vc4_plane.c 38.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2015 Broadcom
 */

/**
 * DOC: VC4 plane module
 *
 * Each DRM plane is a layer of pixels being scanned out by the HVS.
 *
 * At atomic modeset check time, we compute the HVS display element
 * state that would be necessary for displaying the plane (giving us a
 * chance to figure out if a plane configuration is invalid), then at
 * atomic flush time the CRTC will ask us to write our element state
 * into the region of the HVS that it has allocated for us.
 */

18 19
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
D
Daniel Vetter 已提交
20
#include <drm/drm_atomic_uapi.h>
S
Sam Ravnborg 已提交
21 22
#include <drm/drm_fb_cma_helper.h>
#include <drm/drm_fourcc.h>
23
#include <drm/drm_gem_framebuffer_helper.h>
S
Sam Ravnborg 已提交
24
#include <drm/drm_plane_helper.h>
25

26
#include "uapi/drm/vc4_drm.h"
S
Sam Ravnborg 已提交
27

28 29 30 31 32 33 34 35 36 37
#include "vc4_drv.h"
#include "vc4_regs.h"

static const struct hvs_format {
	u32 drm; /* DRM_FORMAT_* */
	u32 hvs; /* HVS_FORMAT_* */
	u32 pixel_order;
} hvs_formats[] = {
	{
		.drm = DRM_FORMAT_XRGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
38
		.pixel_order = HVS_PIXEL_ORDER_ABGR,
39 40 41
	},
	{
		.drm = DRM_FORMAT_ARGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
42
		.pixel_order = HVS_PIXEL_ORDER_ABGR,
43
	},
44 45
	{
		.drm = DRM_FORMAT_ABGR8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
46
		.pixel_order = HVS_PIXEL_ORDER_ARGB,
47 48 49
	},
	{
		.drm = DRM_FORMAT_XBGR8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
50
		.pixel_order = HVS_PIXEL_ORDER_ARGB,
51
	},
52 53
	{
		.drm = DRM_FORMAT_RGB565, .hvs = HVS_PIXEL_FORMAT_RGB565,
54
		.pixel_order = HVS_PIXEL_ORDER_XRGB,
55 56 57
	},
	{
		.drm = DRM_FORMAT_BGR565, .hvs = HVS_PIXEL_FORMAT_RGB565,
58
		.pixel_order = HVS_PIXEL_ORDER_XBGR,
59 60 61
	},
	{
		.drm = DRM_FORMAT_ARGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551,
62
		.pixel_order = HVS_PIXEL_ORDER_ABGR,
63 64 65
	},
	{
		.drm = DRM_FORMAT_XRGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551,
66
		.pixel_order = HVS_PIXEL_ORDER_ABGR,
67
	},
68 69
	{
		.drm = DRM_FORMAT_RGB888, .hvs = HVS_PIXEL_FORMAT_RGB888,
70
		.pixel_order = HVS_PIXEL_ORDER_XRGB,
71 72 73
	},
	{
		.drm = DRM_FORMAT_BGR888, .hvs = HVS_PIXEL_FORMAT_RGB888,
74
		.pixel_order = HVS_PIXEL_ORDER_XBGR,
75
	},
76 77 78
	{
		.drm = DRM_FORMAT_YUV422,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
79
		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
80 81 82 83
	},
	{
		.drm = DRM_FORMAT_YVU422,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
84
		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
85 86 87 88
	},
	{
		.drm = DRM_FORMAT_YUV420,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
89
		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
90 91 92 93
	},
	{
		.drm = DRM_FORMAT_YVU420,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
94
		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
95 96 97 98
	},
	{
		.drm = DRM_FORMAT_NV12,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
99
		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
100
	},
101 102 103 104 105
	{
		.drm = DRM_FORMAT_NV21,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
	},
106 107 108
	{
		.drm = DRM_FORMAT_NV16,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
109
		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
110
	},
111 112 113 114 115
	{
		.drm = DRM_FORMAT_NV61,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
	},
116 117 118 119 120 121 122 123 124 125 126 127 128 129
};

static const struct hvs_format *vc4_get_hvs_format(u32 drm_format)
{
	unsigned i;

	for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
		if (hvs_formats[i].drm == drm_format)
			return &hvs_formats[i];
	}

	return NULL;
}

130 131
static enum vc4_scaling_mode vc4_get_scaling_mode(u32 src, u32 dst)
{
132 133 134
	if (dst == src)
		return VC4_SCALING_NONE;
	if (3 * dst >= 2 * src)
135 136
		return VC4_SCALING_PPF;
	else
137
		return VC4_SCALING_TPZ;
138 139
}

140 141
static bool plane_enabled(struct drm_plane_state *state)
{
142
	return state->fb && !WARN_ON(!state->crtc);
143 144
}

145
static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane)
146 147 148 149 150 151 152 153 154 155
{
	struct vc4_plane_state *vc4_state;

	if (WARN_ON(!plane->state))
		return NULL;

	vc4_state = kmemdup(plane->state, sizeof(*vc4_state), GFP_KERNEL);
	if (!vc4_state)
		return NULL;

156
	memset(&vc4_state->lbm, 0, sizeof(vc4_state->lbm));
157
	vc4_state->dlist_initialized = 0;
158

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
	__drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base);

	if (vc4_state->dlist) {
		vc4_state->dlist = kmemdup(vc4_state->dlist,
					   vc4_state->dlist_count * 4,
					   GFP_KERNEL);
		if (!vc4_state->dlist) {
			kfree(vc4_state);
			return NULL;
		}
		vc4_state->dlist_size = vc4_state->dlist_count;
	}

	return &vc4_state->base;
}

175 176
static void vc4_plane_destroy_state(struct drm_plane *plane,
				    struct drm_plane_state *state)
177
{
178
	struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
179 180
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);

181
	if (drm_mm_node_allocated(&vc4_state->lbm)) {
182 183 184 185 186 187 188
		unsigned long irqflags;

		spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
		drm_mm_remove_node(&vc4_state->lbm);
		spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
	}

189
	kfree(vc4_state->dlist);
190
	__drm_atomic_helper_plane_destroy_state(&vc4_state->base);
191 192 193 194
	kfree(state);
}

/* Called during init to allocate the plane's atomic state. */
195
static void vc4_plane_reset(struct drm_plane *plane)
196 197 198 199 200 201 202 203 204
{
	struct vc4_plane_state *vc4_state;

	WARN_ON(plane->state);

	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
	if (!vc4_state)
		return;

205
	__drm_atomic_helper_plane_reset(plane, &vc4_state->base);
206 207 208 209 210 211
}

static void vc4_dlist_write(struct vc4_plane_state *vc4_state, u32 val)
{
	if (vc4_state->dlist_count == vc4_state->dlist_size) {
		u32 new_size = max(4u, vc4_state->dlist_count * 2);
212
		u32 *new_dlist = kmalloc_array(new_size, 4, GFP_KERNEL);
213 214 215 216 217 218 219 220 221 222 223 224 225

		if (!new_dlist)
			return;
		memcpy(new_dlist, vc4_state->dlist, vc4_state->dlist_count * 4);

		kfree(vc4_state->dlist);
		vc4_state->dlist = new_dlist;
		vc4_state->dlist_size = new_size;
	}

	vc4_state->dlist[vc4_state->dlist_count++] = val;
}

226 227 228 229 230
/* Returns the scl0/scl1 field based on whether the dimensions need to
 * be up/down/non-scaled.
 *
 * This is a replication of a table from the spec.
 */
231
static u32 vc4_get_scl_field(struct drm_plane_state *state, int plane)
232 233 234
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);

235
	switch (vc4_state->x_scaling[plane] << 2 | vc4_state->y_scaling[plane]) {
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
	case VC4_SCALING_PPF << 2 | VC4_SCALING_PPF:
		return SCALER_CTL0_SCL_H_PPF_V_PPF;
	case VC4_SCALING_TPZ << 2 | VC4_SCALING_PPF:
		return SCALER_CTL0_SCL_H_TPZ_V_PPF;
	case VC4_SCALING_PPF << 2 | VC4_SCALING_TPZ:
		return SCALER_CTL0_SCL_H_PPF_V_TPZ;
	case VC4_SCALING_TPZ << 2 | VC4_SCALING_TPZ:
		return SCALER_CTL0_SCL_H_TPZ_V_TPZ;
	case VC4_SCALING_PPF << 2 | VC4_SCALING_NONE:
		return SCALER_CTL0_SCL_H_PPF_V_NONE;
	case VC4_SCALING_NONE << 2 | VC4_SCALING_PPF:
		return SCALER_CTL0_SCL_H_NONE_V_PPF;
	case VC4_SCALING_NONE << 2 | VC4_SCALING_TPZ:
		return SCALER_CTL0_SCL_H_NONE_V_TPZ;
	case VC4_SCALING_TPZ << 2 | VC4_SCALING_NONE:
		return SCALER_CTL0_SCL_H_TPZ_V_NONE;
	default:
	case VC4_SCALING_NONE << 2 | VC4_SCALING_NONE:
		/* The unity case is independently handled by
		 * SCALER_CTL0_UNITY.
		 */
		return 0;
	}
}

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
static int vc4_plane_margins_adj(struct drm_plane_state *pstate)
{
	struct vc4_plane_state *vc4_pstate = to_vc4_plane_state(pstate);
	unsigned int left, right, top, bottom, adjhdisplay, adjvdisplay;
	struct drm_crtc_state *crtc_state;

	crtc_state = drm_atomic_get_new_crtc_state(pstate->state,
						   pstate->crtc);

	vc4_crtc_get_margins(crtc_state, &left, &right, &top, &bottom);
	if (!left && !right && !top && !bottom)
		return 0;

	if (left + right >= crtc_state->mode.hdisplay ||
	    top + bottom >= crtc_state->mode.vdisplay)
		return -EINVAL;

	adjhdisplay = crtc_state->mode.hdisplay - (left + right);
	vc4_pstate->crtc_x = DIV_ROUND_CLOSEST(vc4_pstate->crtc_x *
					       adjhdisplay,
					       crtc_state->mode.hdisplay);
	vc4_pstate->crtc_x += left;
	if (vc4_pstate->crtc_x > crtc_state->mode.hdisplay - left)
		vc4_pstate->crtc_x = crtc_state->mode.hdisplay - left;

	adjvdisplay = crtc_state->mode.vdisplay - (top + bottom);
	vc4_pstate->crtc_y = DIV_ROUND_CLOSEST(vc4_pstate->crtc_y *
					       adjvdisplay,
					       crtc_state->mode.vdisplay);
	vc4_pstate->crtc_y += top;
	if (vc4_pstate->crtc_y > crtc_state->mode.vdisplay - top)
		vc4_pstate->crtc_y = crtc_state->mode.vdisplay - top;

	vc4_pstate->crtc_w = DIV_ROUND_CLOSEST(vc4_pstate->crtc_w *
					       adjhdisplay,
					       crtc_state->mode.hdisplay);
	vc4_pstate->crtc_h = DIV_ROUND_CLOSEST(vc4_pstate->crtc_h *
					       adjvdisplay,
					       crtc_state->mode.vdisplay);

	if (!vc4_pstate->crtc_w || !vc4_pstate->crtc_h)
		return -EINVAL;

	return 0;
}

307
static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state *state)
308 309 310
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
	struct drm_framebuffer *fb = state->fb;
311
	struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
312
	u32 subpixel_src_mask = (1 << 16) - 1;
313
	int num_planes = fb->format->num_planes;
314
	struct drm_crtc_state *crtc_state;
315 316
	u32 h_subsample = fb->format->hsub;
	u32 v_subsample = fb->format->vsub;
317 318 319 320 321 322 323 324 325
	int i, ret;

	crtc_state = drm_atomic_get_existing_crtc_state(state->state,
							state->crtc);
	if (!crtc_state) {
		DRM_DEBUG_KMS("Invalid crtc state\n");
		return -EINVAL;
	}

326 327
	ret = drm_atomic_helper_check_plane_state(state, crtc_state, 1,
						  INT_MAX, true, true);
328 329 330
	if (ret)
		return ret;

331 332
	for (i = 0; i < num_planes; i++)
		vc4_state->offsets[i] = bo->paddr + fb->offsets[i];
333

334
	/* We don't support subpixel source positioning for scaling. */
335 336 337 338
	if ((state->src.x1 & subpixel_src_mask) ||
	    (state->src.x2 & subpixel_src_mask) ||
	    (state->src.y1 & subpixel_src_mask) ||
	    (state->src.y2 & subpixel_src_mask)) {
339 340 341
		return -EINVAL;
	}

342 343 344 345
	vc4_state->src_x = state->src.x1 >> 16;
	vc4_state->src_y = state->src.y1 >> 16;
	vc4_state->src_w[0] = (state->src.x2 - state->src.x1) >> 16;
	vc4_state->src_h[0] = (state->src.y2 - state->src.y1) >> 16;
346

347 348 349 350
	vc4_state->crtc_x = state->dst.x1;
	vc4_state->crtc_y = state->dst.y1;
	vc4_state->crtc_w = state->dst.x2 - state->dst.x1;
	vc4_state->crtc_h = state->dst.y2 - state->dst.y1;
351

352 353 354 355
	ret = vc4_plane_margins_adj(state);
	if (ret)
		return ret;

356 357 358 359 360
	vc4_state->x_scaling[0] = vc4_get_scaling_mode(vc4_state->src_w[0],
						       vc4_state->crtc_w);
	vc4_state->y_scaling[0] = vc4_get_scaling_mode(vc4_state->src_h[0],
						       vc4_state->crtc_h);

361 362 363
	vc4_state->is_unity = (vc4_state->x_scaling[0] == VC4_SCALING_NONE &&
			       vc4_state->y_scaling[0] == VC4_SCALING_NONE);

364 365 366 367 368 369 370 371 372 373 374 375 376
	if (num_planes > 1) {
		vc4_state->is_yuv = true;

		vc4_state->src_w[1] = vc4_state->src_w[0] / h_subsample;
		vc4_state->src_h[1] = vc4_state->src_h[0] / v_subsample;

		vc4_state->x_scaling[1] =
			vc4_get_scaling_mode(vc4_state->src_w[1],
					     vc4_state->crtc_w);
		vc4_state->y_scaling[1] =
			vc4_get_scaling_mode(vc4_state->src_h[1],
					     vc4_state->crtc_h);

377 378 379 380 381
		/* YUV conversion requires that horizontal scaling be enabled
		 * on the UV plane even if vc4_get_scaling_mode() returned
		 * VC4_SCALING_NONE (which can happen when the down-scaling
		 * ratio is 0.5). Let's force it to VC4_SCALING_PPF in this
		 * case.
382
		 */
383 384
		if (vc4_state->x_scaling[1] == VC4_SCALING_NONE)
			vc4_state->x_scaling[1] = VC4_SCALING_PPF;
385
	} else {
386
		vc4_state->is_yuv = false;
387 388
		vc4_state->x_scaling[1] = VC4_SCALING_NONE;
		vc4_state->y_scaling[1] = VC4_SCALING_NONE;
389 390
	}

391 392 393
	return 0;
}

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
static void vc4_write_tpz(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
{
	u32 scale, recip;

	scale = (1 << 16) * src / dst;

	/* The specs note that while the reciprocal would be defined
	 * as (1<<32)/scale, ~0 is close enough.
	 */
	recip = ~0 / scale;

	vc4_dlist_write(vc4_state,
			VC4_SET_FIELD(scale, SCALER_TPZ0_SCALE) |
			VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE));
	vc4_dlist_write(vc4_state,
			VC4_SET_FIELD(recip, SCALER_TPZ1_RECIP));
}

static void vc4_write_ppf(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
{
	u32 scale = (1 << 16) * src / dst;

	vc4_dlist_write(vc4_state,
			SCALER_PPF_AGC |
			VC4_SET_FIELD(scale, SCALER_PPF_SCALE) |
			VC4_SET_FIELD(0, SCALER_PPF_IPHASE));
}

static u32 vc4_lbm_size(struct drm_plane_state *state)
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
	/* This is the worst case number.  One of the two sizes will
	 * be used depending on the scaling configuration.
	 */
428
	u32 pix_per_line = max(vc4_state->src_w[0], (u32)vc4_state->crtc_w);
429 430
	u32 lbm;

431 432 433 434 435
	/* LBM is not needed when there's no vertical scaling. */
	if (vc4_state->y_scaling[0] == VC4_SCALING_NONE &&
	    vc4_state->y_scaling[1] == VC4_SCALING_NONE)
		return 0;

436
	if (!vc4_state->is_yuv) {
437
		if (vc4_state->y_scaling[0] == VC4_SCALING_TPZ)
438 439 440 441 442 443 444 445 446 447
			lbm = pix_per_line * 8;
		else {
			/* In special cases, this multiplier might be 12. */
			lbm = pix_per_line * 16;
		}
	} else {
		/* There are cases for this going down to a multiplier
		 * of 2, but according to the firmware source, the
		 * table in the docs is somewhat wrong.
		 */
448 449 450 451 452 453 454 455
		lbm = pix_per_line * 16;
	}

	lbm = roundup(lbm, 32);

	return lbm;
}

456 457
static void vc4_write_scaling_parameters(struct drm_plane_state *state,
					 int channel)
458 459 460 461
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);

	/* Ch0 H-PPF Word 0: Scaling Parameters */
462
	if (vc4_state->x_scaling[channel] == VC4_SCALING_PPF) {
463
		vc4_write_ppf(vc4_state,
464
			      vc4_state->src_w[channel], vc4_state->crtc_w);
465 466 467
	}

	/* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */
468
	if (vc4_state->y_scaling[channel] == VC4_SCALING_PPF) {
469
		vc4_write_ppf(vc4_state,
470
			      vc4_state->src_h[channel], vc4_state->crtc_h);
471 472 473 474
		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
	}

	/* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */
475
	if (vc4_state->x_scaling[channel] == VC4_SCALING_TPZ) {
476
		vc4_write_tpz(vc4_state,
477
			      vc4_state->src_w[channel], vc4_state->crtc_w);
478 479 480
	}

	/* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */
481
	if (vc4_state->y_scaling[channel] == VC4_SCALING_TPZ) {
482
		vc4_write_tpz(vc4_state,
483
			      vc4_state->src_h[channel], vc4_state->crtc_h);
484 485 486
		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
	}
}
487

488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
static void vc4_plane_calc_load(struct drm_plane_state *state)
{
	unsigned int hvs_load_shift, vrefresh, i;
	struct drm_framebuffer *fb = state->fb;
	struct vc4_plane_state *vc4_state;
	struct drm_crtc_state *crtc_state;
	unsigned int vscale_factor;

	vc4_state = to_vc4_plane_state(state);
	crtc_state = drm_atomic_get_existing_crtc_state(state->state,
							state->crtc);
	vrefresh = drm_mode_vrefresh(&crtc_state->adjusted_mode);

	/* The HVS is able to process 2 pixels/cycle when scaling the source,
	 * 4 pixels/cycle otherwise.
	 * Alpha blending step seems to be pipelined and it's always operating
	 * at 4 pixels/cycle, so the limiting aspect here seems to be the
	 * scaler block.
	 * HVS load is expressed in clk-cycles/sec (AKA Hz).
	 */
	if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
	    vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
	    vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
	    vc4_state->y_scaling[1] != VC4_SCALING_NONE)
		hvs_load_shift = 1;
	else
		hvs_load_shift = 2;

	vc4_state->membus_load = 0;
	vc4_state->hvs_load = 0;
	for (i = 0; i < fb->format->num_planes; i++) {
		/* Even if the bandwidth/plane required for a single frame is
		 *
		 * vc4_state->src_w[i] * vc4_state->src_h[i] * cpp * vrefresh
		 *
		 * when downscaling, we have to read more pixels per line in
		 * the time frame reserved for a single line, so the bandwidth
		 * demand can be punctually higher. To account for that, we
		 * calculate the down-scaling factor and multiply the plane
		 * load by this number. We're likely over-estimating the read
		 * demand, but that's better than under-estimating it.
		 */
		vscale_factor = DIV_ROUND_UP(vc4_state->src_h[i],
					     vc4_state->crtc_h);
		vc4_state->membus_load += vc4_state->src_w[i] *
					  vc4_state->src_h[i] * vscale_factor *
					  fb->format->cpp[i];
		vc4_state->hvs_load += vc4_state->crtc_h * vc4_state->crtc_w;
	}

	vc4_state->hvs_load *= vrefresh;
	vc4_state->hvs_load >>= hvs_load_shift;
	vc4_state->membus_load *= vrefresh;
}

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
static int vc4_plane_allocate_lbm(struct drm_plane_state *state)
{
	struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev);
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
	unsigned long irqflags;
	u32 lbm_size;

	lbm_size = vc4_lbm_size(state);
	if (!lbm_size)
		return 0;

	if (WARN_ON(!vc4_state->lbm_offset))
		return -EINVAL;

	/* Allocate the LBM memory that the HVS will use for temporary
	 * storage due to our scaling/format conversion.
	 */
560
	if (!drm_mm_node_allocated(&vc4_state->lbm)) {
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
		int ret;

		spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
		ret = drm_mm_insert_node_generic(&vc4->hvs->lbm_mm,
						 &vc4_state->lbm,
						 lbm_size, 32, 0, 0);
		spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);

		if (ret)
			return ret;
	} else {
		WARN_ON_ONCE(lbm_size != vc4_state->lbm.size);
	}

	vc4_state->dlist[vc4_state->lbm_offset] = vc4_state->lbm.start;

	return 0;
}

580 581 582 583 584 585
/* Writes out a full display list for an active plane to the plane's
 * private dlist state.
 */
static int vc4_plane_mode_set(struct drm_plane *plane,
			      struct drm_plane_state *state)
{
586
	struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
587 588 589
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
	struct drm_framebuffer *fb = state->fb;
	u32 ctl0_offset = vc4_state->dlist_count;
V
Ville Syrjälä 已提交
590
	const struct hvs_format *format = vc4_get_hvs_format(fb->format->format);
591
	u64 base_format_mod = fourcc_mod_broadcom_mod(fb->modifier);
592
	int num_planes = fb->format->num_planes;
593 594
	u32 h_subsample = fb->format->hsub;
	u32 v_subsample = fb->format->vsub;
595
	bool mix_plane_alpha;
596
	bool covers_screen;
597
	u32 scl0, scl1, pitch0;
598
	u32 tiling, src_y;
599
	u32 hvs_format = format->hvs;
600
	unsigned int rotation;
601
	int ret, i;
602

603 604 605
	if (vc4_state->dlist_initialized)
		return 0;

606
	ret = vc4_plane_setup_clipping_and_scaling(state);
607 608 609
	if (ret)
		return ret;

610 611 612 613 614 615 616
	/* SCL1 is used for Cb/Cr scaling of planar formats.  For RGB
	 * and 4:4:4, scl1 should be set to scl0 so both channels of
	 * the scaler do the same thing.  For YUV, the Y plane needs
	 * to be put in channel 1 and Cb/Cr in channel 0, so we swap
	 * the scl fields here.
	 */
	if (num_planes == 1) {
617
		scl0 = vc4_get_scl_field(state, 0);
618 619 620 621 622
		scl1 = scl0;
	} else {
		scl0 = vc4_get_scl_field(state, 1);
		scl1 = vc4_get_scl_field(state, 0);
	}
623

624 625 626 627 628 629 630 631 632 633
	rotation = drm_rotation_simplify(state->rotation,
					 DRM_MODE_ROTATE_0 |
					 DRM_MODE_REFLECT_X |
					 DRM_MODE_REFLECT_Y);

	/* We must point to the last line when Y reflection is enabled. */
	src_y = vc4_state->src_y;
	if (rotation & DRM_MODE_REFLECT_Y)
		src_y += vc4_state->src_h[0] - 1;

634
	switch (base_format_mod) {
635 636 637
	case DRM_FORMAT_MOD_LINEAR:
		tiling = SCALER_CTL0_TILING_LINEAR;
		pitch0 = VC4_SET_FIELD(fb->pitches[0], SCALER_SRC_PITCH);
638 639 640 641 642

		/* Adjust the base pointer to the first pixel to be scanned
		 * out.
		 */
		for (i = 0; i < num_planes; i++) {
643
			vc4_state->offsets[i] += src_y /
644 645
						 (i ? v_subsample : 1) *
						 fb->pitches[i];
646

647 648 649 650
			vc4_state->offsets[i] += vc4_state->src_x /
						 (i ? h_subsample : 1) *
						 fb->format->cpp[i];
		}
651

652
		break;
653 654 655

	case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED: {
		u32 tile_size_shift = 12; /* T tiles are 4kb */
656 657
		/* Whole-tile offsets, mostly for setting the pitch. */
		u32 tile_w_shift = fb->format->cpp[0] == 2 ? 6 : 5;
658
		u32 tile_h_shift = 5; /* 16 and 32bpp are 32 pixels high */
659 660 661 662 663 664 665 666 667 668
		u32 tile_w_mask = (1 << tile_w_shift) - 1;
		/* The height mask on 32-bit-per-pixel tiles is 63, i.e. twice
		 * the height (in pixels) of a 4k tile.
		 */
		u32 tile_h_mask = (2 << tile_h_shift) - 1;
		/* For T-tiled, the FB pitch is "how many bytes from one row to
		 * the next, such that
		 *
		 *	pitch * tile_h == tile_size * tiles_per_row
		 */
669
		u32 tiles_w = fb->pitches[0] >> (tile_size_shift - tile_h_shift);
670 671
		u32 tiles_l = vc4_state->src_x >> tile_w_shift;
		u32 tiles_r = tiles_w - tiles_l;
672
		u32 tiles_t = src_y >> tile_h_shift;
673 674 675 676
		/* Intra-tile offsets, which modify the base address (the
		 * SCALER_PITCH0_TILE_Y_OFFSET tells HVS how to walk from that
		 * base address).
		 */
677 678 679
		u32 tile_y = (src_y >> 4) & 1;
		u32 subtile_y = (src_y >> 2) & 3;
		u32 utile_y = src_y & 3;
680
		u32 x_off = vc4_state->src_x & tile_w_mask;
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
		u32 y_off = src_y & tile_h_mask;

		/* When Y reflection is requested we must set the
		 * SCALER_PITCH0_TILE_LINE_DIR flag to tell HVS that all lines
		 * after the initial one should be fetched in descending order,
		 * which makes sense since we start from the last line and go
		 * backward.
		 * Don't know why we need y_off = max_y_off - y_off, but it's
		 * definitely required (I guess it's also related to the "going
		 * backward" situation).
		 */
		if (rotation & DRM_MODE_REFLECT_Y) {
			y_off = tile_h_mask - y_off;
			pitch0 = SCALER_PITCH0_TILE_LINE_DIR;
		} else {
			pitch0 = 0;
		}
698

699
		tiling = SCALER_CTL0_TILING_256B_OR_T;
700 701 702 703
		pitch0 |= (VC4_SET_FIELD(x_off, SCALER_PITCH0_SINK_PIX) |
			   VC4_SET_FIELD(y_off, SCALER_PITCH0_TILE_Y_OFFSET) |
			   VC4_SET_FIELD(tiles_l, SCALER_PITCH0_TILE_WIDTH_L) |
			   VC4_SET_FIELD(tiles_r, SCALER_PITCH0_TILE_WIDTH_R));
704 705 706 707 708 709 710 711 712 713 714 715 716 717
		vc4_state->offsets[0] += tiles_t * (tiles_w << tile_size_shift);
		vc4_state->offsets[0] += subtile_y << 8;
		vc4_state->offsets[0] += utile_y << 4;

		/* Rows of tiles alternate left-to-right and right-to-left. */
		if (tiles_t & 1) {
			pitch0 |= SCALER_PITCH0_TILE_INITIAL_LINE_DIR;
			vc4_state->offsets[0] += (tiles_w - tiles_l) <<
						 tile_size_shift;
			vc4_state->offsets[0] -= (1 + !tile_y) << 10;
		} else {
			vc4_state->offsets[0] += tiles_l << tile_size_shift;
			vc4_state->offsets[0] += tile_y << 10;
		}
718 719

		break;
720 721
	}

722 723 724 725
	case DRM_FORMAT_MOD_BROADCOM_SAND64:
	case DRM_FORMAT_MOD_BROADCOM_SAND128:
	case DRM_FORMAT_MOD_BROADCOM_SAND256: {
		uint32_t param = fourcc_mod_broadcom_param(fb->modifier);
726
		u32 tile_w, tile, x_off, pix_per_tile;
727

728
		hvs_format = HVS_PIXEL_FORMAT_H264;
729 730 731 732

		switch (base_format_mod) {
		case DRM_FORMAT_MOD_BROADCOM_SAND64:
			tiling = SCALER_CTL0_TILING_64B;
733
			tile_w = 64;
734 735 736
			break;
		case DRM_FORMAT_MOD_BROADCOM_SAND128:
			tiling = SCALER_CTL0_TILING_128B;
737
			tile_w = 128;
738 739 740
			break;
		case DRM_FORMAT_MOD_BROADCOM_SAND256:
			tiling = SCALER_CTL0_TILING_256B_OR_T;
741
			tile_w = 256;
742 743 744 745 746 747 748 749 750 751
			break;
		default:
			break;
		}

		if (param > SCALER_TILE_HEIGHT_MASK) {
			DRM_DEBUG_KMS("SAND height too large (%d)\n", param);
			return -EINVAL;
		}

752 753 754 755 756 757 758 759 760
		pix_per_tile = tile_w / fb->format->cpp[0];
		tile = vc4_state->src_x / pix_per_tile;
		x_off = vc4_state->src_x % pix_per_tile;

		/* Adjust the base pointer to the first pixel to be scanned
		 * out.
		 */
		for (i = 0; i < num_planes; i++) {
			vc4_state->offsets[i] += param * tile_w * tile;
761
			vc4_state->offsets[i] += src_y /
762 763 764 765 766 767 768
						 (i ? v_subsample : 1) *
						 tile_w;
			vc4_state->offsets[i] += x_off /
						 (i ? h_subsample : 1) *
						 fb->format->cpp[i];
		}

769 770 771 772
		pitch0 = VC4_SET_FIELD(param, SCALER_TILE_HEIGHT);
		break;
	}

773 774 775 776 777 778
	default:
		DRM_DEBUG_KMS("Unsupported FB tiling flag 0x%16llx",
			      (long long)fb->modifier);
		return -EINVAL;
	}

779
	/* Control word */
780 781
	vc4_dlist_write(vc4_state,
			SCALER_CTL0_VALID |
782 783
			(rotation & DRM_MODE_REFLECT_X ? SCALER_CTL0_HFLIP : 0) |
			(rotation & DRM_MODE_REFLECT_Y ? SCALER_CTL0_VFLIP : 0) |
784
			VC4_SET_FIELD(SCALER_CTL0_RGBA_EXPAND_ROUND, SCALER_CTL0_RGBA_EXPAND) |
785
			(format->pixel_order << SCALER_CTL0_ORDER_SHIFT) |
786
			(hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
787
			VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
788
			(vc4_state->is_unity ? SCALER_CTL0_UNITY : 0) |
789 790
			VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
			VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1));
791 792

	/* Position Word 0: Image Positions and Alpha Value */
793
	vc4_state->pos0_offset = vc4_state->dlist_count;
794
	vc4_dlist_write(vc4_state,
795
			VC4_SET_FIELD(state->alpha >> 8, SCALER_POS0_FIXED_ALPHA) |
796 797
			VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) |
			VC4_SET_FIELD(vc4_state->crtc_y, SCALER_POS0_START_Y));
798

799 800 801 802 803 804 805 806
	/* Position Word 1: Scaled Image Dimensions. */
	if (!vc4_state->is_unity) {
		vc4_dlist_write(vc4_state,
				VC4_SET_FIELD(vc4_state->crtc_w,
					      SCALER_POS1_SCL_WIDTH) |
				VC4_SET_FIELD(vc4_state->crtc_h,
					      SCALER_POS1_SCL_HEIGHT));
	}
807

808 809 810 811 812 813 814
	/* Don't waste cycles mixing with plane alpha if the set alpha
	 * is opaque or there is no per-pixel alpha information.
	 * In any case we use the alpha property value as the fixed alpha.
	 */
	mix_plane_alpha = state->alpha != DRM_BLEND_ALPHA_OPAQUE &&
			  fb->format->has_alpha;

815
	/* Position Word 2: Source Image Size, Alpha */
816
	vc4_state->pos2_offset = vc4_state->dlist_count;
817
	vc4_dlist_write(vc4_state,
818
			VC4_SET_FIELD(fb->format->has_alpha ?
819 820 821
				      SCALER_POS2_ALPHA_MODE_PIPELINE :
				      SCALER_POS2_ALPHA_MODE_FIXED,
				      SCALER_POS2_ALPHA_MODE) |
822
			(mix_plane_alpha ? SCALER_POS2_ALPHA_MIX : 0) |
823
			(fb->format->has_alpha ? SCALER_POS2_ALPHA_PREMULT : 0) |
824 825
			VC4_SET_FIELD(vc4_state->src_w[0], SCALER_POS2_WIDTH) |
			VC4_SET_FIELD(vc4_state->src_h[0], SCALER_POS2_HEIGHT));
826 827 828 829

	/* Position Word 3: Context.  Written by the HVS. */
	vc4_dlist_write(vc4_state, 0xc0c0c0c0);

830 831 832 833 834

	/* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers
	 *
	 * The pointers may be any byte address.
	 */
835
	vc4_state->ptr0_offset = vc4_state->dlist_count;
836 837
	for (i = 0; i < num_planes; i++)
		vc4_dlist_write(vc4_state, vc4_state->offsets[i]);
838

839 840 841
	/* Pointer Context Word 0/1/2: Written by the HVS */
	for (i = 0; i < num_planes; i++)
		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
842

843 844 845 846 847
	/* Pitch word 0 */
	vc4_dlist_write(vc4_state, pitch0);

	/* Pitch word 1/2 */
	for (i = 1; i < num_planes; i++) {
848 849 850 851 852 853 854
		if (hvs_format != HVS_PIXEL_FORMAT_H264) {
			vc4_dlist_write(vc4_state,
					VC4_SET_FIELD(fb->pitches[i],
						      SCALER_SRC_PITCH));
		} else {
			vc4_dlist_write(vc4_state, pitch0);
		}
855 856 857 858 859 860 861 862
	}

	/* Colorspace conversion words */
	if (vc4_state->is_yuv) {
		vc4_dlist_write(vc4_state, SCALER_CSC0_ITR_R_601_5);
		vc4_dlist_write(vc4_state, SCALER_CSC1_ITR_R_601_5);
		vc4_dlist_write(vc4_state, SCALER_CSC2_ITR_R_601_5);
	}
863

864 865
	vc4_state->lbm_offset = 0;

866 867 868 869
	if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
	    vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
	    vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
	    vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
870 871 872
		/* Reserve a slot for the LBM Base Address. The real value will
		 * be set when calling vc4_plane_allocate_lbm().
		 */
873
		if (vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
874 875
		    vc4_state->y_scaling[1] != VC4_SCALING_NONE)
			vc4_state->lbm_offset = vc4_state->dlist_count++;
876

877 878 879 880 881 882 883 884
		if (num_planes > 1) {
			/* Emit Cb/Cr as channel 0 and Y as channel
			 * 1. This matches how we set up scl0/scl1
			 * above.
			 */
			vc4_write_scaling_parameters(state, 1);
		}
		vc4_write_scaling_parameters(state, 0);
885 886 887 888

		/* If any PPF setup was done, then all the kernel
		 * pointers get uploaded.
		 */
889 890 891 892
		if (vc4_state->x_scaling[0] == VC4_SCALING_PPF ||
		    vc4_state->y_scaling[0] == VC4_SCALING_PPF ||
		    vc4_state->x_scaling[1] == VC4_SCALING_PPF ||
		    vc4_state->y_scaling[1] == VC4_SCALING_PPF) {
893 894 895 896 897 898 899 900 901 902 903 904 905 906
			u32 kernel = VC4_SET_FIELD(vc4->hvs->mitchell_netravali_filter.start,
						   SCALER_PPF_KERNEL_OFFSET);

			/* HPPF plane 0 */
			vc4_dlist_write(vc4_state, kernel);
			/* VPPF plane 0 */
			vc4_dlist_write(vc4_state, kernel);
			/* HPPF plane 1 */
			vc4_dlist_write(vc4_state, kernel);
			/* VPPF plane 1 */
			vc4_dlist_write(vc4_state, kernel);
		}
	}

907 908 909
	vc4_state->dlist[ctl0_offset] |=
		VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE);

910 911 912 913 914
	/* crtc_* are already clipped coordinates. */
	covers_screen = vc4_state->crtc_x == 0 && vc4_state->crtc_y == 0 &&
			vc4_state->crtc_w == state->crtc->mode.hdisplay &&
			vc4_state->crtc_h == state->crtc->mode.vdisplay;
	/* Background fill might be necessary when the plane has per-pixel
915 916
	 * alpha content or a non-opaque plane alpha and could blend from the
	 * background or does not cover the entire screen.
917
	 */
918 919
	vc4_state->needs_bg_fill = fb->format->has_alpha || !covers_screen ||
				   state->alpha != DRM_BLEND_ALPHA_OPAQUE;
920

921 922 923 924 925 926 927
	/* Flag the dlist as initialized to avoid checking it twice in case
	 * the async update check already called vc4_plane_mode_set() and
	 * decided to fallback to sync update because async update was not
	 * possible.
	 */
	vc4_state->dlist_initialized = 1;

928 929
	vc4_plane_calc_load(state);

930 931 932 933 934 935 936 937 938 939 940 941 942 943
	return 0;
}

/* If a modeset involves changing the setup of a plane, the atomic
 * infrastructure will call this to validate a proposed plane setup.
 * However, if a plane isn't getting updated, this (and the
 * corresponding vc4_plane_atomic_update) won't get called.  Thus, we
 * compute the dlist here and have all active plane dlists get updated
 * in the CRTC's flush.
 */
static int vc4_plane_atomic_check(struct drm_plane *plane,
				  struct drm_plane_state *state)
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
944
	int ret;
945 946 947

	vc4_state->dlist_count = 0;

948
	if (!plane_enabled(state))
949
		return 0;
950 951 952 953 954 955

	ret = vc4_plane_mode_set(plane, state);
	if (ret)
		return ret;

	return vc4_plane_allocate_lbm(state);
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
}

static void vc4_plane_atomic_update(struct drm_plane *plane,
				    struct drm_plane_state *old_state)
{
	/* No contents here.  Since we don't know where in the CRTC's
	 * dlist we should be stored, our dlist is uploaded to the
	 * hardware with vc4_plane_write_dlist() at CRTC atomic_flush
	 * time.
	 */
}

u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist)
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
	int i;

973 974
	vc4_state->hw_dlist = dlist;

975 976 977 978 979 980 981
	/* Can't memcpy_toio() because it needs to be 32-bit writes. */
	for (i = 0; i < vc4_state->dlist_count; i++)
		writel(vc4_state->dlist[i], &dlist[i]);

	return vc4_state->dlist_count;
}

982
u32 vc4_plane_dlist_size(const struct drm_plane_state *state)
983
{
984 985
	const struct vc4_plane_state *vc4_state =
		container_of(state, typeof(*vc4_state), base);
986 987 988 989

	return vc4_state->dlist_count;
}

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
/* Updates the plane to immediately (well, once the FIFO needs
 * refilling) scan out from at a new framebuffer.
 */
void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb)
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
	struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
	uint32_t addr;

	/* We're skipping the address adjustment for negative origin,
	 * because this is only called on the primary plane.
	 */
	WARN_ON_ONCE(plane->state->crtc_x < 0 || plane->state->crtc_y < 0);
	addr = bo->paddr + fb->offsets[0];

	/* Write the new address into the hardware immediately.  The
	 * scanout will start from this address as soon as the FIFO
	 * needs to refill with pixels.
	 */
1009
	writel(addr, &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
1010 1011 1012 1013 1014

	/* Also update the CPU-side dlist copy, so that any later
	 * atomic updates that don't do a new modeset on our plane
	 * also use our updated address.
	 */
1015
	vc4_state->dlist[vc4_state->ptr0_offset] = addr;
1016 1017
}

1018 1019 1020
static void vc4_plane_atomic_async_update(struct drm_plane *plane,
					  struct drm_plane_state *state)
{
1021
	struct vc4_plane_state *vc4_state, *new_vc4_state;
1022

1023
	swap(plane->state->fb, state->fb);
1024 1025
	plane->state->crtc_x = state->crtc_x;
	plane->state->crtc_y = state->crtc_y;
1026 1027
	plane->state->crtc_w = state->crtc_w;
	plane->state->crtc_h = state->crtc_h;
1028 1029
	plane->state->src_x = state->src_x;
	plane->state->src_y = state->src_y;
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
	plane->state->src_w = state->src_w;
	plane->state->src_h = state->src_h;
	plane->state->src_h = state->src_h;
	plane->state->alpha = state->alpha;
	plane->state->pixel_blend_mode = state->pixel_blend_mode;
	plane->state->rotation = state->rotation;
	plane->state->zpos = state->zpos;
	plane->state->normalized_zpos = state->normalized_zpos;
	plane->state->color_encoding = state->color_encoding;
	plane->state->color_range = state->color_range;
	plane->state->src = state->src;
	plane->state->dst = state->dst;
	plane->state->visible = state->visible;
1043 1044 1045 1046

	new_vc4_state = to_vc4_plane_state(state);
	vc4_state = to_vc4_plane_state(plane->state);

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
	vc4_state->crtc_x = new_vc4_state->crtc_x;
	vc4_state->crtc_y = new_vc4_state->crtc_y;
	vc4_state->crtc_h = new_vc4_state->crtc_h;
	vc4_state->crtc_w = new_vc4_state->crtc_w;
	vc4_state->src_x = new_vc4_state->src_x;
	vc4_state->src_y = new_vc4_state->src_y;
	memcpy(vc4_state->src_w, new_vc4_state->src_w,
	       sizeof(vc4_state->src_w));
	memcpy(vc4_state->src_h, new_vc4_state->src_h,
	       sizeof(vc4_state->src_h));
	memcpy(vc4_state->x_scaling, new_vc4_state->x_scaling,
	       sizeof(vc4_state->x_scaling));
	memcpy(vc4_state->y_scaling, new_vc4_state->y_scaling,
	       sizeof(vc4_state->y_scaling));
	vc4_state->is_unity = new_vc4_state->is_unity;
	vc4_state->is_yuv = new_vc4_state->is_yuv;
	memcpy(vc4_state->offsets, new_vc4_state->offsets,
	       sizeof(vc4_state->offsets));
	vc4_state->needs_bg_fill = new_vc4_state->needs_bg_fill;

1067 1068 1069 1070 1071 1072 1073
	/* Update the current vc4_state pos0, pos2 and ptr0 dlist entries. */
	vc4_state->dlist[vc4_state->pos0_offset] =
		new_vc4_state->dlist[vc4_state->pos0_offset];
	vc4_state->dlist[vc4_state->pos2_offset] =
		new_vc4_state->dlist[vc4_state->pos2_offset];
	vc4_state->dlist[vc4_state->ptr0_offset] =
		new_vc4_state->dlist[vc4_state->ptr0_offset];
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089

	/* Note that we can't just call vc4_plane_write_dlist()
	 * because that would smash the context data that the HVS is
	 * currently using.
	 */
	writel(vc4_state->dlist[vc4_state->pos0_offset],
	       &vc4_state->hw_dlist[vc4_state->pos0_offset]);
	writel(vc4_state->dlist[vc4_state->pos2_offset],
	       &vc4_state->hw_dlist[vc4_state->pos2_offset]);
	writel(vc4_state->dlist[vc4_state->ptr0_offset],
	       &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
}

static int vc4_plane_atomic_async_check(struct drm_plane *plane,
					struct drm_plane_state *state)
{
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
	struct vc4_plane_state *old_vc4_state, *new_vc4_state;
	int ret;
	u32 i;

	ret = vc4_plane_mode_set(plane, state);
	if (ret)
		return ret;

	old_vc4_state = to_vc4_plane_state(plane->state);
	new_vc4_state = to_vc4_plane_state(state);
	if (old_vc4_state->dlist_count != new_vc4_state->dlist_count ||
	    old_vc4_state->pos0_offset != new_vc4_state->pos0_offset ||
	    old_vc4_state->pos2_offset != new_vc4_state->pos2_offset ||
	    old_vc4_state->ptr0_offset != new_vc4_state->ptr0_offset ||
	    vc4_lbm_size(plane->state) != vc4_lbm_size(state))
1105 1106
		return -EINVAL;

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	/* Only pos0, pos2 and ptr0 DWORDS can be updated in an async update
	 * if anything else has changed, fallback to a sync update.
	 */
	for (i = 0; i < new_vc4_state->dlist_count; i++) {
		if (i == new_vc4_state->pos0_offset ||
		    i == new_vc4_state->pos2_offset ||
		    i == new_vc4_state->ptr0_offset ||
		    (new_vc4_state->lbm_offset &&
		     i == new_vc4_state->lbm_offset))
			continue;

		if (new_vc4_state->dlist[i] != old_vc4_state->dlist[i])
			return -EINVAL;
	}

1122 1123 1124
	return 0;
}

1125 1126 1127 1128
static int vc4_prepare_fb(struct drm_plane *plane,
			  struct drm_plane_state *state)
{
	struct vc4_bo *bo;
1129
	int ret;
1130

1131
	if (!state->fb)
1132 1133 1134
		return 0;

	bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
1135

1136
	drm_gem_fb_prepare_fb(plane, state);
1137 1138 1139 1140

	if (plane->state->fb == state->fb)
		return 0;

1141 1142 1143 1144
	ret = vc4_bo_inc_usecnt(bo);
	if (ret)
		return ret;

1145 1146 1147
	return 0;
}

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
static void vc4_cleanup_fb(struct drm_plane *plane,
			   struct drm_plane_state *state)
{
	struct vc4_bo *bo;

	if (plane->state->fb == state->fb || !state->fb)
		return;

	bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
	vc4_bo_dec_usecnt(bo);
}

1160 1161 1162
static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = {
	.atomic_check = vc4_plane_atomic_check,
	.atomic_update = vc4_plane_atomic_update,
1163
	.prepare_fb = vc4_prepare_fb,
1164
	.cleanup_fb = vc4_cleanup_fb,
1165 1166
	.atomic_async_check = vc4_plane_atomic_async_check,
	.atomic_async_update = vc4_plane_atomic_async_update,
1167 1168 1169 1170 1171 1172 1173
};

static void vc4_plane_destroy(struct drm_plane *plane)
{
	drm_plane_cleanup(plane);
}

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
static bool vc4_format_mod_supported(struct drm_plane *plane,
				     uint32_t format,
				     uint64_t modifier)
{
	/* Support T_TILING for RGB formats only. */
	switch (format) {
	case DRM_FORMAT_XRGB8888:
	case DRM_FORMAT_ARGB8888:
	case DRM_FORMAT_ABGR8888:
	case DRM_FORMAT_XBGR8888:
	case DRM_FORMAT_RGB565:
	case DRM_FORMAT_BGR565:
	case DRM_FORMAT_ARGB1555:
	case DRM_FORMAT_XRGB1555:
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
		switch (fourcc_mod_broadcom_mod(modifier)) {
		case DRM_FORMAT_MOD_LINEAR:
		case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED:
			return true;
		default:
			return false;
		}
	case DRM_FORMAT_NV12:
	case DRM_FORMAT_NV21:
		switch (fourcc_mod_broadcom_mod(modifier)) {
		case DRM_FORMAT_MOD_LINEAR:
		case DRM_FORMAT_MOD_BROADCOM_SAND64:
		case DRM_FORMAT_MOD_BROADCOM_SAND128:
		case DRM_FORMAT_MOD_BROADCOM_SAND256:
			return true;
		default:
			return false;
		}
1206 1207 1208 1209 1210
	case DRM_FORMAT_YUV422:
	case DRM_FORMAT_YVU422:
	case DRM_FORMAT_YUV420:
	case DRM_FORMAT_YVU420:
	case DRM_FORMAT_NV16:
1211
	case DRM_FORMAT_NV61:
1212 1213 1214 1215 1216
	default:
		return (modifier == DRM_FORMAT_MOD_LINEAR);
	}
}

1217
static const struct drm_plane_funcs vc4_plane_funcs = {
1218
	.update_plane = drm_atomic_helper_update_plane,
1219 1220 1221 1222 1223 1224
	.disable_plane = drm_atomic_helper_disable_plane,
	.destroy = vc4_plane_destroy,
	.set_property = NULL,
	.reset = vc4_plane_reset,
	.atomic_duplicate_state = vc4_plane_duplicate_state,
	.atomic_destroy_state = vc4_plane_destroy_state,
1225
	.format_mod_supported = vc4_format_mod_supported,
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
};

struct drm_plane *vc4_plane_init(struct drm_device *dev,
				 enum drm_plane_type type)
{
	struct drm_plane *plane = NULL;
	struct vc4_plane *vc4_plane;
	u32 formats[ARRAY_SIZE(hvs_formats)];
	int ret = 0;
	unsigned i;
1236 1237
	static const uint64_t modifiers[] = {
		DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED,
1238 1239 1240
		DRM_FORMAT_MOD_BROADCOM_SAND128,
		DRM_FORMAT_MOD_BROADCOM_SAND64,
		DRM_FORMAT_MOD_BROADCOM_SAND256,
1241 1242 1243
		DRM_FORMAT_MOD_LINEAR,
		DRM_FORMAT_MOD_INVALID
	};
1244 1245 1246

	vc4_plane = devm_kzalloc(dev->dev, sizeof(*vc4_plane),
				 GFP_KERNEL);
1247 1248
	if (!vc4_plane)
		return ERR_PTR(-ENOMEM);
1249

1250 1251 1252
	for (i = 0; i < ARRAY_SIZE(hvs_formats); i++)
		formats[i] = hvs_formats[i].drm;

1253
	plane = &vc4_plane->base;
1254
	ret = drm_universal_plane_init(dev, plane, 0,
1255
				       &vc4_plane_funcs,
1256
				       formats, ARRAY_SIZE(formats),
1257
				       modifiers, type, NULL);
1258 1259 1260

	drm_plane_helper_add(plane, &vc4_plane_helper_funcs);

1261
	drm_plane_create_alpha_property(plane);
1262 1263 1264 1265 1266
	drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
					   DRM_MODE_ROTATE_0 |
					   DRM_MODE_ROTATE_180 |
					   DRM_MODE_REFLECT_X |
					   DRM_MODE_REFLECT_Y);
1267

1268 1269
	return plane;
}
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307

int vc4_plane_create_additional_planes(struct drm_device *drm,
				       struct drm_crtc *crtc)
{
	struct drm_plane *cursor_plane;
	unsigned int i;

	/* Set up some arbitrary number of planes.  We're not limited
	 * by a set number of physical registers, just the space in
	 * the HVS (16k) and how small an plane can be (28 bytes).
	 * However, each plane we set up takes up some memory, and
	 * increases the cost of looping over planes, which atomic
	 * modesetting does quite a bit.  As a result, we pick a
	 * modest number of planes to expose, that should hopefully
	 * still cover any sane usecase.
	 */
	for (i = 0; i < 8; i++) {
		struct drm_plane *plane =
			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);

		if (IS_ERR(plane))
			continue;

		plane->possible_crtcs = drm_crtc_mask(crtc);
	}

	/* Set up the legacy cursor after overlay initialization,
	 * since we overlay planes on the CRTC in the order they were
	 * initialized.
	 */
	cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
	if (!IS_ERR(cursor_plane)) {
		cursor_plane->possible_crtcs = drm_crtc_mask(crtc);
		crtc->cursor = cursor_plane;
	}

	return 0;
}