vc4_plane.c 30.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * Copyright (C) 2015 Broadcom
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

/**
 * DOC: VC4 plane module
 *
 * Each DRM plane is a layer of pixels being scanned out by the HVS.
 *
 * At atomic modeset check time, we compute the HVS display element
 * state that would be necessary for displaying the plane (giving us a
 * chance to figure out if a plane configuration is invalid), then at
 * atomic flush time the CRTC will ask us to write our element state
 * into the region of the HVS that it has allocated for us.
 */

21 22 23 24
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_fb_cma_helper.h>
#include <drm/drm_plane_helper.h>
D
Daniel Vetter 已提交
25
#include <drm/drm_atomic_uapi.h>
26

27
#include "uapi/drm/vc4_drm.h"
28 29 30 31 32 33 34 35 36 37
#include "vc4_drv.h"
#include "vc4_regs.h"

static const struct hvs_format {
	u32 drm; /* DRM_FORMAT_* */
	u32 hvs; /* HVS_FORMAT_* */
	u32 pixel_order;
} hvs_formats[] = {
	{
		.drm = DRM_FORMAT_XRGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
38
		.pixel_order = HVS_PIXEL_ORDER_ABGR,
39 40 41
	},
	{
		.drm = DRM_FORMAT_ARGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
42
		.pixel_order = HVS_PIXEL_ORDER_ABGR,
43
	},
44 45
	{
		.drm = DRM_FORMAT_ABGR8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
46
		.pixel_order = HVS_PIXEL_ORDER_ARGB,
47 48 49
	},
	{
		.drm = DRM_FORMAT_XBGR8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
50
		.pixel_order = HVS_PIXEL_ORDER_ARGB,
51
	},
52 53
	{
		.drm = DRM_FORMAT_RGB565, .hvs = HVS_PIXEL_FORMAT_RGB565,
54
		.pixel_order = HVS_PIXEL_ORDER_XRGB,
55 56 57
	},
	{
		.drm = DRM_FORMAT_BGR565, .hvs = HVS_PIXEL_FORMAT_RGB565,
58
		.pixel_order = HVS_PIXEL_ORDER_XBGR,
59 60 61
	},
	{
		.drm = DRM_FORMAT_ARGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551,
62
		.pixel_order = HVS_PIXEL_ORDER_ABGR,
63 64 65
	},
	{
		.drm = DRM_FORMAT_XRGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551,
66
		.pixel_order = HVS_PIXEL_ORDER_ABGR,
67
	},
68 69
	{
		.drm = DRM_FORMAT_RGB888, .hvs = HVS_PIXEL_FORMAT_RGB888,
70
		.pixel_order = HVS_PIXEL_ORDER_XRGB,
71 72 73
	},
	{
		.drm = DRM_FORMAT_BGR888, .hvs = HVS_PIXEL_FORMAT_RGB888,
74
		.pixel_order = HVS_PIXEL_ORDER_XBGR,
75
	},
76 77 78
	{
		.drm = DRM_FORMAT_YUV422,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
79
		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
80 81 82 83
	},
	{
		.drm = DRM_FORMAT_YVU422,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
84
		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
85 86 87 88
	},
	{
		.drm = DRM_FORMAT_YUV420,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
89
		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
90 91 92 93
	},
	{
		.drm = DRM_FORMAT_YVU420,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
94
		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
95 96 97 98
	},
	{
		.drm = DRM_FORMAT_NV12,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
99
		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
100
	},
101 102 103 104 105
	{
		.drm = DRM_FORMAT_NV21,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
	},
106 107 108
	{
		.drm = DRM_FORMAT_NV16,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
109
		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
110
	},
111 112 113 114 115
	{
		.drm = DRM_FORMAT_NV61,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
	},
116 117 118 119 120 121 122 123 124 125 126 127 128 129
};

static const struct hvs_format *vc4_get_hvs_format(u32 drm_format)
{
	unsigned i;

	for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
		if (hvs_formats[i].drm == drm_format)
			return &hvs_formats[i];
	}

	return NULL;
}

130 131
static enum vc4_scaling_mode vc4_get_scaling_mode(u32 src, u32 dst)
{
132 133 134
	if (dst == src)
		return VC4_SCALING_NONE;
	if (3 * dst >= 2 * src)
135 136
		return VC4_SCALING_PPF;
	else
137
		return VC4_SCALING_TPZ;
138 139
}

140 141 142 143 144
static bool plane_enabled(struct drm_plane_state *state)
{
	return state->fb && state->crtc;
}

145
static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane)
146 147 148 149 150 151 152 153 154 155
{
	struct vc4_plane_state *vc4_state;

	if (WARN_ON(!plane->state))
		return NULL;

	vc4_state = kmemdup(plane->state, sizeof(*vc4_state), GFP_KERNEL);
	if (!vc4_state)
		return NULL;

156 157
	memset(&vc4_state->lbm, 0, sizeof(vc4_state->lbm));

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
	__drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base);

	if (vc4_state->dlist) {
		vc4_state->dlist = kmemdup(vc4_state->dlist,
					   vc4_state->dlist_count * 4,
					   GFP_KERNEL);
		if (!vc4_state->dlist) {
			kfree(vc4_state);
			return NULL;
		}
		vc4_state->dlist_size = vc4_state->dlist_count;
	}

	return &vc4_state->base;
}

174 175
static void vc4_plane_destroy_state(struct drm_plane *plane,
				    struct drm_plane_state *state)
176
{
177
	struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
178 179
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);

180 181 182 183 184 185 186 187
	if (vc4_state->lbm.allocated) {
		unsigned long irqflags;

		spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
		drm_mm_remove_node(&vc4_state->lbm);
		spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
	}

188
	kfree(vc4_state->dlist);
189
	__drm_atomic_helper_plane_destroy_state(&vc4_state->base);
190 191 192 193
	kfree(state);
}

/* Called during init to allocate the plane's atomic state. */
194
static void vc4_plane_reset(struct drm_plane *plane)
195 196 197 198 199 200 201 202 203
{
	struct vc4_plane_state *vc4_state;

	WARN_ON(plane->state);

	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
	if (!vc4_state)
		return;

204
	__drm_atomic_helper_plane_reset(plane, &vc4_state->base);
205 206 207 208 209 210
}

static void vc4_dlist_write(struct vc4_plane_state *vc4_state, u32 val)
{
	if (vc4_state->dlist_count == vc4_state->dlist_size) {
		u32 new_size = max(4u, vc4_state->dlist_count * 2);
211
		u32 *new_dlist = kmalloc_array(new_size, 4, GFP_KERNEL);
212 213 214 215 216 217 218 219 220 221 222 223 224

		if (!new_dlist)
			return;
		memcpy(new_dlist, vc4_state->dlist, vc4_state->dlist_count * 4);

		kfree(vc4_state->dlist);
		vc4_state->dlist = new_dlist;
		vc4_state->dlist_size = new_size;
	}

	vc4_state->dlist[vc4_state->dlist_count++] = val;
}

225 226 227 228 229
/* Returns the scl0/scl1 field based on whether the dimensions need to
 * be up/down/non-scaled.
 *
 * This is a replication of a table from the spec.
 */
230
static u32 vc4_get_scl_field(struct drm_plane_state *state, int plane)
231 232 233
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);

234
	switch (vc4_state->x_scaling[plane] << 2 | vc4_state->y_scaling[plane]) {
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
	case VC4_SCALING_PPF << 2 | VC4_SCALING_PPF:
		return SCALER_CTL0_SCL_H_PPF_V_PPF;
	case VC4_SCALING_TPZ << 2 | VC4_SCALING_PPF:
		return SCALER_CTL0_SCL_H_TPZ_V_PPF;
	case VC4_SCALING_PPF << 2 | VC4_SCALING_TPZ:
		return SCALER_CTL0_SCL_H_PPF_V_TPZ;
	case VC4_SCALING_TPZ << 2 | VC4_SCALING_TPZ:
		return SCALER_CTL0_SCL_H_TPZ_V_TPZ;
	case VC4_SCALING_PPF << 2 | VC4_SCALING_NONE:
		return SCALER_CTL0_SCL_H_PPF_V_NONE;
	case VC4_SCALING_NONE << 2 | VC4_SCALING_PPF:
		return SCALER_CTL0_SCL_H_NONE_V_PPF;
	case VC4_SCALING_NONE << 2 | VC4_SCALING_TPZ:
		return SCALER_CTL0_SCL_H_NONE_V_TPZ;
	case VC4_SCALING_TPZ << 2 | VC4_SCALING_NONE:
		return SCALER_CTL0_SCL_H_TPZ_V_NONE;
	default:
	case VC4_SCALING_NONE << 2 | VC4_SCALING_NONE:
		/* The unity case is independently handled by
		 * SCALER_CTL0_UNITY.
		 */
		return 0;
	}
}

260
static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state *state)
261
{
262
	struct drm_plane *plane = state->plane;
263 264
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
	struct drm_framebuffer *fb = state->fb;
265
	struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
266
	u32 subpixel_src_mask = (1 << 16) - 1;
V
Ville Syrjälä 已提交
267
	u32 format = fb->format->format;
268
	int num_planes = fb->format->num_planes;
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
	int min_scale = 1, max_scale = INT_MAX;
	struct drm_crtc_state *crtc_state;
	u32 h_subsample, v_subsample;
	int i, ret;

	crtc_state = drm_atomic_get_existing_crtc_state(state->state,
							state->crtc);
	if (!crtc_state) {
		DRM_DEBUG_KMS("Invalid crtc state\n");
		return -EINVAL;
	}

	/* No configuring scaling on the cursor plane, since it gets
	 * non-vblank-synced updates, and scaling requires LBM changes which
	 * have to be vblank-synced.
	 */
	if (plane->type == DRM_PLANE_TYPE_CURSOR) {
		min_scale = DRM_PLANE_HELPER_NO_SCALING;
		max_scale = DRM_PLANE_HELPER_NO_SCALING;
	} else {
		min_scale = 1;
		max_scale = INT_MAX;
	}

	ret = drm_atomic_helper_check_plane_state(state, crtc_state,
						  min_scale, max_scale,
						  true, true);
	if (ret)
		return ret;

	h_subsample = drm_format_horz_chroma_subsampling(format);
	v_subsample = drm_format_vert_chroma_subsampling(format);
301

302 303
	for (i = 0; i < num_planes; i++)
		vc4_state->offsets[i] = bo->paddr + fb->offsets[i];
304

305
	/* We don't support subpixel source positioning for scaling. */
306 307 308 309
	if ((state->src.x1 & subpixel_src_mask) ||
	    (state->src.x2 & subpixel_src_mask) ||
	    (state->src.y1 & subpixel_src_mask) ||
	    (state->src.y2 & subpixel_src_mask)) {
310 311 312
		return -EINVAL;
	}

313 314 315 316
	vc4_state->src_x = state->src.x1 >> 16;
	vc4_state->src_y = state->src.y1 >> 16;
	vc4_state->src_w[0] = (state->src.x2 - state->src.x1) >> 16;
	vc4_state->src_h[0] = (state->src.y2 - state->src.y1) >> 16;
317

318 319 320 321
	vc4_state->crtc_x = state->dst.x1;
	vc4_state->crtc_y = state->dst.y1;
	vc4_state->crtc_w = state->dst.x2 - state->dst.x1;
	vc4_state->crtc_h = state->dst.y2 - state->dst.y1;
322

323 324 325 326 327
	vc4_state->x_scaling[0] = vc4_get_scaling_mode(vc4_state->src_w[0],
						       vc4_state->crtc_w);
	vc4_state->y_scaling[0] = vc4_get_scaling_mode(vc4_state->src_h[0],
						       vc4_state->crtc_h);

328 329 330
	vc4_state->is_unity = (vc4_state->x_scaling[0] == VC4_SCALING_NONE &&
			       vc4_state->y_scaling[0] == VC4_SCALING_NONE);

331 332 333 334 335 336 337 338 339 340 341 342 343
	if (num_planes > 1) {
		vc4_state->is_yuv = true;

		vc4_state->src_w[1] = vc4_state->src_w[0] / h_subsample;
		vc4_state->src_h[1] = vc4_state->src_h[0] / v_subsample;

		vc4_state->x_scaling[1] =
			vc4_get_scaling_mode(vc4_state->src_w[1],
					     vc4_state->crtc_w);
		vc4_state->y_scaling[1] =
			vc4_get_scaling_mode(vc4_state->src_h[1],
					     vc4_state->crtc_h);

344 345 346 347 348
		/* YUV conversion requires that horizontal scaling be enabled
		 * on the UV plane even if vc4_get_scaling_mode() returned
		 * VC4_SCALING_NONE (which can happen when the down-scaling
		 * ratio is 0.5). Let's force it to VC4_SCALING_PPF in this
		 * case.
349
		 */
350 351
		if (vc4_state->x_scaling[1] == VC4_SCALING_NONE)
			vc4_state->x_scaling[1] = VC4_SCALING_PPF;
352
	} else {
353
		vc4_state->is_yuv = false;
354 355
		vc4_state->x_scaling[1] = VC4_SCALING_NONE;
		vc4_state->y_scaling[1] = VC4_SCALING_NONE;
356 357
	}

358 359 360
	return 0;
}

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
static void vc4_write_tpz(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
{
	u32 scale, recip;

	scale = (1 << 16) * src / dst;

	/* The specs note that while the reciprocal would be defined
	 * as (1<<32)/scale, ~0 is close enough.
	 */
	recip = ~0 / scale;

	vc4_dlist_write(vc4_state,
			VC4_SET_FIELD(scale, SCALER_TPZ0_SCALE) |
			VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE));
	vc4_dlist_write(vc4_state,
			VC4_SET_FIELD(recip, SCALER_TPZ1_RECIP));
}

static void vc4_write_ppf(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
{
	u32 scale = (1 << 16) * src / dst;

	vc4_dlist_write(vc4_state,
			SCALER_PPF_AGC |
			VC4_SET_FIELD(scale, SCALER_PPF_SCALE) |
			VC4_SET_FIELD(0, SCALER_PPF_IPHASE));
}

static u32 vc4_lbm_size(struct drm_plane_state *state)
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
	/* This is the worst case number.  One of the two sizes will
	 * be used depending on the scaling configuration.
	 */
395
	u32 pix_per_line = max(vc4_state->src_w[0], (u32)vc4_state->crtc_w);
396 397
	u32 lbm;

398 399 400 401 402
	/* LBM is not needed when there's no vertical scaling. */
	if (vc4_state->y_scaling[0] == VC4_SCALING_NONE &&
	    vc4_state->y_scaling[1] == VC4_SCALING_NONE)
		return 0;

403
	if (!vc4_state->is_yuv) {
404
		if (vc4_state->y_scaling[0] == VC4_SCALING_TPZ)
405 406 407 408 409 410 411 412 413 414
			lbm = pix_per_line * 8;
		else {
			/* In special cases, this multiplier might be 12. */
			lbm = pix_per_line * 16;
		}
	} else {
		/* There are cases for this going down to a multiplier
		 * of 2, but according to the firmware source, the
		 * table in the docs is somewhat wrong.
		 */
415 416 417 418 419 420 421 422
		lbm = pix_per_line * 16;
	}

	lbm = roundup(lbm, 32);

	return lbm;
}

423 424
static void vc4_write_scaling_parameters(struct drm_plane_state *state,
					 int channel)
425 426 427 428
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);

	/* Ch0 H-PPF Word 0: Scaling Parameters */
429
	if (vc4_state->x_scaling[channel] == VC4_SCALING_PPF) {
430
		vc4_write_ppf(vc4_state,
431
			      vc4_state->src_w[channel], vc4_state->crtc_w);
432 433 434
	}

	/* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */
435
	if (vc4_state->y_scaling[channel] == VC4_SCALING_PPF) {
436
		vc4_write_ppf(vc4_state,
437
			      vc4_state->src_h[channel], vc4_state->crtc_h);
438 439 440 441
		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
	}

	/* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */
442
	if (vc4_state->x_scaling[channel] == VC4_SCALING_TPZ) {
443
		vc4_write_tpz(vc4_state,
444
			      vc4_state->src_w[channel], vc4_state->crtc_w);
445 446 447
	}

	/* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */
448
	if (vc4_state->y_scaling[channel] == VC4_SCALING_TPZ) {
449
		vc4_write_tpz(vc4_state,
450
			      vc4_state->src_h[channel], vc4_state->crtc_h);
451 452 453
		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
	}
}
454 455 456 457 458 459 460

/* Writes out a full display list for an active plane to the plane's
 * private dlist state.
 */
static int vc4_plane_mode_set(struct drm_plane *plane,
			      struct drm_plane_state *state)
{
461
	struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
462 463 464
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
	struct drm_framebuffer *fb = state->fb;
	u32 ctl0_offset = vc4_state->dlist_count;
V
Ville Syrjälä 已提交
465
	const struct hvs_format *format = vc4_get_hvs_format(fb->format->format);
466
	u64 base_format_mod = fourcc_mod_broadcom_mod(fb->modifier);
467
	int num_planes = drm_format_num_planes(format->drm);
468
	u32 h_subsample, v_subsample;
469
	bool mix_plane_alpha;
470
	bool covers_screen;
471 472
	u32 scl0, scl1, pitch0;
	u32 lbm_size, tiling;
473
	unsigned long irqflags;
474
	u32 hvs_format = format->hvs;
475
	int ret, i;
476 477 478 479 480

	ret = vc4_plane_setup_clipping_and_scaling(state);
	if (ret)
		return ret;

481 482 483 484 485 486 487
	/* Allocate the LBM memory that the HVS will use for temporary
	 * storage due to our scaling/format conversion.
	 */
	lbm_size = vc4_lbm_size(state);
	if (lbm_size) {
		if (!vc4_state->lbm.allocated) {
			spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
488 489 490
			ret = drm_mm_insert_node_generic(&vc4->hvs->lbm_mm,
							 &vc4_state->lbm,
							 lbm_size, 32, 0, 0);
491 492 493 494 495 496 497 498 499
			spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
		} else {
			WARN_ON_ONCE(lbm_size != vc4_state->lbm.size);
		}
	}

	if (ret)
		return ret;

500 501 502 503 504 505 506
	/* SCL1 is used for Cb/Cr scaling of planar formats.  For RGB
	 * and 4:4:4, scl1 should be set to scl0 so both channels of
	 * the scaler do the same thing.  For YUV, the Y plane needs
	 * to be put in channel 1 and Cb/Cr in channel 0, so we swap
	 * the scl fields here.
	 */
	if (num_planes == 1) {
507
		scl0 = vc4_get_scl_field(state, 0);
508 509 510 511 512
		scl1 = scl0;
	} else {
		scl0 = vc4_get_scl_field(state, 1);
		scl1 = vc4_get_scl_field(state, 0);
	}
513

514 515 516
	h_subsample = drm_format_horz_chroma_subsampling(format->drm);
	v_subsample = drm_format_vert_chroma_subsampling(format->drm);

517
	switch (base_format_mod) {
518 519 520
	case DRM_FORMAT_MOD_LINEAR:
		tiling = SCALER_CTL0_TILING_LINEAR;
		pitch0 = VC4_SET_FIELD(fb->pitches[0], SCALER_SRC_PITCH);
521 522 523 524 525 526 527 528 529 530 531 532

		/* Adjust the base pointer to the first pixel to be scanned
		 * out.
		 */
		for (i = 0; i < num_planes; i++) {
			vc4_state->offsets[i] += vc4_state->src_y /
						 (i ? v_subsample : 1) *
						 fb->pitches[i];
			vc4_state->offsets[i] += vc4_state->src_x /
						 (i ? h_subsample : 1) *
						 fb->format->cpp[i];
		}
533

534
		break;
535 536 537

	case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED: {
		u32 tile_size_shift = 12; /* T tiles are 4kb */
538 539
		/* Whole-tile offsets, mostly for setting the pitch. */
		u32 tile_w_shift = fb->format->cpp[0] == 2 ? 6 : 5;
540
		u32 tile_h_shift = 5; /* 16 and 32bpp are 32 pixels high */
541 542 543 544 545 546 547 548 549 550
		u32 tile_w_mask = (1 << tile_w_shift) - 1;
		/* The height mask on 32-bit-per-pixel tiles is 63, i.e. twice
		 * the height (in pixels) of a 4k tile.
		 */
		u32 tile_h_mask = (2 << tile_h_shift) - 1;
		/* For T-tiled, the FB pitch is "how many bytes from one row to
		 * the next, such that
		 *
		 *	pitch * tile_h == tile_size * tiles_per_row
		 */
551
		u32 tiles_w = fb->pitches[0] >> (tile_size_shift - tile_h_shift);
552 553 554 555 556 557 558 559 560 561 562 563
		u32 tiles_l = vc4_state->src_x >> tile_w_shift;
		u32 tiles_r = tiles_w - tiles_l;
		u32 tiles_t = vc4_state->src_y >> tile_h_shift;
		/* Intra-tile offsets, which modify the base address (the
		 * SCALER_PITCH0_TILE_Y_OFFSET tells HVS how to walk from that
		 * base address).
		 */
		u32 tile_y = (vc4_state->src_y >> 4) & 1;
		u32 subtile_y = (vc4_state->src_y >> 2) & 3;
		u32 utile_y = vc4_state->src_y & 3;
		u32 x_off = vc4_state->src_x & tile_w_mask;
		u32 y_off = vc4_state->src_y & tile_h_mask;
564

565
		tiling = SCALER_CTL0_TILING_256B_OR_T;
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
		pitch0 = (VC4_SET_FIELD(x_off, SCALER_PITCH0_SINK_PIX) |
			  VC4_SET_FIELD(y_off, SCALER_PITCH0_TILE_Y_OFFSET) |
			  VC4_SET_FIELD(tiles_l, SCALER_PITCH0_TILE_WIDTH_L) |
			  VC4_SET_FIELD(tiles_r, SCALER_PITCH0_TILE_WIDTH_R));
		vc4_state->offsets[0] += tiles_t * (tiles_w << tile_size_shift);
		vc4_state->offsets[0] += subtile_y << 8;
		vc4_state->offsets[0] += utile_y << 4;

		/* Rows of tiles alternate left-to-right and right-to-left. */
		if (tiles_t & 1) {
			pitch0 |= SCALER_PITCH0_TILE_INITIAL_LINE_DIR;
			vc4_state->offsets[0] += (tiles_w - tiles_l) <<
						 tile_size_shift;
			vc4_state->offsets[0] -= (1 + !tile_y) << 10;
		} else {
			vc4_state->offsets[0] += tiles_l << tile_size_shift;
			vc4_state->offsets[0] += tile_y << 10;
		}
584 585

		break;
586 587
	}

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
	case DRM_FORMAT_MOD_BROADCOM_SAND64:
	case DRM_FORMAT_MOD_BROADCOM_SAND128:
	case DRM_FORMAT_MOD_BROADCOM_SAND256: {
		uint32_t param = fourcc_mod_broadcom_param(fb->modifier);

		/* Column-based NV12 or RGBA.
		 */
		if (fb->format->num_planes > 1) {
			if (hvs_format != HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE) {
				DRM_DEBUG_KMS("SAND format only valid for NV12/21");
				return -EINVAL;
			}
			hvs_format = HVS_PIXEL_FORMAT_H264;
		} else {
			if (base_format_mod == DRM_FORMAT_MOD_BROADCOM_SAND256) {
				DRM_DEBUG_KMS("SAND256 format only valid for H.264");
				return -EINVAL;
			}
		}

		switch (base_format_mod) {
		case DRM_FORMAT_MOD_BROADCOM_SAND64:
			tiling = SCALER_CTL0_TILING_64B;
			break;
		case DRM_FORMAT_MOD_BROADCOM_SAND128:
			tiling = SCALER_CTL0_TILING_128B;
			break;
		case DRM_FORMAT_MOD_BROADCOM_SAND256:
			tiling = SCALER_CTL0_TILING_256B_OR_T;
			break;
		default:
			break;
		}

		if (param > SCALER_TILE_HEIGHT_MASK) {
			DRM_DEBUG_KMS("SAND height too large (%d)\n", param);
			return -EINVAL;
		}

		pitch0 = VC4_SET_FIELD(param, SCALER_TILE_HEIGHT);
		break;
	}

631 632 633 634 635 636
	default:
		DRM_DEBUG_KMS("Unsupported FB tiling flag 0x%16llx",
			      (long long)fb->modifier);
		return -EINVAL;
	}

637
	/* Control word */
638 639
	vc4_dlist_write(vc4_state,
			SCALER_CTL0_VALID |
640
			VC4_SET_FIELD(SCALER_CTL0_RGBA_EXPAND_ROUND, SCALER_CTL0_RGBA_EXPAND) |
641
			(format->pixel_order << SCALER_CTL0_ORDER_SHIFT) |
642
			(hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
643
			VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
644
			(vc4_state->is_unity ? SCALER_CTL0_UNITY : 0) |
645 646
			VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
			VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1));
647 648

	/* Position Word 0: Image Positions and Alpha Value */
649
	vc4_state->pos0_offset = vc4_state->dlist_count;
650
	vc4_dlist_write(vc4_state,
651
			VC4_SET_FIELD(state->alpha >> 8, SCALER_POS0_FIXED_ALPHA) |
652 653
			VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) |
			VC4_SET_FIELD(vc4_state->crtc_y, SCALER_POS0_START_Y));
654

655 656 657 658 659 660 661 662
	/* Position Word 1: Scaled Image Dimensions. */
	if (!vc4_state->is_unity) {
		vc4_dlist_write(vc4_state,
				VC4_SET_FIELD(vc4_state->crtc_w,
					      SCALER_POS1_SCL_WIDTH) |
				VC4_SET_FIELD(vc4_state->crtc_h,
					      SCALER_POS1_SCL_HEIGHT));
	}
663

664 665 666 667 668 669 670
	/* Don't waste cycles mixing with plane alpha if the set alpha
	 * is opaque or there is no per-pixel alpha information.
	 * In any case we use the alpha property value as the fixed alpha.
	 */
	mix_plane_alpha = state->alpha != DRM_BLEND_ALPHA_OPAQUE &&
			  fb->format->has_alpha;

671
	/* Position Word 2: Source Image Size, Alpha */
672
	vc4_state->pos2_offset = vc4_state->dlist_count;
673
	vc4_dlist_write(vc4_state,
674
			VC4_SET_FIELD(fb->format->has_alpha ?
675 676 677
				      SCALER_POS2_ALPHA_MODE_PIPELINE :
				      SCALER_POS2_ALPHA_MODE_FIXED,
				      SCALER_POS2_ALPHA_MODE) |
678
			(mix_plane_alpha ? SCALER_POS2_ALPHA_MIX : 0) |
679
			(fb->format->has_alpha ? SCALER_POS2_ALPHA_PREMULT : 0) |
680 681
			VC4_SET_FIELD(vc4_state->src_w[0], SCALER_POS2_WIDTH) |
			VC4_SET_FIELD(vc4_state->src_h[0], SCALER_POS2_HEIGHT));
682 683 684 685

	/* Position Word 3: Context.  Written by the HVS. */
	vc4_dlist_write(vc4_state, 0xc0c0c0c0);

686 687 688 689 690

	/* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers
	 *
	 * The pointers may be any byte address.
	 */
691
	vc4_state->ptr0_offset = vc4_state->dlist_count;
692 693
	for (i = 0; i < num_planes; i++)
		vc4_dlist_write(vc4_state, vc4_state->offsets[i]);
694

695 696 697
	/* Pointer Context Word 0/1/2: Written by the HVS */
	for (i = 0; i < num_planes; i++)
		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
698

699 700 701 702 703
	/* Pitch word 0 */
	vc4_dlist_write(vc4_state, pitch0);

	/* Pitch word 1/2 */
	for (i = 1; i < num_planes; i++) {
704 705 706 707 708 709 710
		if (hvs_format != HVS_PIXEL_FORMAT_H264) {
			vc4_dlist_write(vc4_state,
					VC4_SET_FIELD(fb->pitches[i],
						      SCALER_SRC_PITCH));
		} else {
			vc4_dlist_write(vc4_state, pitch0);
		}
711 712 713 714 715 716 717 718
	}

	/* Colorspace conversion words */
	if (vc4_state->is_yuv) {
		vc4_dlist_write(vc4_state, SCALER_CSC0_ITR_R_601_5);
		vc4_dlist_write(vc4_state, SCALER_CSC1_ITR_R_601_5);
		vc4_dlist_write(vc4_state, SCALER_CSC2_ITR_R_601_5);
	}
719

720 721 722 723
	if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
	    vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
	    vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
	    vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
724
		/* LBM Base Address. */
725 726
		if (vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
		    vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
727
			vc4_dlist_write(vc4_state, vc4_state->lbm.start);
728
		}
729

730 731 732 733 734 735 736 737
		if (num_planes > 1) {
			/* Emit Cb/Cr as channel 0 and Y as channel
			 * 1. This matches how we set up scl0/scl1
			 * above.
			 */
			vc4_write_scaling_parameters(state, 1);
		}
		vc4_write_scaling_parameters(state, 0);
738 739 740 741

		/* If any PPF setup was done, then all the kernel
		 * pointers get uploaded.
		 */
742 743 744 745
		if (vc4_state->x_scaling[0] == VC4_SCALING_PPF ||
		    vc4_state->y_scaling[0] == VC4_SCALING_PPF ||
		    vc4_state->x_scaling[1] == VC4_SCALING_PPF ||
		    vc4_state->y_scaling[1] == VC4_SCALING_PPF) {
746 747 748 749 750 751 752 753 754 755 756 757 758 759
			u32 kernel = VC4_SET_FIELD(vc4->hvs->mitchell_netravali_filter.start,
						   SCALER_PPF_KERNEL_OFFSET);

			/* HPPF plane 0 */
			vc4_dlist_write(vc4_state, kernel);
			/* VPPF plane 0 */
			vc4_dlist_write(vc4_state, kernel);
			/* HPPF plane 1 */
			vc4_dlist_write(vc4_state, kernel);
			/* VPPF plane 1 */
			vc4_dlist_write(vc4_state, kernel);
		}
	}

760 761 762
	vc4_state->dlist[ctl0_offset] |=
		VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE);

763 764 765 766 767
	/* crtc_* are already clipped coordinates. */
	covers_screen = vc4_state->crtc_x == 0 && vc4_state->crtc_y == 0 &&
			vc4_state->crtc_w == state->crtc->mode.hdisplay &&
			vc4_state->crtc_h == state->crtc->mode.vdisplay;
	/* Background fill might be necessary when the plane has per-pixel
768 769
	 * alpha content or a non-opaque plane alpha and could blend from the
	 * background or does not cover the entire screen.
770
	 */
771 772
	vc4_state->needs_bg_fill = fb->format->has_alpha || !covers_screen ||
				   state->alpha != DRM_BLEND_ALPHA_OPAQUE;
773

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
	return 0;
}

/* If a modeset involves changing the setup of a plane, the atomic
 * infrastructure will call this to validate a proposed plane setup.
 * However, if a plane isn't getting updated, this (and the
 * corresponding vc4_plane_atomic_update) won't get called.  Thus, we
 * compute the dlist here and have all active plane dlists get updated
 * in the CRTC's flush.
 */
static int vc4_plane_atomic_check(struct drm_plane *plane,
				  struct drm_plane_state *state)
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);

	vc4_state->dlist_count = 0;

	if (plane_enabled(state))
		return vc4_plane_mode_set(plane, state);
	else
		return 0;
}

static void vc4_plane_atomic_update(struct drm_plane *plane,
				    struct drm_plane_state *old_state)
{
	/* No contents here.  Since we don't know where in the CRTC's
	 * dlist we should be stored, our dlist is uploaded to the
	 * hardware with vc4_plane_write_dlist() at CRTC atomic_flush
	 * time.
	 */
}

u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist)
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
	int i;

812 813
	vc4_state->hw_dlist = dlist;

814 815 816 817 818 819 820
	/* Can't memcpy_toio() because it needs to be 32-bit writes. */
	for (i = 0; i < vc4_state->dlist_count; i++)
		writel(vc4_state->dlist[i], &dlist[i]);

	return vc4_state->dlist_count;
}

821
u32 vc4_plane_dlist_size(const struct drm_plane_state *state)
822
{
823 824
	const struct vc4_plane_state *vc4_state =
		container_of(state, typeof(*vc4_state), base);
825 826 827 828

	return vc4_state->dlist_count;
}

829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
/* Updates the plane to immediately (well, once the FIFO needs
 * refilling) scan out from at a new framebuffer.
 */
void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb)
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
	struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
	uint32_t addr;

	/* We're skipping the address adjustment for negative origin,
	 * because this is only called on the primary plane.
	 */
	WARN_ON_ONCE(plane->state->crtc_x < 0 || plane->state->crtc_y < 0);
	addr = bo->paddr + fb->offsets[0];

	/* Write the new address into the hardware immediately.  The
	 * scanout will start from this address as soon as the FIFO
	 * needs to refill with pixels.
	 */
848
	writel(addr, &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
849 850 851 852 853

	/* Also update the CPU-side dlist copy, so that any later
	 * atomic updates that don't do a new modeset on our plane
	 * also use our updated address.
	 */
854
	vc4_state->dlist[vc4_state->ptr0_offset] = addr;
855 856
}

857 858 859
static void vc4_plane_atomic_async_update(struct drm_plane *plane,
					  struct drm_plane_state *state)
{
860
	struct vc4_plane_state *vc4_state, *new_vc4_state;
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880

	if (plane->state->fb != state->fb) {
		vc4_plane_async_set_fb(plane, state->fb);
		drm_atomic_set_fb_for_plane(plane->state, state->fb);
	}

	/* Set the cursor's position on the screen.  This is the
	 * expected change from the drm_mode_cursor_universal()
	 * helper.
	 */
	plane->state->crtc_x = state->crtc_x;
	plane->state->crtc_y = state->crtc_y;

	/* Allow changing the start position within the cursor BO, if
	 * that matters.
	 */
	plane->state->src_x = state->src_x;
	plane->state->src_y = state->src_y;

	/* Update the display list based on the new crtc_x/y. */
881 882 883 884 885 886 887 888 889 890 891 892
	vc4_plane_atomic_check(plane, state);

	new_vc4_state = to_vc4_plane_state(state);
	vc4_state = to_vc4_plane_state(plane->state);

	/* Update the current vc4_state pos0, pos2 and ptr0 dlist entries. */
	vc4_state->dlist[vc4_state->pos0_offset] =
		new_vc4_state->dlist[vc4_state->pos0_offset];
	vc4_state->dlist[vc4_state->pos2_offset] =
		new_vc4_state->dlist[vc4_state->pos2_offset];
	vc4_state->dlist[vc4_state->ptr0_offset] =
		new_vc4_state->dlist[vc4_state->ptr0_offset];
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918

	/* Note that we can't just call vc4_plane_write_dlist()
	 * because that would smash the context data that the HVS is
	 * currently using.
	 */
	writel(vc4_state->dlist[vc4_state->pos0_offset],
	       &vc4_state->hw_dlist[vc4_state->pos0_offset]);
	writel(vc4_state->dlist[vc4_state->pos2_offset],
	       &vc4_state->hw_dlist[vc4_state->pos2_offset]);
	writel(vc4_state->dlist[vc4_state->ptr0_offset],
	       &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
}

static int vc4_plane_atomic_async_check(struct drm_plane *plane,
					struct drm_plane_state *state)
{
	/* No configuring new scaling in the fast path. */
	if (plane->state->crtc_w != state->crtc_w ||
	    plane->state->crtc_h != state->crtc_h ||
	    plane->state->src_w != state->src_w ||
	    plane->state->src_h != state->src_h)
		return -EINVAL;

	return 0;
}

919 920 921 922 923
static int vc4_prepare_fb(struct drm_plane *plane,
			  struct drm_plane_state *state)
{
	struct vc4_bo *bo;
	struct dma_fence *fence;
924
	int ret;
925

926
	if (!state->fb)
927 928 929
		return 0;

	bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
930

931 932 933 934 935 936
	fence = reservation_object_get_excl_rcu(bo->resv);
	drm_atomic_set_fence_for_plane(state, fence);

	if (plane->state->fb == state->fb)
		return 0;

937 938 939 940
	ret = vc4_bo_inc_usecnt(bo);
	if (ret)
		return ret;

941 942 943
	return 0;
}

944 945 946 947 948 949 950 951 952 953 954 955
static void vc4_cleanup_fb(struct drm_plane *plane,
			   struct drm_plane_state *state)
{
	struct vc4_bo *bo;

	if (plane->state->fb == state->fb || !state->fb)
		return;

	bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
	vc4_bo_dec_usecnt(bo);
}

956 957 958
static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = {
	.atomic_check = vc4_plane_atomic_check,
	.atomic_update = vc4_plane_atomic_update,
959
	.prepare_fb = vc4_prepare_fb,
960
	.cleanup_fb = vc4_cleanup_fb,
961 962
	.atomic_async_check = vc4_plane_atomic_async_check,
	.atomic_async_update = vc4_plane_atomic_async_update,
963 964 965 966 967 968 969
};

static void vc4_plane_destroy(struct drm_plane *plane)
{
	drm_plane_cleanup(plane);
}

970 971 972 973 974 975 976 977 978 979 980 981 982 983
static bool vc4_format_mod_supported(struct drm_plane *plane,
				     uint32_t format,
				     uint64_t modifier)
{
	/* Support T_TILING for RGB formats only. */
	switch (format) {
	case DRM_FORMAT_XRGB8888:
	case DRM_FORMAT_ARGB8888:
	case DRM_FORMAT_ABGR8888:
	case DRM_FORMAT_XBGR8888:
	case DRM_FORMAT_RGB565:
	case DRM_FORMAT_BGR565:
	case DRM_FORMAT_ARGB1555:
	case DRM_FORMAT_XRGB1555:
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
		switch (fourcc_mod_broadcom_mod(modifier)) {
		case DRM_FORMAT_MOD_LINEAR:
		case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED:
		case DRM_FORMAT_MOD_BROADCOM_SAND64:
		case DRM_FORMAT_MOD_BROADCOM_SAND128:
			return true;
		default:
			return false;
		}
	case DRM_FORMAT_NV12:
	case DRM_FORMAT_NV21:
		switch (fourcc_mod_broadcom_mod(modifier)) {
		case DRM_FORMAT_MOD_LINEAR:
		case DRM_FORMAT_MOD_BROADCOM_SAND64:
		case DRM_FORMAT_MOD_BROADCOM_SAND128:
		case DRM_FORMAT_MOD_BROADCOM_SAND256:
			return true;
		default:
			return false;
		}
1004 1005 1006 1007 1008
	case DRM_FORMAT_YUV422:
	case DRM_FORMAT_YVU422:
	case DRM_FORMAT_YUV420:
	case DRM_FORMAT_YVU420:
	case DRM_FORMAT_NV16:
1009
	case DRM_FORMAT_NV61:
1010 1011 1012 1013 1014
	default:
		return (modifier == DRM_FORMAT_MOD_LINEAR);
	}
}

1015
static const struct drm_plane_funcs vc4_plane_funcs = {
1016
	.update_plane = drm_atomic_helper_update_plane,
1017 1018 1019 1020 1021 1022
	.disable_plane = drm_atomic_helper_disable_plane,
	.destroy = vc4_plane_destroy,
	.set_property = NULL,
	.reset = vc4_plane_reset,
	.atomic_duplicate_state = vc4_plane_duplicate_state,
	.atomic_destroy_state = vc4_plane_destroy_state,
1023
	.format_mod_supported = vc4_format_mod_supported,
1024 1025 1026 1027 1028 1029 1030 1031
};

struct drm_plane *vc4_plane_init(struct drm_device *dev,
				 enum drm_plane_type type)
{
	struct drm_plane *plane = NULL;
	struct vc4_plane *vc4_plane;
	u32 formats[ARRAY_SIZE(hvs_formats)];
1032
	u32 num_formats = 0;
1033 1034
	int ret = 0;
	unsigned i;
1035 1036
	static const uint64_t modifiers[] = {
		DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED,
1037 1038 1039
		DRM_FORMAT_MOD_BROADCOM_SAND128,
		DRM_FORMAT_MOD_BROADCOM_SAND64,
		DRM_FORMAT_MOD_BROADCOM_SAND256,
1040 1041 1042
		DRM_FORMAT_MOD_LINEAR,
		DRM_FORMAT_MOD_INVALID
	};
1043 1044 1045

	vc4_plane = devm_kzalloc(dev->dev, sizeof(*vc4_plane),
				 GFP_KERNEL);
1046 1047
	if (!vc4_plane)
		return ERR_PTR(-ENOMEM);
1048

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
	for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
		/* Don't allow YUV in cursor planes, since that means
		 * tuning on the scaler, which we don't allow for the
		 * cursor.
		 */
		if (type != DRM_PLANE_TYPE_CURSOR ||
		    hvs_formats[i].hvs < HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE) {
			formats[num_formats++] = hvs_formats[i].drm;
		}
	}
1059
	plane = &vc4_plane->base;
1060
	ret = drm_universal_plane_init(dev, plane, 0,
1061
				       &vc4_plane_funcs,
1062
				       formats, num_formats,
1063
				       modifiers, type, NULL);
1064 1065 1066

	drm_plane_helper_add(plane, &vc4_plane_helper_funcs);

1067 1068
	drm_plane_create_alpha_property(plane);

1069 1070
	return plane;
}