vc4_plane.c 31.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * Copyright (C) 2015 Broadcom
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

/**
 * DOC: VC4 plane module
 *
 * Each DRM plane is a layer of pixels being scanned out by the HVS.
 *
 * At atomic modeset check time, we compute the HVS display element
 * state that would be necessary for displaying the plane (giving us a
 * chance to figure out if a plane configuration is invalid), then at
 * atomic flush time the CRTC will ask us to write our element state
 * into the region of the HVS that it has allocated for us.
 */

21 22 23 24
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_fb_cma_helper.h>
#include <drm/drm_plane_helper.h>
D
Daniel Vetter 已提交
25
#include <drm/drm_atomic_uapi.h>
26

27
#include "uapi/drm/vc4_drm.h"
28 29 30 31 32 33 34 35 36 37
#include "vc4_drv.h"
#include "vc4_regs.h"

static const struct hvs_format {
	u32 drm; /* DRM_FORMAT_* */
	u32 hvs; /* HVS_FORMAT_* */
	u32 pixel_order;
} hvs_formats[] = {
	{
		.drm = DRM_FORMAT_XRGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
38
		.pixel_order = HVS_PIXEL_ORDER_ABGR,
39 40 41
	},
	{
		.drm = DRM_FORMAT_ARGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
42
		.pixel_order = HVS_PIXEL_ORDER_ABGR,
43
	},
44 45
	{
		.drm = DRM_FORMAT_ABGR8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
46
		.pixel_order = HVS_PIXEL_ORDER_ARGB,
47 48 49
	},
	{
		.drm = DRM_FORMAT_XBGR8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
50
		.pixel_order = HVS_PIXEL_ORDER_ARGB,
51
	},
52 53
	{
		.drm = DRM_FORMAT_RGB565, .hvs = HVS_PIXEL_FORMAT_RGB565,
54
		.pixel_order = HVS_PIXEL_ORDER_XRGB,
55 56 57
	},
	{
		.drm = DRM_FORMAT_BGR565, .hvs = HVS_PIXEL_FORMAT_RGB565,
58
		.pixel_order = HVS_PIXEL_ORDER_XBGR,
59 60 61
	},
	{
		.drm = DRM_FORMAT_ARGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551,
62
		.pixel_order = HVS_PIXEL_ORDER_ABGR,
63 64 65
	},
	{
		.drm = DRM_FORMAT_XRGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551,
66
		.pixel_order = HVS_PIXEL_ORDER_ABGR,
67
	},
68 69
	{
		.drm = DRM_FORMAT_RGB888, .hvs = HVS_PIXEL_FORMAT_RGB888,
70
		.pixel_order = HVS_PIXEL_ORDER_XRGB,
71 72 73
	},
	{
		.drm = DRM_FORMAT_BGR888, .hvs = HVS_PIXEL_FORMAT_RGB888,
74
		.pixel_order = HVS_PIXEL_ORDER_XBGR,
75
	},
76 77 78
	{
		.drm = DRM_FORMAT_YUV422,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
79
		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
80 81 82 83
	},
	{
		.drm = DRM_FORMAT_YVU422,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
84
		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
85 86 87 88
	},
	{
		.drm = DRM_FORMAT_YUV420,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
89
		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
90 91 92 93
	},
	{
		.drm = DRM_FORMAT_YVU420,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
94
		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
95 96 97 98
	},
	{
		.drm = DRM_FORMAT_NV12,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
99
		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
100
	},
101 102 103 104 105
	{
		.drm = DRM_FORMAT_NV21,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
	},
106 107 108
	{
		.drm = DRM_FORMAT_NV16,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
109
		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
110
	},
111 112 113 114 115
	{
		.drm = DRM_FORMAT_NV61,
		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
	},
116 117 118 119 120 121 122 123 124 125 126 127 128 129
};

static const struct hvs_format *vc4_get_hvs_format(u32 drm_format)
{
	unsigned i;

	for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
		if (hvs_formats[i].drm == drm_format)
			return &hvs_formats[i];
	}

	return NULL;
}

130 131
static enum vc4_scaling_mode vc4_get_scaling_mode(u32 src, u32 dst)
{
132 133 134
	if (dst == src)
		return VC4_SCALING_NONE;
	if (3 * dst >= 2 * src)
135 136
		return VC4_SCALING_PPF;
	else
137
		return VC4_SCALING_TPZ;
138 139
}

140 141 142 143 144
static bool plane_enabled(struct drm_plane_state *state)
{
	return state->fb && state->crtc;
}

145
static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane)
146 147 148 149 150 151 152 153 154 155
{
	struct vc4_plane_state *vc4_state;

	if (WARN_ON(!plane->state))
		return NULL;

	vc4_state = kmemdup(plane->state, sizeof(*vc4_state), GFP_KERNEL);
	if (!vc4_state)
		return NULL;

156 157
	memset(&vc4_state->lbm, 0, sizeof(vc4_state->lbm));

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
	__drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base);

	if (vc4_state->dlist) {
		vc4_state->dlist = kmemdup(vc4_state->dlist,
					   vc4_state->dlist_count * 4,
					   GFP_KERNEL);
		if (!vc4_state->dlist) {
			kfree(vc4_state);
			return NULL;
		}
		vc4_state->dlist_size = vc4_state->dlist_count;
	}

	return &vc4_state->base;
}

174 175
static void vc4_plane_destroy_state(struct drm_plane *plane,
				    struct drm_plane_state *state)
176
{
177
	struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
178 179
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);

180 181 182 183 184 185 186 187
	if (vc4_state->lbm.allocated) {
		unsigned long irqflags;

		spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
		drm_mm_remove_node(&vc4_state->lbm);
		spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
	}

188
	kfree(vc4_state->dlist);
189
	__drm_atomic_helper_plane_destroy_state(&vc4_state->base);
190 191 192 193
	kfree(state);
}

/* Called during init to allocate the plane's atomic state. */
194
static void vc4_plane_reset(struct drm_plane *plane)
195 196 197 198 199 200 201 202 203
{
	struct vc4_plane_state *vc4_state;

	WARN_ON(plane->state);

	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
	if (!vc4_state)
		return;

204
	__drm_atomic_helper_plane_reset(plane, &vc4_state->base);
205 206 207 208 209 210
}

static void vc4_dlist_write(struct vc4_plane_state *vc4_state, u32 val)
{
	if (vc4_state->dlist_count == vc4_state->dlist_size) {
		u32 new_size = max(4u, vc4_state->dlist_count * 2);
211
		u32 *new_dlist = kmalloc_array(new_size, 4, GFP_KERNEL);
212 213 214 215 216 217 218 219 220 221 222 223 224

		if (!new_dlist)
			return;
		memcpy(new_dlist, vc4_state->dlist, vc4_state->dlist_count * 4);

		kfree(vc4_state->dlist);
		vc4_state->dlist = new_dlist;
		vc4_state->dlist_size = new_size;
	}

	vc4_state->dlist[vc4_state->dlist_count++] = val;
}

225 226 227 228 229
/* Returns the scl0/scl1 field based on whether the dimensions need to
 * be up/down/non-scaled.
 *
 * This is a replication of a table from the spec.
 */
230
static u32 vc4_get_scl_field(struct drm_plane_state *state, int plane)
231 232 233
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);

234
	switch (vc4_state->x_scaling[plane] << 2 | vc4_state->y_scaling[plane]) {
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
	case VC4_SCALING_PPF << 2 | VC4_SCALING_PPF:
		return SCALER_CTL0_SCL_H_PPF_V_PPF;
	case VC4_SCALING_TPZ << 2 | VC4_SCALING_PPF:
		return SCALER_CTL0_SCL_H_TPZ_V_PPF;
	case VC4_SCALING_PPF << 2 | VC4_SCALING_TPZ:
		return SCALER_CTL0_SCL_H_PPF_V_TPZ;
	case VC4_SCALING_TPZ << 2 | VC4_SCALING_TPZ:
		return SCALER_CTL0_SCL_H_TPZ_V_TPZ;
	case VC4_SCALING_PPF << 2 | VC4_SCALING_NONE:
		return SCALER_CTL0_SCL_H_PPF_V_NONE;
	case VC4_SCALING_NONE << 2 | VC4_SCALING_PPF:
		return SCALER_CTL0_SCL_H_NONE_V_PPF;
	case VC4_SCALING_NONE << 2 | VC4_SCALING_TPZ:
		return SCALER_CTL0_SCL_H_NONE_V_TPZ;
	case VC4_SCALING_TPZ << 2 | VC4_SCALING_NONE:
		return SCALER_CTL0_SCL_H_TPZ_V_NONE;
	default:
	case VC4_SCALING_NONE << 2 | VC4_SCALING_NONE:
		/* The unity case is independently handled by
		 * SCALER_CTL0_UNITY.
		 */
		return 0;
	}
}

260
static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state *state)
261
{
262
	struct drm_plane *plane = state->plane;
263 264
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
	struct drm_framebuffer *fb = state->fb;
265
	struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
266
	u32 subpixel_src_mask = (1 << 16) - 1;
V
Ville Syrjälä 已提交
267
	u32 format = fb->format->format;
268
	int num_planes = fb->format->num_planes;
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
	int min_scale = 1, max_scale = INT_MAX;
	struct drm_crtc_state *crtc_state;
	u32 h_subsample, v_subsample;
	int i, ret;

	crtc_state = drm_atomic_get_existing_crtc_state(state->state,
							state->crtc);
	if (!crtc_state) {
		DRM_DEBUG_KMS("Invalid crtc state\n");
		return -EINVAL;
	}

	/* No configuring scaling on the cursor plane, since it gets
	 * non-vblank-synced updates, and scaling requires LBM changes which
	 * have to be vblank-synced.
	 */
	if (plane->type == DRM_PLANE_TYPE_CURSOR) {
		min_scale = DRM_PLANE_HELPER_NO_SCALING;
		max_scale = DRM_PLANE_HELPER_NO_SCALING;
	} else {
		min_scale = 1;
		max_scale = INT_MAX;
	}

	ret = drm_atomic_helper_check_plane_state(state, crtc_state,
						  min_scale, max_scale,
						  true, true);
	if (ret)
		return ret;

	h_subsample = drm_format_horz_chroma_subsampling(format);
	v_subsample = drm_format_vert_chroma_subsampling(format);
301

302 303
	for (i = 0; i < num_planes; i++)
		vc4_state->offsets[i] = bo->paddr + fb->offsets[i];
304

305
	/* We don't support subpixel source positioning for scaling. */
306 307 308 309
	if ((state->src.x1 & subpixel_src_mask) ||
	    (state->src.x2 & subpixel_src_mask) ||
	    (state->src.y1 & subpixel_src_mask) ||
	    (state->src.y2 & subpixel_src_mask)) {
310 311 312
		return -EINVAL;
	}

313 314 315 316
	vc4_state->src_x = state->src.x1 >> 16;
	vc4_state->src_y = state->src.y1 >> 16;
	vc4_state->src_w[0] = (state->src.x2 - state->src.x1) >> 16;
	vc4_state->src_h[0] = (state->src.y2 - state->src.y1) >> 16;
317

318 319 320 321
	vc4_state->crtc_x = state->dst.x1;
	vc4_state->crtc_y = state->dst.y1;
	vc4_state->crtc_w = state->dst.x2 - state->dst.x1;
	vc4_state->crtc_h = state->dst.y2 - state->dst.y1;
322

323 324 325 326 327
	vc4_state->x_scaling[0] = vc4_get_scaling_mode(vc4_state->src_w[0],
						       vc4_state->crtc_w);
	vc4_state->y_scaling[0] = vc4_get_scaling_mode(vc4_state->src_h[0],
						       vc4_state->crtc_h);

328 329 330
	vc4_state->is_unity = (vc4_state->x_scaling[0] == VC4_SCALING_NONE &&
			       vc4_state->y_scaling[0] == VC4_SCALING_NONE);

331 332 333 334 335 336 337 338 339 340 341 342 343
	if (num_planes > 1) {
		vc4_state->is_yuv = true;

		vc4_state->src_w[1] = vc4_state->src_w[0] / h_subsample;
		vc4_state->src_h[1] = vc4_state->src_h[0] / v_subsample;

		vc4_state->x_scaling[1] =
			vc4_get_scaling_mode(vc4_state->src_w[1],
					     vc4_state->crtc_w);
		vc4_state->y_scaling[1] =
			vc4_get_scaling_mode(vc4_state->src_h[1],
					     vc4_state->crtc_h);

344 345 346 347 348
		/* YUV conversion requires that horizontal scaling be enabled
		 * on the UV plane even if vc4_get_scaling_mode() returned
		 * VC4_SCALING_NONE (which can happen when the down-scaling
		 * ratio is 0.5). Let's force it to VC4_SCALING_PPF in this
		 * case.
349
		 */
350 351
		if (vc4_state->x_scaling[1] == VC4_SCALING_NONE)
			vc4_state->x_scaling[1] = VC4_SCALING_PPF;
352
	} else {
353
		vc4_state->is_yuv = false;
354 355
		vc4_state->x_scaling[1] = VC4_SCALING_NONE;
		vc4_state->y_scaling[1] = VC4_SCALING_NONE;
356 357
	}

358 359 360
	return 0;
}

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
static void vc4_write_tpz(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
{
	u32 scale, recip;

	scale = (1 << 16) * src / dst;

	/* The specs note that while the reciprocal would be defined
	 * as (1<<32)/scale, ~0 is close enough.
	 */
	recip = ~0 / scale;

	vc4_dlist_write(vc4_state,
			VC4_SET_FIELD(scale, SCALER_TPZ0_SCALE) |
			VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE));
	vc4_dlist_write(vc4_state,
			VC4_SET_FIELD(recip, SCALER_TPZ1_RECIP));
}

static void vc4_write_ppf(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
{
	u32 scale = (1 << 16) * src / dst;

	vc4_dlist_write(vc4_state,
			SCALER_PPF_AGC |
			VC4_SET_FIELD(scale, SCALER_PPF_SCALE) |
			VC4_SET_FIELD(0, SCALER_PPF_IPHASE));
}

static u32 vc4_lbm_size(struct drm_plane_state *state)
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
	/* This is the worst case number.  One of the two sizes will
	 * be used depending on the scaling configuration.
	 */
395
	u32 pix_per_line = max(vc4_state->src_w[0], (u32)vc4_state->crtc_w);
396 397
	u32 lbm;

398 399 400 401 402
	/* LBM is not needed when there's no vertical scaling. */
	if (vc4_state->y_scaling[0] == VC4_SCALING_NONE &&
	    vc4_state->y_scaling[1] == VC4_SCALING_NONE)
		return 0;

403
	if (!vc4_state->is_yuv) {
404
		if (vc4_state->y_scaling[0] == VC4_SCALING_TPZ)
405 406 407 408 409 410 411 412 413 414
			lbm = pix_per_line * 8;
		else {
			/* In special cases, this multiplier might be 12. */
			lbm = pix_per_line * 16;
		}
	} else {
		/* There are cases for this going down to a multiplier
		 * of 2, but according to the firmware source, the
		 * table in the docs is somewhat wrong.
		 */
415 416 417 418 419 420 421 422
		lbm = pix_per_line * 16;
	}

	lbm = roundup(lbm, 32);

	return lbm;
}

423 424
static void vc4_write_scaling_parameters(struct drm_plane_state *state,
					 int channel)
425 426 427 428
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);

	/* Ch0 H-PPF Word 0: Scaling Parameters */
429
	if (vc4_state->x_scaling[channel] == VC4_SCALING_PPF) {
430
		vc4_write_ppf(vc4_state,
431
			      vc4_state->src_w[channel], vc4_state->crtc_w);
432 433 434
	}

	/* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */
435
	if (vc4_state->y_scaling[channel] == VC4_SCALING_PPF) {
436
		vc4_write_ppf(vc4_state,
437
			      vc4_state->src_h[channel], vc4_state->crtc_h);
438 439 440 441
		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
	}

	/* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */
442
	if (vc4_state->x_scaling[channel] == VC4_SCALING_TPZ) {
443
		vc4_write_tpz(vc4_state,
444
			      vc4_state->src_w[channel], vc4_state->crtc_w);
445 446 447
	}

	/* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */
448
	if (vc4_state->y_scaling[channel] == VC4_SCALING_TPZ) {
449
		vc4_write_tpz(vc4_state,
450
			      vc4_state->src_h[channel], vc4_state->crtc_h);
451 452 453
		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
	}
}
454

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
static int vc4_plane_allocate_lbm(struct drm_plane_state *state)
{
	struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev);
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
	unsigned long irqflags;
	u32 lbm_size;

	lbm_size = vc4_lbm_size(state);
	if (!lbm_size)
		return 0;

	if (WARN_ON(!vc4_state->lbm_offset))
		return -EINVAL;

	/* Allocate the LBM memory that the HVS will use for temporary
	 * storage due to our scaling/format conversion.
	 */
	if (!vc4_state->lbm.allocated) {
		int ret;

		spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
		ret = drm_mm_insert_node_generic(&vc4->hvs->lbm_mm,
						 &vc4_state->lbm,
						 lbm_size, 32, 0, 0);
		spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);

		if (ret)
			return ret;
	} else {
		WARN_ON_ONCE(lbm_size != vc4_state->lbm.size);
	}

	vc4_state->dlist[vc4_state->lbm_offset] = vc4_state->lbm.start;

	return 0;
}

492 493 494 495 496 497
/* Writes out a full display list for an active plane to the plane's
 * private dlist state.
 */
static int vc4_plane_mode_set(struct drm_plane *plane,
			      struct drm_plane_state *state)
{
498
	struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
499 500 501
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
	struct drm_framebuffer *fb = state->fb;
	u32 ctl0_offset = vc4_state->dlist_count;
V
Ville Syrjälä 已提交
502
	const struct hvs_format *format = vc4_get_hvs_format(fb->format->format);
503
	u64 base_format_mod = fourcc_mod_broadcom_mod(fb->modifier);
504
	int num_planes = drm_format_num_planes(format->drm);
505
	u32 h_subsample, v_subsample;
506
	bool mix_plane_alpha;
507
	bool covers_screen;
508
	u32 scl0, scl1, pitch0;
509
	u32 tiling;
510
	u32 hvs_format = format->hvs;
511
	int ret, i;
512 513

	ret = vc4_plane_setup_clipping_and_scaling(state);
514 515 516
	if (ret)
		return ret;

517 518 519 520 521 522 523
	/* SCL1 is used for Cb/Cr scaling of planar formats.  For RGB
	 * and 4:4:4, scl1 should be set to scl0 so both channels of
	 * the scaler do the same thing.  For YUV, the Y plane needs
	 * to be put in channel 1 and Cb/Cr in channel 0, so we swap
	 * the scl fields here.
	 */
	if (num_planes == 1) {
524
		scl0 = vc4_get_scl_field(state, 0);
525 526 527 528 529
		scl1 = scl0;
	} else {
		scl0 = vc4_get_scl_field(state, 1);
		scl1 = vc4_get_scl_field(state, 0);
	}
530

531 532 533
	h_subsample = drm_format_horz_chroma_subsampling(format->drm);
	v_subsample = drm_format_vert_chroma_subsampling(format->drm);

534
	switch (base_format_mod) {
535 536 537
	case DRM_FORMAT_MOD_LINEAR:
		tiling = SCALER_CTL0_TILING_LINEAR;
		pitch0 = VC4_SET_FIELD(fb->pitches[0], SCALER_SRC_PITCH);
538 539 540 541 542 543 544 545 546 547 548 549

		/* Adjust the base pointer to the first pixel to be scanned
		 * out.
		 */
		for (i = 0; i < num_planes; i++) {
			vc4_state->offsets[i] += vc4_state->src_y /
						 (i ? v_subsample : 1) *
						 fb->pitches[i];
			vc4_state->offsets[i] += vc4_state->src_x /
						 (i ? h_subsample : 1) *
						 fb->format->cpp[i];
		}
550

551
		break;
552 553 554

	case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED: {
		u32 tile_size_shift = 12; /* T tiles are 4kb */
555 556
		/* Whole-tile offsets, mostly for setting the pitch. */
		u32 tile_w_shift = fb->format->cpp[0] == 2 ? 6 : 5;
557
		u32 tile_h_shift = 5; /* 16 and 32bpp are 32 pixels high */
558 559 560 561 562 563 564 565 566 567
		u32 tile_w_mask = (1 << tile_w_shift) - 1;
		/* The height mask on 32-bit-per-pixel tiles is 63, i.e. twice
		 * the height (in pixels) of a 4k tile.
		 */
		u32 tile_h_mask = (2 << tile_h_shift) - 1;
		/* For T-tiled, the FB pitch is "how many bytes from one row to
		 * the next, such that
		 *
		 *	pitch * tile_h == tile_size * tiles_per_row
		 */
568
		u32 tiles_w = fb->pitches[0] >> (tile_size_shift - tile_h_shift);
569 570 571 572 573 574 575 576 577 578 579 580
		u32 tiles_l = vc4_state->src_x >> tile_w_shift;
		u32 tiles_r = tiles_w - tiles_l;
		u32 tiles_t = vc4_state->src_y >> tile_h_shift;
		/* Intra-tile offsets, which modify the base address (the
		 * SCALER_PITCH0_TILE_Y_OFFSET tells HVS how to walk from that
		 * base address).
		 */
		u32 tile_y = (vc4_state->src_y >> 4) & 1;
		u32 subtile_y = (vc4_state->src_y >> 2) & 3;
		u32 utile_y = vc4_state->src_y & 3;
		u32 x_off = vc4_state->src_x & tile_w_mask;
		u32 y_off = vc4_state->src_y & tile_h_mask;
581

582
		tiling = SCALER_CTL0_TILING_256B_OR_T;
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
		pitch0 = (VC4_SET_FIELD(x_off, SCALER_PITCH0_SINK_PIX) |
			  VC4_SET_FIELD(y_off, SCALER_PITCH0_TILE_Y_OFFSET) |
			  VC4_SET_FIELD(tiles_l, SCALER_PITCH0_TILE_WIDTH_L) |
			  VC4_SET_FIELD(tiles_r, SCALER_PITCH0_TILE_WIDTH_R));
		vc4_state->offsets[0] += tiles_t * (tiles_w << tile_size_shift);
		vc4_state->offsets[0] += subtile_y << 8;
		vc4_state->offsets[0] += utile_y << 4;

		/* Rows of tiles alternate left-to-right and right-to-left. */
		if (tiles_t & 1) {
			pitch0 |= SCALER_PITCH0_TILE_INITIAL_LINE_DIR;
			vc4_state->offsets[0] += (tiles_w - tiles_l) <<
						 tile_size_shift;
			vc4_state->offsets[0] -= (1 + !tile_y) << 10;
		} else {
			vc4_state->offsets[0] += tiles_l << tile_size_shift;
			vc4_state->offsets[0] += tile_y << 10;
		}
601 602

		break;
603 604
	}

605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
	case DRM_FORMAT_MOD_BROADCOM_SAND64:
	case DRM_FORMAT_MOD_BROADCOM_SAND128:
	case DRM_FORMAT_MOD_BROADCOM_SAND256: {
		uint32_t param = fourcc_mod_broadcom_param(fb->modifier);

		/* Column-based NV12 or RGBA.
		 */
		if (fb->format->num_planes > 1) {
			if (hvs_format != HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE) {
				DRM_DEBUG_KMS("SAND format only valid for NV12/21");
				return -EINVAL;
			}
			hvs_format = HVS_PIXEL_FORMAT_H264;
		} else {
			if (base_format_mod == DRM_FORMAT_MOD_BROADCOM_SAND256) {
				DRM_DEBUG_KMS("SAND256 format only valid for H.264");
				return -EINVAL;
			}
		}

		switch (base_format_mod) {
		case DRM_FORMAT_MOD_BROADCOM_SAND64:
			tiling = SCALER_CTL0_TILING_64B;
			break;
		case DRM_FORMAT_MOD_BROADCOM_SAND128:
			tiling = SCALER_CTL0_TILING_128B;
			break;
		case DRM_FORMAT_MOD_BROADCOM_SAND256:
			tiling = SCALER_CTL0_TILING_256B_OR_T;
			break;
		default:
			break;
		}

		if (param > SCALER_TILE_HEIGHT_MASK) {
			DRM_DEBUG_KMS("SAND height too large (%d)\n", param);
			return -EINVAL;
		}

		pitch0 = VC4_SET_FIELD(param, SCALER_TILE_HEIGHT);
		break;
	}

648 649 650 651 652 653
	default:
		DRM_DEBUG_KMS("Unsupported FB tiling flag 0x%16llx",
			      (long long)fb->modifier);
		return -EINVAL;
	}

654
	/* Control word */
655 656
	vc4_dlist_write(vc4_state,
			SCALER_CTL0_VALID |
657
			VC4_SET_FIELD(SCALER_CTL0_RGBA_EXPAND_ROUND, SCALER_CTL0_RGBA_EXPAND) |
658
			(format->pixel_order << SCALER_CTL0_ORDER_SHIFT) |
659
			(hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
660
			VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
661
			(vc4_state->is_unity ? SCALER_CTL0_UNITY : 0) |
662 663
			VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
			VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1));
664 665

	/* Position Word 0: Image Positions and Alpha Value */
666
	vc4_state->pos0_offset = vc4_state->dlist_count;
667
	vc4_dlist_write(vc4_state,
668
			VC4_SET_FIELD(state->alpha >> 8, SCALER_POS0_FIXED_ALPHA) |
669 670
			VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) |
			VC4_SET_FIELD(vc4_state->crtc_y, SCALER_POS0_START_Y));
671

672 673 674 675 676 677 678 679
	/* Position Word 1: Scaled Image Dimensions. */
	if (!vc4_state->is_unity) {
		vc4_dlist_write(vc4_state,
				VC4_SET_FIELD(vc4_state->crtc_w,
					      SCALER_POS1_SCL_WIDTH) |
				VC4_SET_FIELD(vc4_state->crtc_h,
					      SCALER_POS1_SCL_HEIGHT));
	}
680

681 682 683 684 685 686 687
	/* Don't waste cycles mixing with plane alpha if the set alpha
	 * is opaque or there is no per-pixel alpha information.
	 * In any case we use the alpha property value as the fixed alpha.
	 */
	mix_plane_alpha = state->alpha != DRM_BLEND_ALPHA_OPAQUE &&
			  fb->format->has_alpha;

688
	/* Position Word 2: Source Image Size, Alpha */
689
	vc4_state->pos2_offset = vc4_state->dlist_count;
690
	vc4_dlist_write(vc4_state,
691
			VC4_SET_FIELD(fb->format->has_alpha ?
692 693 694
				      SCALER_POS2_ALPHA_MODE_PIPELINE :
				      SCALER_POS2_ALPHA_MODE_FIXED,
				      SCALER_POS2_ALPHA_MODE) |
695
			(mix_plane_alpha ? SCALER_POS2_ALPHA_MIX : 0) |
696
			(fb->format->has_alpha ? SCALER_POS2_ALPHA_PREMULT : 0) |
697 698
			VC4_SET_FIELD(vc4_state->src_w[0], SCALER_POS2_WIDTH) |
			VC4_SET_FIELD(vc4_state->src_h[0], SCALER_POS2_HEIGHT));
699 700 701 702

	/* Position Word 3: Context.  Written by the HVS. */
	vc4_dlist_write(vc4_state, 0xc0c0c0c0);

703 704 705 706 707

	/* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers
	 *
	 * The pointers may be any byte address.
	 */
708
	vc4_state->ptr0_offset = vc4_state->dlist_count;
709 710
	for (i = 0; i < num_planes; i++)
		vc4_dlist_write(vc4_state, vc4_state->offsets[i]);
711

712 713 714
	/* Pointer Context Word 0/1/2: Written by the HVS */
	for (i = 0; i < num_planes; i++)
		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
715

716 717 718 719 720
	/* Pitch word 0 */
	vc4_dlist_write(vc4_state, pitch0);

	/* Pitch word 1/2 */
	for (i = 1; i < num_planes; i++) {
721 722 723 724 725 726 727
		if (hvs_format != HVS_PIXEL_FORMAT_H264) {
			vc4_dlist_write(vc4_state,
					VC4_SET_FIELD(fb->pitches[i],
						      SCALER_SRC_PITCH));
		} else {
			vc4_dlist_write(vc4_state, pitch0);
		}
728 729 730 731 732 733 734 735
	}

	/* Colorspace conversion words */
	if (vc4_state->is_yuv) {
		vc4_dlist_write(vc4_state, SCALER_CSC0_ITR_R_601_5);
		vc4_dlist_write(vc4_state, SCALER_CSC1_ITR_R_601_5);
		vc4_dlist_write(vc4_state, SCALER_CSC2_ITR_R_601_5);
	}
736

737 738
	vc4_state->lbm_offset = 0;

739 740 741 742
	if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
	    vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
	    vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
	    vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
743 744 745
		/* Reserve a slot for the LBM Base Address. The real value will
		 * be set when calling vc4_plane_allocate_lbm().
		 */
746
		if (vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
747 748
		    vc4_state->y_scaling[1] != VC4_SCALING_NONE)
			vc4_state->lbm_offset = vc4_state->dlist_count++;
749

750 751 752 753 754 755 756 757
		if (num_planes > 1) {
			/* Emit Cb/Cr as channel 0 and Y as channel
			 * 1. This matches how we set up scl0/scl1
			 * above.
			 */
			vc4_write_scaling_parameters(state, 1);
		}
		vc4_write_scaling_parameters(state, 0);
758 759 760 761

		/* If any PPF setup was done, then all the kernel
		 * pointers get uploaded.
		 */
762 763 764 765
		if (vc4_state->x_scaling[0] == VC4_SCALING_PPF ||
		    vc4_state->y_scaling[0] == VC4_SCALING_PPF ||
		    vc4_state->x_scaling[1] == VC4_SCALING_PPF ||
		    vc4_state->y_scaling[1] == VC4_SCALING_PPF) {
766 767 768 769 770 771 772 773 774 775 776 777 778 779
			u32 kernel = VC4_SET_FIELD(vc4->hvs->mitchell_netravali_filter.start,
						   SCALER_PPF_KERNEL_OFFSET);

			/* HPPF plane 0 */
			vc4_dlist_write(vc4_state, kernel);
			/* VPPF plane 0 */
			vc4_dlist_write(vc4_state, kernel);
			/* HPPF plane 1 */
			vc4_dlist_write(vc4_state, kernel);
			/* VPPF plane 1 */
			vc4_dlist_write(vc4_state, kernel);
		}
	}

780 781 782
	vc4_state->dlist[ctl0_offset] |=
		VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE);

783 784 785 786 787
	/* crtc_* are already clipped coordinates. */
	covers_screen = vc4_state->crtc_x == 0 && vc4_state->crtc_y == 0 &&
			vc4_state->crtc_w == state->crtc->mode.hdisplay &&
			vc4_state->crtc_h == state->crtc->mode.vdisplay;
	/* Background fill might be necessary when the plane has per-pixel
788 789
	 * alpha content or a non-opaque plane alpha and could blend from the
	 * background or does not cover the entire screen.
790
	 */
791 792
	vc4_state->needs_bg_fill = fb->format->has_alpha || !covers_screen ||
				   state->alpha != DRM_BLEND_ALPHA_OPAQUE;
793

794 795 796 797 798 799 800 801 802 803 804 805 806 807
	return 0;
}

/* If a modeset involves changing the setup of a plane, the atomic
 * infrastructure will call this to validate a proposed plane setup.
 * However, if a plane isn't getting updated, this (and the
 * corresponding vc4_plane_atomic_update) won't get called.  Thus, we
 * compute the dlist here and have all active plane dlists get updated
 * in the CRTC's flush.
 */
static int vc4_plane_atomic_check(struct drm_plane *plane,
				  struct drm_plane_state *state)
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
808
	int ret;
809 810 811

	vc4_state->dlist_count = 0;

812
	if (!plane_enabled(state))
813
		return 0;
814 815 816 817 818 819

	ret = vc4_plane_mode_set(plane, state);
	if (ret)
		return ret;

	return vc4_plane_allocate_lbm(state);
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
}

static void vc4_plane_atomic_update(struct drm_plane *plane,
				    struct drm_plane_state *old_state)
{
	/* No contents here.  Since we don't know where in the CRTC's
	 * dlist we should be stored, our dlist is uploaded to the
	 * hardware with vc4_plane_write_dlist() at CRTC atomic_flush
	 * time.
	 */
}

u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist)
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
	int i;

837 838
	vc4_state->hw_dlist = dlist;

839 840 841 842 843 844 845
	/* Can't memcpy_toio() because it needs to be 32-bit writes. */
	for (i = 0; i < vc4_state->dlist_count; i++)
		writel(vc4_state->dlist[i], &dlist[i]);

	return vc4_state->dlist_count;
}

846
u32 vc4_plane_dlist_size(const struct drm_plane_state *state)
847
{
848 849
	const struct vc4_plane_state *vc4_state =
		container_of(state, typeof(*vc4_state), base);
850 851 852 853

	return vc4_state->dlist_count;
}

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
/* Updates the plane to immediately (well, once the FIFO needs
 * refilling) scan out from at a new framebuffer.
 */
void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb)
{
	struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
	struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
	uint32_t addr;

	/* We're skipping the address adjustment for negative origin,
	 * because this is only called on the primary plane.
	 */
	WARN_ON_ONCE(plane->state->crtc_x < 0 || plane->state->crtc_y < 0);
	addr = bo->paddr + fb->offsets[0];

	/* Write the new address into the hardware immediately.  The
	 * scanout will start from this address as soon as the FIFO
	 * needs to refill with pixels.
	 */
873
	writel(addr, &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
874 875 876 877 878

	/* Also update the CPU-side dlist copy, so that any later
	 * atomic updates that don't do a new modeset on our plane
	 * also use our updated address.
	 */
879
	vc4_state->dlist[vc4_state->ptr0_offset] = addr;
880 881
}

882 883 884
static void vc4_plane_atomic_async_update(struct drm_plane *plane,
					  struct drm_plane_state *state)
{
885
	struct vc4_plane_state *vc4_state, *new_vc4_state;
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905

	if (plane->state->fb != state->fb) {
		vc4_plane_async_set_fb(plane, state->fb);
		drm_atomic_set_fb_for_plane(plane->state, state->fb);
	}

	/* Set the cursor's position on the screen.  This is the
	 * expected change from the drm_mode_cursor_universal()
	 * helper.
	 */
	plane->state->crtc_x = state->crtc_x;
	plane->state->crtc_y = state->crtc_y;

	/* Allow changing the start position within the cursor BO, if
	 * that matters.
	 */
	plane->state->src_x = state->src_x;
	plane->state->src_y = state->src_y;

	/* Update the display list based on the new crtc_x/y. */
906 907 908 909 910 911 912 913 914 915 916 917
	vc4_plane_atomic_check(plane, state);

	new_vc4_state = to_vc4_plane_state(state);
	vc4_state = to_vc4_plane_state(plane->state);

	/* Update the current vc4_state pos0, pos2 and ptr0 dlist entries. */
	vc4_state->dlist[vc4_state->pos0_offset] =
		new_vc4_state->dlist[vc4_state->pos0_offset];
	vc4_state->dlist[vc4_state->pos2_offset] =
		new_vc4_state->dlist[vc4_state->pos2_offset];
	vc4_state->dlist[vc4_state->ptr0_offset] =
		new_vc4_state->dlist[vc4_state->ptr0_offset];
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943

	/* Note that we can't just call vc4_plane_write_dlist()
	 * because that would smash the context data that the HVS is
	 * currently using.
	 */
	writel(vc4_state->dlist[vc4_state->pos0_offset],
	       &vc4_state->hw_dlist[vc4_state->pos0_offset]);
	writel(vc4_state->dlist[vc4_state->pos2_offset],
	       &vc4_state->hw_dlist[vc4_state->pos2_offset]);
	writel(vc4_state->dlist[vc4_state->ptr0_offset],
	       &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
}

static int vc4_plane_atomic_async_check(struct drm_plane *plane,
					struct drm_plane_state *state)
{
	/* No configuring new scaling in the fast path. */
	if (plane->state->crtc_w != state->crtc_w ||
	    plane->state->crtc_h != state->crtc_h ||
	    plane->state->src_w != state->src_w ||
	    plane->state->src_h != state->src_h)
		return -EINVAL;

	return 0;
}

944 945 946 947 948
static int vc4_prepare_fb(struct drm_plane *plane,
			  struct drm_plane_state *state)
{
	struct vc4_bo *bo;
	struct dma_fence *fence;
949
	int ret;
950

951
	if (!state->fb)
952 953 954
		return 0;

	bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
955

956 957 958 959 960 961
	fence = reservation_object_get_excl_rcu(bo->resv);
	drm_atomic_set_fence_for_plane(state, fence);

	if (plane->state->fb == state->fb)
		return 0;

962 963 964 965
	ret = vc4_bo_inc_usecnt(bo);
	if (ret)
		return ret;

966 967 968
	return 0;
}

969 970 971 972 973 974 975 976 977 978 979 980
static void vc4_cleanup_fb(struct drm_plane *plane,
			   struct drm_plane_state *state)
{
	struct vc4_bo *bo;

	if (plane->state->fb == state->fb || !state->fb)
		return;

	bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
	vc4_bo_dec_usecnt(bo);
}

981 982 983
static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = {
	.atomic_check = vc4_plane_atomic_check,
	.atomic_update = vc4_plane_atomic_update,
984
	.prepare_fb = vc4_prepare_fb,
985
	.cleanup_fb = vc4_cleanup_fb,
986 987
	.atomic_async_check = vc4_plane_atomic_async_check,
	.atomic_async_update = vc4_plane_atomic_async_update,
988 989 990 991 992 993 994
};

static void vc4_plane_destroy(struct drm_plane *plane)
{
	drm_plane_cleanup(plane);
}

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
static bool vc4_format_mod_supported(struct drm_plane *plane,
				     uint32_t format,
				     uint64_t modifier)
{
	/* Support T_TILING for RGB formats only. */
	switch (format) {
	case DRM_FORMAT_XRGB8888:
	case DRM_FORMAT_ARGB8888:
	case DRM_FORMAT_ABGR8888:
	case DRM_FORMAT_XBGR8888:
	case DRM_FORMAT_RGB565:
	case DRM_FORMAT_BGR565:
	case DRM_FORMAT_ARGB1555:
	case DRM_FORMAT_XRGB1555:
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
		switch (fourcc_mod_broadcom_mod(modifier)) {
		case DRM_FORMAT_MOD_LINEAR:
		case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED:
		case DRM_FORMAT_MOD_BROADCOM_SAND64:
		case DRM_FORMAT_MOD_BROADCOM_SAND128:
			return true;
		default:
			return false;
		}
	case DRM_FORMAT_NV12:
	case DRM_FORMAT_NV21:
		switch (fourcc_mod_broadcom_mod(modifier)) {
		case DRM_FORMAT_MOD_LINEAR:
		case DRM_FORMAT_MOD_BROADCOM_SAND64:
		case DRM_FORMAT_MOD_BROADCOM_SAND128:
		case DRM_FORMAT_MOD_BROADCOM_SAND256:
			return true;
		default:
			return false;
		}
1029 1030 1031 1032 1033
	case DRM_FORMAT_YUV422:
	case DRM_FORMAT_YVU422:
	case DRM_FORMAT_YUV420:
	case DRM_FORMAT_YVU420:
	case DRM_FORMAT_NV16:
1034
	case DRM_FORMAT_NV61:
1035 1036 1037 1038 1039
	default:
		return (modifier == DRM_FORMAT_MOD_LINEAR);
	}
}

1040
static const struct drm_plane_funcs vc4_plane_funcs = {
1041
	.update_plane = drm_atomic_helper_update_plane,
1042 1043 1044 1045 1046 1047
	.disable_plane = drm_atomic_helper_disable_plane,
	.destroy = vc4_plane_destroy,
	.set_property = NULL,
	.reset = vc4_plane_reset,
	.atomic_duplicate_state = vc4_plane_duplicate_state,
	.atomic_destroy_state = vc4_plane_destroy_state,
1048
	.format_mod_supported = vc4_format_mod_supported,
1049 1050 1051 1052 1053 1054 1055 1056
};

struct drm_plane *vc4_plane_init(struct drm_device *dev,
				 enum drm_plane_type type)
{
	struct drm_plane *plane = NULL;
	struct vc4_plane *vc4_plane;
	u32 formats[ARRAY_SIZE(hvs_formats)];
1057
	u32 num_formats = 0;
1058 1059
	int ret = 0;
	unsigned i;
1060 1061
	static const uint64_t modifiers[] = {
		DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED,
1062 1063 1064
		DRM_FORMAT_MOD_BROADCOM_SAND128,
		DRM_FORMAT_MOD_BROADCOM_SAND64,
		DRM_FORMAT_MOD_BROADCOM_SAND256,
1065 1066 1067
		DRM_FORMAT_MOD_LINEAR,
		DRM_FORMAT_MOD_INVALID
	};
1068 1069 1070

	vc4_plane = devm_kzalloc(dev->dev, sizeof(*vc4_plane),
				 GFP_KERNEL);
1071 1072
	if (!vc4_plane)
		return ERR_PTR(-ENOMEM);
1073

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
		/* Don't allow YUV in cursor planes, since that means
		 * tuning on the scaler, which we don't allow for the
		 * cursor.
		 */
		if (type != DRM_PLANE_TYPE_CURSOR ||
		    hvs_formats[i].hvs < HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE) {
			formats[num_formats++] = hvs_formats[i].drm;
		}
	}
1084
	plane = &vc4_plane->base;
1085
	ret = drm_universal_plane_init(dev, plane, 0,
1086
				       &vc4_plane_funcs,
1087
				       formats, num_formats,
1088
				       modifiers, type, NULL);
1089 1090 1091

	drm_plane_helper_add(plane, &vc4_plane_helper_funcs);

1092 1093
	drm_plane_create_alpha_property(plane);

1094 1095
	return plane;
}