bool vmalloced_buf = is_vmalloc_addr(buf);
621 622
	int desc_len;
	int sgs;
623 624 625 626 627
	struct page *vm_page;
	void *sg_buf;
	size_t min;
	int i, ret;

628 629 630 631 632 633 634 635
	if (vmalloced_buf) {
		desc_len = PAGE_SIZE;
		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
	} else {
		desc_len = master->max_dma_len;
		sgs = DIV_ROUND_UP(len, desc_len);
	}

636 637 638 639 640 641 642
	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
	if (ret != 0)
		return ret;

	for (i = 0; i < sgs; i++) {

		if (vmalloced_buf) {
643 644
			min = min_t(size_t,
				    len, desc_len - offset_in_page(buf));
645 646 647 648 649
			vm_page = vmalloc_to_page(buf);
			if (!vm_page) {
				sg_free_table(sgt);
				return -ENOMEM;
			}
650 651
			sg_set_page(&sgt->sgl[i], vm_page,
				    min, offset_in_page(buf));
652
		} else {
653
			min = min_t(size_t, len, desc_len);
654
			sg_buf = buf;
655
			sg_set_buf(&sgt->sgl[i], sg_buf, min);
656 657 658 659 660 661 662 663
		}


		buf += min;
		len -= min;
	}

	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
664 665
	if (!ret)
		ret = -ENOMEM;
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
	if (ret < 0) {
		sg_free_table(sgt);
		return ret;
	}

	sgt->nents = ret;

	return 0;
}

static void spi_unmap_buf(struct spi_master *master, struct device *dev,
			  struct sg_table *sgt, enum dma_data_direction dir)
{
	if (sgt->orig_nents) {
		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
		sg_free_table(sgt);
	}
}

685
static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
686 687 688
{
	struct device *tx_dev, *rx_dev;
	struct spi_transfer *xfer;
689
	int ret;
690

691
	if (!master->can_dma)
692 693
		return 0;

694 695 696 697 698 699 700 701 702
	if (master->dma_tx)
		tx_dev = master->dma_tx->device->dev;
	else
		tx_dev = &master->dev;

	if (master->dma_rx)
		rx_dev = master->dma_rx->device->dev;
	else
		rx_dev = &master->dev;
703 704 705 706 707 708

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		if (!master->can_dma(master, msg->spi, xfer))
			continue;

		if (xfer->tx_buf != NULL) {
709 710 711 712 713
			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
					  (void *)xfer->tx_buf, xfer->len,
					  DMA_TO_DEVICE);
			if (ret != 0)
				return ret;
714 715 716
		}

		if (xfer->rx_buf != NULL) {
717 718 719 720 721 722 723
			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
					  xfer->rx_buf, xfer->len,
					  DMA_FROM_DEVICE);
			if (ret != 0) {
				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
					      DMA_TO_DEVICE);
				return ret;
724 725 726 727 728 729 730 731 732
			}
		}
	}

	master->cur_msg_mapped = true;

	return 0;
}

733
static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
734 735 736 737
{
	struct spi_transfer *xfer;
	struct device *tx_dev, *rx_dev;

738
	if (!master->cur_msg_mapped || !master->can_dma)
739 740
		return 0;

741 742 743 744 745 746 747 748 749
	if (master->dma_tx)
		tx_dev = master->dma_tx->device->dev;
	else
		tx_dev = &master->dev;

	if (master->dma_rx)
		rx_dev = master->dma_rx->device->dev;
	else
		rx_dev = &master->dev;
750 751 752 753 754

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		if (!master->can_dma(master, msg->spi, xfer))
			continue;

755 756
		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
757 758 759 760
	}

	return 0;
}
761 762 763 764 765 766 767
#else /* !CONFIG_HAS_DMA */
static inline int __spi_map_msg(struct spi_master *master,
				struct spi_message *msg)
{
	return 0;
}

768 769
static inline int __spi_unmap_msg(struct spi_master *master,
				  struct spi_message *msg)
770 771 772 773 774
{
	return 0;
}
#endif /* !CONFIG_HAS_DMA */

775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
static inline int spi_unmap_msg(struct spi_master *master,
				struct spi_message *msg)
{
	struct spi_transfer *xfer;

	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		/*
		 * Restore the original value of tx_buf or rx_buf if they are
		 * NULL.
		 */
		if (xfer->tx_buf == master->dummy_tx)
			xfer->tx_buf = NULL;
		if (xfer->rx_buf == master->dummy_rx)
			xfer->rx_buf = NULL;
	}

	return __spi_unmap_msg(master, msg);
}

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
{
	struct spi_transfer *xfer;
	void *tmp;
	unsigned int max_tx, max_rx;

	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
		max_tx = 0;
		max_rx = 0;

		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
			if ((master->flags & SPI_MASTER_MUST_TX) &&
			    !xfer->tx_buf)
				max_tx = max(xfer->len, max_tx);
			if ((master->flags & SPI_MASTER_MUST_RX) &&
			    !xfer->rx_buf)
				max_rx = max(xfer->len, max_rx);
		}

		if (max_tx) {
			tmp = krealloc(master->dummy_tx, max_tx,
				       GFP_KERNEL | GFP_DMA);
			if (!tmp)
				return -ENOMEM;
			master->dummy_tx = tmp;
			memset(tmp, 0, max_tx);
		}

		if (max_rx) {
			tmp = krealloc(master->dummy_rx, max_rx,
				       GFP_KERNEL | GFP_DMA);
			if (!tmp)
				return -ENOMEM;
			master->dummy_rx = tmp;
		}

		if (max_tx || max_rx) {
			list_for_each_entry(xfer, &msg->transfers,
					    transfer_list) {
				if (!xfer->tx_buf)
					xfer->tx_buf = master->dummy_tx;
				if (!xfer->rx_buf)
					xfer->rx_buf = master->dummy_rx;
			}
		}
	}

	return __spi_map_msg(master, msg);
}
843

844 845 846 847 848 849 850 851 852 853 854 855 856
/*
 * spi_transfer_one_message - Default implementation of transfer_one_message()
 *
 * This is a standard implementation of transfer_one_message() for
 * drivers which impelment a transfer_one() operation.  It provides
 * standard handling of delays and chip select management.
 */
static int spi_transfer_one_message(struct spi_master *master,
				    struct spi_message *msg)
{
	struct spi_transfer *xfer;
	bool keep_cs = false;
	int ret = 0;
857
	unsigned long ms = 1;
858 859
	struct spi_statistics *statm = &master->statistics;
	struct spi_statistics *stats = &msg->spi->statistics;
860 861 862

	spi_set_cs(msg->spi, true);

863 864 865
	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);

866 867 868
	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
		trace_spi_transfer_start(msg, xfer);

869 870 871
		spi_statistics_add_transfer_stats(statm, xfer, master);
		spi_statistics_add_transfer_stats(stats, xfer, master);

872 873
		if (xfer->tx_buf || xfer->rx_buf) {
			reinit_completion(&master->xfer_completion);
874

875 876
			ret = master->transfer_one(master, msg->spi, xfer);
			if (ret < 0) {
877 878 879 880
				SPI_STATISTICS_INCREMENT_FIELD(statm,
							       errors);
				SPI_STATISTICS_INCREMENT_FIELD(stats,
							       errors);
881 882 883 884
				dev_err(&msg->spi->dev,
					"SPI transfer failed: %d\n", ret);
				goto out;
			}
885

886 887 888 889
			if (ret > 0) {
				ret = 0;
				ms = xfer->len * 8 * 1000 / xfer->speed_hz;
				ms += ms + 100; /* some tolerance */
890

891 892 893
				ms = wait_for_completion_timeout(&master->xfer_completion,
								 msecs_to_jiffies(ms));
			}
894

895
			if (ms == 0) {
896 897 898 899
				SPI_STATISTICS_INCREMENT_FIELD(statm,
							       timedout);
				SPI_STATISTICS_INCREMENT_FIELD(stats,
							       timedout);
900 901 902 903 904 905 906 907 908
				dev_err(&msg->spi->dev,
					"SPI transfer timed out\n");
				msg->status = -ETIMEDOUT;
			}
		} else {
			if (xfer->len)
				dev_err(&msg->spi->dev,
					"Bufferless transfer has length %u\n",
					xfer->len);
909
		}
910 911 912 913 914 915 916 917 918 919 920 921 922 923

		trace_spi_transfer_stop(msg, xfer);

		if (msg->status != -EINPROGRESS)
			goto out;

		if (xfer->delay_usecs)
			udelay(xfer->delay_usecs);

		if (xfer->cs_change) {
			if (list_is_last(&xfer->transfer_list,
					 &msg->transfers)) {
				keep_cs = true;
			} else {
924 925 926
				spi_set_cs(msg->spi, false);
				udelay(10);
				spi_set_cs(msg->spi, true);
927 928 929 930 931 932 933 934 935 936 937 938 939
			}
		}

		msg->actual_length += xfer->len;
	}

out:
	if (ret != 0 || !keep_cs)
		spi_set_cs(msg->spi, false);

	if (msg->status == -EINPROGRESS)
		msg->status = ret;

940
	if (msg->status && master->handle_err)
941 942
		master->handle_err(master, msg);

943 944 945 946 947 948 949
	spi_finalize_current_message(master);

	return ret;
}

/**
 * spi_finalize_current_transfer - report completion of a transfer
T
Thierry Reding 已提交
950
 * @master: the master reporting completion
951 952 953
 *
 * Called by SPI drivers using the core transfer_one_message()
 * implementation to notify it that the current interrupt driven
954
 * transfer has finished and the next one may be scheduled.
955 956 957 958 959 960 961
 */
void spi_finalize_current_transfer(struct spi_master *master)
{
	complete(&master->xfer_completion);
}
EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);

962
/**
963 964 965
 * __spi_pump_messages - function which processes spi message queue
 * @master: master to process queue for
 * @in_kthread: true if we are in the context of the message pump thread
966 967 968 969 970
 *
 * This function checks if there is any spi message in the queue that
 * needs processing and if so call out to the driver to initialize hardware
 * and transfer each message.
 *
971 972 973
 * Note that it is called both from the kthread itself and also from
 * inside spi_sync(); the queue extraction handling at the top of the
 * function should deal with this safely.
974
 */
975
static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
976 977 978 979 980
{
	unsigned long flags;
	bool was_busy = false;
	int ret;

981
	/* Lock queue */
982
	spin_lock_irqsave(&master->queue_lock, flags);
983 984 985 986 987 988 989

	/* Make sure we are not already running a message */
	if (master->cur_msg) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return;
	}

990 991 992 993 994 995 996
	/* If another context is idling the device then defer */
	if (master->idling) {
		queue_kthread_work(&master->kworker, &master->pump_messages);
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return;
	}

997
	/* Check if the queue is idle */
998
	if (list_empty(&master->queue) || !master->running) {
999 1000 1001
		if (!master->busy) {
			spin_unlock_irqrestore(&master->queue_lock, flags);
			return;
1002
		}
1003 1004 1005 1006 1007 1008 1009 1010 1011

		/* Only do teardown in the thread */
		if (!in_kthread) {
			queue_kthread_work(&master->kworker,
					   &master->pump_messages);
			spin_unlock_irqrestore(&master->queue_lock, flags);
			return;
		}

1012
		master->busy = false;
1013
		master->idling = true;
1014
		spin_unlock_irqrestore(&master->queue_lock, flags);
1015

1016 1017 1018 1019
		kfree(master->dummy_rx);
		master->dummy_rx = NULL;
		kfree(master->dummy_tx);
		master->dummy_tx = NULL;
1020 1021 1022 1023
		if (master->unprepare_transfer_hardware &&
		    master->unprepare_transfer_hardware(master))
			dev_err(&master->dev,
				"failed to unprepare transfer hardware\n");
1024 1025 1026 1027
		if (master->auto_runtime_pm) {
			pm_runtime_mark_last_busy(master->dev.parent);
			pm_runtime_put_autosuspend(master->dev.parent);
		}
1028
		trace_spi_master_idle(master);
1029

1030 1031
		spin_lock_irqsave(&master->queue_lock, flags);
		master->idling = false;
1032 1033 1034 1035 1036 1037
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return;
	}

	/* Extract head of queue */
	master->cur_msg =
1038
		list_first_entry(&master->queue, struct spi_message, queue);
1039 1040 1041 1042 1043 1044 1045 1046

	list_del_init(&master->cur_msg->queue);
	if (master->busy)
		was_busy = true;
	else
		master->busy = true;
	spin_unlock_irqrestore(&master->queue_lock, flags);

1047 1048 1049 1050 1051 1052 1053 1054 1055
	if (!was_busy && master->auto_runtime_pm) {
		ret = pm_runtime_get_sync(master->dev.parent);
		if (ret < 0) {
			dev_err(&master->dev, "Failed to power device: %d\n",
				ret);
			return;
		}
	}

1056 1057 1058
	if (!was_busy)
		trace_spi_master_busy(master);

1059
	if (!was_busy && master->prepare_transfer_hardware) {
1060 1061 1062 1063
		ret = master->prepare_transfer_hardware(master);
		if (ret) {
			dev_err(&master->dev,
				"failed to prepare transfer hardware\n");
1064 1065 1066

			if (master->auto_runtime_pm)
				pm_runtime_put(master->dev.parent);
1067 1068 1069 1070
			return;
		}
	}

1071 1072
	trace_spi_message_start(master->cur_msg);

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	if (master->prepare_message) {
		ret = master->prepare_message(master, master->cur_msg);
		if (ret) {
			dev_err(&master->dev,
				"failed to prepare message: %d\n", ret);
			master->cur_msg->status = ret;
			spi_finalize_current_message(master);
			return;
		}
		master->cur_msg_prepared = true;
	}

1085 1086 1087 1088 1089 1090 1091
	ret = spi_map_msg(master, master->cur_msg);
	if (ret) {
		master->cur_msg->status = ret;
		spi_finalize_current_message(master);
		return;
	}

1092 1093 1094
	ret = master->transfer_one_message(master, master->cur_msg);
	if (ret) {
		dev_err(&master->dev,
1095
			"failed to transfer one message from queue\n");
1096 1097 1098 1099
		return;
	}
}

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
/**
 * spi_pump_messages - kthread work function which processes spi message queue
 * @work: pointer to kthread work struct contained in the master struct
 */
static void spi_pump_messages(struct kthread_work *work)
{
	struct spi_master *master =
		container_of(work, struct spi_master, pump_messages);

	__spi_pump_messages(master, true);
}

1112 1113 1114 1115 1116 1117 1118 1119 1120
static int spi_init_queue(struct spi_master *master)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };

	master->running = false;
	master->busy = false;

	init_kthread_worker(&master->kworker);
	master->kworker_task = kthread_run(kthread_worker_fn,
1121
					   &master->kworker, "%s",
1122 1123 1124
					   dev_name(&master->dev));
	if (IS_ERR(master->kworker_task)) {
		dev_err(&master->dev, "failed to create message pump task\n");
1125
		return PTR_ERR(master->kworker_task);
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
	}
	init_kthread_work(&master->pump_messages, spi_pump_messages);

	/*
	 * Master config will indicate if this controller should run the
	 * message pump with high (realtime) priority to reduce the transfer
	 * latency on the bus by minimising the delay between a transfer
	 * request and the scheduling of the message pump thread. Without this
	 * setting the message pump thread will remain at default priority.
	 */
	if (master->rt) {
		dev_info(&master->dev,
			"will run message pump with realtime priority\n");
		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
	}

	return 0;
}

/**
 * spi_get_next_queued_message() - called by driver to check for queued
 * messages
 * @master: the master to check for queued messages
 *
 * If there are more messages in the queue, the next message is returned from
 * this call.
 */
struct spi_message *spi_get_next_queued_message(struct spi_master *master)
{
	struct spi_message *next;
	unsigned long flags;

	/* get a pointer to the next message, if any */
	spin_lock_irqsave(&master->queue_lock, flags);
1160 1161
	next = list_first_entry_or_null(&master->queue, struct spi_message,
					queue);
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
	spin_unlock_irqrestore(&master->queue_lock, flags);

	return next;
}
EXPORT_SYMBOL_GPL(spi_get_next_queued_message);

/**
 * spi_finalize_current_message() - the current message is complete
 * @master: the master to return the message to
 *
 * Called by the driver to notify the core that the message in the front of the
 * queue is complete and can be removed from the queue.
 */
void spi_finalize_current_message(struct spi_master *master)
{
	struct spi_message *mesg;
	unsigned long flags;
1179
	int ret;
1180 1181 1182 1183 1184

	spin_lock_irqsave(&master->queue_lock, flags);
	mesg = master->cur_msg;
	spin_unlock_irqrestore(&master->queue_lock, flags);

1185 1186
	spi_unmap_msg(master, mesg);

1187 1188 1189 1190 1191 1192 1193
	if (master->cur_msg_prepared && master->unprepare_message) {
		ret = master->unprepare_message(master, mesg);
		if (ret) {
			dev_err(&master->dev,
				"failed to unprepare message: %d\n", ret);
		}
	}
1194

1195 1196
	spin_lock_irqsave(&master->queue_lock, flags);
	master->cur_msg = NULL;
1197
	master->cur_msg_prepared = false;
1198 1199 1200 1201
	queue_kthread_work(&master->kworker, &master->pump_messages);
	spin_unlock_irqrestore(&master->queue_lock, flags);

	trace_spi_message_done(mesg);
1202

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
	mesg->state = NULL;
	if (mesg->complete)
		mesg->complete(mesg->context);
}
EXPORT_SYMBOL_GPL(spi_finalize_current_message);

static int spi_start_queue(struct spi_master *master)
{
	unsigned long flags;

	spin_lock_irqsave(&master->queue_lock, flags);

	if (master->running || master->busy) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return -EBUSY;
	}

	master->running = true;
	master->cur_msg = NULL;
	spin_unlock_irqrestore(&master->queue_lock, flags);

	queue_kthread_work(&master->kworker, &master->pump_messages);

	return 0;
}

static int spi_stop_queue(struct spi_master *master)
{
	unsigned long flags;
	unsigned limit = 500;
	int ret = 0;

	spin_lock_irqsave(&master->queue_lock, flags);

	/*
	 * This is a bit lame, but is optimized for the common execution path.
	 * A wait_queue on the master->busy could be used, but then the common
	 * execution path (pump_messages) would be required to call wake_up or
	 * friends on every SPI message. Do this instead.
	 */
	while ((!list_empty(&master->queue) || master->busy) && limit--) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
1245
		usleep_range(10000, 11000);
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
		spin_lock_irqsave(&master->queue_lock, flags);
	}

	if (!list_empty(&master->queue) || master->busy)
		ret = -EBUSY;
	else
		master->running = false;

	spin_unlock_irqrestore(&master->queue_lock, flags);

	if (ret) {
		dev_warn(&master->dev,
			 "could not stop message queue\n");
		return ret;
	}
	return ret;
}

static int spi_destroy_queue(struct spi_master *master)
{
	int ret;

	ret = spi_stop_queue(master);

	/*
	 * flush_kthread_worker will block until all work is done.
	 * If the reason that stop_queue timed out is that the work will never
	 * finish, then it does no good to call flush/stop thread, so
	 * return anyway.
	 */
	if (ret) {
		dev_err(&master->dev, "problem destroying queue\n");
		return ret;
	}

	flush_kthread_worker(&master->kworker);
	kthread_stop(master->kworker_task);

	return 0;
}

1287 1288 1289
static int __spi_queued_transfer(struct spi_device *spi,
				 struct spi_message *msg,
				 bool need_pump)
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
{
	struct spi_master *master = spi->master;
	unsigned long flags;

	spin_lock_irqsave(&master->queue_lock, flags);

	if (!master->running) {
		spin_unlock_irqrestore(&master->queue_lock, flags);
		return -ESHUTDOWN;
	}
	msg->actual_length = 0;
	msg->status = -EINPROGRESS;

	list_add_tail(&msg->queue, &master->queue);
1304
	if (!master->busy && need_pump)
1305 1306 1307 1308 1309 1310
		queue_kthread_work(&master->kworker, &master->pump_messages);

	spin_unlock_irqrestore(&master->queue_lock, flags);
	return 0;
}

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
/**
 * spi_queued_transfer - transfer function for queued transfers
 * @spi: spi device which is requesting transfer
 * @msg: spi message which is to handled is queued to driver queue
 */
static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
{
	return __spi_queued_transfer(spi, msg, true);
}

1321 1322 1323 1324 1325
static int spi_master_initialize_queue(struct spi_master *master)
{
	int ret;

	master->transfer = spi_queued_transfer;
1326 1327
	if (!master->transfer_one_message)
		master->transfer_one_message = spi_transfer_one_message;
1328 1329 1330 1331 1332 1333 1334

	/* Initialize and start queue */
	ret = spi_init_queue(master);
	if (ret) {
		dev_err(&master->dev, "problem initializing queue\n");
		goto err_init_queue;
	}
1335
	master->queued = true;
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
	ret = spi_start_queue(master);
	if (ret) {
		dev_err(&master->dev, "problem starting queue\n");
		goto err_start_queue;
	}

	return 0;

err_start_queue:
	spi_destroy_queue(master);
1346
err_init_queue:
1347 1348 1349 1350 1351
	return ret;
}

/*-------------------------------------------------------------------------*/

1352
#if defined(CONFIG_OF)
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
static struct spi_device *
of_register_spi_device(struct spi_master *master, struct device_node *nc)
{
	struct spi_device *spi;
	int rc;
	u32 value;

	/* Alloc an spi_device */
	spi = spi_alloc_device(master);
	if (!spi) {
		dev_err(&master->dev, "spi_device alloc error for %s\n",
			nc->full_name);
		rc = -ENOMEM;
		goto err_out;
	}

	/* Select device driver */
	rc = of_modalias_node(nc, spi->modalias,
				sizeof(spi->modalias));
	if (rc < 0) {
		dev_err(&master->dev, "cannot find modalias for %s\n",
			nc->full_name);
		goto err_out;
	}

	/* Device address */
	rc = of_property_read_u32(nc, "reg", &value);
	if (rc) {
		dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
			nc->full_name, rc);
		goto err_out;
	}
	spi->chip_select = value;

	/* Mode (clock phase/polarity/etc.) */
	if (of_find_property(nc, "spi-cpha", NULL))
		spi->mode |= SPI_CPHA;
	if (of_find_property(nc, "spi-cpol", NULL))
		spi->mode |= SPI_CPOL;
	if (of_find_property(nc, "spi-cs-high", NULL))
		spi->mode |= SPI_CS_HIGH;
	if (of_find_property(nc, "spi-3wire", NULL))
		spi->mode |= SPI_3WIRE;
	if (of_find_property(nc, "spi-lsb-first", NULL))
		spi->mode |= SPI_LSB_FIRST;

	/* Device DUAL/QUAD mode */
	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
		switch (value) {
		case 1:
			break;
		case 2:
			spi->mode |= SPI_TX_DUAL;
			break;
		case 4:
			spi->mode |= SPI_TX_QUAD;
			break;
		default:
			dev_warn(&master->dev,
				"spi-tx-bus-width %d not supported\n",
				value);
			break;
		}
	}

	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
		switch (value) {
		case 1:
			break;
		case 2:
			spi->mode |= SPI_RX_DUAL;
			break;
		case 4:
			spi->mode |= SPI_RX_QUAD;
			break;
		default:
			dev_warn(&master->dev,
				"spi-rx-bus-width %d not supported\n",
				value);
			break;
		}
	}

	/* Device speed */
	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
	if (rc) {
		dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
			nc->full_name, rc);
		goto err_out;
	}
	spi->max_speed_hz = value;

	/* Store a pointer to the node in the device structure */
	of_node_get(nc);
	spi->dev.of_node = nc;

	/* Register the new device */
	rc = spi_add_device(spi);
	if (rc) {
		dev_err(&master->dev, "spi_device register error %s\n",
			nc->full_name);
		goto err_out;
	}

	return spi;

err_out:
	spi_dev_put(spi);
	return ERR_PTR(rc);
}

1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
/**
 * of_register_spi_devices() - Register child devices onto the SPI bus
 * @master:	Pointer to spi_master device
 *
 * Registers an spi_device for each child node of master node which has a 'reg'
 * property.
 */
static void of_register_spi_devices(struct spi_master *master)
{
	struct spi_device *spi;
	struct device_node *nc;

	if (!master->dev.of_node)
		return;

1479
	for_each_available_child_of_node(master->dev.of_node, nc) {
1480 1481 1482
		spi = of_register_spi_device(master, nc);
		if (IS_ERR(spi))
			dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1483 1484 1485 1486 1487 1488 1489
				nc->full_name);
	}
}
#else
static void of_register_spi_devices(struct spi_master *master) { }
#endif

1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
#ifdef CONFIG_ACPI
static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
{
	struct spi_device *spi = data;

	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
		struct acpi_resource_spi_serialbus *sb;

		sb = &ares->data.spi_serial_bus;
		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
			spi->chip_select = sb->device_selection;
			spi->max_speed_hz = sb->connection_speed;

			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
				spi->mode |= SPI_CPHA;
			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
				spi->mode |= SPI_CPOL;
			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
				spi->mode |= SPI_CS_HIGH;
		}
	} else if (spi->irq < 0) {
		struct resource r;

		if (acpi_dev_resource_interrupt(ares, 0, &r))
			spi->irq = r.start;
	}

	/* Always tell the ACPI core to skip this resource */
	return 1;
}

static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
				       void *data, void **return_value)
{
	struct spi_master *master = data;
	struct list_head resource_list;
	struct acpi_device *adev;
	struct spi_device *spi;
	int ret;

	if (acpi_bus_get_device(handle, &adev))
		return AE_OK;
	if (acpi_bus_get_status(adev) || !adev->status.present)
		return AE_OK;

	spi = spi_alloc_device(master);
	if (!spi) {
		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
			dev_name(&adev->dev));
		return AE_NO_MEMORY;
	}

1542
	ACPI_COMPANION_SET(&spi->dev, adev);
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
	spi->irq = -1;

	INIT_LIST_HEAD(&resource_list);
	ret = acpi_dev_get_resources(adev, &resource_list,
				     acpi_spi_add_resource, spi);
	acpi_dev_free_resource_list(&resource_list);

	if (ret < 0 || !spi->max_speed_hz) {
		spi_dev_put(spi);
		return AE_OK;
	}

1555
	adev->power.flags.ignore_parent = true;
1556
	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1557
	if (spi_add_device(spi)) {
1558
		adev->power.flags.ignore_parent = false;
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
			dev_name(&adev->dev));
		spi_dev_put(spi);
	}

	return AE_OK;
}

static void acpi_register_spi_devices(struct spi_master *master)
{
	acpi_status status;
	acpi_handle handle;

1572
	handle = ACPI_HANDLE(master->dev.parent);
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	if (!handle)
		return;

	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
				     acpi_spi_add_device, NULL,
				     master, NULL);
	if (ACPI_FAILURE(status))
		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
}
#else
static inline void acpi_register_spi_devices(struct spi_master *master) {}
#endif /* CONFIG_ACPI */

T
Tony Jones 已提交
1586
static void spi_master_release(struct device *dev)
1587 1588 1589
{
	struct spi_master *master;

T
Tony Jones 已提交
1590
	master = container_of(dev, struct spi_master, dev);
1591 1592 1593 1594 1595 1596
	kfree(master);
}

static struct class spi_master_class = {
	.name		= "spi_master",
	.owner		= THIS_MODULE,
T
Tony Jones 已提交
1597
	.dev_release	= spi_master_release,
1598
	.dev_groups	= spi_master_groups,
1599 1600 1601 1602 1603 1604
};


/**
 * spi_alloc_master - allocate SPI master controller
 * @dev: the controller, possibly using the platform_bus
D
David Brownell 已提交
1605
 * @size: how much zeroed driver-private data to allocate; the pointer to this
T
Tony Jones 已提交
1606
 *	memory is in the driver_data field of the returned device,
D
David Brownell 已提交
1607
 *	accessible with spi_master_get_devdata().
D
David Brownell 已提交
1608
 * Context: can sleep
1609 1610 1611
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.  It's how they allocate
D
dmitry pervushin 已提交
1612
 * an spi_master structure, prior to calling spi_register_master().
1613 1614 1615 1616 1617
 *
 * This must be called from context that can sleep.  It returns the SPI
 * master structure on success, else NULL.
 *
 * The caller is responsible for assigning the bus number and initializing
D
dmitry pervushin 已提交
1618
 * the master's methods before calling spi_register_master(); and (after errors
1619 1620
 * adding the device) calling spi_master_put() and kfree() to prevent a memory
 * leak.
1621
 */
1622
struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1623 1624 1625
{
	struct spi_master	*master;

D
David Brownell 已提交
1626 1627 1628
	if (!dev)
		return NULL;

J
Jingoo Han 已提交
1629
	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1630 1631 1632
	if (!master)
		return NULL;

T
Tony Jones 已提交
1633
	device_initialize(&master->dev);
1634 1635
	master->bus_num = -1;
	master->num_chipselect = 1;
T
Tony Jones 已提交
1636 1637
	master->dev.class = &spi_master_class;
	master->dev.parent = get_device(dev);
D
David Brownell 已提交
1638
	spi_master_set_devdata(master, &master[1]);
1639 1640 1641 1642 1643

	return master;
}
EXPORT_SYMBOL_GPL(spi_alloc_master);

1644 1645 1646
#ifdef CONFIG_OF
static int of_spi_register_master(struct spi_master *master)
{
1647
	int nb, i, *cs;
1648 1649 1650 1651 1652 1653
	struct device_node *np = master->dev.of_node;

	if (!np)
		return 0;

	nb = of_gpio_named_count(np, "cs-gpios");
J
Jingoo Han 已提交
1654
	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1655

1656 1657
	/* Return error only for an incorrectly formed cs-gpios property */
	if (nb == 0 || nb == -ENOENT)
1658
		return 0;
1659 1660
	else if (nb < 0)
		return nb;
1661 1662 1663 1664 1665 1666 1667 1668 1669

	cs = devm_kzalloc(&master->dev,
			  sizeof(int) * master->num_chipselect,
			  GFP_KERNEL);
	master->cs_gpios = cs;

	if (!master->cs_gpios)
		return -ENOMEM;

1670
	for (i = 0; i < master->num_chipselect; i++)
1671
		cs[i] = -ENOENT;
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684

	for (i = 0; i < nb; i++)
		cs[i] = of_get_named_gpio(np, "cs-gpios", i);

	return 0;
}
#else
static int of_spi_register_master(struct spi_master *master)
{
	return 0;
}
#endif

1685 1686 1687
/**
 * spi_register_master - register SPI master controller
 * @master: initialized master, originally from spi_alloc_master()
D
David Brownell 已提交
1688
 * Context: can sleep
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
 *
 * SPI master controllers connect to their drivers using some non-SPI bus,
 * such as the platform bus.  The final stage of probe() in that code
 * includes calling spi_register_master() to hook up to this SPI bus glue.
 *
 * SPI controllers use board specific (often SOC specific) bus numbers,
 * and board-specific addressing for SPI devices combines those numbers
 * with chip select numbers.  Since SPI does not directly support dynamic
 * device identification, boards need configuration tables telling which
 * chip is at which address.
 *
 * This must be called from context that can sleep.  It returns zero on
 * success, else a negative error code (dropping the master's refcount).
D
David Brownell 已提交
1702 1703
 * After a successful return, the caller is responsible for calling
 * spi_unregister_master().
1704
 */
1705
int spi_register_master(struct spi_master *master)
1706
{
1707
	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
T
Tony Jones 已提交
1708
	struct device		*dev = master->dev.parent;
1709
	struct boardinfo	*bi;
1710 1711 1712
	int			status = -ENODEV;
	int			dynamic = 0;

D
David Brownell 已提交
1713 1714 1715
	if (!dev)
		return -ENODEV;

1716 1717 1718 1719
	status = of_spi_register_master(master);
	if (status)
		return status;

1720 1721 1722 1723 1724 1725
	/* even if it's just one always-selected device, there must
	 * be at least one chipselect
	 */
	if (master->num_chipselect == 0)
		return -EINVAL;

1726 1727 1728
	if ((master->bus_num < 0) && master->dev.of_node)
		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");

1729
	/* convention:  dynamically assigned bus IDs count down from the max */
1730
	if (master->bus_num < 0) {
1731 1732 1733
		/* FIXME switch to an IDR based scheme, something like
		 * I2C now uses, so we can't run out of "dynamic" IDs
		 */
1734
		master->bus_num = atomic_dec_return(&dyn_bus_id);
1735
		dynamic = 1;
1736 1737
	}

1738 1739
	INIT_LIST_HEAD(&master->queue);
	spin_lock_init(&master->queue_lock);
1740 1741 1742
	spin_lock_init(&master->bus_lock_spinlock);
	mutex_init(&master->bus_lock_mutex);
	master->bus_lock_flag = 0;
1743
	init_completion(&master->xfer_completion);
1744 1745
	if (!master->max_dma_len)
		master->max_dma_len = INT_MAX;
1746

1747 1748 1749
	/* register the device, then userspace will see it.
	 * registration fails if the bus ID is in use.
	 */
1750
	dev_set_name(&master->dev, "spi%u", master->bus_num);
T
Tony Jones 已提交
1751
	status = device_add(&master->dev);
1752
	if (status < 0)
1753
		goto done;
1754
	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1755 1756
			dynamic ? " (dynamic)" : "");

1757 1758 1759 1760 1761 1762
	/* If we're using a queued driver, start the queue */
	if (master->transfer)
		dev_info(dev, "master is unqueued, this is deprecated\n");
	else {
		status = spi_master_initialize_queue(master);
		if (status) {
1763
			device_del(&master->dev);
1764 1765 1766
			goto done;
		}
	}
1767 1768
	/* add statistics */
	spin_lock_init(&master->statistics.lock);
1769

1770 1771 1772 1773 1774 1775
	mutex_lock(&board_lock);
	list_add_tail(&master->list, &spi_master_list);
	list_for_each_entry(bi, &board_list, list)
		spi_match_master_to_boardinfo(master, &bi->board_info);
	mutex_unlock(&board_lock);

1776
	/* Register devices from the device tree and ACPI */
1777
	of_register_spi_devices(master);
1778
	acpi_register_spi_devices(master);
1779 1780 1781 1782 1783
done:
	return status;
}
EXPORT_SYMBOL_GPL(spi_register_master);

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
static void devm_spi_unregister(struct device *dev, void *res)
{
	spi_unregister_master(*(struct spi_master **)res);
}

/**
 * dev_spi_register_master - register managed SPI master controller
 * @dev:    device managing SPI master
 * @master: initialized master, originally from spi_alloc_master()
 * Context: can sleep
 *
 * Register a SPI device as with spi_register_master() which will
 * automatically be unregister
 */
int devm_spi_register_master(struct device *dev, struct spi_master *master)
{
	struct spi_master **ptr;
	int ret;

	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return -ENOMEM;

	ret = spi_register_master(master);
1808
	if (!ret) {
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
		*ptr = master;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return ret;
}
EXPORT_SYMBOL_GPL(devm_spi_register_master);

1819
static int __unregister(struct device *dev, void *null)
1820
{
1821
	spi_unregister_device(to_spi_device(dev));
1822 1823 1824 1825 1826 1827
	return 0;
}

/**
 * spi_unregister_master - unregister SPI master controller
 * @master: the master being unregistered
D
David Brownell 已提交
1828
 * Context: can sleep
1829 1830 1831 1832 1833 1834 1835 1836
 *
 * This call is used only by SPI master controller drivers, which are the
 * only ones directly touching chip registers.
 *
 * This must be called from context that can sleep.
 */
void spi_unregister_master(struct spi_master *master)
{
1837 1838
	int dummy;

1839 1840 1841 1842 1843
	if (master->queued) {
		if (spi_destroy_queue(master))
			dev_err(&master->dev, "queue remove failed\n");
	}

1844 1845 1846 1847
	mutex_lock(&board_lock);
	list_del(&master->list);
	mutex_unlock(&board_lock);

1848
	dummy = device_for_each_child(&master->dev, NULL, __unregister);
T
Tony Jones 已提交
1849
	device_unregister(&master->dev);
1850 1851 1852
}
EXPORT_SYMBOL_GPL(spi_unregister_master);

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
int spi_master_suspend(struct spi_master *master)
{
	int ret;

	/* Basically no-ops for non-queued masters */
	if (!master->queued)
		return 0;

	ret = spi_stop_queue(master);
	if (ret)
		dev_err(&master->dev, "queue stop failed\n");

	return ret;
}
EXPORT_SYMBOL_GPL(spi_master_suspend);

int spi_master_resume(struct spi_master *master)
{
	int ret;

	if (!master->queued)
		return 0;

	ret = spi_start_queue(master);
	if (ret)
		dev_err(&master->dev, "queue restart failed\n");

	return ret;
}
EXPORT_SYMBOL_GPL(spi_master_resume);

1884
static int __spi_master_match(struct device *dev, const void *data)
D
Dave Young 已提交
1885 1886
{
	struct spi_master *m;
1887
	const u16 *bus_num = data;
D
Dave Young 已提交
1888 1889 1890 1891 1892

	m = container_of(dev, struct spi_master, dev);
	return m->bus_num == *bus_num;
}

1893 1894 1895
/**
 * spi_busnum_to_master - look up master associated with bus_num
 * @bus_num: the master's bus number
D
David Brownell 已提交
1896
 * Context: can sleep
1897 1898 1899 1900 1901 1902 1903 1904
 *
 * This call may be used with devices that are registered after
 * arch init time.  It returns a refcounted pointer to the relevant
 * spi_master (which the caller must release), or NULL if there is
 * no such master registered.
 */
struct spi_master *spi_busnum_to_master(u16 bus_num)
{
T
Tony Jones 已提交
1905
	struct device		*dev;
1906
	struct spi_master	*master = NULL;
D
Dave Young 已提交
1907

1908
	dev = class_find_device(&spi_master_class, NULL, &bus_num,
D
Dave Young 已提交
1909 1910 1911 1912
				__spi_master_match);
	if (dev)
		master = container_of(dev, struct spi_master, dev);
	/* reference got in class_find_device */
1913
	return master;
1914 1915 1916 1917 1918 1919
}
EXPORT_SYMBOL_GPL(spi_busnum_to_master);


/*-------------------------------------------------------------------------*/

1920 1921 1922 1923
/* Core methods for SPI master protocol drivers.  Some of the
 * other core methods are currently defined as inline functions.
 */

1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
{
	if (master->bits_per_word_mask) {
		/* Only 32 bits fit in the mask */
		if (bits_per_word > 32)
			return -EINVAL;
		if (!(master->bits_per_word_mask &
				SPI_BPW_MASK(bits_per_word)))
			return -EINVAL;
	}

	return 0;
}

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
/**
 * spi_setup - setup SPI mode and clock rate
 * @spi: the device whose settings are being modified
 * Context: can sleep, and no requests are queued to the device
 *
 * SPI protocol drivers may need to update the transfer mode if the
 * device doesn't work with its default.  They may likewise need
 * to update clock rates or word sizes from initial values.  This function
 * changes those settings, and must be called from a context that can sleep.
 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
 * effect the next time the device is selected and data is transferred to
 * or from it.  When this function returns, the spi device is deselected.
 *
 * Note that this call will fail if the protocol driver specifies an option
 * that the underlying controller or its driver does not support.  For
 * example, not all hardware supports wire transfers using nine bit words,
 * LSB-first wire encoding, or active-high chipselects.
 */
int spi_setup(struct spi_device *spi)
{
1958
	unsigned	bad_bits, ugly_bits;
1959
	int		status = 0;
1960

W
wangyuhang 已提交
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
	/* check mode to prevent that DUAL and QUAD set at the same time
	 */
	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
		dev_err(&spi->dev,
		"setup: can not select dual and quad at the same time\n");
		return -EINVAL;
	}
	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
	 */
	if ((spi->mode & SPI_3WIRE) && (spi->mode &
		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
		return -EINVAL;
1974 1975 1976 1977
	/* help drivers fail *cleanly* when they need options
	 * that aren't supported with their current master
	 */
	bad_bits = spi->mode & ~spi->master->mode_bits;
1978 1979 1980 1981 1982 1983 1984 1985 1986
	ugly_bits = bad_bits &
		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
	if (ugly_bits) {
		dev_warn(&spi->dev,
			 "setup: ignoring unsupported mode bits %x\n",
			 ugly_bits);
		spi->mode &= ~ugly_bits;
		bad_bits &= ~ugly_bits;
	}
1987
	if (bad_bits) {
1988
		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1989 1990 1991 1992
			bad_bits);
		return -EINVAL;
	}

1993 1994 1995
	if (!spi->bits_per_word)
		spi->bits_per_word = 8;

1996 1997 1998
	if (__spi_validate_bits_per_word(spi->master, spi->bits_per_word))
		return -EINVAL;

1999 2000 2001
	if (!spi->max_speed_hz)
		spi->max_speed_hz = spi->master->max_speed_hz;

2002 2003
	spi_set_cs(spi, false);

2004 2005
	if (spi->master->setup)
		status = spi->master->setup(spi);
2006

J
Jingoo Han 已提交
2007
	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
			(spi->mode & SPI_LOOP) ? "loopback, " : "",
			spi->bits_per_word, spi->max_speed_hz,
			status);

	return status;
}
EXPORT_SYMBOL_GPL(spi_setup);

2020
static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2021 2022
{
	struct spi_master *master = spi->master;
2023
	struct spi_transfer *xfer;
2024
	int w_size;
2025

2026 2027 2028
	if (list_empty(&message->transfers))
		return -EINVAL;

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
	/* Half-duplex links include original MicroWire, and ones with
	 * only one data pin like SPI_3WIRE (switches direction) or where
	 * either MOSI or MISO is missing.  They can also be caused by
	 * software limitations.
	 */
	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
			|| (spi->mode & SPI_3WIRE)) {
		unsigned flags = master->flags;

		list_for_each_entry(xfer, &message->transfers, transfer_list) {
			if (xfer->rx_buf && xfer->tx_buf)
				return -EINVAL;
			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
				return -EINVAL;
			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
				return -EINVAL;
		}
	}

2048
	/**
2049 2050
	 * Set transfer bits_per_word and max speed as spi device default if
	 * it is not set for this transfer.
W
wangyuhang 已提交
2051 2052
	 * Set transfer tx_nbits and rx_nbits as single transfer default
	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2053 2054
	 */
	list_for_each_entry(xfer, &message->transfers, transfer_list) {
2055
		message->frame_length += xfer->len;
2056 2057
		if (!xfer->bits_per_word)
			xfer->bits_per_word = spi->bits_per_word;
2058 2059

		if (!xfer->speed_hz)
2060
			xfer->speed_hz = spi->max_speed_hz;
2061 2062
		if (!xfer->speed_hz)
			xfer->speed_hz = master->max_speed_hz;
2063 2064 2065 2066

		if (master->max_speed_hz &&
		    xfer->speed_hz > master->max_speed_hz)
			xfer->speed_hz = master->max_speed_hz;
2067

2068 2069
		if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
			return -EINVAL;
2070

2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
		/*
		 * SPI transfer length should be multiple of SPI word size
		 * where SPI word size should be power-of-two multiple
		 */
		if (xfer->bits_per_word <= 8)
			w_size = 1;
		else if (xfer->bits_per_word <= 16)
			w_size = 2;
		else
			w_size = 4;

		/* No partial transfers accepted */
2083
		if (xfer->len % w_size)
2084 2085
			return -EINVAL;

2086 2087 2088
		if (xfer->speed_hz && master->min_speed_hz &&
		    xfer->speed_hz < master->min_speed_hz)
			return -EINVAL;
W
wangyuhang 已提交
2089 2090 2091 2092 2093 2094

		if (xfer->tx_buf && !xfer->tx_nbits)
			xfer->tx_nbits = SPI_NBITS_SINGLE;
		if (xfer->rx_buf && !xfer->rx_nbits)
			xfer->rx_nbits = SPI_NBITS_SINGLE;
		/* check transfer tx/rx_nbits:
2095 2096
		 * 1. check the value matches one of single, dual and quad
		 * 2. check tx/rx_nbits match the mode in spi_device
W
wangyuhang 已提交
2097
		 */
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
		if (xfer->tx_buf) {
			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
				xfer->tx_nbits != SPI_NBITS_DUAL &&
				xfer->tx_nbits != SPI_NBITS_QUAD)
				return -EINVAL;
			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
				return -EINVAL;
			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
				!(spi->mode & SPI_TX_QUAD))
				return -EINVAL;
		}
W
wangyuhang 已提交
2110
		/* check transfer rx_nbits */
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
		if (xfer->rx_buf) {
			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
				xfer->rx_nbits != SPI_NBITS_DUAL &&
				xfer->rx_nbits != SPI_NBITS_QUAD)
				return -EINVAL;
			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
				return -EINVAL;
			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
				!(spi->mode & SPI_RX_QUAD))
				return -EINVAL;
		}
2123 2124
	}

2125
	message->status = -EINPROGRESS;
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135

	return 0;
}

static int __spi_async(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;

	message->spi = spi;

2136 2137 2138
	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);

2139 2140
	trace_spi_message_submit(message);

2141 2142 2143
	return master->transfer(spi, message);
}

D
David Brownell 已提交
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
/**
 * spi_async - asynchronous SPI transfer
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
 */
int spi_async(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
2176 2177
	int ret;
	unsigned long flags;
D
David Brownell 已提交
2178

2179 2180 2181 2182
	ret = __spi_validate(spi, message);
	if (ret != 0)
		return ret;

2183
	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
D
David Brownell 已提交
2184

2185 2186 2187 2188
	if (master->bus_lock_flag)
		ret = -EBUSY;
	else
		ret = __spi_async(spi, message);
D
David Brownell 已提交
2189

2190 2191 2192
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	return ret;
D
David Brownell 已提交
2193 2194 2195
}
EXPORT_SYMBOL_GPL(spi_async);

2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
/**
 * spi_async_locked - version of spi_async with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
 */
int spi_async_locked(struct spi_device *spi, struct spi_message *message)
{
	struct spi_master *master = spi->master;
	int ret;
	unsigned long flags;

2231 2232 2233 2234
	ret = __spi_validate(spi, message);
	if (ret != 0)
		return ret;

2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
	spin_lock_irqsave(&master->bus_lock_spinlock, flags);

	ret = __spi_async(spi, message);

	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	return ret;

}
EXPORT_SYMBOL_GPL(spi_async_locked);

2246 2247 2248 2249 2250 2251 2252 2253

/*-------------------------------------------------------------------------*/

/* Utility methods for SPI master protocol drivers, layered on
 * top of the core.  Some other utility methods are defined as
 * inline functions.
 */

2254 2255 2256 2257 2258
static void spi_complete(void *arg)
{
	complete(arg);
}

2259 2260 2261 2262 2263 2264
static int __spi_sync(struct spi_device *spi, struct spi_message *message,
		      int bus_locked)
{
	DECLARE_COMPLETION_ONSTACK(done);
	int status;
	struct spi_master *master = spi->master;
2265 2266 2267 2268 2269
	unsigned long flags;

	status = __spi_validate(spi, message);
	if (status != 0)
		return status;
2270 2271 2272

	message->complete = spi_complete;
	message->context = &done;
2273
	message->spi = spi;
2274

2275 2276 2277
	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);

2278 2279 2280
	if (!bus_locked)
		mutex_lock(&master->bus_lock_mutex);

2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
	/* If we're not using the legacy transfer method then we will
	 * try to transfer in the calling context so special case.
	 * This code would be less tricky if we could remove the
	 * support for driver implemented message queues.
	 */
	if (master->transfer == spi_queued_transfer) {
		spin_lock_irqsave(&master->bus_lock_spinlock, flags);

		trace_spi_message_submit(message);

		status = __spi_queued_transfer(spi, message, false);

		spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
	} else {
		status = spi_async_locked(spi, message);
	}
2297 2298 2299 2300 2301

	if (!bus_locked)
		mutex_unlock(&master->bus_lock_mutex);

	if (status == 0) {
2302 2303 2304
		/* Push out the messages in the calling context if we
		 * can.
		 */
2305 2306 2307 2308 2309
		if (master->transfer == spi_queued_transfer) {
			SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
						       spi_sync_immediate);
			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
						       spi_sync_immediate);
2310
			__spi_pump_messages(master, false);
2311
		}
2312

2313 2314 2315 2316 2317 2318 2319
		wait_for_completion(&done);
		status = message->status;
	}
	message->context = NULL;
	return status;
}

2320 2321 2322 2323
/**
 * spi_sync - blocking/synchronous SPI data transfers
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
D
David Brownell 已提交
2324
 * Context: can sleep
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * Note that the SPI device's chip select is active during the message,
 * and then is normally disabled between messages.  Drivers for some
 * frequently-used devices may want to minimize costs of selecting a chip,
 * by leaving it selected in anticipation that the next message will go
 * to the same chip.  (That may increase power usage.)
 *
D
David Brownell 已提交
2336 2337 2338
 * Also, the caller is guaranteeing that the memory associated with the
 * message will not be freed before this call returns.
 *
2339
 * It returns zero on success, else a negative error code.
2340 2341 2342
 */
int spi_sync(struct spi_device *spi, struct spi_message *message)
{
2343
	return __spi_sync(spi, message, 0);
2344 2345 2346
}
EXPORT_SYMBOL_GPL(spi_sync);

2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
/**
 * spi_sync_locked - version of spi_sync with exclusive bus usage
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.  Low-overhead controller
 * drivers may DMA directly into and out of the message buffers.
 *
 * This call should be used by drivers that require exclusive access to the
L
Lucas De Marchi 已提交
2358
 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
 * be released by a spi_bus_unlock call when the exclusive access is over.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
{
	return __spi_sync(spi, message, 1);
}
EXPORT_SYMBOL_GPL(spi_sync_locked);

/**
 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
 * @master: SPI bus master that should be locked for exclusive bus access
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call should be used by drivers that require exclusive access to the
 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
 * exclusive access is over. Data transfer must be done by spi_sync_locked
 * and spi_async_locked calls when the SPI bus lock is held.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_bus_lock(struct spi_master *master)
{
	unsigned long flags;

	mutex_lock(&master->bus_lock_mutex);

	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
	master->bus_lock_flag = 1;
	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);

	/* mutex remains locked until spi_bus_unlock is called */

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_lock);

/**
 * spi_bus_unlock - release the lock for exclusive SPI bus usage
 * @master: SPI bus master that was locked for exclusive bus access
 * Context: can sleep
 *
 * This call may only be used from a context that may sleep.  The sleep
 * is non-interruptible, and has no timeout.
 *
 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
 * call.
 *
 * It returns zero on success, else a negative error code.
 */
int spi_bus_unlock(struct spi_master *master)
{
	master->bus_lock_flag = 0;

	mutex_unlock(&master->bus_lock_mutex);

	return 0;
}
EXPORT_SYMBOL_GPL(spi_bus_unlock);

2423
/* portable code must never pass more than 32 bytes */
J
Jingoo Han 已提交
2424
#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
2425 2426 2427 2428 2429 2430 2431 2432

static u8	*buf;

/**
 * spi_write_then_read - SPI synchronous write followed by read
 * @spi: device with which data will be exchanged
 * @txbuf: data to be written (need not be dma-safe)
 * @n_tx: size of txbuf, in bytes
2433 2434
 * @rxbuf: buffer into which data will be read (need not be dma-safe)
 * @n_rx: size of rxbuf, in bytes
D
David Brownell 已提交
2435
 * Context: can sleep
2436 2437 2438 2439
 *
 * This performs a half duplex MicroWire style transaction with the
 * device, sending txbuf and then reading rxbuf.  The return value
 * is zero for success, else a negative errno status code.
2440
 * This call may only be used from a context that may sleep.
2441
 *
D
David Brownell 已提交
2442
 * Parameters to this routine are always copied using a small buffer;
D
David Brownell 已提交
2443 2444
 * portable code should never use this for more than 32 bytes.
 * Performance-sensitive or bulk transfer code should instead use
D
David Brownell 已提交
2445
 * spi_{async,sync}() calls with dma-safe buffers.
2446 2447
 */
int spi_write_then_read(struct spi_device *spi,
2448 2449
		const void *txbuf, unsigned n_tx,
		void *rxbuf, unsigned n_rx)
2450
{
D
David Brownell 已提交
2451
	static DEFINE_MUTEX(lock);
2452 2453 2454

	int			status;
	struct spi_message	message;
2455
	struct spi_transfer	x[2];
2456 2457
	u8			*local_buf;

2458 2459 2460 2461
	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
	 * copying here, (as a pure convenience thing), but we can
	 * keep heap costs out of the hot path unless someone else is
	 * using the pre-allocated buffer or the transfer is too large.
2462
	 */
2463
	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2464 2465
		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
				    GFP_KERNEL | GFP_DMA);
2466 2467 2468 2469 2470
		if (!local_buf)
			return -ENOMEM;
	} else {
		local_buf = buf;
	}
2471

2472
	spi_message_init(&message);
J
Jingoo Han 已提交
2473
	memset(x, 0, sizeof(x));
2474 2475 2476 2477 2478 2479 2480 2481
	if (n_tx) {
		x[0].len = n_tx;
		spi_message_add_tail(&x[0], &message);
	}
	if (n_rx) {
		x[1].len = n_rx;
		spi_message_add_tail(&x[1], &message);
	}
2482

2483
	memcpy(local_buf, txbuf, n_tx);
2484 2485
	x[0].tx_buf = local_buf;
	x[1].rx_buf = local_buf + n_tx;
2486 2487 2488

	/* do the i/o */
	status = spi_sync(spi, &message);
2489
	if (status == 0)
2490
		memcpy(rxbuf, x[1].rx_buf, n_rx);
2491

2492
	if (x[0].tx_buf == buf)
D
David Brownell 已提交
2493
		mutex_unlock(&lock);
2494 2495 2496 2497 2498 2499 2500 2501 2502
	else
		kfree(local_buf);

	return status;
}
EXPORT_SYMBOL_GPL(spi_write_then_read);

/*-------------------------------------------------------------------------*/

2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
#if IS_ENABLED(CONFIG_OF_DYNAMIC)
static int __spi_of_device_match(struct device *dev, void *data)
{
	return dev->of_node == data;
}

/* must call put_device() when done with returned spi_device device */
static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
{
	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
						__spi_of_device_match);
	return dev ? to_spi_device(dev) : NULL;
}

static int __spi_of_master_match(struct device *dev, const void *data)
{
	return dev->of_node == data;
}

/* the spi masters are not using spi_bus, so we find it with another way */
static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
{
	struct device *dev;

	dev = class_find_device(&spi_master_class, NULL, node,
				__spi_of_master_match);
	if (!dev)
		return NULL;

	/* reference got in class_find_device */
	return container_of(dev, struct spi_master, dev);
}

static int of_spi_notify(struct notifier_block *nb, unsigned long action,
			 void *arg)
{
	struct of_reconfig_data *rd = arg;
	struct spi_master *master;
	struct spi_device *spi;

	switch (of_reconfig_get_state_change(action, arg)) {
	case OF_RECONFIG_CHANGE_ADD:
		master = of_find_spi_master_by_node(rd->dn->parent);
		if (master == NULL)
			return NOTIFY_OK;	/* not for us */

		spi = of_register_spi_device(master, rd->dn);
		put_device(&master->dev);

		if (IS_ERR(spi)) {
			pr_err("%s: failed to create for '%s'\n",
					__func__, rd->dn->full_name);
			return notifier_from_errno(PTR_ERR(spi));
		}
		break;

	case OF_RECONFIG_CHANGE_REMOVE:
		/* find our device by node */
		spi = of_find_spi_device_by_node(rd->dn);
		if (spi == NULL)
			return NOTIFY_OK;	/* no? not meant for us */

		/* unregister takes one ref away */
		spi_unregister_device(spi);

		/* and put the reference of the find */
		put_device(&spi->dev);
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block spi_of_notifier = {
	.notifier_call = of_spi_notify,
};
#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
extern struct notifier_block spi_of_notifier;
#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */

2583 2584
static int __init spi_init(void)
{
2585 2586
	int	status;

2587
	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2588 2589 2590 2591 2592 2593 2594 2595
	if (!buf) {
		status = -ENOMEM;
		goto err0;
	}

	status = bus_register(&spi_bus_type);
	if (status < 0)
		goto err1;
2596

2597 2598 2599
	status = class_register(&spi_master_class);
	if (status < 0)
		goto err2;
2600

2601
	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2602 2603
		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));

2604
	return 0;
2605 2606 2607 2608 2609 2610 2611 2612

err2:
	bus_unregister(&spi_bus_type);
err1:
	kfree(buf);
	buf = NULL;
err0:
	return status;
2613
}
2614

2615 2616
/* board_info is normally registered in arch_initcall(),
 * but even essential drivers wait till later
2617 2618 2619 2620
 *
 * REVISIT only boardinfo really needs static linking. the rest (device and
 * driver registration) _could_ be dynamically linked (modular) ... costs
 * include needing to have boardinfo data structures be much more public.
2621
 */
2622
postcore_initcall(spi_init);
2623