vc4_plane.c 41.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2015 Broadcom
 */

/**
 * DOC: VC4 plane module
 *
 * Each DRM plane is a layer of pixels being scanned out by the HVS.
 *
 * At atomic modeset check time, we compute the HVS display element
 * state that would be necessary for displaying the plane (giving us a
 * chance to figure out if a plane configuration is invalid), then at
 * atomic flush time the CRTC will ask us to write our element state
 * into the region of the HVS that it has allocated for us.
 */

18 19
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
D
Daniel Vetter 已提交
20
#include <drm/drm_atomic_uapi.h>
S
Sam Ravnborg 已提交
21 22
#include <drm/drm_fb_cma_helper.h>
#include <drm/drm_fourcc.h>
23
#include <drm/drm_gem_framebuffer_helper.h>
S
Sam Ravnborg 已提交
24
#include <drm/drm_plane_helper.h>
25

26
#include "uapi/drm/vc4_drm.h"
S
Sam Ravnborg 已提交
27

28 29 30 31 32 33 34
#include "vc4_drv.h"
#include "vc4_regs.h"

static const struct hvs_format {
	u32 drm; /* DRM_FORMAT_* */
	u32 hvs; /* HVS_FORMAT_* */
	u32 pixel_order;
35
	u32 pixel_order_hvs5;
36 37
} hvs_formats[] = {
	{
38 39
		.drm = DRM_FORMAT_XRGB8888,
		.hvs = HVS_PIXEL_FORMAT_RGBA8888,
40
		.pixel_order = HVS_PIXEL_ORDER_ABGR,
41
		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
42 43
	},
	{
44 45
		.drm = DRM_FORMAT_ARGB8888,
		.hvs = HVS_PIXEL_FORMAT_RGBA8888,
46
		.pixel_order = HVS_PIXEL_ORDER_ABGR,
47
		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
48
	},
49
	{
50 51
		.drm = DRM_FORMAT_ABGR8888,
		.hvs = HVS_PIXEL_FORMAT_RGBA8888,
52
		.pixel_order = HVS_PIXEL_ORDER_ARGB,
53
		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
54 55
	},
	{
56 57
		.drm = DRM_FORMAT_XBGR8888,
		.hvs = HVS_PIXEL_FORMAT_RGBA8888,
58
		.pixel_order = HVS_PIXEL_ORDER_ARGB,
59
		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
60
	},
61
	{
62 63
		.drm = DRM_FORMAT_RGB565,
		.hvs = HVS_PIXEL_FORMAT_RGB565,
64
		.pixel_order = HVS_PIXEL_ORDER_XRGB,
65 66
	},
	{
67 68
		.drm = DRM_FORMAT_BGR565,
		.hvs = HVS_PIXEL_FORMAT_RGB565,
69
		.pixel_order = HVS_PIXEL_ORDER_XBGR,
70 71
	},
	{
72 73
		.drm = DRM_FORMAT_ARGB1555,
		.hvs = HVS_PIXEL_FORMAT_RGBA5551,
74
		.pixel_order = HVS_PIXEL_ORDER_ABGR,
75 76
	},
	{
77 78
		.drm = DRM_FORMAT_XRGB1555,
		.hvs = HVS_PIXEL_FORMAT_RGBA5551,
79
		.pixel_order = HVS_PIXEL_ORDER_ABGR,
80
	},
81
	{
82 83
		.drm = DRM_FORMAT_RGB888,
		.hvs = HVS_PIXEL_FORMAT_RGB888,
84
		.pixel_order = HVS_PIXEL_ORDER_XRGB,
85 86
	},
	{
87 88
		.drm = DRM_FORMAT_BGR888,
		.hvs = HVS_PIXEL_FORMAT_RGB888,
89
		.pixel_order = HVS_PIXEL_ORDER_XBGR,
90
	},
91 92 93
	{
		.drm = DRM_FORMAT_YUV422,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
94
		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
95 96 97 98
	},
	{
		.drm = DRM_FORMAT_YVU422,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
99
		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
100 101 102 103
	},
	{
		.drm = DRM_FORMAT_YUV420,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
104
		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
105 106 107 108
	},
	{
		.drm = DRM_FORMAT_YVU420,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
109
		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
110 111 112 113
	},
	{
		.drm = DRM_FORMAT_NV12,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
114
		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
115
	},
116 117 118 119 120
	{
		.drm = DRM_FORMAT_NV21,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
	},
121 122 123
	{
		.drm = DRM_FORMAT_NV16,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
124
		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
125
	},
126 127 128 129 130
	{
		.drm = DRM_FORMAT_NV61,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
	},
131 132 133 134 135 136 137 138 139 140 141 142 143 144
};

static const struct hvs_format *vc4_get_hvs_format(u32 drm_format)
{
	unsigned i;

	for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
		if (hvs_formats[i].drm == drm_format)
			return &hvs_formats[i];
	}

	return NULL;
}

145 146
static enum vc4_scaling_mode vc4_get_scaling_mode(u32 src, u32 dst)
{
147 148 149
	if (dst == src)
		return VC4_SCALING_NONE;
	if (3 * dst >= 2 * src)
150 151
		return VC4_SCALING_PPF;
	else
152
		return VC4_SCALING_TPZ;
153 154
}

155 156
static bool plane_enabled(struct drm_plane_state *state)
{
157
	return state->fb && !WARN_ON(!state->crtc);
158 159
}

160
static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane)
161 162 163 164 165 166 167 168 169 170
{
	struct vc4_plane_state *vc4_state;

	if (WARN_ON(!plane->state))
		return NULL;

	vc4_state = kmemdup(plane->state, sizeof(*vc4_state), GFP_KERNEL);
	if (!vc4_state)
		return NULL;

171
	memset(&vc4_state->lbm, 0, sizeof(vc4_state->lbm));
172
	vc4_state->dlist_initialized = 0;
173

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
	__drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base);

	if (vc4_state->dlist) {
		vc4_state->dlist = kmemdup(vc4_state->dlist,
					   vc4_state->dlist_count * 4,
					   GFP_KERNEL);
		if (!vc4_state->dlist) {
			kfree(vc4_state);
			return NULL;
		}
		vc4_state->dlist_size = vc4_state->dlist_count;
	}

	return &vc4_state->base;
}

190 191
static void vc4_plane_destroy_state(struct drm_plane *plane,
				    struct drm_plane_state *state)
192
{
193
	struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
194 195
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);

196
	if (drm_mm_node_allocated(&vc4_state->lbm)) {
197 198 199 200 201 202 203
		unsigned long irqflags;

		spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
		drm_mm_remove_node(&vc4_state->lbm);
		spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
	}

204
	kfree(vc4_state->dlist);
205
	__drm_atomic_helper_plane_destroy_state(&vc4_state->base);
206 207 208 209
	kfree(state);
}

/* Called during init to allocate the plane's atomic state. */
210
static void vc4_plane_reset(struct drm_plane *plane)
211 212 213 214 215 216 217 218 219
{
	struct vc4_plane_state *vc4_state;

	WARN_ON(plane->state);

	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
	if (!vc4_state)
		return;

220
	__drm_atomic_helper_plane_reset(plane, &vc4_state->base);
221 222 223 224 225 226
}

static void vc4_dlist_write(struct vc4_plane_state *vc4_state, u32 val)
{
	if (vc4_state->dlist_count == vc4_state->dlist_size) {
		u32 new_size = max(4u, vc4_state->dlist_count * 2);
227
		u32 *new_dlist = kmalloc_array(new_size, 4, GFP_KERNEL);
228 229 230 231 232 233 234 235 236 237 238 239 240

		if (!new_dlist)
			return;
		memcpy(new_dlist, vc4_state->dlist, vc4_state->dlist_count * 4);

		kfree(vc4_state->dlist);
		vc4_state->dlist = new_dlist;
		vc4_state->dlist_size = new_size;
	}

	vc4_state->dlist[vc4_state->dlist_count++] = val;
}

241 242 243 244 245
/* Returns the scl0/scl1 field based on whether the dimensions need to
 * be up/down/non-scaled.
 *
 * This is a replication of a table from the spec.
 */
246
static u32 vc4_get_scl_field(struct drm_plane_state *state, int plane)
247 248 249
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);

250
	switch (vc4_state->x_scaling[plane] << 2 | vc4_state->y_scaling[plane]) {
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
	case VC4_SCALING_PPF << 2 | VC4_SCALING_PPF:
		return SCALER_CTL0_SCL_H_PPF_V_PPF;
	case VC4_SCALING_TPZ << 2 | VC4_SCALING_PPF:
		return SCALER_CTL0_SCL_H_TPZ_V_PPF;
	case VC4_SCALING_PPF << 2 | VC4_SCALING_TPZ:
		return SCALER_CTL0_SCL_H_PPF_V_TPZ;
	case VC4_SCALING_TPZ << 2 | VC4_SCALING_TPZ:
		return SCALER_CTL0_SCL_H_TPZ_V_TPZ;
	case VC4_SCALING_PPF << 2 | VC4_SCALING_NONE:
		return SCALER_CTL0_SCL_H_PPF_V_NONE;
	case VC4_SCALING_NONE << 2 | VC4_SCALING_PPF:
		return SCALER_CTL0_SCL_H_NONE_V_PPF;
	case VC4_SCALING_NONE << 2 | VC4_SCALING_TPZ:
		return SCALER_CTL0_SCL_H_NONE_V_TPZ;
	case VC4_SCALING_TPZ << 2 | VC4_SCALING_NONE:
		return SCALER_CTL0_SCL_H_TPZ_V_NONE;
	default:
	case VC4_SCALING_NONE << 2 | VC4_SCALING_NONE:
		/* The unity case is independently handled by
		 * SCALER_CTL0_UNITY.
		 */
		return 0;
	}
}

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
static int vc4_plane_margins_adj(struct drm_plane_state *pstate)
{
	struct vc4_plane_state *vc4_pstate = to_vc4_plane_state(pstate);
	unsigned int left, right, top, bottom, adjhdisplay, adjvdisplay;
	struct drm_crtc_state *crtc_state;

	crtc_state = drm_atomic_get_new_crtc_state(pstate->state,
						   pstate->crtc);

	vc4_crtc_get_margins(crtc_state, &left, &right, &top, &bottom);
	if (!left && !right && !top && !bottom)
		return 0;

	if (left + right >= crtc_state->mode.hdisplay ||
	    top + bottom >= crtc_state->mode.vdisplay)
		return -EINVAL;

	adjhdisplay = crtc_state->mode.hdisplay - (left + right);
	vc4_pstate->crtc_x = DIV_ROUND_CLOSEST(vc4_pstate->crtc_x *
					       adjhdisplay,
					       crtc_state->mode.hdisplay);
	vc4_pstate->crtc_x += left;
	if (vc4_pstate->crtc_x > crtc_state->mode.hdisplay - left)
		vc4_pstate->crtc_x = crtc_state->mode.hdisplay - left;

	adjvdisplay = crtc_state->mode.vdisplay - (top + bottom);
	vc4_pstate->crtc_y = DIV_ROUND_CLOSEST(vc4_pstate->crtc_y *
					       adjvdisplay,
					       crtc_state->mode.vdisplay);
	vc4_pstate->crtc_y += top;
	if (vc4_pstate->crtc_y > crtc_state->mode.vdisplay - top)
		vc4_pstate->crtc_y = crtc_state->mode.vdisplay - top;

	vc4_pstate->crtc_w = DIV_ROUND_CLOSEST(vc4_pstate->crtc_w *
					       adjhdisplay,
					       crtc_state->mode.hdisplay);
	vc4_pstate->crtc_h = DIV_ROUND_CLOSEST(vc4_pstate->crtc_h *
					       adjvdisplay,
					       crtc_state->mode.vdisplay);

	if (!vc4_pstate->crtc_w || !vc4_pstate->crtc_h)
		return -EINVAL;

	return 0;
}

322
static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state *state)
323 324 325
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
	struct drm_framebuffer *fb = state->fb;
326
	struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
327
	u32 subpixel_src_mask = (1 << 16) - 1;
328
	int num_planes = fb->format->num_planes;
329
	struct drm_crtc_state *crtc_state;
330 331
	u32 h_subsample = fb->format->hsub;
	u32 v_subsample = fb->format->vsub;
332 333 334 335 336 337 338 339 340
	int i, ret;

	crtc_state = drm_atomic_get_existing_crtc_state(state->state,
							state->crtc);
	if (!crtc_state) {
		DRM_DEBUG_KMS("Invalid crtc state\n");
		return -EINVAL;
	}

341 342
	ret = drm_atomic_helper_check_plane_state(state, crtc_state, 1,
						  INT_MAX, true, true);
343 344 345
	if (ret)
		return ret;

346 347
	for (i = 0; i < num_planes; i++)
		vc4_state->offsets[i] = bo->paddr + fb->offsets[i];
348

349
	/* We don't support subpixel source positioning for scaling. */
350 351 352 353
	if ((state->src.x1 & subpixel_src_mask) ||
	    (state->src.x2 & subpixel_src_mask) ||
	    (state->src.y1 & subpixel_src_mask) ||
	    (state->src.y2 & subpixel_src_mask)) {
354 355 356
		return -EINVAL;
	}

357 358 359 360
	vc4_state->src_x = state->src.x1 >> 16;
	vc4_state->src_y = state->src.y1 >> 16;
	vc4_state->src_w[0] = (state->src.x2 - state->src.x1) >> 16;
	vc4_state->src_h[0] = (state->src.y2 - state->src.y1) >> 16;
361

362 363 364 365
	vc4_state->crtc_x = state->dst.x1;
	vc4_state->crtc_y = state->dst.y1;
	vc4_state->crtc_w = state->dst.x2 - state->dst.x1;
	vc4_state->crtc_h = state->dst.y2 - state->dst.y1;
366

367 368 369 370
	ret = vc4_plane_margins_adj(state);
	if (ret)
		return ret;

371 372 373 374 375
	vc4_state->x_scaling[0] = vc4_get_scaling_mode(vc4_state->src_w[0],
						       vc4_state->crtc_w);
	vc4_state->y_scaling[0] = vc4_get_scaling_mode(vc4_state->src_h[0],
						       vc4_state->crtc_h);

376 377 378
	vc4_state->is_unity = (vc4_state->x_scaling[0] == VC4_SCALING_NONE &&
			       vc4_state->y_scaling[0] == VC4_SCALING_NONE);

379 380 381 382 383 384 385 386 387 388 389 390 391
	if (num_planes > 1) {
		vc4_state->is_yuv = true;

		vc4_state->src_w[1] = vc4_state->src_w[0] / h_subsample;
		vc4_state->src_h[1] = vc4_state->src_h[0] / v_subsample;

		vc4_state->x_scaling[1] =
			vc4_get_scaling_mode(vc4_state->src_w[1],
					     vc4_state->crtc_w);
		vc4_state->y_scaling[1] =
			vc4_get_scaling_mode(vc4_state->src_h[1],
					     vc4_state->crtc_h);

392 393 394 395 396
		/* YUV conversion requires that horizontal scaling be enabled
		 * on the UV plane even if vc4_get_scaling_mode() returned
		 * VC4_SCALING_NONE (which can happen when the down-scaling
		 * ratio is 0.5). Let's force it to VC4_SCALING_PPF in this
		 * case.
397
		 */
398 399
		if (vc4_state->x_scaling[1] == VC4_SCALING_NONE)
			vc4_state->x_scaling[1] = VC4_SCALING_PPF;
400
	} else {
401
		vc4_state->is_yuv = false;
402 403
		vc4_state->x_scaling[1] = VC4_SCALING_NONE;
		vc4_state->y_scaling[1] = VC4_SCALING_NONE;
404 405
	}

406 407 408
	return 0;
}

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
static void vc4_write_tpz(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
{
	u32 scale, recip;

	scale = (1 << 16) * src / dst;

	/* The specs note that while the reciprocal would be defined
	 * as (1<<32)/scale, ~0 is close enough.
	 */
	recip = ~0 / scale;

	vc4_dlist_write(vc4_state,
			VC4_SET_FIELD(scale, SCALER_TPZ0_SCALE) |
			VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE));
	vc4_dlist_write(vc4_state,
			VC4_SET_FIELD(recip, SCALER_TPZ1_RECIP));
}

static void vc4_write_ppf(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
{
	u32 scale = (1 << 16) * src / dst;

	vc4_dlist_write(vc4_state,
			SCALER_PPF_AGC |
			VC4_SET_FIELD(scale, SCALER_PPF_SCALE) |
			VC4_SET_FIELD(0, SCALER_PPF_IPHASE));
}

static u32 vc4_lbm_size(struct drm_plane_state *state)
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
440
	u32 pix_per_line;
441 442
	u32 lbm;

443 444 445 446 447
	/* LBM is not needed when there's no vertical scaling. */
	if (vc4_state->y_scaling[0] == VC4_SCALING_NONE &&
	    vc4_state->y_scaling[1] == VC4_SCALING_NONE)
		return 0;

448 449 450 451 452 453 454 455 456 457 458 459
	/*
	 * This can be further optimized in the RGB/YUV444 case if the PPF
	 * decimation factor is between 0.5 and 1.0 by using crtc_w.
	 *
	 * It's not an issue though, since in that case since src_w[0] is going
	 * to be greater than or equal to crtc_w.
	 */
	if (vc4_state->x_scaling[0] == VC4_SCALING_TPZ)
		pix_per_line = vc4_state->crtc_w;
	else
		pix_per_line = vc4_state->src_w[0];

460
	if (!vc4_state->is_yuv) {
461
		if (vc4_state->y_scaling[0] == VC4_SCALING_TPZ)
462 463 464 465 466 467 468 469 470 471
			lbm = pix_per_line * 8;
		else {
			/* In special cases, this multiplier might be 12. */
			lbm = pix_per_line * 16;
		}
	} else {
		/* There are cases for this going down to a multiplier
		 * of 2, but according to the firmware source, the
		 * table in the docs is somewhat wrong.
		 */
472 473 474 475 476 477 478 479
		lbm = pix_per_line * 16;
	}

	lbm = roundup(lbm, 32);

	return lbm;
}

480 481
static void vc4_write_scaling_parameters(struct drm_plane_state *state,
					 int channel)
482 483 484 485
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);

	/* Ch0 H-PPF Word 0: Scaling Parameters */
486
	if (vc4_state->x_scaling[channel] == VC4_SCALING_PPF) {
487
		vc4_write_ppf(vc4_state,
488
			      vc4_state->src_w[channel], vc4_state->crtc_w);
489 490 491
	}

	/* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */
492
	if (vc4_state->y_scaling[channel] == VC4_SCALING_PPF) {
493
		vc4_write_ppf(vc4_state,
494
			      vc4_state->src_h[channel], vc4_state->crtc_h);
495 496 497 498
		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
	}

	/* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */
499
	if (vc4_state->x_scaling[channel] == VC4_SCALING_TPZ) {
500
		vc4_write_tpz(vc4_state,
501
			      vc4_state->src_w[channel], vc4_state->crtc_w);
502 503 504
	}

	/* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */
505
	if (vc4_state->y_scaling[channel] == VC4_SCALING_TPZ) {
506
		vc4_write_tpz(vc4_state,
507
			      vc4_state->src_h[channel], vc4_state->crtc_h);
508 509 510
		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
	}
}
511

512 513 514 515 516 517 518
static void vc4_plane_calc_load(struct drm_plane_state *state)
{
	unsigned int hvs_load_shift, vrefresh, i;
	struct drm_framebuffer *fb = state->fb;
	struct vc4_plane_state *vc4_state;
	struct drm_crtc_state *crtc_state;
	unsigned int vscale_factor;
M
Maxime Ripard 已提交
519 520 521 522 523
	struct vc4_dev *vc4;

	vc4 = to_vc4_dev(state->plane->dev);
	if (!vc4->load_tracker_available)
		return;
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571

	vc4_state = to_vc4_plane_state(state);
	crtc_state = drm_atomic_get_existing_crtc_state(state->state,
							state->crtc);
	vrefresh = drm_mode_vrefresh(&crtc_state->adjusted_mode);

	/* The HVS is able to process 2 pixels/cycle when scaling the source,
	 * 4 pixels/cycle otherwise.
	 * Alpha blending step seems to be pipelined and it's always operating
	 * at 4 pixels/cycle, so the limiting aspect here seems to be the
	 * scaler block.
	 * HVS load is expressed in clk-cycles/sec (AKA Hz).
	 */
	if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
	    vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
	    vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
	    vc4_state->y_scaling[1] != VC4_SCALING_NONE)
		hvs_load_shift = 1;
	else
		hvs_load_shift = 2;

	vc4_state->membus_load = 0;
	vc4_state->hvs_load = 0;
	for (i = 0; i < fb->format->num_planes; i++) {
		/* Even if the bandwidth/plane required for a single frame is
		 *
		 * vc4_state->src_w[i] * vc4_state->src_h[i] * cpp * vrefresh
		 *
		 * when downscaling, we have to read more pixels per line in
		 * the time frame reserved for a single line, so the bandwidth
		 * demand can be punctually higher. To account for that, we
		 * calculate the down-scaling factor and multiply the plane
		 * load by this number. We're likely over-estimating the read
		 * demand, but that's better than under-estimating it.
		 */
		vscale_factor = DIV_ROUND_UP(vc4_state->src_h[i],
					     vc4_state->crtc_h);
		vc4_state->membus_load += vc4_state->src_w[i] *
					  vc4_state->src_h[i] * vscale_factor *
					  fb->format->cpp[i];
		vc4_state->hvs_load += vc4_state->crtc_h * vc4_state->crtc_w;
	}

	vc4_state->hvs_load *= vrefresh;
	vc4_state->hvs_load >>= hvs_load_shift;
	vc4_state->membus_load *= vrefresh;
}

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
static int vc4_plane_allocate_lbm(struct drm_plane_state *state)
{
	struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev);
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
	unsigned long irqflags;
	u32 lbm_size;

	lbm_size = vc4_lbm_size(state);
	if (!lbm_size)
		return 0;

	if (WARN_ON(!vc4_state->lbm_offset))
		return -EINVAL;

	/* Allocate the LBM memory that the HVS will use for temporary
	 * storage due to our scaling/format conversion.
	 */
589
	if (!drm_mm_node_allocated(&vc4_state->lbm)) {
590 591 592 593 594
		int ret;

		spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
		ret = drm_mm_insert_node_generic(&vc4->hvs->lbm_mm,
						 &vc4_state->lbm,
595 596 597
						 lbm_size,
						 vc4->hvs->hvs5 ? 64 : 32,
						 0, 0);
598 599 600 601 602 603 604 605 606 607 608 609 610
		spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);

		if (ret)
			return ret;
	} else {
		WARN_ON_ONCE(lbm_size != vc4_state->lbm.size);
	}

	vc4_state->dlist[vc4_state->lbm_offset] = vc4_state->lbm.start;

	return 0;
}

611 612 613 614 615 616
/* Writes out a full display list for an active plane to the plane's
 * private dlist state.
 */
static int vc4_plane_mode_set(struct drm_plane *plane,
			      struct drm_plane_state *state)
{
617
	struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
618 619 620
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
	struct drm_framebuffer *fb = state->fb;
	u32 ctl0_offset = vc4_state->dlist_count;
V
Ville Syrjälä 已提交
621
	const struct hvs_format *format = vc4_get_hvs_format(fb->format->format);
622
	u64 base_format_mod = fourcc_mod_broadcom_mod(fb->modifier);
623
	int num_planes = fb->format->num_planes;
624 625
	u32 h_subsample = fb->format->hsub;
	u32 v_subsample = fb->format->vsub;
626
	bool mix_plane_alpha;
627
	bool covers_screen;
628
	u32 scl0, scl1, pitch0;
629
	u32 tiling, src_y;
630
	u32 hvs_format = format->hvs;
631
	unsigned int rotation;
632
	int ret, i;
633

634 635 636
	if (vc4_state->dlist_initialized)
		return 0;

637
	ret = vc4_plane_setup_clipping_and_scaling(state);
638 639 640
	if (ret)
		return ret;

641 642 643 644 645 646 647
	/* SCL1 is used for Cb/Cr scaling of planar formats.  For RGB
	 * and 4:4:4, scl1 should be set to scl0 so both channels of
	 * the scaler do the same thing.  For YUV, the Y plane needs
	 * to be put in channel 1 and Cb/Cr in channel 0, so we swap
	 * the scl fields here.
	 */
	if (num_planes == 1) {
648
		scl0 = vc4_get_scl_field(state, 0);
649 650 651 652 653
		scl1 = scl0;
	} else {
		scl0 = vc4_get_scl_field(state, 1);
		scl1 = vc4_get_scl_field(state, 0);
	}
654

655 656 657 658 659 660 661 662 663 664
	rotation = drm_rotation_simplify(state->rotation,
					 DRM_MODE_ROTATE_0 |
					 DRM_MODE_REFLECT_X |
					 DRM_MODE_REFLECT_Y);

	/* We must point to the last line when Y reflection is enabled. */
	src_y = vc4_state->src_y;
	if (rotation & DRM_MODE_REFLECT_Y)
		src_y += vc4_state->src_h[0] - 1;

665
	switch (base_format_mod) {
666 667 668
	case DRM_FORMAT_MOD_LINEAR:
		tiling = SCALER_CTL0_TILING_LINEAR;
		pitch0 = VC4_SET_FIELD(fb->pitches[0], SCALER_SRC_PITCH);
669 670 671 672 673

		/* Adjust the base pointer to the first pixel to be scanned
		 * out.
		 */
		for (i = 0; i < num_planes; i++) {
674
			vc4_state->offsets[i] += src_y /
675 676
						 (i ? v_subsample : 1) *
						 fb->pitches[i];
677

678 679 680 681
			vc4_state->offsets[i] += vc4_state->src_x /
						 (i ? h_subsample : 1) *
						 fb->format->cpp[i];
		}
682

683
		break;
684 685 686

	case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED: {
		u32 tile_size_shift = 12; /* T tiles are 4kb */
687 688
		/* Whole-tile offsets, mostly for setting the pitch. */
		u32 tile_w_shift = fb->format->cpp[0] == 2 ? 6 : 5;
689
		u32 tile_h_shift = 5; /* 16 and 32bpp are 32 pixels high */
690 691 692 693 694 695 696 697 698 699
		u32 tile_w_mask = (1 << tile_w_shift) - 1;
		/* The height mask on 32-bit-per-pixel tiles is 63, i.e. twice
		 * the height (in pixels) of a 4k tile.
		 */
		u32 tile_h_mask = (2 << tile_h_shift) - 1;
		/* For T-tiled, the FB pitch is "how many bytes from one row to
		 * the next, such that
		 *
		 *	pitch * tile_h == tile_size * tiles_per_row
		 */
700
		u32 tiles_w = fb->pitches[0] >> (tile_size_shift - tile_h_shift);
701 702
		u32 tiles_l = vc4_state->src_x >> tile_w_shift;
		u32 tiles_r = tiles_w - tiles_l;
703
		u32 tiles_t = src_y >> tile_h_shift;
704 705 706 707
		/* Intra-tile offsets, which modify the base address (the
		 * SCALER_PITCH0_TILE_Y_OFFSET tells HVS how to walk from that
		 * base address).
		 */
708 709 710
		u32 tile_y = (src_y >> 4) & 1;
		u32 subtile_y = (src_y >> 2) & 3;
		u32 utile_y = src_y & 3;
711
		u32 x_off = vc4_state->src_x & tile_w_mask;
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
		u32 y_off = src_y & tile_h_mask;

		/* When Y reflection is requested we must set the
		 * SCALER_PITCH0_TILE_LINE_DIR flag to tell HVS that all lines
		 * after the initial one should be fetched in descending order,
		 * which makes sense since we start from the last line and go
		 * backward.
		 * Don't know why we need y_off = max_y_off - y_off, but it's
		 * definitely required (I guess it's also related to the "going
		 * backward" situation).
		 */
		if (rotation & DRM_MODE_REFLECT_Y) {
			y_off = tile_h_mask - y_off;
			pitch0 = SCALER_PITCH0_TILE_LINE_DIR;
		} else {
			pitch0 = 0;
		}
729

730
		tiling = SCALER_CTL0_TILING_256B_OR_T;
731 732 733 734
		pitch0 |= (VC4_SET_FIELD(x_off, SCALER_PITCH0_SINK_PIX) |
			   VC4_SET_FIELD(y_off, SCALER_PITCH0_TILE_Y_OFFSET) |
			   VC4_SET_FIELD(tiles_l, SCALER_PITCH0_TILE_WIDTH_L) |
			   VC4_SET_FIELD(tiles_r, SCALER_PITCH0_TILE_WIDTH_R));
735 736 737 738 739 740 741 742 743 744 745 746 747 748
		vc4_state->offsets[0] += tiles_t * (tiles_w << tile_size_shift);
		vc4_state->offsets[0] += subtile_y << 8;
		vc4_state->offsets[0] += utile_y << 4;

		/* Rows of tiles alternate left-to-right and right-to-left. */
		if (tiles_t & 1) {
			pitch0 |= SCALER_PITCH0_TILE_INITIAL_LINE_DIR;
			vc4_state->offsets[0] += (tiles_w - tiles_l) <<
						 tile_size_shift;
			vc4_state->offsets[0] -= (1 + !tile_y) << 10;
		} else {
			vc4_state->offsets[0] += tiles_l << tile_size_shift;
			vc4_state->offsets[0] += tile_y << 10;
		}
749 750

		break;
751 752
	}

753 754 755 756
	case DRM_FORMAT_MOD_BROADCOM_SAND64:
	case DRM_FORMAT_MOD_BROADCOM_SAND128:
	case DRM_FORMAT_MOD_BROADCOM_SAND256: {
		uint32_t param = fourcc_mod_broadcom_param(fb->modifier);
757
		u32 tile_w, tile, x_off, pix_per_tile;
758

759
		hvs_format = HVS_PIXEL_FORMAT_H264;
760 761 762 763

		switch (base_format_mod) {
		case DRM_FORMAT_MOD_BROADCOM_SAND64:
			tiling = SCALER_CTL0_TILING_64B;
764
			tile_w = 64;
765 766 767
			break;
		case DRM_FORMAT_MOD_BROADCOM_SAND128:
			tiling = SCALER_CTL0_TILING_128B;
768
			tile_w = 128;
769 770 771
			break;
		case DRM_FORMAT_MOD_BROADCOM_SAND256:
			tiling = SCALER_CTL0_TILING_256B_OR_T;
772
			tile_w = 256;
773 774 775 776 777 778 779 780 781 782
			break;
		default:
			break;
		}

		if (param > SCALER_TILE_HEIGHT_MASK) {
			DRM_DEBUG_KMS("SAND height too large (%d)\n", param);
			return -EINVAL;
		}

783 784 785 786 787 788 789 790 791
		pix_per_tile = tile_w / fb->format->cpp[0];
		tile = vc4_state->src_x / pix_per_tile;
		x_off = vc4_state->src_x % pix_per_tile;

		/* Adjust the base pointer to the first pixel to be scanned
		 * out.
		 */
		for (i = 0; i < num_planes; i++) {
			vc4_state->offsets[i] += param * tile_w * tile;
792
			vc4_state->offsets[i] += src_y /
793 794 795 796 797 798 799
						 (i ? v_subsample : 1) *
						 tile_w;
			vc4_state->offsets[i] += x_off /
						 (i ? h_subsample : 1) *
						 fb->format->cpp[i];
		}

800 801 802 803
		pitch0 = VC4_SET_FIELD(param, SCALER_TILE_HEIGHT);
		break;
	}

804 805 806 807 808 809
	default:
		DRM_DEBUG_KMS("Unsupported FB tiling flag 0x%16llx",
			      (long long)fb->modifier);
		return -EINVAL;
	}

810 811 812 813 814 815 816
	/* Don't waste cycles mixing with plane alpha if the set alpha
	 * is opaque or there is no per-pixel alpha information.
	 * In any case we use the alpha property value as the fixed alpha.
	 */
	mix_plane_alpha = state->alpha != DRM_BLEND_ALPHA_OPAQUE &&
			  fb->format->has_alpha;

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
	if (!vc4->hvs->hvs5) {
	/* Control word */
		vc4_dlist_write(vc4_state,
				SCALER_CTL0_VALID |
				(rotation & DRM_MODE_REFLECT_X ? SCALER_CTL0_HFLIP : 0) |
				(rotation & DRM_MODE_REFLECT_Y ? SCALER_CTL0_VFLIP : 0) |
				VC4_SET_FIELD(SCALER_CTL0_RGBA_EXPAND_ROUND, SCALER_CTL0_RGBA_EXPAND) |
				(format->pixel_order << SCALER_CTL0_ORDER_SHIFT) |
				(hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
				VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
				(vc4_state->is_unity ? SCALER_CTL0_UNITY : 0) |
				VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
				VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1));

		/* Position Word 0: Image Positions and Alpha Value */
		vc4_state->pos0_offset = vc4_state->dlist_count;
		vc4_dlist_write(vc4_state,
				VC4_SET_FIELD(state->alpha >> 8, SCALER_POS0_FIXED_ALPHA) |
				VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) |
				VC4_SET_FIELD(vc4_state->crtc_y, SCALER_POS0_START_Y));

		/* Position Word 1: Scaled Image Dimensions. */
		if (!vc4_state->is_unity) {
			vc4_dlist_write(vc4_state,
					VC4_SET_FIELD(vc4_state->crtc_w,
						      SCALER_POS1_SCL_WIDTH) |
					VC4_SET_FIELD(vc4_state->crtc_h,
						      SCALER_POS1_SCL_HEIGHT));
		}

		/* Position Word 2: Source Image Size, Alpha */
		vc4_state->pos2_offset = vc4_state->dlist_count;
		vc4_dlist_write(vc4_state,
				VC4_SET_FIELD(fb->format->has_alpha ?
					      SCALER_POS2_ALPHA_MODE_PIPELINE :
					      SCALER_POS2_ALPHA_MODE_FIXED,
					      SCALER_POS2_ALPHA_MODE) |
				(mix_plane_alpha ? SCALER_POS2_ALPHA_MIX : 0) |
				(fb->format->has_alpha ?
						SCALER_POS2_ALPHA_PREMULT : 0) |
				VC4_SET_FIELD(vc4_state->src_w[0],
					      SCALER_POS2_WIDTH) |
				VC4_SET_FIELD(vc4_state->src_h[0],
					      SCALER_POS2_HEIGHT));

		/* Position Word 3: Context.  Written by the HVS. */
		vc4_dlist_write(vc4_state, 0xc0c0c0c0);

	} else {
		u32 hvs_pixel_order = format->pixel_order;
867

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
		if (format->pixel_order_hvs5)
			hvs_pixel_order = format->pixel_order_hvs5;

		/* Control word */
		vc4_dlist_write(vc4_state,
				SCALER_CTL0_VALID |
				(hvs_pixel_order << SCALER_CTL0_ORDER_SHIFT) |
				(hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
				VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
				(vc4_state->is_unity ?
						SCALER5_CTL0_UNITY : 0) |
				VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
				VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1) |
				SCALER5_CTL0_ALPHA_EXPAND |
				SCALER5_CTL0_RGB_EXPAND);

		/* Position Word 0: Image Positions and Alpha Value */
		vc4_state->pos0_offset = vc4_state->dlist_count;
		vc4_dlist_write(vc4_state,
				(rotation & DRM_MODE_REFLECT_Y ?
						SCALER5_POS0_VFLIP : 0) |
				VC4_SET_FIELD(vc4_state->crtc_x,
					      SCALER_POS0_START_X) |
				(rotation & DRM_MODE_REFLECT_X ?
					      SCALER5_POS0_HFLIP : 0) |
				VC4_SET_FIELD(vc4_state->crtc_y,
					      SCALER5_POS0_START_Y)
			       );

		/* Control Word 2 */
		vc4_dlist_write(vc4_state,
				VC4_SET_FIELD(state->alpha >> 4,
					      SCALER5_CTL2_ALPHA) |
901 902
				(fb->format->has_alpha ?
					SCALER5_CTL2_ALPHA_PREMULT : 0) |
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
				(mix_plane_alpha ?
					SCALER5_CTL2_ALPHA_MIX : 0) |
				VC4_SET_FIELD(fb->format->has_alpha ?
				      SCALER5_CTL2_ALPHA_MODE_PIPELINE :
				      SCALER5_CTL2_ALPHA_MODE_FIXED,
				      SCALER5_CTL2_ALPHA_MODE)
			       );

		/* Position Word 1: Scaled Image Dimensions. */
		if (!vc4_state->is_unity) {
			vc4_dlist_write(vc4_state,
					VC4_SET_FIELD(vc4_state->crtc_w,
						      SCALER_POS1_SCL_WIDTH) |
					VC4_SET_FIELD(vc4_state->crtc_h,
						      SCALER_POS1_SCL_HEIGHT));
		}

		/* Position Word 2: Source Image Size */
		vc4_state->pos2_offset = vc4_state->dlist_count;
		vc4_dlist_write(vc4_state,
				VC4_SET_FIELD(vc4_state->src_w[0],
					      SCALER5_POS2_WIDTH) |
				VC4_SET_FIELD(vc4_state->src_h[0],
					      SCALER5_POS2_HEIGHT));

		/* Position Word 3: Context.  Written by the HVS. */
		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
	}
931

932 933 934 935 936

	/* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers
	 *
	 * The pointers may be any byte address.
	 */
937
	vc4_state->ptr0_offset = vc4_state->dlist_count;
938 939
	for (i = 0; i < num_planes; i++)
		vc4_dlist_write(vc4_state, vc4_state->offsets[i]);
940

941 942 943
	/* Pointer Context Word 0/1/2: Written by the HVS */
	for (i = 0; i < num_planes; i++)
		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
944

945 946 947 948 949
	/* Pitch word 0 */
	vc4_dlist_write(vc4_state, pitch0);

	/* Pitch word 1/2 */
	for (i = 1; i < num_planes; i++) {
950 951 952 953 954 955 956
		if (hvs_format != HVS_PIXEL_FORMAT_H264) {
			vc4_dlist_write(vc4_state,
					VC4_SET_FIELD(fb->pitches[i],
						      SCALER_SRC_PITCH));
		} else {
			vc4_dlist_write(vc4_state, pitch0);
		}
957 958 959 960 961 962 963 964
	}

	/* Colorspace conversion words */
	if (vc4_state->is_yuv) {
		vc4_dlist_write(vc4_state, SCALER_CSC0_ITR_R_601_5);
		vc4_dlist_write(vc4_state, SCALER_CSC1_ITR_R_601_5);
		vc4_dlist_write(vc4_state, SCALER_CSC2_ITR_R_601_5);
	}
965

966 967
	vc4_state->lbm_offset = 0;

968 969 970 971
	if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
	    vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
	    vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
	    vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
972 973 974
		/* Reserve a slot for the LBM Base Address. The real value will
		 * be set when calling vc4_plane_allocate_lbm().
		 */
975
		if (vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
976 977
		    vc4_state->y_scaling[1] != VC4_SCALING_NONE)
			vc4_state->lbm_offset = vc4_state->dlist_count++;
978

979 980 981 982 983 984 985 986
		if (num_planes > 1) {
			/* Emit Cb/Cr as channel 0 and Y as channel
			 * 1. This matches how we set up scl0/scl1
			 * above.
			 */
			vc4_write_scaling_parameters(state, 1);
		}
		vc4_write_scaling_parameters(state, 0);
987 988 989 990

		/* If any PPF setup was done, then all the kernel
		 * pointers get uploaded.
		 */
991 992 993 994
		if (vc4_state->x_scaling[0] == VC4_SCALING_PPF ||
		    vc4_state->y_scaling[0] == VC4_SCALING_PPF ||
		    vc4_state->x_scaling[1] == VC4_SCALING_PPF ||
		    vc4_state->y_scaling[1] == VC4_SCALING_PPF) {
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
			u32 kernel = VC4_SET_FIELD(vc4->hvs->mitchell_netravali_filter.start,
						   SCALER_PPF_KERNEL_OFFSET);

			/* HPPF plane 0 */
			vc4_dlist_write(vc4_state, kernel);
			/* VPPF plane 0 */
			vc4_dlist_write(vc4_state, kernel);
			/* HPPF plane 1 */
			vc4_dlist_write(vc4_state, kernel);
			/* VPPF plane 1 */
			vc4_dlist_write(vc4_state, kernel);
		}
	}

1009 1010 1011
	vc4_state->dlist[ctl0_offset] |=
		VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE);

1012 1013 1014 1015 1016
	/* crtc_* are already clipped coordinates. */
	covers_screen = vc4_state->crtc_x == 0 && vc4_state->crtc_y == 0 &&
			vc4_state->crtc_w == state->crtc->mode.hdisplay &&
			vc4_state->crtc_h == state->crtc->mode.vdisplay;
	/* Background fill might be necessary when the plane has per-pixel
1017 1018
	 * alpha content or a non-opaque plane alpha and could blend from the
	 * background or does not cover the entire screen.
1019
	 */
1020 1021
	vc4_state->needs_bg_fill = fb->format->has_alpha || !covers_screen ||
				   state->alpha != DRM_BLEND_ALPHA_OPAQUE;
1022

1023 1024 1025 1026 1027 1028 1029
	/* Flag the dlist as initialized to avoid checking it twice in case
	 * the async update check already called vc4_plane_mode_set() and
	 * decided to fallback to sync update because async update was not
	 * possible.
	 */
	vc4_state->dlist_initialized = 1;

1030 1031
	vc4_plane_calc_load(state);

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
	return 0;
}

/* If a modeset involves changing the setup of a plane, the atomic
 * infrastructure will call this to validate a proposed plane setup.
 * However, if a plane isn't getting updated, this (and the
 * corresponding vc4_plane_atomic_update) won't get called.  Thus, we
 * compute the dlist here and have all active plane dlists get updated
 * in the CRTC's flush.
 */
static int vc4_plane_atomic_check(struct drm_plane *plane,
				  struct drm_plane_state *state)
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
1046
	int ret;
1047 1048 1049

	vc4_state->dlist_count = 0;

1050
	if (!plane_enabled(state))
1051
		return 0;
1052 1053 1054 1055 1056 1057

	ret = vc4_plane_mode_set(plane, state);
	if (ret)
		return ret;

	return vc4_plane_allocate_lbm(state);
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
}

static void vc4_plane_atomic_update(struct drm_plane *plane,
				    struct drm_plane_state *old_state)
{
	/* No contents here.  Since we don't know where in the CRTC's
	 * dlist we should be stored, our dlist is uploaded to the
	 * hardware with vc4_plane_write_dlist() at CRTC atomic_flush
	 * time.
	 */
}

u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist)
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
	int i;

1075 1076
	vc4_state->hw_dlist = dlist;

1077 1078 1079 1080 1081 1082 1083
	/* Can't memcpy_toio() because it needs to be 32-bit writes. */
	for (i = 0; i < vc4_state->dlist_count; i++)
		writel(vc4_state->dlist[i], &dlist[i]);

	return vc4_state->dlist_count;
}

1084
u32 vc4_plane_dlist_size(const struct drm_plane_state *state)
1085
{
1086 1087
	const struct vc4_plane_state *vc4_state =
		container_of(state, typeof(*vc4_state), base);
1088 1089 1090 1091

	return vc4_state->dlist_count;
}

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
/* Updates the plane to immediately (well, once the FIFO needs
 * refilling) scan out from at a new framebuffer.
 */
void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb)
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
	struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
	uint32_t addr;

	/* We're skipping the address adjustment for negative origin,
	 * because this is only called on the primary plane.
	 */
	WARN_ON_ONCE(plane->state->crtc_x < 0 || plane->state->crtc_y < 0);
	addr = bo->paddr + fb->offsets[0];

	/* Write the new address into the hardware immediately.  The
	 * scanout will start from this address as soon as the FIFO
	 * needs to refill with pixels.
	 */
1111
	writel(addr, &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
1112 1113 1114 1115 1116

	/* Also update the CPU-side dlist copy, so that any later
	 * atomic updates that don't do a new modeset on our plane
	 * also use our updated address.
	 */
1117
	vc4_state->dlist[vc4_state->ptr0_offset] = addr;
1118 1119
}

1120 1121 1122
static void vc4_plane_atomic_async_update(struct drm_plane *plane,
					  struct drm_plane_state *state)
{
1123
	struct vc4_plane_state *vc4_state, *new_vc4_state;
1124

1125
	swap(plane->state->fb, state->fb);
1126 1127
	plane->state->crtc_x = state->crtc_x;
	plane->state->crtc_y = state->crtc_y;
1128 1129
	plane->state->crtc_w = state->crtc_w;
	plane->state->crtc_h = state->crtc_h;
1130 1131
	plane->state->src_x = state->src_x;
	plane->state->src_y = state->src_y;
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
	plane->state->src_w = state->src_w;
	plane->state->src_h = state->src_h;
	plane->state->src_h = state->src_h;
	plane->state->alpha = state->alpha;
	plane->state->pixel_blend_mode = state->pixel_blend_mode;
	plane->state->rotation = state->rotation;
	plane->state->zpos = state->zpos;
	plane->state->normalized_zpos = state->normalized_zpos;
	plane->state->color_encoding = state->color_encoding;
	plane->state->color_range = state->color_range;
	plane->state->src = state->src;
	plane->state->dst = state->dst;
	plane->state->visible = state->visible;
1145 1146 1147 1148

	new_vc4_state = to_vc4_plane_state(state);
	vc4_state = to_vc4_plane_state(plane->state);

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
	vc4_state->crtc_x = new_vc4_state->crtc_x;
	vc4_state->crtc_y = new_vc4_state->crtc_y;
	vc4_state->crtc_h = new_vc4_state->crtc_h;
	vc4_state->crtc_w = new_vc4_state->crtc_w;
	vc4_state->src_x = new_vc4_state->src_x;
	vc4_state->src_y = new_vc4_state->src_y;
	memcpy(vc4_state->src_w, new_vc4_state->src_w,
	       sizeof(vc4_state->src_w));
	memcpy(vc4_state->src_h, new_vc4_state->src_h,
	       sizeof(vc4_state->src_h));
	memcpy(vc4_state->x_scaling, new_vc4_state->x_scaling,
	       sizeof(vc4_state->x_scaling));
	memcpy(vc4_state->y_scaling, new_vc4_state->y_scaling,
	       sizeof(vc4_state->y_scaling));
	vc4_state->is_unity = new_vc4_state->is_unity;
	vc4_state->is_yuv = new_vc4_state->is_yuv;
	memcpy(vc4_state->offsets, new_vc4_state->offsets,
	       sizeof(vc4_state->offsets));
	vc4_state->needs_bg_fill = new_vc4_state->needs_bg_fill;

1169 1170 1171 1172 1173 1174 1175
	/* Update the current vc4_state pos0, pos2 and ptr0 dlist entries. */
	vc4_state->dlist[vc4_state->pos0_offset] =
		new_vc4_state->dlist[vc4_state->pos0_offset];
	vc4_state->dlist[vc4_state->pos2_offset] =
		new_vc4_state->dlist[vc4_state->pos2_offset];
	vc4_state->dlist[vc4_state->ptr0_offset] =
		new_vc4_state->dlist[vc4_state->ptr0_offset];
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191

	/* Note that we can't just call vc4_plane_write_dlist()
	 * because that would smash the context data that the HVS is
	 * currently using.
	 */
	writel(vc4_state->dlist[vc4_state->pos0_offset],
	       &vc4_state->hw_dlist[vc4_state->pos0_offset]);
	writel(vc4_state->dlist[vc4_state->pos2_offset],
	       &vc4_state->hw_dlist[vc4_state->pos2_offset]);
	writel(vc4_state->dlist[vc4_state->ptr0_offset],
	       &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
}

static int vc4_plane_atomic_async_check(struct drm_plane *plane,
					struct drm_plane_state *state)
{
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	struct vc4_plane_state *old_vc4_state, *new_vc4_state;
	int ret;
	u32 i;

	ret = vc4_plane_mode_set(plane, state);
	if (ret)
		return ret;

	old_vc4_state = to_vc4_plane_state(plane->state);
	new_vc4_state = to_vc4_plane_state(state);
	if (old_vc4_state->dlist_count != new_vc4_state->dlist_count ||
	    old_vc4_state->pos0_offset != new_vc4_state->pos0_offset ||
	    old_vc4_state->pos2_offset != new_vc4_state->pos2_offset ||
	    old_vc4_state->ptr0_offset != new_vc4_state->ptr0_offset ||
	    vc4_lbm_size(plane->state) != vc4_lbm_size(state))
1207 1208
		return -EINVAL;

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
	/* Only pos0, pos2 and ptr0 DWORDS can be updated in an async update
	 * if anything else has changed, fallback to a sync update.
	 */
	for (i = 0; i < new_vc4_state->dlist_count; i++) {
		if (i == new_vc4_state->pos0_offset ||
		    i == new_vc4_state->pos2_offset ||
		    i == new_vc4_state->ptr0_offset ||
		    (new_vc4_state->lbm_offset &&
		     i == new_vc4_state->lbm_offset))
			continue;

		if (new_vc4_state->dlist[i] != old_vc4_state->dlist[i])
			return -EINVAL;
	}

1224 1225 1226
	return 0;
}

1227 1228 1229 1230
static int vc4_prepare_fb(struct drm_plane *plane,
			  struct drm_plane_state *state)
{
	struct vc4_bo *bo;
1231
	int ret;
1232

1233
	if (!state->fb)
1234 1235 1236
		return 0;

	bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
1237

1238
	drm_gem_fb_prepare_fb(plane, state);
1239 1240 1241 1242

	if (plane->state->fb == state->fb)
		return 0;

1243 1244 1245 1246
	ret = vc4_bo_inc_usecnt(bo);
	if (ret)
		return ret;

1247 1248 1249
	return 0;
}

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
static void vc4_cleanup_fb(struct drm_plane *plane,
			   struct drm_plane_state *state)
{
	struct vc4_bo *bo;

	if (plane->state->fb == state->fb || !state->fb)
		return;

	bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
	vc4_bo_dec_usecnt(bo);
}

1262 1263 1264
static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = {
	.atomic_check = vc4_plane_atomic_check,
	.atomic_update = vc4_plane_atomic_update,
1265
	.prepare_fb = vc4_prepare_fb,
1266
	.cleanup_fb = vc4_cleanup_fb,
1267 1268
	.atomic_async_check = vc4_plane_atomic_async_check,
	.atomic_async_update = vc4_plane_atomic_async_update,
1269 1270 1271 1272 1273 1274 1275
};

static void vc4_plane_destroy(struct drm_plane *plane)
{
	drm_plane_cleanup(plane);
}

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
static bool vc4_format_mod_supported(struct drm_plane *plane,
				     uint32_t format,
				     uint64_t modifier)
{
	/* Support T_TILING for RGB formats only. */
	switch (format) {
	case DRM_FORMAT_XRGB8888:
	case DRM_FORMAT_ARGB8888:
	case DRM_FORMAT_ABGR8888:
	case DRM_FORMAT_XBGR8888:
	case DRM_FORMAT_RGB565:
	case DRM_FORMAT_BGR565:
	case DRM_FORMAT_ARGB1555:
	case DRM_FORMAT_XRGB1555:
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
		switch (fourcc_mod_broadcom_mod(modifier)) {
		case DRM_FORMAT_MOD_LINEAR:
		case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED:
			return true;
		default:
			return false;
		}
	case DRM_FORMAT_NV12:
	case DRM_FORMAT_NV21:
		switch (fourcc_mod_broadcom_mod(modifier)) {
		case DRM_FORMAT_MOD_LINEAR:
		case DRM_FORMAT_MOD_BROADCOM_SAND64:
		case DRM_FORMAT_MOD_BROADCOM_SAND128:
		case DRM_FORMAT_MOD_BROADCOM_SAND256:
			return true;
		default:
			return false;
		}
1308 1309 1310 1311
	case DRM_FORMAT_RGBX1010102:
	case DRM_FORMAT_BGRX1010102:
	case DRM_FORMAT_RGBA1010102:
	case DRM_FORMAT_BGRA1010102:
1312 1313 1314 1315 1316
	case DRM_FORMAT_YUV422:
	case DRM_FORMAT_YVU422:
	case DRM_FORMAT_YUV420:
	case DRM_FORMAT_YVU420:
	case DRM_FORMAT_NV16:
1317
	case DRM_FORMAT_NV61:
1318 1319 1320 1321 1322
	default:
		return (modifier == DRM_FORMAT_MOD_LINEAR);
	}
}

1323
static const struct drm_plane_funcs vc4_plane_funcs = {
1324
	.update_plane = drm_atomic_helper_update_plane,
1325 1326 1327 1328 1329 1330
	.disable_plane = drm_atomic_helper_disable_plane,
	.destroy = vc4_plane_destroy,
	.set_property = NULL,
	.reset = vc4_plane_reset,
	.atomic_duplicate_state = vc4_plane_duplicate_state,
	.atomic_destroy_state = vc4_plane_destroy_state,
1331
	.format_mod_supported = vc4_format_mod_supported,
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
};

struct drm_plane *vc4_plane_init(struct drm_device *dev,
				 enum drm_plane_type type)
{
	struct drm_plane *plane = NULL;
	struct vc4_plane *vc4_plane;
	u32 formats[ARRAY_SIZE(hvs_formats)];
	int ret = 0;
	unsigned i;
1342 1343
	static const uint64_t modifiers[] = {
		DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED,
1344 1345 1346
		DRM_FORMAT_MOD_BROADCOM_SAND128,
		DRM_FORMAT_MOD_BROADCOM_SAND64,
		DRM_FORMAT_MOD_BROADCOM_SAND256,
1347 1348 1349
		DRM_FORMAT_MOD_LINEAR,
		DRM_FORMAT_MOD_INVALID
	};
1350 1351 1352

	vc4_plane = devm_kzalloc(dev->dev, sizeof(*vc4_plane),
				 GFP_KERNEL);
1353 1354
	if (!vc4_plane)
		return ERR_PTR(-ENOMEM);
1355

1356 1357 1358
	for (i = 0; i < ARRAY_SIZE(hvs_formats); i++)
		formats[i] = hvs_formats[i].drm;

1359
	plane = &vc4_plane->base;
1360
	ret = drm_universal_plane_init(dev, plane, 0,
1361
				       &vc4_plane_funcs,
1362
				       formats, ARRAY_SIZE(formats),
1363
				       modifiers, type, NULL);
1364 1365
	if (ret)
		return ERR_PTR(ret);
1366 1367 1368

	drm_plane_helper_add(plane, &vc4_plane_helper_funcs);

1369
	drm_plane_create_alpha_property(plane);
1370 1371 1372 1373 1374
	drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
					   DRM_MODE_ROTATE_0 |
					   DRM_MODE_ROTATE_180 |
					   DRM_MODE_REFLECT_X |
					   DRM_MODE_REFLECT_Y);
1375

1376 1377
	return plane;
}
1378

1379
int vc4_plane_create_additional_planes(struct drm_device *drm)
1380 1381
{
	struct drm_plane *cursor_plane;
1382
	struct drm_crtc *crtc;
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
	unsigned int i;

	/* Set up some arbitrary number of planes.  We're not limited
	 * by a set number of physical registers, just the space in
	 * the HVS (16k) and how small an plane can be (28 bytes).
	 * However, each plane we set up takes up some memory, and
	 * increases the cost of looping over planes, which atomic
	 * modesetting does quite a bit.  As a result, we pick a
	 * modest number of planes to expose, that should hopefully
	 * still cover any sane usecase.
	 */
1394
	for (i = 0; i < 16; i++) {
1395 1396 1397 1398 1399 1400
		struct drm_plane *plane =
			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);

		if (IS_ERR(plane))
			continue;

1401 1402
		plane->possible_crtcs =
			GENMASK(drm->mode_config.num_crtc - 1, 0);
1403 1404
	}

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
	drm_for_each_crtc(crtc, drm) {
		/* Set up the legacy cursor after overlay initialization,
		 * since we overlay planes on the CRTC in the order they were
		 * initialized.
		 */
		cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
		if (!IS_ERR(cursor_plane)) {
			cursor_plane->possible_crtcs = drm_crtc_mask(crtc);
			crtc->cursor = cursor_plane;
		}
1415 1416 1417 1418
	}

	return 0;
}